2022年人教版八年级数学上册第十四章整式的乘法与因式分解教案 提公因式法

合集下载

八年级数学上册 第14章 整式的乘法与因式分解 教案新人教版

八年级数学上册 第14章 整式的乘法与因式分解 教案新人教版

第十四章整式的乘法与因式分解14.1整式的乘法14.1.1 同底数幂的乘法【知识与技能】(1)理解同底数幂的乘法法则.(2)运用同底数幂的乘法法则解决一些实际问题.【过程与方法】经历自主探索、猜想、验证同底数幂的乘法法则的过程,并能灵活运用.【情感态度与价值观】让学生体验用数学知识解决问题的乐趣,培养学生热爱数学的情感.正确理解同底数幂的乘法法则.正确理解和运用同底数幂的乘法法则.多媒体课件.师生共同复习a n的意义:图14-1.1-1a n表示n个a相乘,我们把这种运算叫作乘方,乘方的结果叫作幂;a叫作底数,n是指数.如图14-1.1-1.教师提出问题:一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103 s可进行多少次运算?能否用我们学过的知识来解决这个问题呢?学生思考后回答:运算次数=运算速度×工作时间,所以该电子计算机工作103 s可进行的运算次数为1015×103.教师追问:1015×103如何计算呢?学生列出算式并解答(要求学生写出解答过程中每一步的依据):教师肯定学生的答案并引入:很好,通过观察大家可以发现1015,103这两个因数是同底数幂的形式,所以我们把像1015×103的运算叫作同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算——同底数幂的乘法.(板书课题).探究:同底数幂的乘法法则教师引入:刚才我们通过计算,知道,下面我们再来观察几道题.计算下列各式:学生独立计算,三位学生代表上台板演,要求每个步骤都要写出运算的依据,师生共同评析.如果学生有困难,教师可以引导学生回顾“复习导入”的解答过程,再计算.教师引导学生发现下列规律:(1)这三个式子都是底数相同的幂相乘.(2)相乘所得的结果的底数与原底数相同,指数是原来两个幂的指数的和.师生共同总结:a m·a n表示同底数幂的乘法,根据幂的意义可得:用语言描述此法则:同底数幂相乘,底数不变,指数相加.教师强调:运用同底数幂的乘法法则时,要注意以下几点:(1)底数必须相同,如23与25,(a2b2)3与(a2b2)4,(x-y)2与(x-y)5等.(2)a可以是单项式,也可以是多项式.(3)按照运算法则,只有相乘时才是底数不变,指数相加.教师出示教材P96例1:师生共同分析解答,教师板书(1),学生代表板演(2)(3)(4).教师着重让学生说明底数是什么,指数是什么,让学生观察是不是符合同底数幂相乘,引导学生运用法则进行计算.(2)中a=a1是学生的易错点,教师提问可能会出错的学生,并借此强调此问题.接着教师让学生独立完成教材P96练习,同桌之间互相检查.1.a m·a n=a m+n(m,n都是正整数).用语言描述此法则:同底数幂相乘,底数不变,指数相加.2.三个或三个以上同底数幂的乘法法则:a m·a n·a p=a m+n+p(m,n,p都是正整数).3.同底数幂的乘法法则的逆用:a m+n=a m·a n(m,n都是正整数)第十四章整式的乘法与因式分解14.1整式的乘法14.1.2 幂的乘方【知识与技能】(1)知道幂的乘方的意义.(2)会进行幂的乘方的计算.【过程与方法】经历探索幂的乘方的运算性质的过程,进一步体会幂的意义,发展学生的推理能力和有条理的表达能力.【情感态度与价值观】通过分组探究,培养学生合作交流的意识,提高学生勇于探索数学的品质.会进行幂的乘方的运算.幂的乘方法则的总结及运用.多媒体课件.教师出示问题:(1)叙述同底数幂的乘法法则,并用字母表示.(2)计算:请学生代表口答.教师:大家已经学会进行同底数幂的乘法运算,那么幂的乘方运算又应该如何进行呢?(引入本节课的内容,板书课题).探究:幂的乘方的法则教师:我们知道,表示几个相同因数的积的运算叫作乘方,根据乘方的意义,请同学们解决以下问题:1.思考.根据乘方的意义及同底数幂的乘法法则填空,看看计算的结果有什么规律:教师要加强引导,强调运用同底数幂的乘法法则的注意事项.2.小组讨论.对正整数m,n,你认为(a m)n等于什么?能对你的猜想给出检验过程吗?学生小组内互相探索、交流,积极思考,然后各组派代表回答,相互点评,补充得出关于幂的乘方法则.师生共同总结:一般地,对于任意底数a与任意正整数m,n,幂的乘方法则:即幂的乘方,底数不变,指数相乘.(教师板书)教师说明:(1)法则中a可以是一个具体的数,也可以是单项式或多项式.(2)在形式上,幂的乘方的底数本身就是一个幂.(3)法则可推广到[(a m)n]k=a mnk(m,n,k是正整数).(4)幂的乘方不能和同底数幂的乘法相混淆.例如,不能把(a5)2的计算结果写成a7,也不能把a5·a2的计算结果写成a10.教师出示教材P96例2:计算:师生共同分析解答,教师板书(1),请学生代表上台板演(2)(3)(4).教师追问:a mn等于(a m)n(m,n都是正整数)吗?学生类比同底数幂的乘法法则的逆用得出a mn=(a m)n(m,n都是正整数),也就是说对于幂的乘方法则,它的逆用同样成立.当一个幂的指数是积的形式时,就可以写成幂的乘方的形式.学生口答.接着教师让学生独立完成P97练习,同桌之间互相检查.1.(a m)n=a mn(m,n是正整数).语言叙述:幂的乘方,底数不变,指数相乘.2.法则可推广到[(a m)n]k=a mnk(m,n,k是正整数).第十四章整式的乘法与因式分解14.1整式的乘法14.1.3 积的乘方【知识与技能】(1)经历探索积的乘方运算法则的过程,进一步体会幂的意义.(2)理解积的乘方运算法则,能解决一些实际问题.【过程与方法】让学生经历探索积的乘方法则的过程,提高学生的学习主动性,增强学生学习的兴趣.【情感态度与价值观】让学生通过探索,体会知识的发现过程,感受运用数学知识的妙趣及简洁美.积的乘方的运算法则及其应用.幂的运算法则的灵活运用.多媒体课件.让学生回顾同底数幂的乘法、幂的乘方这两个幂的运算性质.教师引入:这节课我们来学习积的乘方(板书课题)探究:积的乘方法则教师列出自学提纲,让学生解决以下问题,在此过程中引导学生自主探究、讨论、归纳.1.填空,看运算过程中用到了哪些运算律?从运算结果看你能发现什么规律?2.把你发现的规律先用文字语言表述,再用符号语言表达.教师点评学生的探究过程,并总结:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.也就是说,积的乘方等于幂的乘积.用符号语言叙述:(ab)n=a n b n(n是正整数).(教师板书符号语言)教师出示教材P97例3:计算:每道小题均由学生口述完整的解题过程,教师板书.教师进行总结:同底数幂的乘法、幂的乘方、积的乘方这三个运算法则是整式乘法的基础,也是整式乘法的主要依据,对三个法则的数学表达式和语言表述,不仅要记住,更重要的是理解,在这三个幂的运算中,既要防止符号错误,也要防止运算性质发生混淆.接着,教师让学生独立完成教材P98练习,教师巡视、指导,完成后同桌之间互相检查.1.积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.2.积的乘方是幂的第三个运算法则,这里的积可以是单独几个字母因式的积,也可以是几个多项式的积.第十四章整式的乘法与因式分解14.1整式的乘法14.1.4 整式的乘法课时1 单项式乘单项式【知识与技能】探索并了解单项式与单项式相乘的法则,并运用它进行运算.【过程与方法】让学生主动参与到探索过程中,逐步形成独立思考、主动探索的习惯,培养思维的严密性和解决问题的能力.【情感态度与价值观】通过对单项式与单项式相乘的法则的探索、猜想、体验及运用,感受学习的乐趣.单项式与单项式相乘的运算法则及其应用.灵活地进行单项式与单项式相乘的运算.多媒体课件.教师直接引入:我们在前面学习过了整式的加减运算,还记得整式的加减法是如何运算的吗?其实整式的运算就像数的运算,除了加减法,还有整式的乘法、整式的除法.(教师板书课题)探究:单项式乘单项式的运算法则教师提出问题:光的速度约是3×105 km/s,太阳光照射到地球上需要的时间约是5×102 s,你知道地球与太阳之间的距离约是多少吗?学生独立思考后列式(3×105)×(5×102).探究新知学生分组讨论以下问题:(1)怎样计算(3×105)×(5×102)?计算过程中用到了哪些运算律及运算性质?(2)如果将上式中的数字改为字母,比如ac5·bc2,怎样计算这个式子?小组讨论时,教师要注意指导,并让两名同学在黑板上写出演算过程.最后教师讲评,得出结论.教师追问:如何计算4a2x5·(-3a3bx2)?由此你能总结出单项式与单项式相乘的乘法法则吗?学生先独立思考,教师再进行如图14-1.4-1的讲解:最后师生共同归纳:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.教师强调:(1)积的系数是各因式的系数的积.(2)相同字母按照同底数幂的运算法则进行计算.(3)只在一个因式中出现的字母,连同它的指数一起作为积的一个因式.(4)上述法则对于三个以上的单项式相乘同样适用.(5)运算结果仍是单项式.教师出示教材P98例4:师生共同分析,教师板书(1),学生自主完成(2).接着让学生独立完成P99练习第1,2题,完成后同桌之间互相检查.根据单项式乘单项式的法则,在进行计算时,可按照如下步骤进行:(1)系数相乘——确定积的系数,在相乘时,要注意符号;(2)相同字母相乘——底数不变,指数相加;(3)只在一个单项式中含有的字母——连同字母的指数写在乘积中.第十四章整式的乘法与因式分解14.1整式的乘法14.1.4 整式的乘法课时2 单项式乘多项式【知识与技能】(1)在具体情境中,了解单项式乘多项式的意义.(2)理解单项式与多项式相乘的法则,并运用它进行运算.【过程与方法】让学生主动参与到探索过程中,提高学生的主观能动性,感受数学知识的简洁美. 【情感态度与价值观】通过对单项式与多项式相乘的法则的探索、猜想、体验及运用,感受学习的乐趣.单项式与多项式相乘的运算法则及其运用.灵活地进行单项式与多项式相乘的运算.多媒体课件.教师引入:为了扩大绿地面积,要把街心花园的一块长为p m,宽为b m的长方形绿地,向两边分别加宽a m和c m,如图14-1.4-2,你能用几种方法表示出扩大后的绿地面积?不同的表示方法之间有什么关系?如何从数学的角度认识不同的表示方法之间的关系?学生思考,教师:本节课我们将探究这个问题.(板书课题)探究:单项式乘多项式的运算法则教师将问题进行分解:(1)扩大后绿地的长和宽分别是多少?长为a+b+cm;宽为pm.(2)根据长方形的面积=长×宽,你能得到的式子是p(a+b+c)①.(3)利用分割法,可以把扩大后的面积看成是几部分的面积的和?(注意:在这一过程中,学生可能说出分成两部分,这时要肯定学生得到的结论,再进行适当的引导,让学生分成三部分)(4)这三部分的面积可以怎么表示?学生说出结果后,教师展示图片:如图14-1.4-3,扩大后绿地的面积可以表示为pa+pb+pc②(5)①和②都表示扩大后绿地的面积,它们是什么关系呢?最后学生通过观察,发现:因为①和②都表示同一个量,所以这两个式子相等,即p(a+b+c)=pa+pb+pc.(6)对于这个等式,能用乘法分配律说明吗?教师提示:用p乘括号里的每一项,再把所得的积相加.教师追问:p和a+b+c分别是什么样的式子?学生:p是单项式,a+b+c是多项式,这个乘法是单项式与多项式的乘法.请同学们试着总结一下单项式与多项式相乘的法则.学生总结:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.(教师板书)最后师生共同归纳:(1)运用单项式与多项式相乘的法则时,要注意各项的符号问题,且此法则是由分配律推导出来的,所以单项式与多项式相乘可按分配律进行计算.(2)等式的左边是积的形式,等式的右边是和的形式.(3)单项式与多项式相乘所得的结果是一个多项式,它的项数等于原来多项式的项数.教师出示教材P100例5:计算:师生共同分析,找两名学生代表上台板演.接着让学生独立完成教材P100练习第1,2题,完成后同桌之间互相检查.单项式乘多项式的法则:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.第十四章整式的乘法与因式分解14.1整式的乘法14.1.4 整式的乘法课时3 多项式乘多项式【知识与技能】(1)经历探索多项式乘法法则的过程,理解多项式的乘法法则.(2)灵活运用多项式乘多项式的运算法则.【过程与方法】经历探索多项式与多项式的乘法法则的过程,进一步发展观察、归纳、概括的能力,发展学生有条理的思考及语言表达能力.【情感态度与价值观】通过探究面积的不同表示方法的活动,使学生体验探究的过程,培养学生的创新能力.多项式乘法的运算.探索多项式乘法的法则,注意多项式乘法的运算中“漏项”“负号”的问题.多媒体课件.教师引入:如果现在为了扩大街心花园的绿地面积,把一块原长为a m,宽为p m的长方形绿地,加长了b m,加宽了q m.你能用几种方法求出扩大后的绿地面积?教师:刚才我们遇到了一个实际的问题,和我们上节课的导入内容一样,都是求面积的问题.下面我们一起来研究这个问题.(板书课题)探究:多项式乘多项式的运算法则教师:首先我们根据题意画出图形.教师引导学生画出图形,如图14-1.4-4.让学生根据所画的图形,解决下列问题:(1)扩大后的长方形绿地的长是(a+b)m,宽是(p+q)m.根据长方形的面积公式,这块绿地的面积(单位:m2)可表示为(a+b)·(p+q).(2)如果把长方形分成两部分,一个一边长是a m的长方形和一个一边长是b m的长方形,那么它的面积(单位:m2)可表示为a(p+q)+b(p+q).(3)如果把长方形分成四部分,那么它的面积(单位:m2)可表示为ap+aq+bp+bq,如图14-1.4-5.(4)观察以上几个算式,你从计算过程中发现了什么?(5)上面的乘法属于哪一种运算?(多项式乘多项式)学生分组进行讨论,然后让5名学生分别解答这5个小问题.教师说明:上面的等式提供了多项式与多项式相乘的方法.计算(a+b)·(p+q),可以先把其中的一个多项式,如p+q,看成一个整体,运用单项式与多项式相乘的法则,得出(a+b)(p+q)=a(p+q)+b(p+q),再利用单项式与多项式相乘的法则,得a(p+q)+b(p+q)=ap+aq+bp+bq.总体来看,(a+b)(p+q)的结果可以看成是由(a+b)的每一项乘(p+q)的每一项,再把所得的积相加而得到的,即师生共同总结:一般地,多项式与多项式相乘,先用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.(教师板书)教师强调:运用多项式与多项式相乘的法则进行计算时,注意不要漏乘某项,为防止出错,尽可能地按顺序进行,即用前一个多项式的第一项与后一个多项式的每一项依次相乘,再用前一个多项式的第二项与后一个多项式的每一项依次相乘,……直到前一个多项式的每一项都与后一个多项式的每一项相乘,最后把结果相加,这样就不容易漏项了.注意最后能合并同类项的一定要合并同类项.教师总结:在整式的乘法中,我们学习了三个运算法则,它们都是由乘法的运算律推导出来的,为方便记忆,特归纳如下:整式的乘法单项式乘单项式:乘法交换律、结合律单项式乘多项式:分配律多项式乘多项式:分配律在这三个法则中,单项式乘单项式的法则是基础,是关键.教师出示教材P101例6:计算:师生共同分析,然后教师找3名学生上台板演.接着让学生独立完成教材P102练习第1,2题,完成后同桌之间互相检查.1.多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.第十四章整式的乘法与因式分解14.1整式的乘法14.1.4 整式的乘法课时4 整式的除法【知识与技能】(1)掌握同底数幂的除法法则.(2)理解不等于0的数的0次幂的定义.(3)理解单项式除以单项式,多项式除以单项式的法则,并会进行简单的相关运算.【过程与方法】通过探索整式的除法的一般规律,能熟练地进行有关的计算.【情感态度与价值观】让学生自主探索整式的除法法则,体验通过转化构建新知识体系,培养学生大胆猜想、善于思考、归纳的数学思维品质和创新精神.整式的除法法则的运用.整式的除法法则的运用.多媒体课件.师生共同复习回顾:同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即a m·a n=a m+n(m,n都是正整数).教师接着出示问题:一张数码照片的文件大小是28 KB,一个存储量为26 MB(1 MB=210 KB)的移动存储器能存储多少张这样的数码照片?学生先思考,再小组内讨论解决:移动存储器的存储量单位与文件大小的单位不一致,所以要先统一单位.移动存储器的容量为26×210=26 624(KB).所以它能存储这种数码照片的数量为(26 624÷28)张.教师:我们已经学习了整式的加法、减法、乘法运算.在整式的运算中,有时还会遇到两个整式相除的情况.由于除法是乘法的逆运算,因此我们可以利用整式的乘法来理解和学习整式的除法.(板书课题)探究1:同底数幂的除法教师让学生解决以下问题:1.用你熟悉的方法计算.2.概括.在学生讨论、计算的基础上,教师提问:你们能发现什么?由学生回答,教师板书,发现:你能根据除法的意义来说明这些运算结果是怎么得到的吗?3.分组讨论.各组选出一名代表来回答问题,师生达成共识,除法是乘法的逆运算,所以除法的问题实际上是“已知乘积和一个因数,去求另一个因数”的问题,于是上面的问题可以转化为乘法问题加以解决,即:师生共同总结:一般地,我们有a m÷a n=a m-n,并且m≥n,m,n为正整数,即同底数幂相除,底数不变,指数相减.(教师板书)4.利用除法的意义说明这个法则的算理.让学生仿照问题的解决过程,讲清算理,并请几名学生代表回答,教师加以评析.5.让学生互相讨论.当m=n时,a m÷a n的结果是多少?能总结出什么规律?师生共同总结:当m=n时,a m÷a n=a m-m=a0=1(a≠0),即任何不等于0的数的0次幂都等于1.探究2:单项式除以单项式与多项式除以多项式教师引入:利用同底数幂的除法法则,我们可以计算单项式与单项式的除法,进一步探究多项式与单项式的除法,下面我们先来探讨单项式与单项式的除法.教师出示问题:木星的质量约是1.90×1024吨,地球的质量约是5.98×1021吨.你知道木星的质量约为地球质量的多少倍吗?学生思考后回答:这是除法运算,木星的质量约为地球质量的[(1.90×1024)÷(5.98×1021)]倍.接着教师让学生解决以下问题:1.计算(1.90×1024)÷(5.98×1021),并说说你计算的根据是什么.2.你能利用1中的方法计算下列各式吗?3.你能根据2说说单项式除以单项式的运算法则吗?讨论结果展示:可以从两个思路考虑:(思路一)从乘法与除法互为逆运算的角度去考虑.1.我们可以想象 5.98×1021×( )=1.90×1024.根据单项式与单项式相乘的运算法则可以继续联想:所求单项式的系数乘5.98等于1.90,所以所求单项式的系数为1.90÷5.98≈0.318,所求单项式的幂值部分应包含1024÷1021,即103,由此可知5.98×1021×(0.318×103)≈1.90×1024.所以(1.90×1024)÷(5.98×1021)≈0.318×103.2.可以想象2a·( )=8a3,根据单项式与单项式相乘的运算法则,可以考虑:8÷2=4,a3÷a=a2,即2a·(4a2)=8a3.所以8a3÷2a=4a2.同样的道理可以得出所以(思路二)从除法的意义去考虑.上述两种算法有理有据,所以结果都正确.教师引导学生观察上述几个式子的运算过程,总结出它们的共同特征:(1)都是单项式除以单项式.(2)运算的结果都是把系数、同底数幂分别相除后作为商的因式;对于只在一个被除式中含有的字母,则连同它的指数一起作为商的一个因式.(3)单项式相除是在同底数幂的除法的基础上进行的.教师出示教材P103例7:学生自主解答.教师:那么对于多项式除以单项式,同学们可仿照上述的探究过程,自己尝试.学生小组讨论.师生共同总结:一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.教师出示教材P103例8:教师引导学生共同分析,教师板书(1),请2名学生代表上台板演(2)(3).接着教师让学生完成教材P104练习第1,2,3题.(学生独立完成之后,教师点评)多项式除以单项式的结果仍然是多项式.第十四章整式的乘法与因式分解14.2乘法公式14.2.1 平方差公式【知识与技能】(1)经历探索平方差公式的过程.(2)会推导平方差公式,并能运用平方差公式进行简单的运算.【过程与方法】通过对平方差公式的探索、验证、应用,体会转化思想、数形结合思想等.【情感态度与价值观】积极参加探索活动,并在此过程中培养自己勇于挑战的勇气和战胜困难的自信心.平方差公式的推导和应用.理解平方差公式的结构特征,能灵活运用平方差公式.多媒体课件.教师引入:在一次智力抢答赛中,主持人提供了两道题:1. 21×19=?2. 103×97=?主持人话音刚落,就立刻有一个学生站起来抢答:“第一题等于399,第二题等于9991.”其速度之快,简直就是脱口而出.同学们,你知道他是如何计算的吗?你想不想掌握他的简便、快速的运算方法呢?那么,学完本节课,我们就能知道他是如何计算的.(板书课题)探究:平方差公式教师提出:计算下列多项式的积,你能发现它们的运算形式与结果有什么规律?(1)(x+1)(x-1);(2)(m+2)(m-2);(3)(2x+1)(2x-1).学生独立运算,然后分组讨论:教师引导学生用自己的语言叙述所发现的规律,允许学生之间互相补充,教师不要急于概括.学生回答:上面几个算式都是形如(a+b)的多项式与形如(a-b)的多项式相乘.继续让学生独立思考,每人在组内举一个例子(可口述或书写),教师请其中一个小组的代表举例.教师出示问题:计算(a+b)(a-b).让学生计算,归纳算式的特征,说明结果的形式.教师点评并总结:平方差公式:(a+b)(a-b)=a2-b2.(教师板书)语言叙述:两个数的和与这两个数的差的积,等于这两个数的平方差.这个公式叫作(乘法的)平方差公式.教师引导学生归纳这个公式的一些特点,如公式左、右两边的结构,教给学生记忆公式的方法.教师出示教材P108例1:运用平方差公式计算:(1)(3x+2)(3x-2);(2)(-x+2y)(-x-2y).填表:对本例的第(1)小题,可以采用学生独立完成,然后抢答的形式;第(2)小题,可以采用小组讨论的形式,要求学生在给出表格所提示的解法之后,思考别的解法:提取后一个因式里的负号,将2y看作“a”,将x看作“b”,然后运用平方差公式计算.完整的解答过程如下:教师出示教材P108例2:计算:(1)(y+2)(y-2)-(y-1)(y+5);(2)102×98.此处仍先让学生独立思考,再自主发言,口述解题思路,允许他们进行算法的多样化,通过比较,优化算法,达到简便计算的目的.完整的解答过程如下:。

人教版八年级数学第十四章《整式的乘法与因式分解》教案

人教版八年级数学第十四章《整式的乘法与因式分解》教案

第十四章整式的乘法与因式分解1.了解幂的意义,并学会简单的同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法的运算,能根据幂的各种运算性质解决数学问题和简单的实际问题.2.了解零指数幂的意义;探索整式乘除法的法则,会进行简单的乘除法运算.3.要求学生说出平方差公式和完全平方式的特点,能正确地利用平方差公式和完全平方式进行多项式的乘法.4.了解因式分解的意义及其与整式乘法之间的关系,从中体会事物之间可以相互转化的思想,学会用提公因式法、公式法(直接用公式不超过两次)进行因式分解(指数是正整数).让学生主动参与到一些探索过程中来,逐步形成独立思考、主动探索的习惯,培养思维的批判性、严密性和初步解决问题的能力.通过本章中一些生活实例的学习,体会数学与生活之间的密切联系,在一定程度上了解数学的应用价值,提高学生学习的兴趣.本章是整式的加减的后续学习,首先,从幂的运算开始入手,逐步展开整式的乘除法运算;接着,在整式的乘法中提炼出两种特殊的乘法运算,即两个乘法公式;最后,从整式乘法的逆过程出发,引入因式分解的相关知识.本章主要有如下特点:1.注重知识形成的探索过程,让学生在探索过程中领悟知识,在领悟的过程中建构体系,从而更好地实现知识体系的更新和知识的正向迁移.2.知识内容的呈现方式力求与学生已有的知识结构相联系,同时兼顾学生的思维水平和心理特征.3.让学生掌握基本的数学事实与数学活动经验,减轻不必要的记忆负担.4.注意从生活中选取素材,给学生提供一些交流、讨论的空间,让学生从中体会数学的应用价值,逐步养成谈数学、想数学、做数学的良好习惯.5.教材的安排、例题的讲解与习题的处理都给教师留有较大的余地与足够的空间,教师能根据各地学生的实际情况,充分发挥自己的教学主动性和积极性,创造性地进行教学.【重点】1.理解和掌握幂的运算性质.2.掌握整式的乘除运算方法,理解乘法公式,能对多项式进行因式分解.【难点】1.整式的乘除运算.2.利用乘法公式进行计算,利用提公因式法和因式分解法对多项式进行因式分解.1.幂的运算是整式乘除的基础,在教学幂的运算性质时,要让学生经历探索的过程,通过特例计算,自己概括出有关运算法则,理解并掌握这些法则,并能用来进行简单的计算.要注意留给学生探索与交流的空间,让学生在自己的实践中获得运算法则.在教学中要注意渗透化归的思想.对于整式的乘除法要让学生通过适当的尝试,获得一些直接体验,体验单项式与单项式相乘的运算规律,在此基础上总结出整式乘除法的一些运算法则,对于一些法则的获得要注意结合图形,让学生体会特点,从而加深对知识的理解和掌握.2.对于乘法公式的教学,要留出更多的时间和空间让学生自主探索,发现规律,体验乘法公式的来源,理解公式的意义和作用,降低对公式的记忆要求.教学时可以让学生直接计算较为简单的情况,在此基础上指出这一乘法结果的普遍性.教师要注意从已有的整式乘法的知识中提炼出这一乘法公式,让学生明确公式来源于整式的乘法,又应用于整式乘法的辩证性.3.对于因式分解这部分内容,要注意留给学生讨论的时间,引导学生进行归纳、概括.注意教给学生因式分解的方法和步骤,强化提公因式法和公式法的结构特点,让学生在不断练习中得以巩固和提高.总之,在本章的教学中,教师要创造性地使用教材,充分发挥自己在教学中的组织、引导、合作的作用,通过创设一定的问题情境,帮助学生在做一做、探索、交流与讨论中,主动地去获取知识.本章的教学中,教师不要人为地增加学生的记忆负担,提高对学生的要求,也不要人为地补充一些繁、难、偏、旧的内容,根据学生的具体情况,可以在某些具体问题上,让一部分学有余力的学生得到更好的发展,体现教材的弹性.14.1整式的乘法1.了解幂的意义,并学会简单的同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法的运算.2.从幂的运算入手,逐步展开整式的乘法,要了解单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会进行简单的整式乘法的计算.3.通过计算,提高学生独立思考、主动探索的能力.1.在推理的过程中,让学生学会类比的方法,培养学生的观察、抽象、概括的能力.2.在观察的过程中,让学生掌握整式乘法的一些计算方法,并能运用这些方法进行计算.1.让学生体验从特殊到一般的过程,能自己在实践中总结概括法则.2.培养学生学习数学的积极性,让学生树立热爱数学的情感.【重点】1.同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法法则.2.整式的乘法法则.【难点】1.能正确进行同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法计算.2.整式的乘法的一些计算.14.1.1同底数幂的乘法1.理解同底数幂的乘法法则.2.能运用同底数幂的乘法法则解决一些实际问题.1.在进一步体会幂的意义时,发展推理能力和有条理的表达能力.2.通过“同底数幂的乘法法则”的推导和应用,使学生初步理解特殊到一般,一般到特殊的认知规律.体会科学的思想方法,激发学生探索创新的精神.【重点】正确理解同底数幂的乘法法则.【难点】正确理解和应用同底数幂的乘法法则.【教师准备】多媒体课件(1,2,3).【学生准备】复习幂的意义.导入一:复习a n的意义:a n表示n个a相乘,我们把这种运算叫做乘方,乘方的结果叫做幂;a叫做底数,n是指数.提出问题:一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103秒可进行多少次运算?【师】能否用我们学过的知识来解决这个问题呢?【生】运算次数=运算速度×工作时间,所以计算机工作103秒可进行的运算次数为:1015×103.【师】1015×103如何计算呢?【生】根据乘方的意义可知:1015×103=(10× (10)15个10×(10×10×10)=(10×10× (10)18个10=1018.【师】很好,通过观察大家可以发现1015,103这两个因数是同底数幂的形式,所以我们把像1015×103的运算叫做同底数幂的乘法,根据实际需要,我们有必要研究和学习这样的运算——同底数幂的乘法.[设计意图]首先让学生回忆幂的一些知识,然后根据教材中的问题1让学生列式、观察并计算出结果,从而导入到本节课的学习之中.导入二:“盘古开天辟地”的故事:公元前一百万年,没有天没有地,整个宇宙是混沌的一团,突然间窜出来一个巨人,他的名字叫盘古,他手握一把巨斧,用力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流.【师】盘古的左眼变成了太阳,那么太阳离我们多远呢?光的速度为3×105千米/秒,太阳光照射到地球大约需要5×102秒,你能计算出地球距离太阳大约有多远吗?【生】可以列出算式:3×105×5×102=15×105×102=15ד?”.(引入课题)[设计意图]从远古到现代,让学生感受传说,极大地激发了学生的学习热情,同时相应问题的提出,也为学习同底数幂的乘法埋下了伏笔.导入三:北京奥运场馆一平方千米的土地上,一年内从太阳得到的能量相当于燃烧108千克煤所产生的能量.那么105平方千米的土地上,一年内从太阳得到的能量相当于燃烧多少千克煤?【师】你们能列式吗?(学生讨论得出108×105)【师】108,105我们称之为什么?(幂)【师】我们再来观察底数有什么特点?【生1】都是10.【生2】是一样的.【师】像这样底数相同的两个幂相乘的运算,我们把它叫做同底数幂的乘法.(揭示课题) [设计意图]利用提问题,一方面可以集中学生注意力,使之较快进入课堂学习状态,另一方面可以对学生进行爱国主义教育,增强学生的环保意识.问题1【课件1】计算下列各式:(1)25×22;(2)a3·a2;(3)5m·5n(m,n都是正整数).你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言描述.【师】根据乘方的意义,同学们可以独立解决上述问题.【生】25×22 =(2×2×2×2×2)×(2×2)=27 =25+2.25表示5个2相乘,22表示2个2相乘,根据乘方的意义:a3·a2=(a·a·a)·(a·a)=a5=a3+2.5m.5n=(5×5× (5)m个5×(5×5× (5)n个5=5m+n.(让学生自主探索,在启发性设问的引导下发现规律,并用自己的语言叙述)【生】我们可以发现下列规律:(1)这三个式子都是底数相同的幂相乘;(2)相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.【师生共析】a m·a n表示同底数幂的乘法,根据幂的意义可得:a m·a n=(a×a×…×a)m个a ×(a×a×…×a)n个a=a m+n.于是有a m·a n=a m+n(m,n都是正整数),用语言来描述此法则即为:“同底数幂相乘,底数不变,指数相加”.[知识拓展]同底数幂是具有相同底数的幂.(1)幂可以看做是代数式中的一类,是形如a n的代数式.目前,在我们研究的这类式子中,可以是任何有理数,也可以是整式,而a n中的n只能是正整数.(2)35与155不是同底数幂,因为它们的底数一个是3,一个是15,是不一样的,这说明两个幂是不是同底数幂,与它们的指数是否相同毫无关系.(3)53与515是同底数幂,因为它们的底数相同(都是5).同理,x3与x5,(a+b)2与(a+b)5也都是同底数幂.同底数幂的乘法法则的关键在于底数,底数一定要相同,并且二者是相乘关系,这样指数才能相加,否则不能运用此法则.问题2(针对导入三)1.探索108×105等于多少.(鼓励学生大胆猜想)学生可能会出现以下几种情况:①10013;②1040;③10040;④1013.[设计意图]猜想产生疑问,激发兴趣,为学生推导公式做好情感铺垫.【师】那到底谁的猜想正确呢?小组合作讨论,生回答,师板演:108× 105=(10× 10×…×10) 8个10×(10 × 10× (10)5个10=10×10×…×10 13个10=1013.即108× 105=108+5. [设计意图]师给出适当的提示后,相信学生能在已有的知识基础上,利用集体的智慧,找出猜想中的正确答案,并通过“转化”思想得出结论,也找到了正确的推理过程.2.出示问题:(学生口答,课件显示过程)a 6·a 9=(a ·a ·…·a ) 6个a·(a ·a ·…·a )9个a=a ·a ·…·a 15个a=a 15. 即a 6·a 9=a 6+9.3.观察以上两个式子,你有什么发现? 【师】这是两个特殊的式子,它们的指数分别是8,5;6,9.底数相同的两数的任何次幂相乘,都是底数不变,指数相加吗?能找到一个具有一般性,代表性的式子吗?a m ·a n 怎么计算?[设计意图]a6·a9和a m·a n的推导过程由于108·105打好了坚实的基础,所以用填空的形式简化公式的推导过程,既避免了重复教学过程,也节约时间,同时也能达到让学生经历从具体到一般的推导过程.【板书】a m·a n=a m+n(m,n都是正整数).师补充解释m,n都是正整数的原因,并请学生用自己的语言概括该结论,之后全体学生用精炼的文字概括表述.【板书】同底数幂相乘,底数不变,指数相加.[设计意图]全班学生参与活动,经历从理解法则的含义的概括到用十分准确简练的语言概括过程,从而提高学生的表达能力.问题3【课件2】(教材例1)计算:(1)x2·x5;(2)a·a6;(3)(-2)×(-2)4×(-2)3;(4)x m·x3m+1.计算a m·a n·a p后,能找到什么规律?【师】我们先来看例1,是不是可以用同底数幂的乘法法则呢?【生1】(1)(2)(4)可以直接用“同底数幂相乘,底数不变,指数相加”的法则.【生2】(3)也可以,先算2个同底数幂相乘,将其结果再与第三个幂相乘,仍是同底数幂相乘,再用法则运算就可以了.【师】同学们分析得很好.请自己做一遍,每组出一名同学板演,看谁算得又准又快.【生板演】(1)解:x2·x5=x2+5=x7.(2)解:a·a6=a1+6=a7.(3)解:(-2)×(-2)4×(-2)3=(-2)5×(-2)3=(-2)8=256.(4)解:x m·x3m+1=x m+3m+1=x4m+1.【师】接下来我们来看例2.受例1中第(3)题的启发,能自己解决吗?与同伴交流一下解题方法.解法1:a m·a n·a p=(a m·a n)·a p=a m+n·a p =a m+n+p.解法2:a m·a n·a p=a m·(a n·a p)=a m·a n+p=a m+n+p.解法3:a m·a n·a p= (a×a×…×a)m个a ×(a×a×…×a)n个a×(a×a×…×a)p个a=a m+n+p.【归纳】解法1与解法2都直接应用了运算法则,同时还运用了乘法的结合律;解法3是直接应用乘方的意义.三种解法得出了同一结果,我们需要这种开拓思维的创新精神.【生】那我们就可以推断,不管是多少个幂相乘,只要是同底数幂相乘,就一定是底数不变,指数相加呢?【师】是的,能不能用符号表示出来呢?【生】a m1·a m2·a m3·…·a m n=a m1+m2+m3+…+m n.【师】(鼓励学生)那么例1中的第(3)题我们就可以直接应用法则运算了.(-2)×(-2)4×(-2)3=(-2)1+4+3=(-2)8=256.1.同底数幂的乘法的运算性质是底数不变,指数相加.应用这个性质时,应注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加,即a m·a n=a m+n(m,n 都是正整数).2.推广:a m·a n·a p=a m+n+p.3.(课件3)注意:在应用同底数幂乘法法则时,注意以下几点:(1)底数必须相同,如23与25,(a2b2)3与(a2b2)4,(x-y)2与(x-y)5等.(2)a可以是单项式,也可以是多项式.(3)按照运算性质,只有相乘时才是底数不变,指数相加.1.计算a6×a3的结果是()A.a9B.a2C.a18D.a3解析:原式=a6+3=a9.故选A.2.下列计算正确的是()A.x·x2=x2B.x2·x2=2x2C.x2+x3=x5D.x2·x=x3解析:A.底数不变,指数相加,故A错误;B.底数不变,指数相加,故B错误;C.不是同底数幂的乘法,指数不能相加,故C错误;D.底数不变,指数相加,故D正确.故选D.3.计算(-a)3·(-a)2的正确结果是()A.a5B.-a5C.a6D.-a6解析:原式=(-a)3+2=(-a)5=-a5.故选B.4.计算.(1)(-5)×(-5)2×(-5)3;(2)(-a)·(-a)3;(3)-a3·(-a)2;(4)(a-b)2·(a-b)3;(5)(a+1)2·(1+a)·(a+1)3.解析:利用同底数幂乘法法则进行计算,底数不同的利用互为相反数的奇偶次幂的性质进行转化.解:(1)(-5)×(-5)2×(-5)3=(-5)6=56.(2)(-a)·(-a)3=(-a)4=a4.(3)-a3·(-a)2=-a3·a2=-a5.(4)(a-b)2·(a-b)3=(a-b)5.(5)(a+1)2·(1+a)·(a+1)3=(a+1)6.14.1.1同底数幂的乘法1.法则2.公式例题讲解例1例2一、教材作业【必做题】教材第96页练习.【选做题】教材第104页习题14.1第9,10题.二、课后作业【基础巩固】1.计算(-x2)·x3的结果是()A.x5B.-x5C.x6D.-x62.下列计算正确的是()A.a3·a2=a6B.b4·b4=2b4C.x5+x5=x10D.y7·y=y83.下列运算正确的是()A.a5·a5=2a5B.a5+a5=a10C.a5·a5=2a10D.a5·a5=a104.a2014可以写成()A.a2010+a4B.a2010·a4C.a2014·aD.a2007·a20075.下列运算错误的是()A.(-a)(-a)=(-a)2B.-32·(-3)4=(-3)6C.(-a)3·(-a)2=(-a)5D.(-a)3·(-a)3=a6【能力提升】6.设a m=8,a n=16,则a m+n等于()A.24B.32C.64D.1287.下列各式成立的是()A.(x-y)2=-(y-x)2B.(x-y)n=-(y-x)n(n为正整数)C.(x-y)2(y-x)2=-(x-y)4D.(x-y)3(y-x)3=-(x-y)6【拓展探究】8.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014,将下式减去上式得2S-S=22014-1,即S=22014-1,即1+2+22+23+24+…+22013=22014-1.请你仿照此法计算:(1)1+2+22+23+24+ (210)(2)1+3+32+33+34+…+3n(其中n为正整数).【答案与解析】1.B(解析:(-x2)·x3=-x2+3=-x5.故选B.)2.D(解析:A.应为a3·a2=a5,故本选项错误;B.应为b4·b4=b8,故本选项错误;C.应为x5+x5=2x5,故本选项错误;D.y7·y=y8,正确.故选D.)3.D(解析:A.应为a5·a5=a10,故本选项错误;B.应为a5+a5=2a5,故本选项错误;C.应为a5·a5=a10,故本选项错误;D.a5·a5=a10,正确.故选D.)4.B(解析:A.a2010+a4不能进行计算;B.a2010·a4 =a2014;C.a2014·a=a2015;D.a2007·a2007=a4014,故选B.)5.B(解析:A.(-a)(-a)=(-a)2,故本选项正确;B.-32·(-3)4=-32·34=-36,故本选项错误;C.(-a)3·(-a)2=(-a)3+2=(-a)5,故本选项正确;D.(-a)3·(-a)3=(-a)3+3=(-a)6=a6,故本选项正确.故选B.)6.D(解析:∵a m=8,a n=16,∴a m+n=a m·a n=8×16=128.故选D.)7.D(解析:A.(x-y)2=(y-x)2,故本选项错误;B.(x-y)n=-(y-x)n(n为奇数),故本选项错误;C.(x-y)2(y-x)2=(x-y)4,故本选项错误;D.(x-y)3(y-x)3=-(x-y)6,故本选项正确.故选D.)8.解:(1)设S=1+2+22+23+24+…+210,将等式两边同时乘以2得2S=2+22+23+24+…+210+211,将两式相减得2S-S=211-1,即S=211-1,则1+2+22+23+24+…+210=211-1.(2)设S=1+3+32+33+34+…+3n①,两边同(3n+1-1),则1+3+32+33+34+…时乘以3得3S=3+32+33+34+…+3n+3n+1②,②-①得3S-S=3n+1-1,即S=12(3n+1-1).+3n=12在教学中教师通过实际问题创设情境,导入新课,激发了学生学习数学的兴趣,通过学生的自主探索,让学生经历观察——类比——抽象——概括等过程,归纳出同底数幂的乘法法则,提高了学生的自主意识和自我解题的能力.在归纳出同底数幂的乘法法则之后,教师通过例1、例2的学习,让学生加深了对同底数幂的乘法法则的理解.整个过程学生对知识的接受和理解较好,突出了学生的主体地位和教师的主导作用,学生学得开心,知识掌握较好.因为本节课的内容较简单,所以在习题的设计上,教师可增加些难度,让学生通过变式训练,使学生的能力得到进一步的提高.另外,对于法则的概括和理解要尽量让学生自己去独立完善,教师要少说,多讲评.教学中要适当增加难度,增加变式训练,如法则的逆应用和底数为负数的习题.法则的逆应用要重点让学生掌握,以提高学生解决问题的能力.同时,一定要让学生分清幂的底数,明确只要在同底数幂相乘的时候才能用法则进行计算,否则不行.另外,对于法则的概括以及延伸的a m·a n·a p=a m+n+p,一定要让学生尽量发挥小组合作的能力,发现计算方法,从而总结出规律.教学过程能让学生独立完成的,教师绝不包办代替,把课堂应尽量还给学生.练习(教材第96页)解:(1)原式=b5+1=b6.(2)原式=-121+2+3=-126=164.(3)原式=a2+6=a8.(4)原式=y2n+n+1=y3n+1.题型1一般的同底数幂的乘法问题计算:(1)x2·x3;(2)(-2)4·(-2)3;(3)(a-1)4·(a-1)2.〔解析〕(1)可以直接得到x5;(2)中将(-2)看作相同的底数,由法则可得(-2)7;(3)中将(a-1)看作一个整体作为相同的底数.解:(1)x2·x3=x5.(2)(-2)4·(-2)3=(-2)7 =-27.(3)(a-1)4·(a-1)2=(a-1)6.题型2间接运用同底数幂的乘法法则计算:(1)-t3·(-t)4·(-t)5;(2)(z-y)3·(z-y)·(y-z)2.〔解析〕虽然底数不同,但仅仅只有符号之差,如z-y与y-z,可以先把底数变为相同的底数,再用法则计算.解:(1)-t3·(-t)4·(-t)5 =-t3·t4·(-t5)=t3·t4·t5=t12.(2)(z-y)3·(z-y)·(y-z)2=(z-y)3·(z-y)·(z-y)2=(z-y)6.〔方法提示〕对于不能直接运用同底数幂乘法法则的问题,通常先将题目中各项进行转化,化为同底数幂再运用法则计算,此过程中注意符号的确定.题型3同底数幂乘法法则的逆用计算:(-2)2007+(-2)2008.〔解析〕若直接计算,则相当麻烦,可以运用同底数幂的逆运算,将(-2)2008化成(-2)2007×(-2),再进行计算,比较简便.解:(-2)2007+(-2)2008=(-2)2007+(-2)2007×(-2)=(-2)2007×(1-2)=(-2)2007×(-1)=22007.(2014·温州中考)计算m 6·m3的结果是()A.m18B.m9C.m3D.m2〔解析〕根据同底数幂的乘法法则,底数不变,指数相加可知m6·m3=m9.故选B.14.1.2幂的乘方1.知道幂的乘方的意义.2.会进行幂的乘方计算.1.经历探索幂的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.2.了解幂的乘方的运算性质,并能解决一些实际问题.通过分组探究,培养学生合作交流的意识、提高学生勇于探究数学的品质.【重点】会进行幂的乘方的运算.【难点】幂的乘方法则的总结及运用.【教师准备】预设学生学习中容易混淆的知识.【学生准备】复习同底数幂的乘法法则.导入一:(1)叙述同底数幂乘法法则,并用字母表示.(2)计算:①a2·a5·a3;②a4·a4·a4.大家已经会进行同底数幂的乘法运算:a m·a n=a m+n(m,n都是正整数),那么幂的乘方运算又应该如何进行呢?[设计意图]通过复习巩固上节课所学的同底数幂的乘法法则的内容,为探索幂的乘方做好准备.导入二:(1)有甲、乙两个球,如果甲球的半径是乙球半径的n倍,那么甲球的体积是乙球体积的多少倍?学生口答:n3倍.(2)引导学生计算:(102)3=,怎样计算?(102)3=106.方法一:(102)3=102×102×102=102+2+2=106.方法二:(102)3=(100)3=1000000=106.[设计意图]在独立思考的基础上,组织学生交流、讨论,培养学生思维的严密性,让学生体验在交流中获益的乐趣.并在此过程中,引导学生主动反思,回顾解决问题的方法,为进入新课做准备.一、法则的探究1.思考.【课件1】根据乘方的意义及同底数幂的乘法填空,看看计算的结果有什么规律:(1)(32)3=32×32×32 =3();(2)(a2)3=a2·a2·a2=a();(3)(a m)3=a m·a m·a m=a()(m是正整数).【师】教师要加强引导,强调应用中的注意事项.2.小组讨论.对正整数n,你认为(a m)n等于什么?能对你的猜想给出检验过程吗?【生】小组互相探索、交流,积极思考,然后各组派代表回答,相互点评,补充得出关于幂的乘方法则.幂的乘方法则:(a m)n=a m·a m·a m·…·a mn个a m =a m+m+m+…+mn个m=a mn.字母表示:(a m)n=a mn(m,n是正整数).语言叙述:幂的乘方,底数不变,指数相乘.教师说明法则中a可以是一个具体的数,也可以是单项式或多项式.[知识拓展]理解法则注意两点:(1)在形式上,幂的乘方的底数本身就是一个幂;(2)法则可推广到[(a m)n]k=a mnk(m,n,k是正整数);(3)幂的乘方不能和同底数幂的乘法相混淆,例如不能把(a5)2写成a7,也不能把a5·a2的计算结果写成a10;(4)幂的乘方是变乘方为乘法(底数不变,指数相乘),如(a3)2=a3×2=a6;而同底数幂的乘法是变乘法为加法(底数不变,指数相加),如a3·a2=a3+2=a5.[设计意图]在探索幂的乘方法则的过程中,学生经历了由特殊到一般的过程,让学生学会了归纳,同时培养学生的合作意识.思路二探索练习1.32表示个相乘;(32)3表示个相乘;a2表示个相乘;(a2)3表示个相乘.2.(32)3=××=(根据a m·a n=a m+n)=;(a2)3=××=(根据a m·a n=a m+n)=.引导学生观察、猜测(32)3与(a2)3的底数、指数,并用乘方的概念解答问题.3.(a m)3=××=(根据a m·a n=a m+n)=;(a m)n=××…×=(根据a m·a n=a m+n)=.通过上面的探索活动,你发现了什么?【归纳】幂的乘方,底数不变,指数相乘.(a m)n=a mn(m,n是正整数).【说明】 在此过程中教师应当鼓励学生,自己发现幂的乘方的性质特点(如底数、指数发生了怎样的变化),并运用自己的语言进行描述,然后再让学生回顾这一性质的得出过程,进一步体会幂的意义.[设计意图]学生在探索练习的指引下,自主完成有关的练习,并在练习中发现幂的乘方的法则,经历由猜测到探索的过程,从而理解法则的实际意义,在本质上认识、学习幂的乘方的来历.思路三1.x 3表示什么意义?2.如果把x 换成a 4,那么(a 4)3表示什么意义?3.怎样把a 2·a 2·a 2·a 2 =a 2+2+2+2写成比较简单的形式?4.由此你会计算(a 4)5吗?5.根据乘方的意义及同底数幂的乘法填空: (1)(53)2 =53×53=5();(2)(52)3=()×( )×()=5();(3) (a 3)5 =a 3×()×( )×( )×()=a ().6.用同样的方法计算(a 3)4,(a 11)9,(b 3)n (n 为正整数).这几道题学生都不难做出,在处理这类问题时,关键是如何得出3+3+3+3=12,教师应多举几例.(a 11)9=a 11·a 11·…·a 11=a 11+11+11+…+119个11=a 99.(b 3)n =b 3·…·b 3=b 3+3+3+…+3n 个3=b 3n .教师应指出这样处理既麻烦,又容易出错,此时应让学生思考,有没有简捷的方法?引导学生认真思考,并得到:(23)2 =23×2=26;(32)3=32×3 =36;(a 11)9=a 11×9=a 99;(b 3)n =b 3×n = b 3n .观察结果中幂的指数与原式中幂的指数及乘方的指数,猜想它们之间有什么关系?结果中的底数与原式的底数之间有什么关系?怎样说明你的猜想是正确的?(a m )n =a m ·a m ·a m·…·a m n 个a m(乘方的意义)=a m +m +m +…+mn 个m(同底数幂的乘法) =a mn (乘法定义),即(a m )n =a mn (m ,n 是正整数).这就是幂的乘方法则.你能用语言叙述这个法则吗?幂的乘方,底数不变,指数相乘. [设计意图]通过层层导入与渗透,让学生通过类比总结出幂的乘方的计算法则,整个过程由浅入深,体现了循序渐进的原则.二、例题讲解(教材例2)计算: (1)(103)5; (2)(a 4)4; (3)(a m )2;(4)-(x 4)3.〔解析〕要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算.启发学生共同完成例题.学生在教师启发下,完成例题的问题,并进一步理解幂的乘方法则.解:(1)(103)5=103×5=1015.(2)(a4)4=a4×4=a16.(3)(a m)2=a m×2=a2m.(4)-(x4)3=-x4×3=-x12.想一想:a mn等于(a m)n(m,n是正整数)吗?学生类比同底数幂的乘法运算得出a mn=(a m)n(m,n是正整数),也就是说对于幂的乘方法则,它的逆应用同样成立.当一个幂的指数是积的形式时,就可以写成幂的乘方的形式.a20=(a4)()=(a5)()=(a2)()=(a10)().已知x m=4,x n=5,试求代数式x3m+2n的值.〔解析〕x3m+2n x3m·x2n(x m)3·(x n)2,整体代入,x m=4,x n=5即可求解.解:x3m+2n=x3m·x2n=(x m)3·(x n)2=43×52=1600.1.(a m)n=a mn(m,n都是正整数)的使用范围:幂的乘方.方法:底数不变,指数相乘.2.知识拓展:这里的底数、指数可以是数,也可以是单项式或多项式.3.幂的乘方法则与同底数幂的乘法法则区别在于一个是“指数相乘”,一个是“指数相加”.1.下列运算正确的是()A.2a2+3a=5a3B.a2·a3=a6C.(a3)2=a6D.a3-a3=a解析:A.2a2+3a,不是同类项不能相加,故A选项错误;B.a2·a3=a5,故B选项错误;C.(a3)2=a6,故C选项正确;D.a3-a3=0,故D选项错误.故选C.2.下列运算中,计算结果正确的是()A.3x-2x=1B.2x+2x=x2C.x·x=x2D.(a3)2=a4解析:A.3x-2x=x,所以A选项不正确;B.2x+2x=4x,所以B选项不正确;C.x·x=x2,所以C选项正确;D.(a3)2=a6,所以D选项不正确.故选C.3.计算.(1)x n-2·x n+2;(n是大于2的整数)(2)-(x3)5;(3)[(-2)2]3;(4)[(-a)3]2.解析:(1)根据同底数幂的乘法法则求解;(2)(3)(4)根据幂的乘方的法则求解.解:(1)原式=x n-2+n+2=x2n.(2)原式=-x15.(3)原式=43=64.(4)原式=a6.14.1.2幂的乘方一、法则的探究推理过程:(a m)n=a m·a m·…·a mn个a m =a m+m+m+…+mn个m=a mn.公式:(a m)n=a mn(m,n都是正整数).法则:幂的乘方,底数不变,指数相乘.二、例题讲解一、教材作业【必做题】教材第97页练习.【选做题】教材第104页习题14.1第1题(1)~(4).二、课后作业【基础巩固】1.计算(-a3)2的结果是()A.a6B.-a6C.a8D.-a82.计算:(a3)2·a3=.3.若9x=3x+2,则x=.4.已知2m=3,2n=22,则22m+n=.5.若2·8m=42m,则m=.【能力提升】6.若m,n都是正整数,且a>1,则(a n)m和(a m)n是否一定相等?若一定相等,请给予证明;若不一定相等,请举出反例.7.已知a m=2,a n=3,m,n是正整数且m>n.求下列各式的值:(1)a m+1;(2)a3m+2n.【拓展探究】8.试比较35555,44444,53333三个数的大小.【答案与解析】1.A(解析:(-a3)2=a3×2=a6.故选A.)2.a9(解析:先计算幂的乘方,再计算同底数幂的乘法.所以原式=a6·a3=a9.)3.2(解析:9x=32x=3x+2,2x=2+x,解得x=2,故答案为2.)4.36(解析:∵2m=3,2n=22,∴22m+n=22m·2n=(2m)2·2n=32·22=9×4=36.)5.1(解析:∵2·8m=42m,∴2×23m=24m,∴1+3m=4m,解得m=1.)。

人教版数学八年级上册第14章整式的乘法与因式分解教学设计

人教版数学八年级上册第14章整式的乘法与因式分解教学设计
(四)课堂练习,500字
1.设计不同难度的练习题,包括基础题、提高题和拓展题,让学生在课堂上独立完成。
2.练习题涵盖整式乘法、平方差公式、完全平方公式和因式分解等知识点,让学生在练习中巩固所学。
3.及时反馈学生的答题情况,针对共性问题进行讲解,帮助学生纠正错误,提高解题能力。
(五)总结归纳,500字
作业布置原则:注重作业的质量,而非数量;关注学生的个体差异,分层布置作业;鼓励学生积极参与,培养他们的学习兴趣。通过作业的布置与完成,让学生真正掌握整式乘法与因式分解的知识,提高数学素养。
2.平方差公式和完全平方公式:引导学生观察特定的整式乘法算式,如(a+b)(a-b)、(a+b)²,让他们发现平方差公式和完全平方公式的规律,并加以证明。通过实际例题,让学生学会运用这两个公式简化计算过程。
3.因式分解:介绍因式分解的概念,让学生理解其含义。通过具体的例子,讲解提公因式法、平方差公式和完全平方公式在因式分解中的应用,让学生掌握因式分解的方法。
五、作业布置
为了巩固本节课所学的整式乘法与因式分解知识,培养学生的数学思维能力,特布置以下作业:
1.基础巩固题:完成课本第14章的相关练习题,包括整式的乘法运算、平方差公式、完全平方公式的应用以及因式分解的基本方法。
要求:学生在完成作业时,要注重运算的准确性,熟练掌握乘法法则和因式分解的方法,提高解题速度。
1.让学生回顾本节课所学的内容,总结整式乘法法则、平方差公式、完全平方公式和因式分解的方法。
2.教师进行课堂小结,强调重点和难点,对学生的学习情况进行评价。
3.鼓励学生课后继续练习,提高整式乘法与因式分解的运算技巧,培养数学思维能力。
4.激发学生学习数学的兴趣,增强他们的自信心,为下一节课的学习打下良好基础。

人教版八年级数学上册14.3.1《提公因式法》教学设计

人教版八年级数学上册14.3.1《提公因式法》教学设计

人教版八年级数学上册14.3.1《提公因式法》教学设计一. 教材分析《提公因式法》是人民教育出版社八年级数学上册第14章第3节的内容,本节课主要让学生掌握提公因式法分解因式的技巧,并能灵活运用解决实际问题。

教材通过引入实例,引导学生发现并总结提公因式法的原理,进而运用到因式分解中。

本节课的内容是学生学习因式分解的重要环节,对于提高学生的数学思维能力和解决实际问题能力具有重要意义。

二. 学情分析学生在学习本节课之前,已经掌握了整式的乘法、完全平方公式和平方差公式等基础知识。

但由于提公因式法的抽象性较强,学生可能难以理解其本质和应用。

此外,学生在学习过程中可能存在对公式死记硬背的现象,缺乏对公式的灵活运用能力。

因此,在教学过程中,需要关注学生的认知基础,引导学生发现提公因式法的规律,培养学生的数学思维能力。

三. 教学目标1.知识与技能目标:让学生掌握提公因式法,能够运用提公因式法分解因式。

2.过程与方法目标:通过观察、分析、归纳等方法,引导学生发现提公因式法的原理,培养学生的数学思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:提公因式法的原理和运用。

2.难点:如何引导学生发现提公因式法的规律,以及如何灵活运用提公因式法解决实际问题。

五. 教学方法1.启发式教学:通过设置疑问,引导学生主动思考,发现提公因式法的规律。

2.案例教学:通过分析具体实例,使学生理解并掌握提公因式法的应用。

3.小组合作学习:引导学生分组讨论,培养学生的团队合作精神。

六. 教学准备1.教学课件:制作课件,展示提公因式法的原理和应用。

2.实例:准备一些具有代表性的例子,用于讲解和练习。

3.练习题:准备一些练习题,巩固学生对提公因式法的掌握。

七. 教学过程1.导入(5分钟)利用实例引入提公因式法,引导学生思考如何简化表达式。

例如,给出表达式 (x^2 - 4x + 4),让学生尝试分解。

八年级数学上册 14.3 因式分解 14.3.1 提公因式法教学设计 (新版)新人教版

八年级数学上册 14.3 因式分解 14.3.1 提公因式法教学设计 (新版)新人教版

八年级数学上册 14.3 因式分解 14.3.1 提公因式法教学设计(新版)新人教版一. 教材分析《新人教版八年级数学上册》第14.3节讲述了因式分解中的提公因式法。

这一节内容是在学生已经掌握了多项式的基本概念、多项式的乘法以及十字相乘法的基础上进行学习的。

提公因式法是因式分解的一种常用方法,它可以帮助学生更好地理解多项式的结构,提高解题效率。

本节内容的学习,既是对前面知识的巩固,也是为后面学习更复杂的因式分解方法打下基础。

二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对多项式的基本概念和运算已经有了一定的了解。

但是,学生在学习因式分解时,可能会对提公因式法的应用范围和选择公因式的方法感到困惑。

因此,在教学过程中,需要引导学生积极参与,通过实例分析和练习,让学生掌握提公因式法的应用技巧。

三. 教学目标1.知识与技能:使学生掌握提公因式法,能够运用提公因式法进行因式分解。

2.过程与方法:通过实例分析,引导学生学会如何选择公因式,如何进行因式分解。

3.情感态度与价值观:培养学生对数学的兴趣,提高学生解决问题的能力。

四. 教学重难点1.重点:提公因式法的应用。

2.难点:如何选择合适的公因式,以及如何进行因式分解。

五. 教学方法采用讲授法、引导法、实例分析法、练习法等方法,通过讲解、提问、讨论、练习等形式,引导学生积极参与,提高学生的学习兴趣和主动性。

六. 教学准备1.准备相关的教学PPT,包括提公因式法的定义、应用范围、选择公因式的方法等。

2.准备一些练习题,包括简单的和复杂的题目,以便在课堂上进行练习和巩固。

七. 教学过程1.导入(5分钟)通过一个简单的多项式乘法例子,引导学生思考如何将乘法转化为因式分解,从而引出提公因式法。

2.呈现(10分钟)讲解提公因式法的定义、应用范围、选择公因式的方法等,通过PPT的形式,让学生清晰地了解提公因式法的相关知识。

3.操练(10分钟)给出一些简单的题目,让学生运用提公因式法进行因式分解。

2022年人教版八年级数学上册第十四章整式的乘法与因式分解教案 整式的乘法(第3课时)

2022年人教版八年级数学上册第十四章整式的乘法与因式分解教案  整式的乘法(第3课时)

第十四章整式的乘法与因式分解14.1.4 整式的乘法第3课时一、教学目标【知识与技能】1.探究同底数幂除法的性质和单项式除以单项式、多项式除以单项式的法则,并会应用法则计算.2.会进行单项式除以单项式、多项式除以单项式的运算,理解整式除法运算的原理.【过程与方法】1.经历探究整式的除法的运算性质的过程,进一步体会幂的意义,发展推理能力和有条件的表达能力.2.体会知识间逻辑关系、类比探究在研究除法问题时的价值,体会转化思想在整式除法中的作用.【情感、态度与价值观】感受数学法则、公式的简洁美、和谐美.二、课型新授课三、课时第3课时四、教学重难点【教学重点】应用整式除法法则进行计算.【教学难点】根据乘、除互逆的运算关系得出同底数幂的除法运算法则.五、课前准备教师:课件、直尺、计算器等。

学生:练习本、钢笔或圆珠笔。

六、教学过程(一)导入新课木星的质量约是1.9×1024吨,地球的质量约是5.98×1021吨,你知道木星的质量约为地球质量的多少倍吗?(出示课件2)木星的质量约为地球质量的(1.90×1024)÷(5.98×1021)倍.想一想:上面的式子该如何计算?(二)探索新知1.师生互动,探究同底数幂的除法法则教师问1:请完成下面的题目:(出示课件4)(1)25×23;(2)x6×x4;(3)2m×2n.学生回答:(1)28;(2)x10;(3)2m+n.教师问2:本题是直接利用什么乘法法则计算的?学生回答:同底数幂的乘法法则:底数不变,指数相加.教师问3:思考下面的题该如何计算?(1)( )( )×23=28 (2)x6·( )( )=x10(3)( )( )×2n=2m+n学生回答:可以把乘法法则反过来利用.教师问4:反过来就我们今天要学的同底数幂的除法,能不能先试着写成除法形式?学生讨论后解答:(1)28÷23=?;(2)x10÷x6=?;(3)2m+n÷2n=?教师问5:你是如何计算的呢?学生回答:本题逆向利用同底数幂的乘法法则计算.教师问6:能不能试着完成下列各题:计算:(1)28÷23;(2)x10÷x6;(3)2 m+n÷2n学生回答:(1) 28÷23=25;(2) x10÷x6=x4;(3) 2 m+n÷2n =2m教师问7:观察下面的等式,你能发现什么规律?(出示课件5)(1)28÷23=25=28-3;(2) x10÷x6=x4=x10-6;(3) 2 m+n÷2n =2m =2m-n学生回答:底数不变,指数相减.教师总结:同底数幂相除,底数不变,指数相减.教师问8:以上法则能用字母表示吗?学生总结:a m÷a n=a m-n.教师问9:对指数有何要求吗?学生回答:m,n都是正整数,且m>n.教师总结:a m ÷a n=a m–n(m,n都是正整数,且m>n)教师问10:如何验证其正确性呢?学生回答:验证:因为a m–n·a n=a m–n+n=a m,所以a m ÷a n=a m–n.教师问11:对于除法运算,有没有什么特殊要求呢?学生回答:对于除法运算应要求除数(或分母)不为零,所以底数不能为零.即a m÷a n=a m-n(a≠0,m,n都是正整数,并且m>n).教师问12:计算:a m÷a m学生计算a m÷a m时,可能会出现1或a0两个答案.教师顺势归纳:从除法的意义可知商为1,另一方面,如果依照同底数幂的除法计算,得a0.所以规定:a0=1(a≠0).教师问13:为什么规定a0=1(a≠0)时要说明a≠0呢?学生回答:因为当a=0时,分母或除数为0,式子无意义.总结点拨:(出示课件6)同底数幂的除法一般地,我们有a m÷a n=a m–n(a ≠0,m,n都是正整数,且m>n)即同底数幂相除,底数不变,指数相减.规定:a0=1(a ≠0)这就是说,除0以外任何数的0次幂都等于1.例1:计算:(出示课件7)(1)x8÷x2;(2) (ab)5÷(ab)2.师生共同解答如下:解:(1)x8 ÷x2=x8–2=x6;(2) (ab)5÷(ab)2=(ab)5–2=(ab)3=a3b3.总结点拨:计算同底数幂的除法时,先判断底数是否相同或变形相同,若底数为多项式,可将其看作一个整体,再根据法则计算.例2:已知a m=12,a n=2,a=3,求a m–n–1的值.(出示课件9)师生共同解答如下:解:∵a m=12,a n=2,a=3,∴a m–n–1=a m÷a n÷a=12÷2÷3=2.总结点拨:解此题的关键是逆用同底数幂的除法,对a m–n–1进行变形,再代入数值进行计算.2.复习旧知,探究单项式除以多项式的法则教师问14:计算:4a2x3·3ab2学生回答:4a2x3·3ab2=12a3b2x3教师问15:计算:12a3b2x3÷ 3ab2学生讨论回答:(出示课件11)解法1: 12a3b2x3÷ 3ab2相当于求( )·3ab2=12a3b2x3.由(1)可知括号里应填4a2x3.解法2:原式=4a2x3· 3ab2÷ 3ab2=4a2x3.理解:上面的商式4a2x3的系数4=12 ÷3;a的指数2=3–1,b的指数0=2–2,而b0=1,x的指数3=3–0.教师问15:类比上述研究过程计算以下两题.(1)-2x3÷(-x);(2)8m2n2÷2m2n.学生回答:(1)2x2;(2)4n教师问16:通过计算,你又发现什么规律?学生回答:单项式相除,把系数和同底数的幂分别相除.师生互动合作交流,得出单项式除以单项式的法则:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.总结点拨:(出示课件12)单项式除以单项式的法则:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.例3:计算:(出示课件13)(1)28x4y2÷7x3y;(2)–5a5b3c ÷15a4b.师生共同解答如下:解:(1)原式=(28 ÷7)x4–3y2–1=4xy;(2)原式=(–5÷15)a5–4b3–1c=- 1ab2c.3总结点拨:单项式除以单项式要按照法则逐项进行,不得漏项,并且要注意符号的变化.3.师生互动,学习多项式除以单项式的法则教师问17:一幅长方形油画的长为(a+b),宽为m,求它的面积.(出示课件16)学生回答:面积为(a+b)m=ma+mb.教师问18:若已知油画的面积为(ma+mb),宽为m,如何求它的长?学生回答:长为(ma+mb)÷m.教师问19:如何计算(am+bm) ÷m?(出示课件17)学生讨论后回答:计算(am+bm) ÷m就相当于求( ) ·m=am+bm,教师问20:()填什么呢?学生回答:a+b教师问21:am ÷m+bm ÷m=?学生回答:a+b教师问22:观察上边的问题,你发现了什么?学生回答:(am+bm) ÷m=am ÷m+bm ÷m教师问23:计算下列各式:(1)(ax+bx)÷x;(2)(a2+ab)÷a;(3)(4x2y+2xy2)÷2xy.学生回答:(1) a+b;(2) a+b;(3) 2x+y.教师问24:说你是怎样计算的?学生回答:多项式除以单项式,用多项式的每一项除以单项式.教师问25:它们的项数之间有什么发现吗?师生共同解答如下:在学生独立解决问题之后,及时引导学生反思自己的思维过程,并对自己计算所得的结果进行观察,总结出计算的一般方法和结果的项数特征:商式与被除式的项数相同.教师问26:你能归纳出多项式除以单项式的法则吗?(出示课件18)学生归纳,教师点拨:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.教师问27:你能把这句话写成公式的形式吗?学生回答:(am+bm)÷m=am÷m+bm÷m.关键:应用法则是把多项式除以单项式转化为单项式除以单项式.例4:计算:(12a3–6a2+3a) ÷3a. (出示课件19)师生共同解答如下:解: (12a3–6a2+3a) ÷3a=12a3÷3a+(–6a2) ÷3a+3a÷3a=4a2+(–2a)+1=4a2–2a+1.总结点拨:多项式除以单项式,实质是利用乘法的分配律,将多项式除以单项式问题转化为单项式除以单项式问题来解决.计算过程中,要注意符号问题.例5:先化简,后求值:[2x(x2y–xy2)+xy(xy–x2)]÷x2y,其中x=2015,y=2014.(出示课件21)师生共同解答如下:解:原式=[2x3y–2x2y2+x2y2–x3y]÷x2y,=x–y.把x=2015,y=2014代入上式,得原式=x–y=2015–2014=1.(三)课堂练习(出示课件24-29)1.下列说法正确的是( )A.(π–3.14)0没有意义B.任何数的0次幂都等于1C.(8×106)÷(2×109)=4×103D.若(x+4)0=1,则x≠–42.下列算式中,不正确的是( )A.(–12a5b)÷(–3ab)=4a4B.9x m y n–1÷3x m–2y n–3=3x2y2C. 4a2b3÷2ab=2ab2D.x(x–y)2÷(y–x)=x(x–y)3.已知28a3b m÷28a n b2=b2,那么m,n的取值为( )A.m=4,n=3 B.m=4,n=1C.m=1,n=3 D.m=2,n=34.一个长方形的面积为a2+2a,若一边长为a,则另一边长为_____________.5. 已知一多项式与单项式–7x5y4 的积为21x5y7–28x6y5,则这个多项式是______.6.计算: (1)6a3÷2a2;(2)24a2b3÷3ab;(3)–21a2b3c÷3ab;(4)(14m3–7m2+14m)÷7m.7. 先化简,再求值:(x+y)(x–y)–(4x3y–8xy3)÷2xy,其中x=1,y=–3.8. (1)若32•92x+1÷27x+1=81,求x的值;(2)已知5x=36,5y=2,求5x–2y的值;(3)已知2x–5y–4=0,求4x÷32y的值.参考答案:1.D2.D3.A4.a+25. –3y3+4xy6. 解:(1) 6a3÷2a2=(6÷2)(a3÷a2)=3a.(2) 24a2b3÷3ab=(24÷3)a2–1b3–1=8ab2.(3)–21a2b3c÷3ab=(–21÷3)a2–1b3–1c= –7ab2c;(4)(14m3–7m2+14m)÷7m=14m3÷7m-7m2÷7m+14m÷7m= 2m2–m+2.7. 解:原式=x2–y2–2x2+4y2=–x2+3y2.当x=1,y=–3时,原式=–12+3×(–3)2=–1+27=26.8. 解:(1)32•34x+2÷33x+3=81,即3x+1=34,解得x=3;(2)52y=(5y)2=4,5x–2y=5x÷52y=36÷4=9.(3)∵2x–5y–4=0,移项,得2x–5y=4.4x÷32y=22x÷25y=22x–5y=24=16.(四)课堂小结今天我们学了哪些内容:a m÷a n=a m-n(a≠0,m,n都是正整数,并且m>n)a0=1(a≠0)(am+bm)÷m=am÷m+bm÷m.(五)课前预习预习下节课(14.2)的相关内容。

新人教版初中数学八年级上册《第十四章整式的乘法与因式分解14.3.1提取公因式法》优课教学设计_0

新人教版初中数学八年级上册《第十四章整式的乘法与因式分解14.3.1提取公因式法》优课教学设计_0

提公因式法分解因式教学目标1.了解因式分解的意义,并能够理解因式分解与多项式乘法的区别与联系.2.了解公因式的概念,会用提公因式法进行因式分解.3.树立全面认识问题、分析问题的思想,提高学生的观察能力.教学重点:掌握提取公因式法进行因式分解.教学难点:怎样进行多项式的因式分解,如何能将多项式分解彻底. 教学过程:一、温故知新,导入新课问题一:1. 回忆:运用前两节所学的知识填空:(1)2(x +3)=_________; (2)m (a +b +c )=___________________.2.探索:你会做下面的填空吗?(1)2x +6=2( );(2)ma +mb +mc =m ( ).3.因式分解概念:把一个多项式化为几个整式的乘积形式,这种变形叫因式分解(也叫分解因式).因式分解与整式乘法有怎样的关系?4.辨一辨:下列各式从左到右的变形,哪是因式分解?).2-)(2+(=4-.4.2+)3-(=2+3-.3).-2(3=3-6.2.8+4=)2+(4.1222232a a a x x x x x ax ax ax b a a b a a二、探究学习,获取新知问题二:1.公因式的概念(学生看书看导学案自主学习).2.提公因式法分解因式.(学生自主探究)教师要引导学生得出提公因式法实际就是乘法分配律的逆用。

3. 试一试: 找出3x 2 – 6xy 的公因式4.公因式的构成:①系数:各项系数的最大公约数;②字母:各项都含有的相同字母;③指数:相同字母的最低次幂.归纳: 正确找出多项式各项公因式的关键是:(小组讨论后回答)1)定系数:公因式的系数是多项式各项系数的最大公约数2)定字母: 字母取多项式各项中都含有的相同的字母3)定指数: 相同字母的指数取各项中最小的一个,即字母最低次幂. 练习:找出下列多项式的公因式(1) 3x+6y (2)ab-2ac (3) a2-a3(4)4(m+n)2+2(m+n) (5)9m2n-6mn (6)-6x2y-8xy2找出下列各式的公因式,并分解因式1)2a2b+4abc 2)5ab2c+15b3c2 3)4a3b2-10a2b3c5.方法技巧: (1)、用提公因式法分解因式的一般步骤:a、确定公因式b、把公因式提到括号外面后,用原多项式除以公因式所得商作为另一个因式.(2)、为了检验分解因式的结果是否正确,可以用整式乘法运算来检验.三、交流展示问题三:1.把下列多项式分解因式:(1) 8a3b2 + 12ab3c (2)2a(b+c)-3(b+c)2、下面的因式分解对不对?为什么?1)把12x2y+18xy2分解因式解:原式 =3xy(4x + 6y)2)把3x2-6xy+x分解因式解:原式 =x(3x-6y)3)把 -x2+xy-xz分解因式解:原式= - x(x+y-z)(在学生回答的基础上,教师引导学生归纳出要注意的问题)3.归纳:提公因式法分解因式应注意的问题1) 公因式要提尽 2) 某项提出莫忘“1” 3)提出负号后,要注意变号四、课堂练习把下列各式分解因式:(1)8m2n+2mn (2)12xyz-9x2y2(3)p(a2+b2)-q(a2+b2) (4)-x3y3-x2y2-xy五、小结:你这节课学了些什么?六、作业:1.课本习题14.3第1题(必做)2.利用因式分解计算:21×3.14+62×3.14+17×3.143.若分解因式()()nxxmxx++=-+3152,则m的值为(选做)4.分解因式:(选做)(1)(2a+b)(2a-3b)-3a(2a+b)(2)4(x-y)3-8x(y-x)2(3)(1+x)(1-x)-(x-1) 课后反思:。

人教版八年级数学上第十四章《整式乘法与因式分解》全章教案

人教版八年级数学上第十四章《整式乘法与因式分解》全章教案

人教版八年级数学上第十四章《整式乘法与因式分解》全章教案第一篇:人教版八年级数学上第十四章《整式乘法与因式分解》全章教案东兴市京族学校八年级数学上教案备课人:第十四章整式的乘法与因式分解14.1.1 同底数幂的乘法教学目标1.理解同底数幂的乘法,会用这一性质进行同底数幂的乘法运算.2.体会数式通性和从具体到抽象的思想方法在研究数学问题中的作用.教学重、难点同底数幂的乘法运算法则及其应用.教学过程设计一、创设问题,激发兴趣问题一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103 s可进行多少次运算?(1)如何列出算式?(2)1015的意义是什么?(3)怎样根据乘方的意义进行计算?根据乘方的意义填空,观察计算结果,你能发现什么规律?(1)2(2)a(3)535)⨯22=2(;)⋅a2=a(;)⨯5n=5(.m你能将上面发现的规律推导出来吗?=(14aa244⋅Λ⋅3a)(⋅14a⋅4a244⋅Λ⋅3a)am⋅an ⋅4m个an个a=a⋅4a ⋅Λ⋅3a 14244(m+n)个a m+ n教师板演: 同底数幂相乘,底数不变,指数相加.即:am×an=am+n(m、n都是正整数).二、知识应用,巩固提高=a am⋅an=am+n(m,n 都是正整数)表述了两个同底数幂相乘的结果,那么,三个、四个…多个同底数幂相乘,结果会怎样?这一性质可以推广到多个同底数幂相乘的情况:am⋅an⋅Λ⋅ap=am+n+Λ+p(m,n,p都是正整数).例1(教科书第96页)三、应用提高、拓展创新课本96页练习/ 15 东兴市京族学校八年级数学上教案备课人:四、归纳小结(1)本节课学习了哪些主要内容?(2)同底数幂的乘法的运算性质是怎么探究并推导出来的?在运用时要注意什么?五、布置作业:习题14.1第1(1)、(2)题教后反思:14.1.2 幂的乘方 14.1.3 积的乘方教学目标1.理解幂的乘方与积的乘方性质的推导根据.2.会运用幂的乘方与积的乘方性质进行计算.3.在类比同底数幂的乘法性质学习幂的乘方与积的乘方性质时,体会三者的联系和区别及类比、归纳的思想方法.教学重、难点幂的乘方与积的乘方的性质.教学过程设计一、创设问题,激发兴趣问题1 有一个边长为a2 的正方体铁盒,这个铁盒的容积是多少?问题2 根据乘方的意义及同底数幂的乘法填空: 23()(1)3)(=32⨯32⨯32=3;3()(2)a2)(=a2⋅a2⋅a2=a;(a(3)m3())=am⋅am⋅am=a(m是正整数).在解决问题后,引导学生归纳同底数幂的乘法法则:幂的乘方,底数不变,指数相乘.即:(am)n=amn(m、n 都是正整数).多重乘方可以重复运用上述法则:pmn⎡⎤ a)=amnp(⎣⎦二、知识应用,巩固提高计算(1)(102)3;(2)(b5)5;(3)(an)3;(4)-(x2)m;(5)(y2)3·y;(6)2(a2)6-(a3)4.问题4 根据乘方的意义和乘法的运算律,计算:你能发现有何运算规律吗?能用文字语言概述你发现的积的乘方运算规律吗?(n是正整数)/ 15 东兴市京族学校八年级数学上教案备课人:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.当n 是正整数时,三个或三个以上因式的积的乘方,也具有这一性质吗?四、归纳小结(1)本节课学习了哪些主要内容?(2)幂的三个运算性质是什么?它们有什么区别和联系?五、布置作业:教材第102页第1、2题.教后反思:14.1.4整式的乘法(1)教学目标1.理解单项式乘法的法则,会用单项式乘法法则进行运算.2.经历单项式乘法法则的形成过程,发展学生的运算能力,体会类比思想.教学重、难点单项式的乘法法则的概括过程和运用.教学过程设计一、创设情境,激发兴趣问题1:光的速度约为3×105千米/秒,太阳光照射到地球上需要的时间大约是5×102秒,你知道地球与太阳的距离约是多少千米吗?二、知识应用,巩固提高问题2 观察这三个算式有何共同的特点?请你用自己的语言概括单项式乘以单项式的法则.单项式乘以单项式的法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式./ 15 东兴市京族学校八年级数学上教案备课人:三、应用提高、拓展创新第99页练习1、2四、归纳小结(1)本节课学习了哪些主要内容?(2)运用单项式的乘法法则时,应该注意哪些问题?(3)结合探索单项式乘法法则的过程,你认为体现了哪些思想方法?五、布置作业:教科书习题14.1第3、9、10题.教后反思:14.1.4整式的乘法(2)教学目标1.理解单项式与多项式相乘的法则,能运用单项式与多项式相乘的法则进行计算.2.理解算理,发展学生的运算能力和“几何直观”观念,体会转化、数形结合和程序化思想.教学重、难点单项式与多项式相乘的法则的运用.教学过程设计一、创设情境,激发兴趣问题我们来回顾引言中提出的问题:为了扩大绿地的面积,要把街心花园的一块长p 米,宽b 米的长方形绿地,向两边分别加宽a 米和c 米,你能用几种方法表示扩大后的绿地的面积?不同的表示方法:(pa+b+c)pa+pb+pc你认为这两个代数式之间有着怎样的关系呢?二、知识应用,巩固提高请你用自己的语言概括单项式乘以多项式的法则.单项式乘以多项式的法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.三、应用提高、拓展创新完成课本100页练习1、练习2/ 15 东兴市京族学校八年级数学上教案备课人:四、归纳小结(1)本节课学习了哪些主要内容?(2)在运用单项式与多项式相乘的法则时,你认为应该注意哪些问题?(3)探索单项式与多项式相乘的法则的过程,体现了哪些思想方法?五、布置作业:教材第103页第4、7题教后反思:14.1.4整式的乘法(3)教学目标1.理解多项式与多项式相乘的法则,并能运用法则进行计算.2.理解算理,发展学生的运算能力和几何直观,体会转化、数形结合和程序化思想.教学重、难点多项式与多项式相乘的法则的概括与运用.教学过程设计一、创设情境,激发兴趣问题1 已知某街心花园有一块长方形绿地,长为a m,宽为p m.则它的面积是多少?若将这块长方形绿地的长增加b m,则扩大后的绿地面积是多少?问题2 若将原长方形绿地的长增加b m、宽增加q m,你能用几种方法求出扩大后的长方形绿地的面积呢?不同的表示方法:二、知识应用,巩固提高根据上节课积累的探究经验,你能得到什么结论呢?(a+b)(p+q)=ap+aq+bp+bq你能类比单项式与多项式相乘的法则,叙述多项式与多项式相乘的法则吗?多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.你认为在运用法则计算时,应该注意什么问题?/ 15 东兴市京族学校八年级数学上教案备课人:根据上述求解过程,观察计算结果的各项系数与原式中的系数有怎样的关系?三、应用提高、拓展创新教科书第102页练习1、2四、归纳小结(1)本节课学习了哪些主要内容?(2)在运用多项式与多项式相乘的法则时,你认为应该注意哪些问题?(3)举例说明在探索多项式与多项式相乘的法则的过程中,体现了哪些思想方法?五、布置作业:教材习题14.1第5、8题教后反思:14.1.4整式的除法(1)教学目标1.理解同底数幂除法的性质和单项式除以单项式的法则,并会应用法则计算.2.体会知识间逻辑关系、类比探究在研究除法问题时的价值;体会转化思想在单项式除法中的作用.教学重、难点探究同底数幂除法的性质和单项式除以单项式的法则,并会用它们进行运算.教学过程设计一、创设情境,激发兴趣问题1 一种数码照片的文件大小是28 K,一个存储量为26 M(1 M=210 K)的移动存储器能存储多少张这样的数码照片?二、知识应用,巩固提高问题2 填空:⨯(1)∵()()⨯(2)∵()⋅(3)∵23=25 ∴25÷23=();103=107 ∴107÷103=();a3=a7 ∴a7÷a3=().问1 你在解决问题2时,用到了什么知识?你能叙述这一知识吗?/ 15 东兴市京族学校八年级数学上教案备课人:问2 25÷23,107÷103,a7÷am 这三个算式属于哪种运算?你能概括一下它3们是怎样计算出来的吗?问3 你能用上述方法计算 a÷an吗?问4 你能用语言概括这一性质吗?同底数幂除法的性质:同底数幂相除,底数不变,指数相减.思考与讨论为什么a≠0?问题3 当被除式的指数等于除式的指数时:(1)如果根据这条性质计算am÷an结果是多少?÷an结果是多少?(2)如果根据除法意义计算 am即任何不等于0的数的0次幂都等于1.三、应用提高、拓展创新例1 计算:474(xy)÷xy;a÷a;(1)(2)326(-y)÷y.(-x)÷(-x);(3)(4)问题4 计算下列各题:423323228xy÷7xy;(1)(2)12abx÷3ab.例2 计算:(1)-8a22教科书104页练习1、2四、归纳小结(1)本节课学习了哪些主要内容?(2)探究同底数幂除法性质和单项式除法?(3)运用同底数幂除法性质和单项式除法的法则时,你认为应该注意什么?五、布置作业:教材习题14.1第6题(1)(2)(3)(4).教后反思:12b÷6ab2;(2)(-12x8y6)÷(-x2y3).2 7 / 15 东兴市京族学校八年级数学上教案备课人:14.1.4整式的除法(2)教学目标1.理解多项式除以单项式的法则.2.体会知识间的内在联系、互逆关系等逻辑关系在研究问题时的价值;体会类比和转化的数学思想在多项式除以单项式中的作用.教学重、难点探究多项式除以单项式的法则,会运用法则进行计算.教学过程设计一、创设情境,激发兴趣问题1 请同学们观察下列算式,它是我们学过的除法算式吗?如果不是,说说它与我们上节课学习的算式有什么不一样的特点.⑴.(m+bm)÷m;-12x2+4x)÷4x.(8x⑵3你能尝试计算(1)吗?说说你是怎样算出来的?二、知识应用,巩固提高利用除法是乘法的逆运算,求(am +bm)÷m 的值,就是要求一个多项式,使它与m 的积是(am +bm).你知道这个多项式是什么吗?完成引例:8x3-12x2+4x)÷4x(思考上述两个算式的运算,它们的相同之处是什么?通过以上两个例子,我们在计算一个多项式除以单项式时,是将它如何转化的呢?你能用字母的形式来表示吗?多项式除以单项式法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.或例1 计算:(6ab(1)+5a÷a);22(15xy-10xy÷5xy);(2)(8a(3)2-4ab)÷(-4a);3(4)(12a-6a2+3a)÷3a.三、应用提高、拓展创新教科书104页练习3/ 15 东兴市京族学校八年级数学上教案备课人:四、归纳小结(1)本节课学习了哪些主要内容?(2)运用多项式除以单项式法则计算的基本步骤是什么?应注意的地方是什么?(3)探究多项式除以单项式的方法是什么?五、布置作业:教材习题14.1第6(5)(6)题教后反思:14.2.1 乘法公式--平方差公式教学目标1.理解平方差公式,能运用公式进行计算.2.在探索平方差公式的过程中,感悟从具体到抽象地研究问题的方法,在验证平方差公式的过程中,感知数形结合思想.教学重、难点平方差公式教学过程设计一、创设情境,激发兴趣在14.1节中,我们学习了整式的乘法,知道了多项式与多项式相乘的法则.根据所学知识,计算下列多项式的积,你能发现什么规律?(1)=;(2)=;(3)=.二、知识应用,巩固提高上述问题中相乘的两个多项式有什么共同点?相乘的两个多项式的各项与它们的积中的各项有什么关系?你能将发现的规律用式子表示出来吗?你能对发现的规律进行推导吗?(a+b)(a-b)=a前面探究所得的式子2-b2为乘法的平方差公式,你能用文字语言表述平方差公式吗?两个数的和与这两个数的差的积,等于这两个数的平方差.你能根据图中图形的面积说明平方差公式吗?/ 15 东兴市京族学校八年级数学上教案备课人:例1 运用平方差公式计算:(-x+2y)(-x-2y)(3x-2)(1)(3x+2);(2)从例题1和练习1中,你认为运用公式解决问题时应注意什么?(1)在运用平方差公式之前,一定要看是否具备公式的结构特征;(2)一定要找准哪个数或式相当于公式中的a,哪个数或式相当于公式中的b;(3)总结规律:一般地,“第一个数”a 的符号相同,“第二个数”b 的符号相反;(4)公式中的字母a ,b 可以是具体的数、单项式、多项式等;(5)不能忘记写公式中的“平方”.例2 计算:(-y+2)(-y-2)-(y-1)(y+5)(1);(2)102×98.三、应用提高、拓展创新教科书108页练习1、2四、归纳小结(1)本节课学习了哪些主要内容?(2)平方差公式的结构特征是什么?(3)应用平方差公式时要注意什么五、布置作业:教科书习题14.2第1题.教后反思:14.2.2乘法公式--完全平方公式教学目标1.理解完全平方公式,能用公式进行计算.2.经历探索完全平方公式的过程,进而感受特殊到一般、数形结合思想,发展符号意识和几何直观观念.教学重、难点完全平方公式./ 15 东兴市京族学校八年级数学上教案备课人:教学过程设计一、创设情境,激发兴趣问题1 计算下列各式:22(p+1)=______;(m+2)=______;(1)22(p-1)=______;(m-2)=______.(2)你能发现什么规律?二、知识应用,巩固提高问题2 你能用式子表示发现的规律吗?完全平方公式:问题3 你能用文字语言表述完全平方公式吗?两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.公式特点:(1)积为二次三项式;(2)积中两项为两数的平方和;(3)另一项是两数积的2倍,且与乘式中间的符号相同;(4)公式中的字母a,b 可以表示数,单项式和多项式.问题4 能根据图1和图2中的面积说明完全平方公式吗?三、应用提高、拓展创新例1 运用完全平方公式计算:212(4m+n)(1);(2).(y-)2例2 运用完全平方公式计算:(1)102;(2)99.问题5 思考: 22(a+b)与(-a-b)相等吗?(1)22(a-b)与(b-a)相等吗?(2)(a-b)与 a(3)2222-b2相等吗?为什么?/ 15 东兴市京族学校八年级数学上教案备课人:问题6 添括号法则去括号a+(b+c)= a+b+c;a-(b+c)= a-b-c.a+b+c =a+(b+c);a-b-c = a-(b + c).添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都改变符号.四、归纳小结(1)本节课学习了哪些主要内容?(2)完全平方公式结构有什么特点?五、布置作业:教材习题14.2第2、4、6、7题.教后反思:14.3.1因式分解--提公因式法教学目标1.了解因式分解的概念.2.了解公因式的概念,能用提公因式法进行因式分解.教学重、难点运用提公因式法分解因式.教学过程设计一、创设情境,激发兴趣上一节我们已经学习了整式的乘法,知道可以将几个整式的乘积化为一个多项式的形式.反过来,在式的变形中,有时需要将一个多项式写成几个整式的乘积的形式.请把下列多项式写成整式的乘积的形式:二、知识应用,巩固提高在多项式的变形中,有时需要将一个多项式化成几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式.你认为因式分解与整式乘法有什么关系?因式分解与整式乘法是互逆变形关系.你能试着将多项式pa+pb+pc因式分解吗?(1)这个多项式有什么特点?(2)因式分解的依据是什么?(3)分解后的各因式与原多项式有何关系?一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式.这种分解因式的方法叫做提公因式法./ 15 东兴市京族学校八年级数学上教案备课人:例1 把8a32b+12ab3c分解因式.通过对例1的解答,你有什么收获?(1)公因式是多项式各项系数的最大公约数和各项都含有的字母及多项式的最低次幂的乘积;(2)提公因式法就是把多项式分解成两个因式乘积的形式,其中一个因式是各项的公因式,另一个因式是由多项式除以公因式得到的;(3)用提公因式分解因式后,应保证含有多项式的因式中再无公因式.ab+c)(-3b+c)例2 把2(分解因式.通过对例2的解答,你有什么收获?公因式可以是单项式,也可以是多项式.三、应用提高、拓展创新教科书115页练习1、2、3四、归纳小结(1)本节课学习了哪些主要内容?(2)因式分解的目的是什么?因式分解与整式乘法有什么区别和联系?(3)提公因式法的一般步骤是什么?应用提公因式法分解因式时要注意什么?五、布置作业:教科书习题14.3第1、4(1)题.教后反思:14.3.2因式分解--公式法(1)教学目标1.探索并运用平方差公式进行因式分解,体会转化思想.2.会综合运用提公因式法和平方差公式对多项式进行因式分解.教学重、难点运用平方差公式来分解因式.教学过程设计一、创设情境,激发兴趣你能将多项式y2-25与多项式x2-4分解因式吗?(1)本题你能用提公因式法分解因式吗?(2)这两个多项式有什么共同的特点?(a-b)(a+b)=a(3)你能利用整式的乘法公式——平方差公式吗?二、知识应用,巩固提高你对因式分解的方法有什么新的发现?请尝试着概括你的发现.2-b2来解决这个问题(a-b)=a把整式的乘法公式——平方差公式(a+b)13 / 152-b2反过来就得到因式分解的平方东兴市京族学校八年级数学上教案备课人:差公式:(1)平方差公式的结构特征是什么?(2)两个平方项的符号有什么特点?适用于平方差公式因式分解的多项式必须是二项式,每一项都为平方项,并且两个平方项的符号相反.例1 分解因式:222(x+p)-(x+q)4x-9(1);(2).三、应用提高、拓展创新例2 分解因式:44x-y;a)ba-3abx-b-.ab.(1)y ;(2通过对例2的学习,你有什么收获?(1)分解因式必须进行到每一个多项式都不能再分解为止;(2)对具体问题选准方法加以解决四、归纳小结(1)本节课学习了哪些主要内容?(2)因式分解的平方差公式的结构特征是什么?(3)综合运用提公因式法和平方差公式进行因式分解时要注意什么?五、布置作业:教材习题14.3第2、4(2)题教后反思:14.3.2因式分解--公式法(2)教学目标1.了解完全平方式及公式法的概念,会用完全平方公式进行因式分解.2.综合运用提公因式法和完全平方公式对多项式进行因式分解.教学重、难点运用完全平方公式分解因式.教学过程设计一、创设情境,激发兴趣你能将多项式a2+2ab+b2与多项式a2-2ab+b2分解因式吗?追问1 你能用提公因式法或平方差公式来分解因式吗?追问2 这两个多项式有什么共同的特点?(a追问3 你能利用整式的乘法公式——完全平方公式来解决这个问题吗?2±b)=a2±2ab+b14 / 15 东兴市京族学校八年级数学上教案备课人:二、知识应用,巩固提高你对因式分解的方法有什么新的发现?请尝试概括你的发现.把整式的乘法公式——完全平方公式(a的完全平方公式:我们把a22±b)=a2±2ab+b2反过来就得到因式分解+2ab+b2和a2-2ab+b2这样的式子叫做完全平方式.利用完全平方公式可以把形如完全平方式的多项式因式分解.完全平方式必须是三项式,其中两项为平方项,并且两个平方项的符号同为正,中间项是首尾两项乘积的二倍,符号不限.例1 分解因式:22216x+2416xx+9+ 24x+9-x+4 xy-x-4+y4xy-4y(1);(2).三、应用提高、拓展创新例2 分解因式:223ax+6axy+3ay +(a2+b)-12(a++36b)+3631ax(ab)-12(a+b)()+6axy+3ay ;(2).把乘法公式的等号两边互换位置,就可以得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫做公式法.四、归纳小结(1)本节课学习了哪些主要内容?(2)因式分解的完全平方公式在应用时应注意什么?五、布置作业:教材习题14.3第3、5(1)(3)题教后反思:/ 15第二篇:整式的乘法与因式分解复习教案《整式的乘法与因式分解》复习(一)教案教学目标:知识与技能:记住整式乘除的计算法则;平方差公式和完全平方公式;掌握因式分解的方法和则过程与方法:会运用法则进行整式的乘除运算,会对一个多项式分解因式情感态度与价值观:培养学生的独立思考能力和合作交流意识教学重点:记住公式及法则教学难点:会运用法则进行整式乘除运算,会对一个多项式进行因式分解教学方法与手段:讲练结合教学过程:一.本章知识梳理:幂的运算:(1)同底数幂的乘法(2)同底数幂的除法(3)幂的乘方(4)积的乘方整式的乘除:(1)单项式乘单项式(2)单项式乘多项式(3)多项式乘多项式(4)单项式除以单项式(5)多项式除以单项式乘法公式:(1)平方差公式(2)完全平方公式因式分解:(1)提公因式法(2)公式法二.合作探究:(1)化简:a3·a2b=.(2)计算:4x2+4x2=(3)计算:4x2·(-2xy)=.(4)分解因式:a2-25=三、当堂检测1.am=2,an=3则a2m+n =___________,am-2n =____________ 2.若A÷5ab2=-7ab2c3,则A=_________, 若4x2yz3÷B=-8x,则B=_________.2(ax+b)(x+2)=x-4,则ab=_________________.3.若4.若a-2+b2-2b+1=0,则a=a+,b=5.已知11a2+2=3aa的值是.,则6.已知被除式是x3+2x2-1,商式是x,余式是-1,则除式是()A、x2+3x-1B、x2+2xC、x2-1D、x2-3x+1 7.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.–3B.3C.0D.1 8.一个正方形的边长增加了2cm,面积相应增加了32cm,则这个正方形的边长为()A、6cmB、5cmC、8cmD、7cm 9.下列各式是完全平方式的是()2A、x2-x+14 B、1+x2 C、x+xy+12D、x+2x-110.下列多项式中,含有因式(y+1)的多项式是(y 2 - 2 y + 1)A.22222(y+1)-(y-1)(y+1)-(y-1)(y+1)+2(y+1)+1B.C.D.三.课堂小结:今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。

人教版初中数学八年级上册第14章整式的乘法与因式分解(教案)

人教版初中数学八年级上册第14章整式的乘法与因式分解(教案)
1.培养学生的逻辑思维能力:通过学习整式的乘法与因式分解,使学生能够运用所学知识分析问题、解决问题,提高逻辑思维水平。
2.提升运算能力:让学生掌握整式的乘法与因式分解的运算方法,培养他们准确、快速地进行数学运算的能力。
3.增强数学建模素养:引导学生将实际问题转化为数学模型,运用整式的乘法与因式分解解决生活中的问题,提高数学建模素养。
五、教学反思
在本次教学中,我采用了导入新课、新课讲授、实践活动、小组讨论和总结回顾等环节,引导学生学习整式的乘法与因式分解。通过这节课的教学,我发现以下几个方面值得反思:
1.学生对整式乘法法则的理解程度。在授课过程中,我发现部分学生对多项式乘以多项式、多项式乘以单项式的运算法则掌握不够熟练,导致在计算过程中出现错误。针对这一问题,我决定在接下来的教学中加强学生对乘法法则的练习,特别是同类项的合并和乘法分配律的运用。
4.实践活动与小组讨论的效果。在实践活动中,学生们积极参与,课堂氛围较好。但在小组讨论过程中,我发现部分学生参与度不高,讨论效果不理想。为了提高学生的参与度,我将在下次教学中尝试采取更多鼓励性和激励性的措施,如设置小组竞赛、优秀成果展示等。
5.教学方法的选择。在本节课中,我尝试采用了多种教学方法,如讲解、举例、讨论等。但课后我发现,部分学生对知识的掌握程度并不理想。针对这一问题,我将在今后的教学中进一步优化教学方法,注重启发式教学,提高学生的课堂参与度和思考能力。
4.因式分解:了解因式分解的意义,掌握提公因式法、平方差公式法、完全平方公式法,解决实际问题。
5.综合运用:将整式的乘法与因式分解应用于解决实际问题,提高解题能力。
本章内容旨在使学生掌握整式的乘法与因式分解的基本方法,培养他们的逻辑思维能力和运算能力,为后续学习打下坚实基础。

人教版数学八年级上册14.3.1因式分解-提公因式法(教案)

人教版数学八年级上册14.3.1因式分解-提公因式法(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解提公因式法的基本概念。提公因式法是因式分解的一种方法,通过找出多项式中的公共因子,简化多项式的表达式。它在解决代数计算问题和简化表达式方面具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。以4x^2 + 8x为例,演示如何找出公因式4x,并进行因式分解。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了提公因式法的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对提公因式法的理解。我希望大家能够掌握这些知识点,并在解决实际计算问题时灵活运用。如果有任何疑问或不明白的地方,请随时向我提问。
5.通过练习,加深对提公因式法的理解,提高解题技巧。
二、核心素养目标
1.培养学生运用数学语言表达和逻辑推理的能力,通过提公因式法的学习,使学生在解决数学问题时能够准确、清晰地表述思路;
2.强化学生对数学概念的理解,让学生掌握因式分解的基本原理,培养其数学抽象思维能力;
3.培养学生的数学运算能力,通过提公因式法的练习,提高学生简化计算、解决问题的效率;
在新课讲授环节,我尝试通过具体的案例分析和实际操作来加深学生对提公因式法的理解。从学生的反应来看,这种方法是有效的。他们能够在小组讨论中积极思考,互相交流,这有助于他们更好地理解知识点。
在小组讨论环节,我观察到学生们积极参与,提出了不少有见地的观点。不过,我也注意到一些学生在表达自己的想法时显得有些拘谨。我意识到,在未来的课堂中,我应该更加注重培养学生的表达能力和自信心,鼓励他们大胆地提出自己的想法。

人教版八年级上册数学-14章《整式的乘法与因式分解》教案

人教版八年级上册数学-14章《整式的乘法与因式分解》教案
3.重点难点解析:在讲授过程中,我会特别强调多项式乘多项式和因式分解的三个方法(提公因式法、公式法、分组分解法)这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解,如(x^2+5x+6)的因式分解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与整式的乘法与因式分解相关的实际问题。
-公式法:运用平方差公式、完全平方公式等进行因式分解。
-分组分解法:将多项式分组,使组内项有公因式,然后分别提取公因式并分解。
2.教学难点
(1)整式乘法的运算过程:对于多项式乘多项式的运算,学生容易在分配律的运用、合并同类项等方面出现错误。
-举例:(x+2)(x+3),学生可能会忽略括号展开时,将每一项分别相乘,导致运算错误。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解整式的乘法与因式分解的基本概念。整式的乘法是指将两个或多个整式相乘,它是代数运算的基础,广泛应用于各种数学问题中。因式分解是将一个多项式分解成几个整式的乘积,这个过程有助于简化复杂的表达式,解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。比如,我们要计算(x+2)(x+3)的结果。这个案例展示了整式乘法在实际中的应用,以及如何通过因式分解简化表达式。
2.逻辑推理:培养学生运用数学原理和逻辑思维进行整式乘法与因式分解的推理能力,增强解决问题的逻辑性。
3.数学建模:使学生能够运用整式的乘法与因式分解解决实际问题,建立数学模型,提高数学应用能力。
4.数学运算:训练学生熟练进行整式乘法与因式分解的运算,提高运算速度和准确性。
5.数据分析:培养学生通过整式乘法与因式分解对数据进行处理和分析,从数学角度发现问题的能力。

人教版八年级数学上册第14章整式的乘法与因式分解大单元教学设计

人教版八年级数学上册第14章整式的乘法与因式分解大单元教学设计
1.导入新课:通过实际生活中的例子,引出整式的乘法与因式分解的概念。
2.整式的乘法:讲解单项式与单项式、单项式与多项式、多项式与多项式的乘法法则,让学生通过练习熟练掌握。
3.因式分解:引导学生探索提公因式法、平方差公式、完全平方公式等因式分解方法,并通过实例讲解和练习,让学生掌握这些方法。
4.应用拓展:设计具有挑战性的实际问题,让学生运用所学的整式乘法与因式分解知识解决问题,提高他们的数学应用能力。
6.定期进行课堂小结和单元测试,及时了解学生的学习进度和掌握情况。通过测试结果,分析学生的薄弱环节,针对性地进行教学调整。
7.结合信息技术,利用多媒体教学资源和网络平台,为学生提供丰富的学习资源和拓展练习。这样既可以满足不同学生的学习需求,又可以拓宽学生的知识视野。
8.培养学生自主学习的能力,鼓励他们在课后进行自主探索和实践。通过布置探究性作业,引导学生主动发现问题、解决问题。
3.引入新课:通过以上讨论,教师引导学生认识到整式乘法在解决实际问题中的重要性,进而导入新课——整式的乘法与因式分解。
(二)讲授新知
在讲授新知环节,教师将详细讲解整式的乘法法则和因式分解方法。
1.整式的乘法法则:教师通过具体例子,讲解单项式与单项式、单项式与多项式、多项式与多项式的乘法法则,并引导学生观察规律,总结通用的乘法法则。
在此基础上,学生对数学学习的兴趣和积极性存在差异,部分学生对数学具有较强的兴趣,愿意主动探究和解决问题;而另一部分学生可能对数学学习抱有恐惧心理,缺乏信心。因此,在本章节的教学中,教师应关注学生的情感态度,激发他们的学习兴趣,帮助他们建立自信心。
此外,学生在数学思维和解决问题的策略上也需要进一步培养。针对这些情况,教师应结合学生的实际情况,采用多样化的教学手段和策略,促进学生的全面发展。

2022年人教版八年级数学上册第十四章整式的乘法与因式分解教案 公式法(第2课时)

2022年人教版八年级数学上册第十四章整式的乘法与因式分解教案  公式法(第2课时)

第十四章整式的乘法与因式分解14.3 因式分解14.3.2 公式法第2课时一、教学目标【知识与技能】1.在掌握了因式分解意义的基础上,会运用平方差公式和完全平方公式对比较简单的多项式进行因式分解.【过程与方法】1.经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.2.在运用公式法进行因式分解的同时,培养学生的观察、比较和判断能力以及运算能力,用不同的方法分解因式可以提高综合运用知识的能力.【情感、态度与价值观】1.培养学生逆向思维的意识,同时培养学生团队合作、互帮互助的精神.2.进一步体验“整体”的思想,培养“换元”的意识.二、课型新授课三、课时第2课时,共2课时。

四、教学重难点【教学重点】运用完全平方公式法进行因式分解.【教学难点】观察多项式的特点,判断是否符合公式的特征和综合运用分解的方法,并完整地进行分解.五、课前准备教师:课件、直尺、矩形图片等。

学生:三角尺、练习本、铅笔、钢笔。

六、教学过程(一)导入新课我们知道,因式分解与整式乘法是反方向的变形,我们学习了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?(出示课件2)(二)探索新知1.创设情境,探究运用完全平方公式分解因式教师问1:什么叫因式分解?(出示课件4)学生回答:把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.教师问2:我们已经学过哪些因式分解的方法?学生回答:提公因式法、平方差公式:a2–b2=(a+b)(a–b)教师问3:把下列各式分解因式:(1)ax4-a;(2)16m4-n4.学生回答:(1)ax4-a=a(x2+1)(x+1)(x-1);(2)16m4-n4=(4m2+n)(2m+n)(2m-n).教师问4:结合上题思考因式分解要注意什么问题?学生回答:①一提二看三检查;②分解要彻底.教师问5:我们学过的乘法公式除了平方差公式之外,还有哪些公式?请写出来.学生回答:完全平方公式:(a±b)2=a2±2ab+b2教师讲解:这节课我们就来讨论如何运用完全平方公式把多项式因式分解.教师问6:你能把下面4个图形拼成一个正方形并求出你拼成的图形的面积吗?(出示课件5)学生讨论后拼出下图:教师问7:这个大正方形的面积可以怎么求?学生回答:(a+b)2=a2+2ab+b2教师问8:将上面的等式倒过来看,能得到什么呢?学生回答:a2+2ab+b2=(a+b)2(出示课件6)教师问:观察这两个多项式:a2+2ab+b2;a2–2ab+b2,请回答下列各题:(出示课件7)(1)每个多项式有几项?学生回答:三项(2)每个多项式的第一项和第三项有什么特征?学生回答:这两项都是数或式的平方,并且符号相同.(3)中间项和第一项,第三项有什么关系?学生回答:是第一项和第三项底数的积的±2倍.教师讲解:我们把a²+2ab+b²和a²–2ab+b²这样的式子叫做完全平方式.教师问9:把下列各式分解因式:(1)a2+2ab+b2;(2)a2-2ab+b2.学生回答:(1)a2+2ab+b2=(a+b)2;(2)a2-2ab+b2=(a-b)2.教师问10:将整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式.能不能用语言叙述呢?学生回答后,师生共同讨论后解答如下:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方.即a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.教师问11:下列各式是不是完全平方式?如果是,请分解因式.(1)a2-4a+4;(2)x2+4x+4y2;(3)4a2+2ab+14b2;(4)a2-ab+b2;(5)x2-6x-9;(6)a2+a+0.25.学生讨论后回答如下:(1)a2-4a+4;是,原式=(a-2)2 (2)x2+4x+4y2;不是(3)4a2+2ab+14b2;是,原式=(2a+12b)2(4)a2-ab+b2;不是(5)x2-6x-9;不是(6)a2+a+0.25.是,原式=(a+0.5)2教师问12:根据学习用平方差公式分解因式的经验和方法,分析和推测什么叫做运用完全平方公式分解因式?能够用完全平方公式分解因式的多项式具有什么特点?学生讨论后回答,师生共同归纳如下:①三项式;②两项为两个数的平方和的形式;③第三项为加(或减)这两个数的积的2倍.总结点拨:(出示课件8)完全平方式: a²±2ab+b²完全平方式的特点:1.必须是三项式(或可以看成三项的);2.有两个同号的数或式的平方;3.中间有两底数之积的±2倍.简记口诀:首平方,尾平方,首尾两倍在中央.(出示课件9)凡具备这些特点的三项式,就是完全平方式,将它写成完全平方形式,便实现了因式分解.两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例1:分解因式:(出示课件12)(1)16x2+24x+9;(2)–x2+4xy–4y2.师生共同解答如下:(1)分析:(1)中,16x2=(4x)2,9=3²,24x=2·4x·3,所以16x2+24x+9是一个完全平方式,即16x2 + 24x +9= (4x)2+2·4x·3+ 32.解: (1)16x2+ 24x +9= (4x)2 + 2·4x·3 + 32= (4x + 3)2;(2)中首项有负号,一般先利用添括号法则,将其变形为–(x2–4xy+4y2),然后再利用公式分解因式.(2)–x2+ 4xy–4y2=–(x2–4xy+4y2)=–(x–2y)2.例2:如果x2–6x+N是一个完全平方式,那么N是( )(出示课件15)A . 11 B. 9 C. –11 D. –9师生共同解答如下:解析:根据完全平方式的特征,中间项–6x=2x×(–3),故可知N=(–3)2=9.答案:B总结点拨:(出示课件16)本题要熟练掌握完全平方公式的结构特征,根据参数所在位置,结合公式,找出参数与已知项之间的数量关系,从而求出参数的值.计算过程中,要注意积的2倍的符号,避免漏解.例3:把下列各式分解因式:(出示课件18)(1)3ax2+6axy+3ay2 ;(2)(a+b)2–12(a+b)+36.师生共同解答如下:分析:(1)中有公因式3a,应先提出公因式,再进一步分解因式;(2)中将a+b 看成一个整体,设a+b=m,则原式化为m2–12m+36.解: (1)原式=3a(x2+2xy+y2)=3a(x+y)2;(2)原式=(a+b)2–2·(a+b) ·6+62=(a+b–6)2.总结点拨:利用公式把某些具有特殊形式(如平方差式,完全平方式等)的多项式分解因式,这种分解因式的方法叫做公式法.(出示课件19)例4:把下列完全平方式分解因式:(出示课件21)(1)1002–2×100×99+99²;(2)342+34×32+162.师生共同解答如下:解:(1)原式=(100–99)²=1(2)原式=(34+16)2=2500.总结点拨:本题利用完全平方公式分解因式,可以简化计算.例5:已知:a 2+b 2+2a –4b+5=0,求2a 2+4b –3的值.(出示课件23)师生共同解答如下:分析:从已知条件可以看出,a 2+b 2+2a –4b+5与完全平方式有很大的相似性(颜色相同的项),因此可通过“凑”成完全平方式的方法,将已知条件转化成非负数之和等于0的形式,从而利用非负数的性质来求解.(出示课件24)解:由已知可得(a 2+2a+1)+(b 2–4b+4)=0即(a+1)2+(b –2)2=0∴ 2a 2+4b –3=2×(–1)2+4×2–3=7总结点拨:遇到多项式的值等于0、求另一个多项式的值,常常通过变形为完全平方公式和(非负数的和)的形式,然后利用非负数性质来解答.(三)课堂练习(出示课件27-31)1.下列四个多项式中,能因式分解的是( )A .a 2+1B .a 2–6a +9C .x 2+5yD .x 2–5y2.把多项式4x 2y –4xy 2–x 3分解因式的结果是( )A .4xy(x –y)–x 3B .–x(x –2y)21020a b +=⎧∴⎨-=⎩12a b =-⎧∴⎨=⎩C.x(4xy–4y2–x2) D.–x(–4xy+4y2+x2)3.若m=2n+1,则m2–4mn+4n2的值是________.4.若关于x的多项式x2–8x+m2是完全平方式,则m的值为_________ .5. 把下列多项式因式分解.(1)x2–12x+36;(2)4(2a+b)2–4(2a+b)+1;(3) y2+2y+1–x2;6. 计算:(1) 38.92–2×38.9×48.9+48.92.(2)20142-2014×4026+201327. 分解因式:(1)4x2+4x+1;(2)1x2–2x+3.3小聪和小明的解答过程如下:小聪: 小明:他们做对了吗?若错误,请你帮忙纠正过来.8. (1)已知a–b=3,求a(a–2b)+b2的值;(2)已知ab=2,a+b=5,求a3b+2a2b2+ab3的值.参考答案:1.B2.B3.14. ±45. 解:(1)原式=x2–2·x·6+62=(x–6)2;(2)原式=[2(2a+b)]²–2·2(2a+b)·1+1²=(4a+2b–1)2;(3)原式=(y+1)²–x²=(y+1+x)(y+1–x).6. 解:(1)原式=(38.9–48.9)2=100.(2)原式=20142-2×2014×2013+20132=(2014-2013)2=17. 解: (1)原式=(2x)2+2•2x•1+1=(2x+1)2(2)原式=13(x2–6x+9)=13(x–3)28. 解:(1)原式=a2–2ab+b2=(a–b)2.当a–b=3时,原式=32=9.(2)原式=ab(a2+2ab+b2)=ab(a+b)2. 当ab=2,a+b=5时,原式=2×52=50.(四)课堂小结今天我们学了哪些内容:a2±2ab+b2=(a±b)2一提,二看,三检查。

人教版八年级数学上册第14章整式的乘法与因式分解大单元优秀教学案例

人教版八年级数学上册第14章整式的乘法与因式分解大单元优秀教学案例
(三)小组合作
1.合理分组,确保每个小组成员在知识、能力等方面互补。如将数学基础较好和基础较差的学生进行混合分组,提高教学效果。
2.分配任务,明确每个小组成员的责任,确保每个人都能积极参与学习过程。如在探究平方差公式时,分配不同成员负责整理案例、总结规律等任务。
3.组织小组汇报、交流等活动,让学生在分享中学习,提高其表达能力和思维能力。
三、教学策略
(一)情景创设
1.结合生活实际,创设有趣的情境,激发学生学习兴趣。如通过讲解现实生活中的购物、装修等场景,引入整式乘法与因式分解的知识。
2.利用多媒体手段,展示动画、图片等资源,丰富学生的感官体验,提高学习效果。
3.设计具有挑战性的数学问题,激发学生思考,引导学生主动探究。
(二)问题导向
1.引导学生发现并提出问题,培养学生独立思考的能力。如在教授整式乘法时,引导学生思考:“如何快速准确地计算两个多项式的乘积?”
2.设计具有逻辑梯度的问题,引导学生由浅入深地掌握知识。如在教授因式分解时,从简单多项式开始,逐步引导学生解决复杂多项式的因式分解问题。
3.组织学生进行讨论,鼓励他们分享自己的观点和思路,培养学生的沟通能力和团队协作精神。
二、教学目标
(一)知识与技能
1.掌握整式的乘法法则,包括单项式乘以单项式、单项式乘以多项式、多项式乘以多项式。
2.熟练运用平方差公式和完全平方公式,解决相关的数学问题。
3.理解多项式因式分解的方法和原理,能够运用提公因式法、公式法等技巧,对多项式进行因式分解。
4.培养学生运用所学生知识解决实际问题的能力,提高其数学素养。
针对八年级学生的认知水平,本章节内容在深度和广度上具有一定的挑战性。学生在学习过程中需要将之前所学的知识进行综合运用,提高解决问题的能力。同时,本章节内容为学生提供了丰富的实践机会,使其在解决实际问题的过程中,培养逻辑思维能力、创新能力和团队协作能力。

2022年人教版八年级数学上册第十四章整式的乘法与因式分解教案 公式法(第1课时)

2022年人教版八年级数学上册第十四章整式的乘法与因式分解教案  公式法(第1课时)

第十四章整式的乘法与因式分解14.3 因式分解14.3.2 公式法第1课时一、教学目标【知识与技能】灵活运用平方差公式进行因式分解.【过程与方法】经历探索利用平方差公式进行因式分解的过程,感受逆向思维的意义.【情感、态度与价值观】培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.二、课型新授课三、课时第1课时,共2课时。

四、教学重难点【教学重点】运用平方差公式进行因式分解.【教学难点】观察多项式的特点,判断是否符合公式的特征和综合运用分解的方法,并完整地进行分解.五、课前准备教师:课件、直尺、矩形图片等。

学生:三角尺、练习本、铅笔、钢笔。

六、教学过程(一)导入新课如图,在边长为a米的正方形上剪掉一个边长为b米的小正方形,将剩余部分拼成一个长方形,根据此图形变换,你能得到什么公式?(二)探索新知1.创设情境,探究运用平方差公式分解因式教师问1:完成下列题目.(1)(x+2)(x-2);(2)(y+5)(y-5)学生回答:(1)(x+2)(x-2)=x2-4;(2)(y+5)(y-5)=y2-25教师问2:同学们回忆什么是因式分解?学生回答:把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.教师问3:因式分解与整式乘法的关系是什么?学生回答:因式分解与整式乘法的关系是互为逆运算.请观察下列多项式:x2-4和y2-25.完成下列问题:教师问4:它们有什么共同特点吗?学生回答:都是两个数的差,并且这两个数都是一个数的平方.教师问6:能否进行因式分解?你会想到什么公式?学生回答:能进行因式分解,会想到平方差公式.师生共同总结:①他们有两项,且都是两个数的平方差;②会联想到平方差公式.教师问7:多项式a2–b2有什么特点?你能将它分解因式吗?(出示课件4)学生回答:是a,b两数的平方差的形式,(a+b)(a-b)=a2-b2调换位置后:a2-b2=(a+b)(a-b)教师问8:观察平方差公式:a2-b2=(a+b)(a-b)的项、指数、符号有什么特点?师生讨论最后得出下列结论:(1)左边是二项式,每项都是平方的形式,两项的符号相反;(2)右边是两个多项式的积,一个因式是两数的和,另一个因式是这两数的差;(3)在乘法公式中,“平方差”是计算结果,而在分解因式中,“平方差”是能得到分解因式的多项式.教师总结:两个数的平方差,等于这两个数的和与这两个数的差的乘积.由此可知如果多项式是两数差的形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.警示:避免出现4a2=(4a)2这一类错误.例1:分解因式:(出示课件6)(1)4x2-9;(2)(x+p)2-(x+q)2师生共同解答如下:解:(1)原式=(2x)2-32=(2x+3)(2x-3)(2)原式=[(x+p)+(x+q)]×[(x+p)-(x+q)]=(2x+p+q)(p-q)总结点拨:(出示课件7)公式中的a、b无论表示数、单项式、还是多项式,只要被分解的多项式能转化成平方差的形式,就能用平方差公式因式分解.例2:分解因式:(出示课件9)(1)x4-y4 ;(2)a3b-ab师生共同解答如下:解:(1)原式=(x2)2–(y2)2=(x2+y2)(x2–y2)=(x2+y2)(x+y)(x–y);总结点拨:分解因式后,一定要检查是否还有能继续分解的因式,若有,则需继续分解,直到不能分解为止.(2)原式=ab(a2–1)=ab(a+1)(a–1).总结点拨:分解因式时,一般先用提公因式法进行分解,然后再用公式法.最后进行检查.总结点拨:(出示课件10)分解因式前应先分析多项式的特点,一般先提公因式,再套用公式.必须进行到每一个多项式都不能再分解因式为止.例3:已知x2–y2=–2,x+y=1,求x–y,x,y的值.(出示课件12)师生共同解答如下:解:∵x2–y2=(x+y)(x–y)=–2,x+y=1①,∴x–y=–2②.联立①②组成二元一次方程组,解得:1,23.2xy⎧=-⎪⎪⎨⎪=⎪⎩总结点拨:在与x2–y2,x±y有关的求代数式或未知数的值的问题中,通常需先因式分解,然后整体代入或联立方程组求值.例4:计算下列各题:(出示课件14)(1)1012–992;(2)53.52×4–46.52×4.师生共同解答如下:解:(1)原式=(101+99)(101–99)=400;(2)原式=4×(53.52–46.52)=4× (53.5+46.5)(53.5–46.5)=4×100×7=2800.总结点拨:较为复杂的有理数运算,可以运用因式分解对其进行变形,使运算得以简化.例5:求证:当n为整数时,多项式(2n+1)2–(2n–1)2一定能被8整除.(出示课件16)师生共同解答如下:证明:原式=(2n+1+2n–1)(2n+1–2n+1)=4n•2=8n,∵n为整数,∴8n被8整除,即多项式(2n+1)2–(2n–1)2一定能被8整除.总结点拨:解决整除的基本思路就是将代数式化为整式乘积的形式,然后分析能被哪些数或式子整除.(三)课堂练习(出示课件19-23)1.下列多项式中能用平方差公式分解因式的是( )A.a2+(–b)2B.5m2–20mnC.–x2–y2D.–x2+92. 将多项式x–x3因式分解正确的是( )A.x(x2–1) B.x(1–x2)C.x(x+1)(x–1) D.x(1+x)(1–x)3.若a+b=3,a–b=7,则b2–a2的值为( )A.–21 B.21 C.–10 D.104.把下列各式分解因式:(1)16a2–9b2=_________________;(2)(a+b)2–(a–b)2=_________________;(3) 因式分解:2x2–8=_________________;(4) –a4+16=_________________.5.若将(2x)n–81分解成(4x2+9)(2x+3)(2x–3),则n的值是_____________.6.已知4m+n=40,2m–3n=5.求(m+2n)2–(3m–n)2的值.7.如图,在边长为6.8 cm正方形钢板上,挖去4个边长为1.6 cm的小正方形,求剩余部分的面积.8.(1)992–1能否被100整除吗?(2)n为整数,(2n+1)2–25能否被4整除?参考答案:1.D2.D3.A4.(1)(4a+3b)(4a–3b);(2)4ab;(3)2(x+2)(x–2);(4)(4+a2)(2+a)(2–a)5.46.解:原式=(m+2n+3m –n)(m+2n –3m+n)=(4m+n)(3n – 2m)= –(4m+n)(2m – 3n),当4m+n=40,2m–3n=5时,原式= –40×5= –200.7.解:根据题意,得6.82–4×1.62=6.82–(2×1.6)2=6.82–3.22=(6.8+3.2)(6.8 – 3.2)=10×3.6=36 (cm2)答:剩余部分的面积为36 cm2.8.解:(1)因为992–1=(99+1)(99–1)=100×98,所以992–1能被100整除.(2)原式=(2n+1+5)(2n+1–5)=(2n+6)(2n–4)=2(n+3) ×2(n–2)=4(n+3)(n–2).所以,(2n+1)2–25能被4整除.(四)课堂小结今天我们学了哪些内容:平方差公式:a2-b2=(a+b)(a+b)一提二看三检查,分解要彻底.(五)课前预习预习下节课(14.3.2)117页到118页的相关内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十四章整式的乘法与因式分解14.3 因式分解14.3.1 提公因式法一、教学目标【知识与技能】1.了解因式分解的意义,以及它与整式乘法的关系,掌握因式分解的概念;2.能确定多项式各项的公因式,会用提公因式法把多项式分解因式.【过程与方法】经历从分解因数到分解因式的类比过程,感受因式分解在解决问题中的作用.【情感、态度与价值观】培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】因式分解的概念;提公因式法分解因式.【教学难点】正确理解因式分解的概念,准确找出公因式.五、课前准备教师:课件、三角尺、直尺等.学生:直尺、练习本、铅笔、钢笔或圆珠笔.六、教学过程(一)导入新课我们知道,利用整式的乘法运算,可以将几个整式的积化为一个多项式的形式,反过来,能不能将一个多项式化成几个整式的积的形式呢?若能,这种变形叫做什么呢?(出示课件2)(二)探索新知1.创设情境,探究提公因式法分解因式教师问1:请同学们先完成下列计算,看谁算得又准又快.(1)20×(-3)2+60×(-3);(2)1012-992;(3)572+2×57×43+432.学生回答:如下:解:方法一:(1)20×(-3)2+60×(-3)=20×9-180=180-180=0;(2)1012-992=10201-9801=400;(3)572+2×57×43+432=3249+4902+1849=8151+1849=10000.方法二:(1)20×(-3)2+60×(-3)=-3×[20×(-3)+60]=1-3×[-60+60]=0;(2)1012-992=(101+99)(101-99)=200×2=400;(3)572+2×57×43+432=3(57+43)2=1002=10000.教师问2:上边两种方法,哪一种简单呢?学生回答:方法二简单.教师讲解:在上述运算中,大家或将数字分解成两个数的乘积,或者逆用乘法公式使运算变得简单易行,类似地,在式的变形中,有时也需要将一个多项式写成几个整式的乘积形成,这就是我们从今天开始要探究的内容——因式分解.(板书课题)教师问3:如图,一块菜地被分成三部分,你能用不同的方式表示这块草坪的面积吗?(出示课件4)学生回答:方法一:m(a+b+c);方法二:ma+mb+mc教师问4:m(a+b+c)=ma+mb+mc是整式的乘法,那么ma+mb+mc=m(a+b+c),你猜想是什么呢?学生回答:因式分解.教师问5:请同学们运用整式乘法法则或公式填空:(出示课件5)(1) m(a+b+c)= ____________________ ;(2) (x+1)(x–1)=___________________;(3) (a+b)2 = ______________________.学生回答:(1) m(a+b+c)= ma+mb+mc ;(2) (x+1)(x–1)=x2-1;(3) (a+b)2 = a2+2ab+b2.教师问6:根据等式的性质填空:(1) ma+mb+mc=( )( )(2) x2–1 =( )( )(3) a2 +2ab+b2 =( )2学生回答:(1) ma+mb+mc=( m)( a+b+c )(2) x2–1 =( x+1)( x-1)(3) a2 +2ab+b2 =( a+b)2教师问7:比一比,这些式子有什么共同点?学生讨论后回答:左边是多项式,右边是多相式的乘积.教师总结:(出示课件6)把一个多项式化为几个整式的乘积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.教师问8:你认为因式分解与整式乘法有什么关系?(出示课件7)学生思考回答,师生共同解答如下:因式分解与整式乘法是互逆变形关系,整式乘法是一种运算,而因式分解是对多项式的一种变形,不是运算.教师问9:x2–1 = (x+1)(x–1)有何特征呢?学生回答:左边是多项式,右边是几个整式的乘积例1:下列从左到右的变形中是因式分解的有( )(出示课件8)①x2–y2–1=(x+y)(x–y)–1;②x3+x=x(x2+1);③(x–y)2=x2–2xy+y2;④x2–9y2=(x+3y)(x–3y).A.1个B.2个C.3个D.4个因式分解是积的形式,①是和的形式,所以不是因式分解,②是因式分解,③是整式的乘法,④是因式分解.故选B.答案:B.总结点拨:因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解的右边是两个或几个因式积的形式,整式乘法的右边是多项式的形式.教师问10:再观察下面问题中的第(1)题和第(3)题,你能发现什么特点?(1)x2+x=________;(2)x2-1=________;(3)am+bm+cm=________.学生独立思考后回答:发现(1)中各项都有一个相同的因式x,(3)中各项都有一个相同的因式m.教师问11:观察下列多项式,它们有那些相同的因式?(出示课件10)pa+pb+pc,x2+x学生回答:前者的相同因式为p,后者的相同因式为x。

教师总结如下:多项式中各项都含有的相同因式,叫做这个多项式的公因式.教师讲解:因为pa+pb+pc=p(a+b+c),于是就把pa+pb+pc分解成两个因式乘积的形式,其中一个因式是各项的公因式p,另一个因式a+b+c是pa+pb+pc除以p所得的商,像这种分解因式的方法叫做提公因式法.(出示课件11)教师问12:如何确定一个多项式的公因式?(出示课件12)所以这个算式的公因式是3x.教师问13:指出下列各多项式中各项的公因式:(1)ax+ay+a;(2)3mx-6mx2;(3)4a2+10ah;(4)x2y+xy2;(5)12xyz-9x2y2.学生回答:(1)a;(2)3mx;(3)2a;(4)xy;(5)3xy教师问14:请学生观察上面的公因式的特点,想一想确定公因式的方法?师生共同探究后解答如下:(出示课件13)找出多项式的公因式的正确步骤:1.定系数:公因式的系数是多项式各项系数的最大公约数.2.定字母: 字母取多项式各项中都含有的相同的字母.3.定指数:相同字母的指数取各项中最小的一个,即字母的最低次数.例2:把下列各式分解因式.(出示课件15)(1) 8a3b2 + 12ab3c;(2) 2a(b+c) –3(b+c).师生共同解答如下:分析:提公因式法步骤(分两步)第一步:找出公因式;第二步:提取公因式,即将多项式化为两个因式的乘积.解:(1) 8a3b2 + 12ab3c(出示课件16)=4ab2·2a2+4ab2·3bc=4ab2(2a2+3bc);思考:如果提出公因式4ab,另一个因式是否还有公因式?另一个因式将是2a2b+3b2c,它还有公因式是b.(2) 2a(b+c)–3(b+c)=(b+c)(2a–3).思考:如何检查因式分解是否正确?做整式乘法运算.总结点拨:公因式既可以是一个单项式的形式,也可以是一个多项式的形式.方法总结:(出示课件21)提取公因式分解因式的技巧:①当公因式是多项式时,把多项式看成一个整体提取公因式;②分解因式分解到不能分解为止;③某一项全部提取后,不要漏掉“1”;④首项有负号常提负号;⑤检查因式分解的结果是否正确,可用整式的乘法验证.例3:计算:(出示课件22)(1)39×37–13×91;(2)29×20.16+72×20.16+13×20.16–20.16×14.师生共同解答如下:解:(1)原式=3×13×37–13×91=13×(3×37–91)=13×20=260;(2)原式=20.16×(29+72+13–14)=2016.总结点拨:在计算求值时,若式子各项都含有公因式,用提取公因式的方法可使运算简便.例4:已知a+b=7,ab=4,求a2b+ab2的值.(出示课件24)师生共同解答如下:解:∵a+b=7,ab=4,∴原式=ab(a+b)=4×7=28.总结点拨:含a±b,ab的求值题,通常要将所求代数式进行因式分解,将其变形为能用a±b和ab表示的式子,然后将a±b,ab的值整体带入即可.(三)课堂练习(出示课件27-31)1.多项式15m3n2+5m2n–20m2n3的公因式是( )A.5mn B.5m2n2 C.5m2n D .5mn22. 把多项式(x+2)(x–2)+(x–2)提取公因式(x–2)后,余下的部分是( )A.x+1 B.2x C.x+2 D.x+33.下列多项式的分解因式,正确的是( )A.12xyz–9x2y2=3xyz(4–3xyz) B.3a2y–3ay+6y=3y(a2–a+2)C.–x2+xy–xz=–x(x2+y–z) D.a2b+5ab–b=b(a2+5a)4.把下列各式分解因式:(1)分解因式:m2–3m= .(2)12xyz–9x2y2=_____________;(3)因式分解:(x+2)x–x–2=___________ .(4) –x3y3–x2y2–xy=_______________;(5)(x–y)2+y(y–x)=_____________.5.若9a2(x–y)2–3a(y–x)3=M·(3a+x–y),则M等于_____________.6.简便计算:(1) 1.992+1.99×0.01 ;(2)20132+2013–20142;(3)(–2)101+(–2)100.7.(1)已知: 2x+y=4,xy=3,求代数式2x2y+xy2的值.(2)化简求值:(2x+1)2–(2x+1)(2x–1),其中x=1.28.△ABC的三边长分别为a、b、c,且a+2ab=c+2bc,请判断△ABC的形状,并说明理由.参考答案:1.C2.D3.B4.(1)m(m–3);(2)3xy(4z–3xy);(3)(x+2)(x–1);(4)–xy(x2y2+xy+1);(5)(y–x)(2y–x)5.3a(x–y)26.解:(1) 原式=1.99 ×(1.99+0.01)=3.98;(2) 原式=2013 ×(2013+1) –20142=2013×2014 –20142=2014×(2013–2014)= –2014.(3)原式=(–2)100 ×(–2+1) =2100 ×(–1)= –2100.7.解:(1)2x 2y+xy 2=xy(2x+y)=3 ×4=12.(2)原式=(2x+1)[(2x+1)–(2x –1)]=(2x+1)(2x+1–2x+1)=2(2x+1).当x=12时,原式=2×(2×12+1)=4.8.解:整理a +2ab =c +2bc 得,a +2ab –c –2bc =0, (a –c)+2b(a –c)=0,(a –c)(1+2b)=0,∴a–c =0或1+2b =0,即a =c 或b =–0.5(舍去),∴△ABC 是等腰三角形.(四)课堂小结今天我们学了哪些内容:1.举例说明什么是因式分解.2.提公因式法分解因式如何确定公因式?要注意什么问题?3.下一节我们将继续学习因式分解,你认为应怎样进行学习?(五)课前预习预习下节课(14.3.2)116页的相关内容。

相关文档
最新文档