解三角形的实际应用
解三角形应用举例
解三角形应用举例一、测量距离问题例1(1)如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B 的距离,测量者可以在河岸边选定两点C,D,若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离为km.答案6 4解析∵∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,∴∠DAC=60°,∴AC=DC=32km.在△BCD中,∠DBC=180°-∠CDB-∠ACD-∠ACB=45°,由正弦定理,得BC=DCsin∠DBC·sin∠BDC=32sin 45°·sin 30°=64(km).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BCcos 45°=34+38-2×32×64×22=38.∴AB=64km.∴A,B两点间的距离为64km.(2)如图,为了测量两座山峰上P,Q两点之间的距离,选择山坡上一段长度为300 3 m且和P,Q两点在同一平面内的路段AB的两个端点作为观测点,现测得∠PAB=90°,∠PAQ=∠PBA=∠PBQ=60°,则P,Q两点间的距离为m.答案900解析由已知,得∠QAB=∠PAB-∠PAQ=30°.又∠PBA=∠PBQ=60°,∴∠AQB=30°,∴AB=BQ.又PB为公共边,∴△PAB≌△PQB,∴PQ =PA.在Rt△PAB中,AP=AB·tan 60°=900(m),故PQ=900 m,∴P,Q两点间的距离为900 m.二、测量高度问题例2如图所示,为测量一树的高度,在地面上选取A,B两点,从A,B两点分别测得树尖的仰角为30°,45°,且A,B 两点间的距离为60 m,则树的高度为m.答案30+30 3解析在△PAB中,∠PAB=30°,∠APB =15°,AB=60 m,sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin 30°=22×32-22×12=6-2 4,由正弦定理得PB sin 30°=AB sin 15°, 所以PB =12×606-24=30(6+2), 所以树的高度为PB ·sin 45°=30(6+2)×22=(30+303)(m ). 三、测量角度问题例3 已知岛A 南偏西38°方向,距岛A 3海里的B 处有一艘缉私艇.岛A 处的一艘走私船正以10海里/小时的速度向岛北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船?⎝⎛⎭⎫参考数据:sin 38°≈5314,sin 22°≈3314 解 如图,设缉私艇在C 处截住走私船,D 为岛A 正南方向上一点,缉私艇的速度为x 海里/小时,结合题意知BC =0.5x ,AC =5,∠BAC =180°-38°-22°=120°.由余弦定理可得BC 2=AB 2+AC 2-2AB ·ACcos 120°,所以BC 2=49,所以BC =0.5x =7, 解得x =14.又由正弦定理得sin ∠ABC =AC ·sin ∠BAC BC=5×327=5314, 所以∠ABC =38°,又∠BAD =38°,所以BC ∥AD ,故缉私艇以14海里/小时的速度向正北方向行驶,恰好用0.5小时截住该走私船. 素养提升 数学抽象是指舍去事物的一切物理属性,得到数学研究对象的思维过程,主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并且用数学符号或数学术语予以表征.从实际问题中抽象出距离、高度、角度等数学问题,然后利用正弦定理、余弦定理求解,很好地体现了数学抽象的数学素养.。
2024年中考数学几何模型归纳(全国通用)22 解直角三角形模型之实际应用模型(教师版)
专题22解直角三角形模型之实际应用模型解直角三角形是中考的重要内容之一,直角三角形边、角关系的知识是解直角三角形的基础。
将实际问题转化为数学问题是关键,通常是通过作高线或垂线转化为解直角三角形问题,在解直角三角形时要注意三角函数的选取,避免计算复杂。
在解题中,若求解的边、角不在直角三角形中,应先添加辅助线,构造直角三角形。
为了提高解题和得分能力,本专题重点讲解解直角三角形的实际应用模型。
模型1、背靠背模型图1图2图3【模型解读】若三角形中有已知角时,则通过在三角形内作高CD,构造出两个直角三角形求解,其中公共边(高)CD是解题的关键.【重要关系】如图1,CD为公共边,AD+BD=AB;如图2,CE=DA,CD=EA,CE+BD=AB;如图3,CD=EF,CE=DF,AD+CE+BF=AB。
【答案】该建筑物BC【分析】由题意可知,【点睛】本题考查的是解直角三角形函数,熟练掌握直角三角形的特征关键.例2.(2023湖南省衡阳市中考数学真题)随着科技的发展,无人机已广泛应用于生产生活,如代替人们在高空测量距离和高度.圆圆要测量教学楼学楼底部243米的C30 ,CD长为49.6米.已知目高(1)求教学楼AB的高度.(2)若无人机保持现有高度沿平行于行,求经过多少秒时,无人机刚好离开圆圆的视线【答案】(1)教学楼AB的高度为【分析】(1)过点B作BG DC通过证明四边形GCAB为矩形,之间的和差关系可得CG【点睛】本题主要考查了解直角三角形的实际应用,解题的关键是正确画出辅助线,构造直角三角形,熟练掌握解直角三角形的方法和步骤.例3.(2023年湖北中考数学真题)为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD,斜面坡度3:i,求斜坡AB的长.18C【答案】斜坡AB的长约为10米【分析】过点D作DE BC于点E,在Rt△在Rt DEC △中,2018CD C ,,sin 20sin18200.31 6.2DE CD C ∵34AF BF ,∴在Rt ABF 中,2AB AF 【答案】大楼的高度BC 为303m 【分析】如图,过P 作PH AB 于QH BC ,BH CQ ,求解PH 704030CQ BH ,PQ CQ 【详解】解:如图,过P 作PH则四边形CQHB 是矩形,∴由题意可得:80AP ,PAH ∴3sin 60802PH AP ∴704030CQ BH ,∴∴403103BC QH模型2、母子模型图1图2图3图4【模型解读】若三角形中有已知角,通过在三角形外作高BC,构造有公共直角的两个三角形求解,其中公共边BC是解题的关键。
解三角形的实际应用举例
第二章 解三角形
(2)由正弦定理得 AC=sin[180°20-sin((3405°°++4650°°+)60°)] =20ssiinn4150°5°=20sisnin4575°° =10(1+ 3)(米), BC=sin[180°-(206s0i°n 4+5°30°+45°)] =20sisnin4455°°=20(米).
栏目 导引
第二章 解三角形
测量高度问题 如图,一辆汽车在一条水平的公路上向 正西行驶,到 A 处时测得公路北侧一山顶 D 在 西偏北 30°的方向上,行驶 600 m 后到达 B 处, 测得此山顶在西偏北 75°的方向上,仰角为 30°,则此山的 高度 CD=________m.
栏目 导引
第二章 解三角形
栏目 导引
第二章 解三角形
若 P 在 Q 的北偏东 44°,则 Q 在 P 的( )
A.东偏北 46°
B.东偏北 44°
C.南偏西 44°
D.西偏南 44°
解析:选 C.如图,因为 P 在 Q 的北偏东 44°,则 Q 在 P 的南 偏西 44°.
栏目 导引
第二章 解三角形
A,B 两点间有一小山,选定能直接到达点 A,B 的点 C, 测得 AC=60 m,BC=160 m,∠ACB=60°,则 A,B 两点间 的距离为________m. 解析:在△ABC 中,由余弦定理得 AB2=AC2+BC2-2·AC·BC·cos 60° =602+1602-2×60×160cos 60°=196 00, 所以 AB=140 m,即 A、B 两点间的距离为 140 m. 答案:140
栏目 导引
第二章 解三角形
1.(1)在 200 m 高的山顶上,测得山下一塔顶
解三角形的实际应用举例ppt
(1) 已知三边 , 求三个角;
A
B
C
BCຫໍສະໝຸດ (2) 已知两边和它们的夹角,
(2) 已知两边和一边对角, 求其它元素。
A C
求其它元素。
A C
B
B
补充:我军有A、B两个小岛相距10海里, 敌军在C岛,从A岛望C岛和B岛成60°的视 角,从B岛望C岛和A岛成75°的视角,为 提高炮弹命中率,须计算B岛和C岛间的距 离,请你算算看。
0
A
6 2 0
0
D B
0
1 . 95 m
1 . 95
1 . 40
2
2 1 . 95 1 . 40 cos 66 2 0
=3.571 ∴BC≈1.89(m). 答:顶杆BC约长1.89m.
练1.如图,一艘船以32海里/时的 速度向正北航行,在A处看灯塔S 在船的北偏东200, 30分钟后航行 到B处,在B处看灯塔S在船的北 偏东650方向上,求灯塔S和B处的 距离.(保留到0.1) 解:AB=16,由正弦定理知:
数学结论 解三角形问题
谢谢
再见!
解三角形问题是三角学的基本问题之一。什 我国古代很早就有测量方面的知识,公元 解三角形的方法在度量工件、测量距离和高 么是三角学?三角学来自希腊文“三角形”和 一世纪的《周髀算经》里,已有关于平面测量 度及工程建筑等生产实际中,有广泛的应用, “测量”。最初的理解是解三角形的计算,后 的记载,公元三世纪, 我国数学家刘徽在计 在物理学中,有关向量的计算也要用到解三角 来,三角学才被看作包括三角函数和解三角形 算圆内接正六边形、正十二边形的边长时,就 形的方法。 两部分内容的一门数学分学科。 已经取得了某些特殊角的正弦……
解三角形在实际生活中的应用
第3节 解三角形在实际生活中的应用
1、 小红为了测量某一树身的高度,他站在A 处看树梢,测得此时的仰角为45°,前进200m
到达B 处,测得此时的仰角为60°,小红身高1.8m,试计算树身的高度是多少米?
2、 为了测量河对岸A 、B 两点的距离,在河的这边测出CD 的长为2
3km ,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A ,B 两点间的距离。
3、(2009宁夏、海南)为了测量两山顶M ,N 间的距离,飞机沿水平方向A ,B 两点进行测量。
A ,B ,M ,N 在同一铅垂平面内(如图)飞机能够测量的数据有俯角和A ,B 间的距离。
请设计一个方案。
包括:(1)指出需要测量的数据(用字母表示,并在图中标出)(2)用文字和公式写出计算M ,N 间的距离的步骤。
4、已知海岛A 四周8海里内有暗礁。
今有一货轮由西向东航行,望见岛A 在北偏东75°,航行202海里后,望见此岛在北偏东30°。
如果货轮不改变航向继续前进,有无触礁的危险?
5、甲船在A 处发现乙船在方位角45°与A 相距10海里的C 处正以20海里/小时的速度向南偏东75°方向航行。
已知甲船的速度是203海里/小时,问:甲船沿什么方向航行,需多长时间才能与已船相遇?。
解直角三角形在实际生活中应用
解直角三角形在实际生活中应用直角三角形是一种特殊的三角形,其中一个角为90度,另外两个角则是锐角或钝角。
直角三角形的重要性在于它具有很多实际应用价值。
本文将介绍一些直角三角形在实际生活中的应用。
一、测量高度和距离直角三角形的一条腿可以用作测量高度或距离的工具。
通过测量一个物体的顶部和底部的距离,同时测量观察点到底座的距离,我们可以利用直角三角形的性质计算出物体的高度。
例如,在建筑工地上,工人可以使用测量工具和直角三角形的原理来测量建筑物的高度。
二、解决倾斜和斜率问题直角三角形可以帮助我们解决倾斜和斜率问题。
在地质学和土木工程中,我们经常需要测量地面的倾斜度和斜率。
直角三角形可以帮助我们测量坡度的比例。
通过测量斜坡上某一段的水平距离和相应的垂直距离,我们可以计算出斜坡的斜率。
三、计算不可测量的距离在某些情况下,两个点之间的距离无法直接测量,例如跨越湖泊或河流的距离。
然而,利用直角三角形的性质,我们可以使用三角函数计算出这种不可测量距离。
通过观察两个点之间的角度和某一点到这两个点之间的距离,我们可以使用正切函数计算出这个不可测量的距离。
四、导航和定位直角三角形在导航和定位中也有广泛的应用。
例如,航海员可以使用天文观测和直角三角形的性质来确定船只的位置。
通过测量星体和地平线之间的角度,同时知道船只和地平线之间的距离,我们可以利用正弦和余弦函数计算出船只的位置。
五、解决工程问题在工程领域中,直角三角形常常用于解决一些复杂问题。
例如,自然灾害生态学家可以使用直角三角形的概念来设计保护森林免受火灾侵蚀。
通过构建直角三角形网格,他们可以最大程度地减少火势蔓延的可能性,保护森林资源。
六、解决影子和光线问题在摄影和照明设计领域,直角三角形可以帮助我们解决影子和光线的问题。
通过观察物体和光源之间的角度,并结合直角三角形的性质,我们可以计算出物体产生的影子的长度。
这对于照明设计师来说非常重要,以确保正确照亮目标物体。
§3 解三角形的实际应用举例
同理: 同理: cos ∠PAC =
72 − x 3x 由于: 由于: cos ∠PAB = cos ∠PAC 3x + 32 72 − x = 即: 5x 3x 132 解得: (km) 解得: x = 7
(2)作 PD ⊥ a ,垂足为 D,在 Rt∆PDA 中,
PD = PA cos ∠APD = PA cos ∠PAB 132 + 32 3× 3 x + 32 7 = x× = ≈ 17.71(km) 5x 5
(2)当 l = 340mm , r = 85mm , θ = 80° 时,利用计算器得:
θ )(mm)
A0 A = 340 + 85 − 85cos80° − 3402 − 852 sin 2 80° ≈ 81(mm)
答:此时活塞移动的距离约为 81mm .
是海面上一条南北方向的海防警戒线, 例 4:a 是海面上一条南北方向的海防警戒线,在 a 上点 A 处有一 个水声监测点, 个水声监测点, 另两个监测点 B,C 分别在 A 的正东方 20km 和 54km 某时刻, 的一个声波, 处,某时刻,监测点 B 收到发自静止目标 P 的一个声波,8s 后监 相继收到这一信号,在当时气象条件下, 测点 A,20s 后监测点 C 相继收到这一信号,在当时气象条件下, 声波在水中的传播速度是 1.5km/s. km, 的距离, (1)设 A 到 P 的距离为 xkm,用 x 表示 B,C 到 P 的距离,并 求 x 的值 的距离( ( 2 ) 求静止目标 P 到海防警戒线 a 的距离 ( 结果精确到 0.01km) 0.01km)
a D A P C
北
B
分析: ( 分析: 1)PA,PB,PC 长度之间的关系可以通过收到信号的 先后时间建立起来 的长, (2)作 PD ⊥ a ,垂足为 D,要求 PD 的长,只需要求出 PA 的长和 cos ∠APD , 的值,由题意, 都是定值, 即 cos ∠PAB 的值,由题意, PA − PB, PC − PB 都是定值, 因此, 因此,只需要分别在 ∆PAB 和 ∆PAC 中,求出 cos ∠PAB , 的表达式,建立方程即可. cos ∠PAC 的表达式,建立方程即可.
《解三角形的实际应用》 讲义
《解三角形的实际应用》讲义在我们的日常生活和许多实际问题中,解三角形的知识有着广泛的应用。
通过利用三角形的边长、角度等关系,我们能够解决诸如测量距离、高度、角度等问题。
接下来,让我们一起深入探讨解三角形在实际中的具体应用。
一、测量距离测量不可直接到达的两点之间的距离是解三角形的常见应用之一。
例如,在河流的一侧,要测量河对岸两个点 A 和 B 之间的距离。
我们可以在这一侧选取一个点 C,然后测量出 AC 和 BC 的长度以及角ACB 的大小。
通过余弦定理:\(AB^2 = AC^2 + BC^22AC×BC×cos∠ACB\),就可以计算出 AB 的长度。
再比如,在航海中,要测量两个岛屿之间的距离。
假设我们在一艘船上,能够观测到两个岛屿与船的夹角以及船到其中一个岛屿的距离,同样可以利用三角形的知识来计算出两岛屿之间的距离。
二、测量高度测量物体的高度也是解三角形经常发挥作用的领域。
比如,要测量一座山的高度。
在山脚下选择一个合适的观测点,测量观测点到山顶的仰角以及观测点与山底的水平距离。
利用正切函数\(tanα =\frac{h}{d}\)(其中\(α\)为仰角,\(h\)为山的高度,\(d\)为水平距离),可以求出山的高度\(h =d×tanα\)。
又如,要测量建筑物的高度。
在离建筑物一定距离的地方,测量出仰角以及水平距离,就能通过解三角形计算出建筑物的高度。
三、计算角度在实际问题中,有时需要计算角度。
例如,在航空领域,飞机的航向与地面的夹角对于飞行安全至关重要。
已知飞机的飞行速度、水平位移和垂直位移,就可以通过三角函数求出这个夹角。
在地质勘探中,根据岩层的倾斜程度和测量的数据,也需要通过解三角形来计算出岩层的倾斜角度。
四、导航与定位在现代导航系统中,解三角形也起着重要的作用。
例如,GPS 定位系统通过接收多个卫星的信号,利用三角形的原理来确定用户的位置。
假设我们能接收到三颗卫星的信号,并且知道每颗卫星的位置以及信号到达我们的时间差,就可以构建出三个三角形。
解三角形在生活中的应用
c b sin B
c c sin C
所以
a sin A
b sin B
c sin C
可是在斜三角形中是否成立的问题,在高一 的学习中已经证明也是成立的。
4
实际测量的几个例子
问题1:测量书柜的高度
模型转化
H
α
β
a
5
为了避免测量误差,我们采取了多次测量求平均 值的方法
次数
长度单位:厘米(cm) 角度单位:度()
374. 1
3.7
所以:使用我们的测角仪实际上还可以测量水平物体的长度, 实际上,这种测量方法还可以测量AB、CD间的距离,比如在河的一边, 测河的宽度。
15
1、我们设计的测角仪虽然不成熟,但我们自认为 在短距离的测量中它比光学测角仪有一定的优势, 而且通过对测角仪的设计与制做,体会了制做的乐 趣。做任何事不能等待,必须动手实践,当你使用 你自制工具工作时,工作变成了乐趣。 2、我们在实验中体会了测角仪的应用方法,结合 角三角形的数学知识,我们学会了用测角仪测量高 度,水平长度、水平宽度这三类问题,深刻体会了 我们的先辈仅用尺与测角仪进行地质测绘的过程, 而且深入理解了三角函数知识在实际生活中的作用。
基高 100 50.5 48.6 1745.7 17.5 1763.2 17.5 2
基高 50 48.6 47.7 1766.1 17.7 1783.7 17.7 3
11
数据比较,如下
1768.104 1764.64
1761.176 1757.712 1754.248 1750.784
1747.32 1743.856 1740.392 1736.928 1733.464
水平长度测量计算器
中考数学复习:专题7-12 解直角三角形在实际生活中的应用
专题12 解直角三角形在实际生活中的应用【专题综述】在现实生活中, 有许多和解直角三角形有关的实际问题,如航海航空、建桥修路、测量技术、图案设计等,解决这类问题其关键是把具体问题抽象成“直角三角形”模型,利用直角三角形的边角关系以及勾股定理来解决.【方法解读】一、航空问题例1:抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30︒,B 村的俯角为60︒(如图).求A 、B 两个村庄间的距离.(结果精确到米,参考数据2 1.4143 1.732==,)【举一反三】(2016内蒙古巴彦淖尔市)如图,某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘正在南海巡航的渔政船前往救援,当飞机到达海面3000m 的高空C 处时,测得A 处渔政船的俯角为45°,测得B 处发生险情渔船的俯角为30°,此时渔政船和渔船的距离AB 是( )A .30003mB .3000(31)+mC .3000(31)-mD .15003m二、测量问题例2:如图所示,课外活动中,小明在离旗杆AB 10米的C 处,用测角仪测得旗杆顶部A 的仰角为40︒,已知测角仪器的高CD =1.5米,求旗杆AB 的高(精确到0.1米) .【举一反三】我侦察员在距敌方200米的地方发现敌人的一座建筑物,但不知其高度又不能靠近建筑物测量,机灵的侦察员食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住。
若此时眼睛到食指的距离约为40cm,食指的长约为8cm,你能根据上述条件计算出敌方建筑物的高度吗?请说出你的思路。
三、建桥问题例3:如图所示,A、B两地之间有一条河,原来从A地到B地需要经过DC,沿折线A→D→C→B到达,现在新建了桥EF,可直接沿直线AB从A地到达B地.一直BC=11km,∠A=45°,∠B=37°.桥DC和AB平行,2 ,sin37°≈0.60,则现在从A地到达B地可比原来少走多少路程?(结果精确到0.1km.参考数据: 1.41cos37°≈0.80).【举一反三】黄冈市为了改善市区交通状况,计划修建一座新大桥.如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BDA=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0. 24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.四、图案设计问题例4. “创意设计”公司员工小王不慎将墨水泼在一张设计图纸上,导致其中部分图形和数据看不清楚(如图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O的半径OC所在的直线为对称轴的轴对称图形,A是OD与圆O的交点.由于图纸中圆O的半径r的值已看不清楚,根据上述信息(图纸中i 是坡面CE的坡度),求r的值.1:0.75【举一反三】如图,为了测量某电线杆(底部可到达)的高度,准备了如下的测量工具:①平面镜;②皮尺;③长为2米的标杆;④高为1.5m的测角仪(测量仰角、俯角的仪器),请根据你所设计的测量方案,回答下列问题:(1)画出你的测量方案示意图,并根据你的测量方案写出你所选用的测量工具;(2)结合你的示意图,写出求电线杆高度的思路.【强化训练】1.如图,一位同学想利用树影测量树高(AB),他在某一时刻测得高为1m的竹竿影长为0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上(CD),他先测得留在墙上的影高(CD)为1.2m,又测得地面部分的影长(BC)为2.7m,他测得的树高应为多少米?2.如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD. (参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).3.如图,在我市的上空一架飞机由A向B沿水平直线方向飞行,沿航线AB的正下方有两个景点水城明珠大剧院(记为点C),光岳楼(记为点D),飞机在A处时,测得景点C、D在飞机的前方,俯角分别为60°和30°.飞机飞行了3千米到B处时,往后测得景点C的俯角为30°.而景点D恰好在飞机的正下方,求水城明珠大剧院与光岳楼之间的距离(最后结果精确到0.1千米)4.某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)5.在某飞机场东西方向的地面l上有一长为1km的飞机跑道MN(如图),在跑道MN的正西端14.5千米处有一观察站A.某时刻测得二架匀速直线降落的飞机位于点A的北偏西30°,且与点A相距15千米的B处;经过1分钟,又测得该飞机位于点A的北偏东60°,且与点A相距5万千米的C处.⑴该飞机航行的速度是多少千米/小时?(结果保留根号)⑵如果该飞机不改变航向继续航行,那么飞机能否降落在跑道MN之间?请说明理由。
第五章 第七节 解三角形的实际应用 课件(共43张PPT)
本题以“珠穆朗玛峰”为背景设计试题,考查解三角形等 知识,体现了智育的素养导向.破解此类题的关键是准确获取有效信息,合 理运用获取到的信息画出草图,把所求的问题转化到几何图形中,通过合理 运用平面几何相关知识进行求解.
2 2
,
所以 θ=π4 ,∠ABC=3θ=34π ,
所以 AC2=16+8-2×4×2
2
×(-
2 2
)=40,
所以 AC=2 10 .]
平面几何中解三角形问题的求解思路 (1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用 正弦、余弦定理求解. (2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.
C [函数 f(x)的定义域为 R.
A.50 2 m C.25 2 m
B.50 3 m D.252 2 m
A
[由正弦定理得sin
AB ∠ACB
= sin
AC ∠CBA
,又由题意得∠CBA=30°,
所以 AB=ACsinsin∠∠CBAACB
50× =1
2 2
=50
2
(m).]
2
4.如图所示,已知两座灯塔 A 和 B 与海洋观察站 C 的距离相等,灯塔 A 在观察站 C 的北偏东 40°,灯塔 B 在观察站 C 的南偏东 60°,则灯塔 A 在灯塔 B 的 ________方向.
解析: 如图,设辑私艇在 C 处截住走私船,D 为岛 A 正南方向上一点, 缉私艇的速度为 x 海里/小时,结合题意知 BC=0.5x,AC =5,∠BAC=180°-38°-22°=120°,
解三角形的应用
04 检验:检验所求的解是否符合实际意义,从而得 出实际问题的解。
实际问题→数学问题(三角形)→数学问题的解(解三角形)→实际问题的解
28cos30 sin 60 sin(60 30)
42(m)
CD=BD-BC=42-28=14(m) 答:山的高度约为14米。
例 6: 一辆汽车在一条水平的公路上向正西行驶,到 A 处时测 得公路北侧一山顶 D 在西偏北 30°的方向上,行驶 600 m 后到达 B 处,测得此山顶在西偏北 75°的方向上,仰角为 30°,则此山 的高度 CD=__________m.
A.20 2米 C.40 2米
B.20 3米 D.20 6米
答案 解析
水平距离测量方法总结
当两点A,B之间的距离不能直接测量时,求AB的距离分为以下三类:
两点间不能到达,又不能相互看到。
01
(如图1所示AB两点的距离)
需要测量CB、CA的长和角C的大小,由 余弦定理,可求得AB的长。
02
两点能相互看到,但不能到达。 (如图2所示AB两点的距离)
练习1如图所示,设A,B两点在河的两岸,一测量者与A在河的同侧, 在所在的河岸边先确定一点C,测出A,C的距离为50 m,∠ACB= 45°,∠CAB=105°后,就可以计算出A,B两点的距离为( )
A.50 2 m
√C.25 2 m
B.50 3 m 25 2
D. 2 m
∠B=180°-45°-105°=30°, 在△ABC 中,由sinAB45°=sin5030°, 得 AB=100× 22=50 2.
45º 105º 50m
答案 解析
解三角形在现实生活中的应用——正,余弦定理
解三角形正,余弦定理在现实生活中的应用解三角形的正弦定理和余弦定理在现实生活中有广泛的应用。
例如,测量距离、测量高度、航海模型、物理问题等都与这些定理有关。
以下是一些例子:
1. 测量距离
利用正弦定理和余弦定理可以测量出无法直接测量的距离。
假设你想知道两个建筑物之间的距离,但你不能直接测量它们之间的直线距离。
你可以站在其中一个建筑物旁边,用一个工具测量你与另一个建筑物之间的角度和高度差,然后使用正弦定理或余弦定理计算出两个建筑物之间的直线距离。
2. 测量高度
同样可以利用正弦定理和余弦定理测量出无法直接测量的高度。
假设你想知道一个树的高度,但你只能在地面附近测量树的影子长度。
你可以使用正弦定理或余弦定理计算出树的高度。
3. 航海模型
在航海中,可以利用正弦定理和余弦定理计算船只的位置。
假设你知道船只在某个时间点的位置和朝向,以及它的速度和方向,你可以使用正弦定理和余弦定理计算出船只在任何其他时间点的位置和朝向。
这对于导航非常重要。
4. 物理问题
在物理学中,正弦定理和余弦定理也有很多应用,例如在振
动、波动等问题中。
例如,当一个弹簧上放置一个小球时,小球会以一定的频率来回摆动。
通过测量小球的振幅、周期等参数,可以使用正弦定理和余弦定理计算出小球的运动轨迹和速度。
解三角形在生活中的应用
解三角形在生活中的应用一、前言解三角形是初中数学中的一个重要内容,它是指已知三角形中的某些元素(如两个角度和一个边长),求出其余未知元素的过程。
虽然这个知识点在我们的学生时代可能并没有什么实际用处,但实际上,在我们的日常生活中,解三角形却有着广泛的应用。
二、建筑工程建筑工程是解三角形最常见的应用之一。
在建筑设计和施工过程中,经常需要测量建筑物各部分之间的距离、高度、倾斜度等信息。
这些信息可以通过解三角形来计算得出。
例如,在设计一座桥梁时,需要测量桥梁两端之间的距离和高度差。
如果只是简单地使用测量工具来进行测量,得到的结果可能会存在误差。
而通过解三角形来计算,则可以得到更加精确的结果。
三、导航导航也是解三角形的应用之一。
在旅行或驾车过程中,我们通常会使用地图或导航软件来确定行进方向和距离。
而这些软件所依据的原理就是通过解三角形来计算出当前位置与目标位置之间的距离和方向。
例如,当我们使用导航软件时,它会根据我们当前的位置和目标位置的坐标来计算出两点之间的距离和方向。
这个计算过程就是通过解三角形来实现的。
四、天文学天文学也是解三角形的应用之一。
在观测天体时,需要测量其位置、距离、速度等信息。
而这些信息可以通过解三角形来计算得出。
例如,在观测恒星时,需要测量其视差和视差变化,以确定其距离和速度。
而这个计算过程就是通过解三角形来实现的。
五、摄影摄影也是解三角形的应用之一。
在拍摄照片时,需要考虑拍摄角度、焦距等因素。
而这些因素可以通过解三角形来计算得出。
例如,在拍摄远景风景照片时,需要选择合适的焦距和拍摄角度,以保证整张照片都能清晰地呈现在画面中。
而这个计算过程就是通过解三角形来实现的。
六、总结综上所述,解三角形在我们日常生活中有着广泛的应用。
从建筑工程到导航、天文学再到摄影,它都扮演着重要的角色。
因此,学好解三角形不仅可以帮助我们在学术上取得更好的成绩,还能够为我们的生活带来更多便利和乐趣。
23解三角形的实际应用举例
(2)假设小艇的最高航行速度只能到达30海里/小时, 试设计航行方案(即确定航行方向和航行速度的大小),使 得小艇能以最短时间与轮船相遇,并说明理由.
解:(1)设相遇时小艇航行的距离为 s 海里,则
s= 900t2+400-2·30t·20·cos90°-30°
B A
D
C
分析:用例1的方法,可以计算出河的这 一岸的一点C到对岸两点的间隔 ,再测出 ∠BCA的大小,借助于余弦定理可以计 算出A、B两点间的间隔 。
C
解:测量者可以在河岸边选定两点C、D,测得CD=a, 并且在C、D两点分别测得∠BCA=α, ∠ACD=β, ∠CDB=γ, ∠BDA=δ.
在 ∆ADC和∆ BDC中,应用正弦定理得
又 t=23时,v=30. 故 v=30 时,t 取得最小值,且最小值等于23. 此时,在△OAB 中,有 OA=OB=AB=20,故可设计航行方 案如下: 航行方向为北偏东 30°,航行速度为 30 海里/小时,小艇能以最 短时间与轮船相遇.
解决有关三角形应用性问题的思路、 步骤和方法
解斜三角形应用题的一般步骤是:
, , C D a,测 角 仪 器 的 高 是 h .
在ACD中 , AC=sin a(sin),
AB=AE+h =AC sin +h = a sin sin h. sin( )
应用二:测量高度问题
〔2〕底部可以到达
例4、如图, 在山顶 铁塔上B处测得地 面上一点A的俯角
54040', 在塔底
B
A
C
分析:所求的边AB的对角是的,又知三角形的一边 AC,根据三角形内角和定理可计算出边AC的对角,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形的实际应用1.实际应用中的常用术语 设坡角为α,坡比度为则i =h =tan_α 2.(1)俯角是铅垂线与视线所成的角,其范围为]2,0[.(×) (2)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.(√)(3)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.(×)(4)若点P 在Q 的北偏东44°,则Q 在P 的东偏北46°.(×)(5)如果在测量中,某渠道斜坡坡比为34,设α为坡角,那么cos α=34.(×)(6)仰角与俯角都是目标视线与水平线的夹角,因此二者没有区别.(×)(7)如图,为了测量隧道口AB 的长度,可测量数据a ,b ,γ进行计算.(√)(8)若点A 在点C 的北偏东30°方向上,则C 点在A 点南偏西60°方向上.( )(9)如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为3a km.(√)(10)如图所示,D ,C ,B 三点在地面的同一直线上,DC =a ,从C ,D 两点测得A 点的仰角分别为60°,30°,则A 点离地面的高度AB 等于3a (×)考点一 测量距离[例1] (1)要测量对岸D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,则A ,B 之间的距离为________km. 解析:如图所示,在△ACD 中,∠ACD =120°,∠CAD =∠ADC =30°,∴AC =CD =3(km).在△BCD 中,∠BCD =45°,∠BDC =75°,∠CBD =60°.∴BC =3sin 75°sin 60°=6+22.在△ABC 中,由余弦定理,得AB 2=(3)2+2)226( -2×3×6+22×cos 75°=3+2+3-3=5, ∴AB =5(km),即A ,B 之间的距离为5km.答案: 5(2)为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩A ,B (如图),要测量A ,B 两点的距离,测量人员在岸边定出基线BC ,测得BC =50 m ,∠ABC =105°,∠BCA =45°.则A ,B 两点的距离为________m.解析:由正弦定理得AB sin ∠BCA =BC sin ∠CAB ,∴AB =BC ·sin ∠BCA sin ∠CAB =50×2212=502(m). 答案:50 2(3)已知A 船在灯塔C 北偏东80°处,且A 船到灯塔C 的距离为2 km ,B 船在灯塔C 北偏西40°处,A ,B 两船间的距离为3 km ,则B 船到灯塔C 的距离为________km.解析:如图,由已知得∠ACB =120°,AC =2,AB =3.设BC =x ,则由余弦定理得AB 2=BC 2+AC 2-2BC ·AC cos 120°,即32=22+x 2-2×2x cos 120°即x 2+2x -5=0,解得x =6-1.答案:6-1[方法引航] 测量两个不可到达的点之间的距离问题,一般是把求距离问题转化为求三角形的边长问题.首先是明确题意,根据条件和图形特点寻找可解的三角形,然后利用正弦定理或余弦定理求解.1.如图,为了测量河对岸A 、B 两点之间的距离,观察者找到一个点C ,从点C 可以观察到点A 、B ;找到一个点D ,从点D 可以观察到点A 、C ;找到一个点E ,从点E 可以观察到点B 、C .并测量得到一些数据:CD =2,CE =23,∠D =45°,∠ACD =105°,∠ACB =48.19°,∠BCE =75°,∠E =60°,则A 、B 两点之间的距离为______.(其中019.48cos 取近似值32)解析:依题意知,在△ACD 中,∠A =30°,由正弦定理得AC =CD sin 45°sin 30°=2 2.在△BCE 中,∠CBE =45°,由正弦定理得BC =CE sin 60°sin 45°=3 2.在△ABC 中,由余弦定理AB 2=AC 2+BC 2-2AC ×BC cos ∠ACB =10,所以AB =10. 答案:102.在本例(2)中,若已知条件不变,求A 、C 两点间的距离.解析:AC sin ∠ABC =BC sin ∠BAC ∴AC =BC ·sin ∠ABC sin ∠BAC=50×sin 105°sin 30°=50×6+2412=25(6+2). 答案:25(6+2)3.如图,一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°,行驶4 h后,船到达C 处,看到这个灯塔在北偏东15°.求此时船与灯塔间的距离.解:BC sin ∠BAC =AC sin ∠ABC,且∠BAC =30°,AC =60,∠ABC =180°-30°-105°=45°.∴BC =30 2.即船与灯塔间的距离为302km.考点二 测量高度[例2] (1)某大学的大门蔚为壮观,有个学生想搞清楚门洞拱顶D 到其正上方A 点的距离,他站在地面C 处,利用皮尺量得BC =9米,利用测角仪测得仰角∠ACB =45°,测得仰角∠BCD 后通过计算得到sin ∠ACD =2626,则AD的距离为________米.解析:设AD =x ,则BD =9-x ,CD =92+(9-x )2,在△ACD 中应用正弦定理得CD sin ∠DAC=AD sin ∠ACD ,即92+(9-x )222=x 2626, 所以2[92+(9-x )2]=26x 2,即81+81-18x +x 2=13x 2,所以2x 2+3x -27=0,即(2x +9)(x -3)=0,所以x =3米.答案:3(2)如图,地面上有一旗杆OP ,为了测得它的高度,在地面上选一基线AB ,测得AB =20 m ,在A 处测得点P 的仰角为30°,在B 处测得点P的仰角为45°,同时可测得∠AOB =60°,求旗杆的高度(结果保留1位小数).解:设旗杆的高度为h ,由题意,知∠OAP =30°,∠OBP =45°.在Rt △AOP 中,OA =OP tan 30°=3h .在Rt △BOP 中,OB =OP tan 45°=h .在△AOB 中,由余弦定理,得AB 2=OA 2+OB 2-2OA ·OB cos 60°,即202=(3h )2+h 2-23h ×h ×12.解得h 2=4004-3≈176.4. ∴h ≈13.3(m).∴旗杆的高度约为13.3 m.[方法引航] 高度问题一般是把它转化成三角形的问题,要注意三角形中的边角关系的应用,若是空间的问题要注意空间图形和平面图形的结合.1.如图所示,为测一建筑物的高度,在地面上选取A,B两点,从A,B两点分别测得建筑物顶端的仰角为30°,45°,且A,B两点间的距离为60 m,则该建筑物的高度为()A.(30+303)m B.(30+153)m C.(15+303)m D.(15+153)m解析:选A.在△P AB中,∠P AB=30°,∠APB=15°,AB=60,sin 15°=sin(45°-30°)=sin 45°cos30°-cos 45°sin 30°=6-2 4.由正弦定理得PB=AB sin 30°sin 15°=30(6+2),∴建筑物的高度为PB sin 45°=30(6+2)×22=(30+303)m.故选A.2.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为()A.102m B.20 m C.203m D.40 m解析:选D.设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,根据余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x=-20(舍去)或x=40.故电视塔的高度为40 m.考点三测量角度[例3](1)如图所示,两座相距60 m的建筑物AB、CD的高度分别为20 m、50 m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角的大小是________.解析:依题意,得AD =2010 m ,AC =305m.在△ACD 中,CD =50 m ,由余弦定理,得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD = 6 0006 0002=22,由0°<∠CAD <180°,知∠CAD =45°. 答案:45°(2)某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,立即测出该渔轮在方位角为45°,距离为10 n mile 的C 处,并测得渔轮正沿方位角为105°的方向,以9 n mile/h 的速度向某小岛靠拢,我海军舰艇立即以21 nmile/h 的速度前去营救,求舰艇的航向和靠近渔轮所需的时间.(参考数据sin 21.8°=3314)解:如图所示,根据题意可知AC =10,∠ACB =120°,设舰艇靠近渔轮所需的时间为t h ,并在B 处与渔轮相遇,则AB =21t ,BC =9t ,在△ABC 中,根据余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos 120°,所以212t 2=102+92t 2+2×10×9t ×12,即360t 2-90t -100=0,解得t =23或t =-512(舍去).所以舰艇靠近渔轮所需的时间为23h.此时AB =14,BC =6.在△ABC 中,根据正弦定理得BC sin ∠CAB=AB sin 120°,所以sin ∠CAB =6×3214=3314, 即∠CAB ≈21.8°或∠CAB ≈158.2°(舍去).即舰艇航行的方位角为45°+21.8°=66.8°.所以舰艇以66.8°的方位角航行,需23h 才能靠近渔轮.[方法引航] 求解测量问题的关键是把测量目标纳入到一个可解三角形中,三角形可解,则至少要知道这个三角形的一条边长.解题中注意各个角的含义,根据这些角把需要的三角形的内角表示出来,注意不要把角的含义弄错,不要把这些角与要求解的三角形的内角之间的关系弄错.1.如图所示,A,C两岛之间有一片暗礁,一艘小船于某日上午8时从A岛出发,以10海里/小时的速度沿北偏东75°方向直线航行,下午1时到达B处.然后以同样的速度沿北偏东15°方向直线航行,下午4时到达C岛.(1)求A,C两岛之间的距离;(2)求∠BAC的正弦值.解:(1)在△ABC中,由已知,得AB=10×5=50(海里),BC=10×3=30(海里),∠ABC=180°-75°+15°=120°,由余弦定理,得AC2=502+302-2×50×30 cos 120°=4 900,所以AC=70(海里).故A,C两岛之间的距离是70海里.(2)在△ABC中,由正弦定理,得BCsin∠BAC=ACsin∠ABC,所以sin∠BAC=BC·sin∠ABCAC=30sin 120°70=3314.故∠BAC的正弦值是3314.2.在本例(1)中,若已知条件不变从A点看C点的仰角的正弦值是多少?解析:作AE⊥CD于E点.从A看C点的仰角为∠CAE.在Rt△ACE中,CE=50-20=30,AC=30 5∴sin∠CAE=CECA=30305=55.即从A看C点的仰角的正弦值为55.[思想方法]函数方程思想在解三角形实际问题中的应用[典例]某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.[解] (1)设相遇时小艇航行的距离为S 海里,则S =900t 2+400-2·30t ·20·cos (90°-30°)=900t 2-600t +400=300)31(9002+-t 故当t =13时,S min =103,v =10313=30 3.即小艇以303海里/小时的速度航行,相遇时小艇的航行距离最小.(2)如图,设小艇与轮船在B 处相遇.则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°), 故v 2=900-600t +400t 2.∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30, 故v =30时,t 取得最小值,且最小值等于23.此时,在△OAB 中,有OA =OB =AB =20.故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时.[回顾反思] (1)三角形中的最值问题,可利用正、余弦定理建立函数模型(或三角函数模型),转化为函数最值问题.(2)求最值时要注意自变量的范围,要考虑问题的实际意义.[高考真题体验]1.(2014·高考四川卷)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60 m,则河流的宽度BC 等于( )A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m解析:选C.由题图知AB =60sin 75°=2406+2,∠ACB =30°,∠BAC =45°,在△ABC 中,由正弦定理得AB sin 30°=BC sin 45°,可得BC =120(3-1).2.(2014·高考课标全国卷Ⅰ)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA =60°.已知山高BC =100 m ,则山高MN =____________m.解析:根据题图所示,AC =1002m.在△MAC 中,∠CMA =180°-75°-60°=45°.由正弦定理得AC sin 45°=AM sin 60°⇒AM =1003m.在△AMN 中,MN AM =sin 60°,∴MN =1003×32=150(m).答案:1503.(2015·高考湖北卷)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.解:依题意,∠BAC =30°,∠ABC =105°.在△ABC 中,由∠ABC +∠BAC +∠ACB =180°,所以∠ACB =45°,因为AB =600 m .由正弦定理可得600sin 45°=BC sin 30°,即BC =3002m.在Rt△BCD 中,因为∠CBD =30°,BC =3002m ,所以tan 30°=CD BC =CD 3002,所以CD =1006m. 答案:100 64.(2013·高考江苏卷)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运行的速度为130m/min ,山路AC 长为1 260 m ,经测量,cos A =1213,cos C =35.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?解:(1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin[π-(A +C )]=sin(A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365.由AB sin C =AC sin B ,得AB =AC sin B ×sin C =1 2606365×45=1 040(m).所以索道AB 的长为1 040m.(2)设乙出发t 分钟后,甲、乙两游客距离为d m ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),因0≤t ≤1 040130,即0≤t ≤8,故当t =3537min 时,甲、乙两游客距离最短.(3)由BC sin A =AC sin B ,得BC =AC sin B ×sin A =1 2606365×513=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在]14625431250[,(单位:m/min)范围内. 课时规范训练A 组 基础演练1.在某次测量中,在A 处测得同一方向的B 点的仰角为60°,C 点的俯角为70°,则∠BAC 等于( )A.10°B.50°C.120°D.130°解析:选D.如图,∠BAC等于A观察B点的仰角与观察C点的俯角和,即60°+70°=130°.2.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速率是每小时()A.5海里B.53海里C.10海里D.103海里解析:选C.如图,依题意有∠BAC=60°,∠BAD=75°,所以∠CAD=∠CDA=15°,从而CD=CA=10,在直角三角形ABC中,得AB=5,于是这艘船的速度是50.5=10海里/小时.3.一艘船以4 km/h的速度沿着与水流方向成120°夹角的方向航行,已知河水流速为2 km/h,则经过3h,该船的实际航程为()A.215km B.6 km C.221km D.8 km解析:选B.v实=22+42-2×4×2×cos 60°=2 3.∴实际航程=23×3=6(km).故选B.4.已知A、B两地间的距离为10 km,B、C两地间的距离为20 km,现测得∠ABC=120°,则A、C两地间的距离为()A.10 km B.103kmC.105km D.107km解析:选D.由余弦定理可知:AC2=AB2+BC2-2AB·BC cos∠ABC.又∵AB=10,BC=20,∠ABC=120°,∴AC2=102+202-2×10×20×cos 120°=700.∴AC=107.5.我舰在敌岛A处南偏西50°的B处,且AB距离为12海里,发现敌舰正离开岛沿北偏西10°的方向以每小时10海里的速度航行,若我舰要用2小时追上敌舰,则速度大小为( )A .28海里/小时B .14海里/小时C .142海里/小时D .20海里/小时解析:选B.如图,设我舰在C 处追上敌舰,速度为v ,则在△ABC 中,AC =10×2=20(海里),AB =12海里,∠BAC =120°,∴BC 2=AB 2+AC 2-2AB ·AC cos 120°=784,∴BC =28海里,∴v =14海里/小时.6.在一座20 m 高的观测台测得对面一水塔塔顶的仰角为60°,塔底的俯角为45°,观测台底部与塔底在同一地平面,那么这座水塔的高度是________m.解析:h =20+20tan 60°=20(1+3)m.答案:20(1+3)7.为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10米到位置D ,测得∠BDC =45°,则塔AB 的高是________米.解析:在△BCD 中,由正弦定理,得BC sin ∠BDC =CD sin ∠DBC,解得BC =102米,∴在Rt △ABC 中,塔AB 的高是106米.答案:10 68.某路边一树干被台风吹断后,折成与地面成45°角,树干也倾斜为与地面成75°角,树干底部与树尖着地处相距20 m ,则折断点与树干底部的距离是________m.解析:如图,设树干底部为O ,树尖着地处为B ,折断点为A ,则∠ABO =45°,∠AOB =75°,所以∠OAB =60°.由正弦定理知,AO sin 45°=20sin 60°,解得AO =2063m.答案:206 39.某观测站C在目标A的南偏西25°方向上,从A出发有一条南偏东35°走向的公路,在C 处测得与C相距31千米的公路上B处有一人正沿此公路向A处走,走20千米到达D,此时测得CD为21千米,求此人在D处距A还有多少千米?解:如题图所示,易知∠CAD=25°+35°=60°,在△BCD中,cos B=312+202-2122×31×20=2331,所以sin B=12331.在△ABC中,AC=BC sin Bsin A=24,由BC2=AC2+AB2-2AC·AB cos A,得AB2-24AB-385=0,解得AB=35,所以AD=AB-BD=15.故此人在D处距A有15千米.10.如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上,此时到达C处.(1)求渔船甲的速度;(2)求sin α的值.解:(1)依题意知,∠BAC=120°,AB=12海里,AC=10×2=20(海里),∠BCA=α,在△ABC 中,由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=122+202-2×12×20×cos 120°=784.解得BC=28(海里).所以渔船甲的速度为BC2=282=14(海里/时).(2)由(1)知BC=28海里,在△ABC中,∠BCA=α,由正弦定理得ABsin α=BCsin 120°.即sin α=AB sin 120°BC =12×3228=3314.B 组 能力突破1.要测量底部不能到达的东方明珠电视塔的高度,在黄浦江西岸选择甲、乙两观测点,在甲、乙两点测得塔顶的仰角分别为45°、30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500米,则电视塔在这次测量中的高度是( )A .1002米B .400米C .2003米D .500米解析:选D.由题意画出示意图,设高AB =h ,在Rt △ABC 中,由已知BC =h ,在Rt △ABD 中,由已知BD =3h ,在△BCD 中,由余弦定理BD 2=BC 2+CD 2-2BC ·CD ·cos ∠BCD ,得 3h 2=h 2+5002+h ·500,解之得h =500(米).2.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,则B 城市处于危险区内的持续时间为( )A .0.5小时B .1小时C .1.5小时D .2小时 解析:选B.设t 小时后,B 市处于危险区内,则由余弦定理得:(20t )2+402-2×20t ×40cos 45°≤302.化简得:4t 2-82t +7≤0,∴t 1+t 2=22,t 1·t 2=74.从而|t 1-t 2|=(t 1+t 2)2-4t 1t 2=1.3.如图所示,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西30°相距10海里C 处的乙船,乙船立即朝北偏东θ+30°角的方向沿直线前往B 处营救,sin θ的值为( )A.217 B.22 C.32 D.5714解析:选A.连接BC.在△ABC中,AC=10,AB=20,∠BAC=120°,由余弦定理,得BC2=AC2+AB2-2AB·AC·cos 120°=700,∴BC=107,再由正弦定理,得BCsin∠BAC=ABsin θ,∴sin θ=217.4.海上一观测站测得方位角240°的方向上有一艘停止待修的商船,在商船的正东方有一艘海盗船正向它靠近,速度为每小时90海里.此时海盗船距观测站107海里,20分钟后测得海盗船距观测站20海里,再过________分钟,海盗船即可到达商船.解析:如图,设开始时观测站、商船、海盗船分别位于A、B、C处,20分钟后,海盗船到达D处,在△ADC中,AC=107,AD=20,CD=30,由余弦定理得cos∠ADC=AD2+CD2-AC22AD·CD=400+900-7002×20×30=12.∴∠ADC=60°,在△ABD中由已知得∠ABD=30°.∠BAD=60°-30°=30°,∴BD=AD=20,2090×60=403(分钟).答案:40 35.如图所示,A,B是海面上位于东西方向相距5(3+3)海里的两个观测点.现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距203海里的C点的救援船立即前往营救,其航行速率为30海里/小时,该救援船到达D点需要多长时间?解:由题意知AB=5(3+3)海里,∠DBA=90°-60°=30°,∠DAB=90°-45°=45°,∴∠ADB=180°-(45°+30°)=105°,在△DAB中,由正弦定理,得DBsin∠DAB =ABsin∠ADB,∴DB=AB·sin∠DABsin∠ADB=5(3+3)·sin 45°sin 105°=5(3+3)·sin 45°sin 45°cos 60°+cos 45°sin 60°=53(3+1)3+12=103(海里),又∠DBC=∠DBA+∠ABC=60°,BC=203(海里).在△DBC中,由余弦定理得CD2=BD2+BC2-2BD·BC·cos∠DBC=300+1 200-2×103×203×12=900.∴CD=30(海里).则需要的时间t=3030=1(小时).高考规范答题三角形类考题[典例](本题满分12分)在△ABC中,点D是BC边上的点,AD平分∠BAC,BD=2DC.(1)求sin Bsin C;(2)若∠BAC=60°,求B.标准答案·满分模板[解](1)由正弦定理,得ADsin B=BDsin∠BAD,ADsin C=DCsin∠CAD,2分得分点①因为AD平分∠BAC,BD=2DC,………………1分得分点②所以sin Bsin C=DCBD=12.………………2分得分点③(2)因为C=180°-(∠BAC+B),∠BAC=60°,………………2分得分点④所以sin C=sin(∠BAC+B)=32cos B+12sin B.………………2分得分点⑤由(1)知2sin B=sin C,………………1分得分点⑥所以tan B=33,B=30°.………………2分得分点⑦.[规范答题](1)踩点说明①只要写对两个正弦定理表达式,就得2分.③只要得出结果sin B sin C =12,就得2分.⑤只要写对sin C =32cos B +12sin B 得2分.⑦只要得出结果B =30°,不管过程,得2分.(2)答题要求①解题过程分步表达:分步列式表达是争取满分的好习惯.如第(1)问,正确列出两个正弦定理表达式,得2分.如第(2)问用三角形内角和代换得1分,得出B ,C 关系,得1分.②充分挖掘隐含条件:解题过程中用上隐含条件,是得满分的根本保证如第(1)问中由sin ∠BAD =sin ∠CAD ,就能顺利得出sin B sin C =DC BD =12.③充分利用第(1)问结果:若第(1)问与第(2)问有关系,可直接利用第(1)问结果来简化计算,如第(1)问sin B ∶sin C =1∶2④利用定理、公式.评分细则针对解题中用到的定理,公式给分,如第(1)问利用正弦定理;第(2)问要用到三角公式.专题测试二 三角函数与解三角形(时间90分钟,满分100分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知角α的顶点在原点,始边为x 轴正半轴,终边与圆心在原点的单位圆交于点A (m ,3m ),则sin 2α=( )A .±34 B.34 C .±32 D.32解析:选D.本题考查任意角的三角函数的定义,二倍角的正弦.由题意得tan α=3,则sin 2α=2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=233+1=32. 2.已知sin )2(απ+=cos(π-α),则α的取值范围是( ) A .{α|α=2k π+π4,k ∈Z }B .{α|α=2k π-π4,k ∈Z }C .{α|α=k π+π2,k ∈Z }D .{α|α=k π,k ∈Z }解析:选C.根据诱导公式可知,sin )2(απ+=cos α, cos(π-α)=-cos α,∵sin )2(απ+=cos(π-α), ∴cos α=-cos α,∴cos α=0,∴α=k π+π2,k ∈Z .3.函数y =sin 24x 是( )A .最小正周期为π4的奇函数B .最小正周期为π4的偶函数C .最小正周期为π的奇函数D .最小正周期为π的偶函数解析:选B.∵y =sin 24x =1-cos 8x 2=12-12cos 8x , ∴函数y =sin 24x 是最小正周期为π4的偶函数.4.若函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则ω和φ的取值是()A .ω=1,φ=π3B .ω=1,φ=-π3C .ω=12,φ=π6D .ω=12,φ=-π6解析:选C.由题图可知T 4=2π3-)3(π-=π,∴T =4π,∴ω=2πT =12,∴f (x )=sin )21(ϕ+x ,将)1,32(π代入可求得φ=π6. 5.已知tan(α+β)=25,tan )4(πβ-=14,则tan )4(πα+=( ) A.318 B.1318 C.322 D.1322解析:选C.本题主要考查两角差的正切公式.因为α+π4=(α+β)-)4(πβ-,所以tan )4(πα+=tan )]4()[(πββα--+=)4tan()tan(1)4tan()tan(πββαπββα-++--+=322. 6.已知函数f (x )=3sin ωx (ω>0)的周期是π,将函数f (x )的图象沿x 轴向右平移π8个单位,得到函数y =g (x )的图象,则函数g (x )的解析式为( )A .g (x )=3sin )82(π-xB .g (x )=3sin )42(π-x C .g (x )=-3sin )82(π+x D .g (x )=-3sin )42(π+x 解析:选B.由题意知2πω=π,∴ω=2,则f (x )=3sin 2x ,将函数f (x )的图象沿x 轴向右平移π8个单位,得到函数y =3sin )42(π-x 的图象,则g (x )=3sin )42(π-x . 7.函数y =sin 2x +2sin x cos x +3cos 2x 的最小正周期和最小值分别为( )A .π,2- 2B .π,0C .2π,0D .2π,2- 2 解析:选A.y =sin 2x +2sin x cos x +3cos 2x =sin 2x +cos 2x +2=2sin )42(π+x +2.∵ω=2,∴T =2π2=π,则函数的最小正周期为π.令2x +π4=-π2+2k π(k ∈Z ),即x =k π-3π8(k ∈Z )时,y min =2-2,则函数的最小值为2- 2.8.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =3,b =2,cos(A +B )=13,则c=( )A .4 B.15 C .3 D.17解析:选D.由题意求出cos C ,利用余弦定理求出c 即可.∵cos(A +B )=13,∴cos C =-13.在△ABC 中,a =3,b =2,cos C =-13,根据余弦定理,得c 2=a 2+b 2-2ab cos C =9+4-2×3×2×)31(-=17,∴c =17. 9.已知函数f (x )=sin )4(πϖ+x (ω>0)在),2(ππ上单调递减,则ω的取值范围可以是( ) A. ]45,21[ B.]45,0[ C.]21,0( D. (0,2] 解析:选A.本题考查三角函数单调性的应用.法一:通过取特殊值ω=2,ω=13,验证三角函数自变量的范围,排除选项,得到结果.令ω=2⇒ωx +π4∈)49,45(ππ,不符合题意,排除D ;令ω=13⇒ωx +π4∈)127,125(ππ,不符合题意,排除B ,C.故选A.法二:y =sin x 的单调递减区间为]232,22[ππππ++k k ,k ∈Z ,则⎩⎪⎨⎪⎧ ωπ2+π4≥2k π+π2ωπ+π4≤2k π+3π2k ∈Z ,解得4k +12≤ω≤2k +54,k ∈Z ,又由4k +12-)452(+k =2k -34<0,k ∈Z 得k =0,所以ω∈]45,21[,故选A. 10.将函数y =3sin )32(π+x 的图象向右平移π2个单位长度,所得图象对应的函数( ) A .在区间]127,12[ππ上单调递减 B .在区间]127,12[ππ上单调递增 C .在区间]3,6[ππ-上单调递减D .在区间]3,6[ππ-上单调递增 解析:选B.本题考查三角函数的图象变换、三角函数的性质等知识.由题意可得平移后的函数为y =3sin ]3)2(2[ππ+-x =3sin )322(π-x ,令2k π-π2≤2x -2π3≤2k π+π2,k ∈Z ,解得k π+π12≤x ≤k π+7π12,k ∈Z ,故该函数在]127,12[ππππ++k k (k ∈Z )上单调递增,当k =0时,选项B 满足条件. 11.在锐角三角形ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,已知a ,b 是方程x 2-23x +2=0的两个根,且2sin(A +B )-3=0,则c =( )A .4 B.6 C .2 3 D .3 2解析:选B.∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.又2sin(A +B )-3=0,即sin(A +B )=32,∴sin C =sin[π-(A +B )]=sin(A +B )=32,又C 为锐角,∴cos C =1-sin 2C =12.根据余弦定理,得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab =6,∴c =6(负值舍去).12.已知函数y =sin x +a cos x 的图象关于直线x =5π3对称,则函数y =a sin x +cos x 的图象关于直线( )A .x =π3对称B .x =2π3对称C .x =11π6对称D .x =π对称 解析:选C.y =sin x +a cos x =1+a 2sin(x +φ),其中tan φ=a .因为函数y =sin x +a cos x 的图象关于直线x =5π3对称,所以5π3+φ=k π+π2,k ∈Z ,即φ=k π-7π6,k ∈Z .由此可得a =tan φ=tan )67(ππ-k =-33,k ∈Z , 则函数y =a sin x +cos x =-33sin x +cos x =-233sin )3(π-x ,其对称轴方程是x -π3=k π+π2,k ∈Z ,即x =k π+5π6,k ∈Z ,当k =1时,对称轴方程为x =11π6.二、填空题(本大题共4小题,每小题5分,把答案填在相应题号后的横线上.)13.函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为________.解析:本题主要考查两角和的正弦公式的应用和三角函数最值的求解.f (x )=sin[(x +φ)+φ]-2sin φcos(x +φ)=sin(x +φ)cos φ-cos(x +φ)sin φ=sin(x +φ-φ)=sin x ,因为x ∈R ,所以f (x )的最大值为1.答案:114.在函数①y =cos|2x |,②y =|cos x |,③y =cos )62(π+x ,④y =tan )42(π-x 中,最小正周期为π的所有函数为________.解析:本题主要考查三角函数的周期和函数图象的翻折变换等知识,数形结合是解题的关键.①y =cos|2x |的最小正周期为π;②y =|cos x |的最小正周期为π;③y =cos )62(π+x 的最小正周期为π;④y =tan )42(π-x 的最小正周期为π2.所以最小正周期为π的所有函数为①②③. 答案:①②③15.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M ,N 两点,则MN 的最大值为________.解析:本题考查三角函数的图象和性质.设直线x =a 与函数f (x )=sin x 图象的交点为M (a ,y 1),直线x =a 与函数g (x )=cos x 图象的交点为N (a ,y 2),则MN =|y 1-y 2|=|sin a -cos a |=2|sin )4(π-a |≤ 2. 答案: 216.如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,测得∠BCD =15°,∠BDC =30°,CD =30 m ,并在点C 处测得塔顶A 的仰角为60°,则塔高AB =________.解析:本题主要考查解三角形的实际应用.在△BCD 中,∠CBD =180°-15°-30°=135°,由正弦定理,得BC sin ∠BDC =CD sin ∠CBD,即BC sin 30°=30sin 135°,所以BC =152(m).在Rt △ABC 中,AB =BC ·tan ∠ACB =152×3=156(m).答案:156m三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=3cos 4x -2cos 2)42(π+x +1. (1)求函数f (x )的最小正周期;(2)求函数f (x )在区间]4,6[ππ-上的取值范围. 解:(1)由题意知,f (x )=3cos 4x -cos )24(π+x =3cos 4x +sin 4x =2sin )34(π+x ,∴函数f (x )的最小正周期T =2π4=π2.(2)∵-π6≤x ≤π4,∴-π3≤4x +π3≤4π3, ∴-32≤sin )34(π+x ≤1,∴函数f (x )的取值范围为[-3,2]. 18.(本小题满分10分)三角形的内角A ,B ,C 所对的边长分别为a ,b ,c ,且满足a 2+c 2-b 2=3ac .(1)求角B 的大小;(2)若2b cos A =3(c cos A +a cos C ),BC 边上的中线AM 的长为7,求△ABC 的面积.解:(1)由余弦定理得cos B =a 2+c 2-b 22ac =3ac 2ac =32.因为B 是三角形的内角,所以B =π6.(2)由正弦定理得asin A=bsin B=csin C,代入2b cos A=3(c cos A+a cos C)∴2sin B cos A=3sin(A+C).∴cos A=32,A∈(0,π),A=π6设CM=m,则AC=2m.在△ACM中,7=4m2+m2+2m2,∴m2=1,m=1,m=-1(舍去),∴AC=BC=2∴S△ABC =12CA·CB·sin23π=12×2×2×32= 3.。