解答分数应用题的常用方法

合集下载

分数应用题的解题方法

分数应用题的解题方法

分数应用题的解题方法1、引言在数学学习中,分数应用题是经常出现的题型之一。

解答这类题目需要掌握一定的解题方法和技巧。

本文将为大家介绍几种常见的解题方法,以帮助大家更好地解决分数应用题。

2、换算法在分数应用题中,经常需要将一个分数表达成另一种形式,这就需要用到换算法。

换算法的基本原理是乘以一个合适的分式,使得原分数的分母变化为所需的分母。

例如,将分数$\frac{2}{3}$转换成分母为6的分数,我们可以乘以$\frac{6}{2}$,得到$\frac{2}{3}\times\frac{6}{2}=\frac{12}{6}$,即$\frac{2}{3}=\frac{12}{6}$。

通过换算法,我们可以灵活地将分数转换为需要的形式,便于进行计算和分析。

3、化简法有时,分数应用题给出的分数较为复杂,需要进行化简才能得到准确的结果。

化简法是一种常见的解题方法。

化简法的关键在于找到分子和分母的最大公约数,并将分子分母同时除以最大公约数,从而将分数化简为最简形式。

例如,将分数$\frac{15}{25}$化简为最简形式,我们可以找到15和25的最大公约数为5,然后将分子分母同时除以5,得到$\frac{15}{25}=\frac{3}{5}$。

通过化简法,我们可以得到最简分数,便于进行计算和比较。

4、分数的加减法在分数应用题中,经常需要进行分数的加减运算。

分数的加减法需要找到相同的分母,然后按照相同的分母进行计算。

具体步骤如下:(1)找到两个分数的最小公倍数,作为相同的分母;(2)将分子按照相同的分母进行放大或缩小;(3)按照相同的分母进行分子的加减运算;(4)化简得到最简分数形式。

例如,计算$\frac{2}{3}+\frac{1}{4}$:(1)相同的分母为12,即$\frac{2}{3}\times\frac{4}{4}=\frac{8}{12}$,$\frac{1}{4}\times\frac{3}{3}=\frac{3}{12}$;(2)按照相同的分母进行计算,$\frac{8}{12}+\frac{3}{12}=\frac{11}{12}$;(3)化简得到最简分数形式,$\frac{11}{12}$。

分数除法的应用题类型及解题方法

分数除法的应用题类型及解题方法

分数除法的应用题类型及解题方法
分数除法是数学中常见的运算类型,它涉及将一个分数除以另一个分数。

在解题时,我们通常会遇到不同类型的应用题,下面将介绍几种常见的应用题类型及解题方法。

1. 分数除法的商和分数加法:
在这种类型的应用题中,我们需要找到两个分数的商,并将其与另一个给定的分数相加。

解题方法如下:
(1)计算两个分数的商,将分子乘以除数的倒数,即分子乘以除数的倒数,分母乘以除数的倒数,然后将两个得到的分数相加。

(2)相加两个分数的分子,保持分母不变。

2. 分数除法的商和整数乘法:
这种类型的应用题要求我们计算一个分数除以另一个分数的商,并与一个整数进行相乘。

解题方法如下:
(1)计算两个分数的商,将分子乘以除数的倒数,分母乘以除数的倒数。

(2)用得到的商乘以给定的整数。

3. 分数除法的商和分数减法:
这种类型的应用题需要我们找到两个分数的商,并将其与另一个给定的分数进行减法运算。

解题方法如下:
(1)计算两个分数的商,将分子乘以除数的倒数,分母乘以除数的倒数。

(2)减去给定的分数,将两个分数的分子相减,保持分母不变。

以上是几种常见的分数除法应用题类型及解题方法。

在解题过程中,我们需要注意选择适当的数学运算和转化,以确保准确地解答问题。

希望这些解题方法能对您有所帮助!。

分数应用题的解题方法和技巧

分数应用题的解题方法和技巧

7类分数应用题解答方法汇总小学数学最难的题型是什么?相信很多同学都会不假思索地说:应用题!如果遇上的还是分数类的应用题,那就是难上加难了!复合应用题(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。

(2)含有三个已知条件的两步计算的应用题。

求比两个数的和多(少)几个数的应用题。

比较两数差与倍数关系的应用题。

(3)含有两个已知条件的两步计算的应用题。

已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。

已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。

(4)解答连乘连除应用题。

(5)解答三步计算的应用题。

(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。

答案:根据计算的结果,先口答,逐步过渡到笔答。

( 7 ) 解答加法应用题:a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。

b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。

(8)解答减法应用题:a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。

-b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。

c求比一个数少几的数的应用题:已知甲数是多少,乙数比甲数少多少,求乙数是多少。

01分数加减法应用题分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

02分数乘法应用题是指已知一个数,求它的几分之几是多少的应用题。

特征:已知单位“1”的量和分率,求与分率所对应的实际数量。

解题关键:准确判断单位“1”的量。

找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。

03分数除法应用题求一个数是另一个数的几分之几(或百分之几)是多少。

六年级数学上应用题分数技巧与方法

六年级数学上应用题分数技巧与方法

六年级数学上应用题分数技巧与方法一、分数应用题的解题方法1. 找单位“1”的量。

在审题时,首先要把问题中涉及的量与分率对应起来,看题目中有几个量,每个量所占的分率是多少,并确定出单位“1”的量。

2. 确定解题方法。

如果题目中单位“1”的量是未知的,就采用除法,进而转化为乘法运算;如果题目中单位“1”的量是已知的,就采用乘法运算。

3. 对应解题。

根据数量关系,把具体数量与分率对应起来,列出算式并计算。

二、分数应用题的解题步骤1. 读懂题意,确定解题方法。

在解答分数应用题时,首先要认真审题,弄清题目中涉及的量和分率,然后根据数量关系列出算式并计算。

2. 找准量与分率的对应关系。

在分数应用题中,量与分率对应是解题的关键。

要分清每个量所占的分率,进而确定出单位“1”的量。

3. 掌握基本数量关系式。

在分数应用题中,常用的数量关系式有:单位“1”的量×分率=部分量等。

4. 逐步解答。

在解答分数应用题时,要按照题目所给的条件,逐步解答。

一般可采用综合算式或分步计算的方法进行解答。

5. 检验答案。

在解答分数应用题时,要检验答案是否正确。

可以采用逆向思维或代入法进行检验。

三、分数应用题的练习方法1. 专项训练。

可以针对某一类型的分数应用题进行专项训练,如工程问题、行程问题等。

通过专项训练,可以加深对某一类型题目的理解和掌握。

2. 多做练习。

熟能生巧,多做练习是提高分数应用题解题能力的有效方法。

可以通过练习册、习题集等途径进行练习。

3. 归纳总结。

在练习过程中,要注意归纳总结解题方法,形成自己的解题思路和技巧。

同时,也可以借鉴他人的经验和技巧,不断提高自己的解题能力。

4. 注重思路。

在练习过程中,不要只关注答案是否正确,更要注重解题思路是否清晰、合理。

只有掌握了正确的解题思路,才能真正提高分数应用题的解题能力。

六年级分数应用题解题方法

六年级分数应用题解题方法

六年级分数应用题解题方法分数(百分数)应用题的典型解法有数形结合思想和对应思想。

数形结合是将抽象的数量关系用线段图直观表示,从而降低解题难度的基本方法。

对应思想则是通过具体数量与抽象分率之间的对应关系来分析和解决问题的思想。

例如,在求一桶油原来有多少千克的问题中,我们可以画出线段图,清楚地看出油的千克数乘以(1-1/5)等于20+22,从而得出油的千克数为70.同样地,在求一堆煤原来有多少千克的问题中,我们可以根据煤的使用情况和剩余量的关系,得出煤的千克数乘以(1-20%-50%)等于290+10,从而得出煤的千克数为1000.对应思想同样适用于解决问题。

例如,在求缝纫机厂女职工人数的问题中,我们可以通过线段图找到与具体数量144人相对应的分率,从而得出女职工占厂职工人数的7/20,男职工占的比例为13/20.再根据女职工比男职工少144人的关系,得出全厂人数为480人。

在转化思想方面,例如在求一批大白菜的千克数的问题中,我们可以通过将题目中的信息转化为对应分率的形式,再用线段图进行分析。

根据第一天卖出后余下的240千克大白菜,可以得出对应分率为1-1/3,从而得出第一天卖出后余下的大白菜千克数为400.再根据剩余240千克的对应分率为1-3/5,可以得出这批大白菜的千克数为600.化简得:甲:乙=15:28,即甲是乙的18/43.五(2)班男生人数:女生人数=4:5.男生人数×(1-75%)=女生人数×(1-80%)。

代入得男生人数:女生人数=4:5,女生人数=30人,男生人数=24人。

有软糖和硬糖两种糖,软糖占总数的4/9.加入16块硬糖后,软糖占总数的20/29.设软糖块数为单位“1”,原来硬糖块数是软糖块数的5/9,加入16块硬糖后,硬糖块数是软糖块数的2倍。

解得软糖块数为9块。

小明看一本课外读物,已读的页数和剩下页数之比为1:6.后来又读了20页,已读的页数和剩下页数之比为3:4.设总页数为单位“1”,原来已读页数占总页数的1/7,后来已读页数占总页数的4/7.解得总页数为630页。

六年级分数应用题解题方法

六年级分数应用题解题方法

分数(百分数)应用题典型解法一、数形结合思想数形结合是研究数学问题的重要思想,画线段图能将题目中抽象的数量关系,直观形象地表示出来,进行分析、推理和计算,从而降低解题难度。

画线段图常常与其它解题方法结合使用,可以说,它是学生弄清分数(百分数)应用题题意、分析其数量关系的基本方法。

【例1】一桶油第一次用去51,第二次比第一次多用去20千克,还剩下22千克。

原来这桶油有多少千克?[分析与解]从图中可以清楚地看出:这桶油的千克数×(1-51-51)=20+22,则这桶油的千克数为:(20+22)÷(1-51-51)=70(千克)【例2】一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还多10千克,求原来这堆煤共有多少千克?[分析与解]显然,这堆煤的千克数×(1-20%-50%)=290+10,则这堆煤的千克数为: (290+10)÷(1-20%-50%)=1000(千克) 二、对应思想量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。

(量率对应常常和画线段图结合使用,效果极佳。

)【例3】缝纫机厂女职工占全厂职工人数的207,比男职工少144人,缝纫机厂共有职工多少人?[分析与解]解题的关键是找到与具体数量144人的相对应的分率。

从线段图上可以清楚地看出女职工占207,男职工占1-207=2013,女职工比男职工少占全厂职工人数的2013-207=103,也就是144人与全厂人数的103相对应。

全厂的人数为: 144÷(1-207-207)=480(人) 【例4】菜农张大伯卖一批大白菜,第一天卖出这批大白菜的31,第二天卖出余下的52,这时还剩下240千克大白菜未卖,这批大白菜共有多少千克?[分析与解]从线段图上可以清楚地看出240千克的对应分率是第一天卖出31后余下的(1-52)。

(完整版)分数应用题的解题方法

(完整版)分数应用题的解题方法

(完整版)分数应用题的解题方法分数应用题是数学中的一种常见题型,需要运用分数的运算和应用知识解答问题。

解决分数应用题的方法可以分为以下几个步骤:理解问题、分析问题、制定计划、解决问题和检验答案。

首先,理解问题是解决任何数学问题的第一步。

我们需要仔细读题,理解题目中的条件和要求。

在解决分数应用题时,我们需要明确题目中涉及的分数运算和应用概念,比如加减乘除、最大公约数和最小公倍数等。

同时,我们还要注意题目中可能存在的隐藏信息或特殊要求。

其次,分析问题是指对题目中的条件进行分析和归纳,找出解决问题的关键要素。

在分析问题过程中,我们可以将题目中给出的信息进行拆分和整理,以便更好地理解问题的本质。

我们还可以利用图表、模型或其他辅助工具帮助我们直观地展示问题,并更好地发现问题的规律和特点。

接下来,制定计划是指根据问题的条件和要求,选择适当的解题方法和步骤。

在制定计划时,我们可以考虑使用分数的基本运算规则和性质,运用相关的分数概念和技巧来解决问题。

根据题目的特点,我们可以选择适当的解题策略,比如化简分数、通分、约分、比较大小等方法。

然后,解决问题是指根据制定的计划,进行具体的计算和推理,得出问题的解答。

在解决问题过程中,我们需要准确地运用所学的分数知识和方法,进行计算和推导。

同样重要的是,我们需要保持清晰的思路和正确的操作,避免犯错和忽略细节。

最后,检验答案是指对解决问题的结果进行核对和验证,确保解答的准确性和合理性。

在检验答案时,我们可以用不同的方法或角度来验证解答的正确性。

比如,我们可以利用逆运算来检验解答的准确性,或者将解答带入原题中进行验证。

综上所述,解决分数应用题的方法可以概括为理解问题、分析问题、制定计划、解决问题和检验答案。

通过充分理解题目的条件和要求,合理分析问题的关键要素,制定适当的解题计划,运用所学的分数知识和方法进行解答,并进行有效的答案检验,我们就能够高效地解决分数应用题。

六年级——分数应用题——八种解题法

六年级——分数应用题——八种解题法

数学作业
分数应用题八种解题法
一.对应的解题方法
1.筑路队修一条公路。

第一周修了全长的3/10 ,第二周修了全长的3/8,两周修的比全长的一半多2.8千米。

这条公路全长多少千米?
二.‘‘假设法’’解题
2.一项工程,单独做,甲队需要20天,乙队需要30天。

合做若干天后,乙队调出,甲队接着干,共用18天干完。

干完时乙队调出了几天?
三.转换条件的解题方法
3.某电厂原有职工160人,其中女职工占11/20,后来调走了一批女职工,这时女职工占总人数的5/11。

现在这个电厂有多少女职工?
四.等量代换的解题方法
4.果园里栽了110棵苹果树和梨树。

苹果树的1/3比梨树的1/5多10棵。

果园里有多少棵梨树?
五.消去同一个量的解题方法
5.有一箱苹果和一箱梨,苹果的1/2和梨的1/3重34千克。

苹果的1/3和梨的1/3重25千克,苹果和梨各重多少千克?
六.用归一法解答
6.一件上衣比一条裤子贵84元,上衣价格的1/2 相当于裤子价格的4/5。

求上衣和裤子的价格。

七.列方程解分数应用题
7.甲、乙两书架共有图书1000册,若从两个书架上各取掉1/5后,再把甲书架的书取40册给乙书架,这时两书架上的书一样多。

甲、乙两书架各有图书多少册?
八.用比例知识解分数应用题
例8. 某糖厂上半月共生产白糖和红糖1100吨,红糖的3/5 和白糖的1/2 相等。

这个厂上半月生产的白糖、红糖各多少吨?。

分数应用题的解题方法和技巧

分数应用题的解题方法和技巧

分数应用题解题的一般步骤:
1、 找出单位“1” (标准量),观察单位“1”(标准量)是已知还是未知,如果已知时,可以确定用乘法计算;如果未知就用除法计算。

2、分析题意,找出各个信息所对应的量。

并能有条理地说明解题思路、有根有据地说清楚自己是怎么思考的,这样是培养逻辑思维能力的一个有效方法。

3、 根据(比较量 ÷单位“1” =对应分率)(单位“1”×对应分率=比较量)(比较量 ÷对应分率=单位“1”)各量之间的关系列式计算。

总结:以上步骤可以用一句话概括:一找二定三列式,即第一步找单位“1”,第二步确定单位“1”已知还是未知,第三步列式解答。

分数或百分数应用题解题的口诀
知“1”用乘:单位“1”的量×所求的量对应的分率=所求的量
求“1”用除:已知的量÷已知的量对应的分率=单位“1”的量
了解什么是“1”。

“1”,就是单位“1”,也就是“标准量”。

如: 我班女生人数是男生人数的32。

这里是把男生人数做为一个标准,拿女生人数跟男生人数去做比较,我们就把这里的男生人数叫做单位“1”的量,即标准量。

女生人数是比较量,32
是女生所对应的分率。

如何判断单位“1”?
找到关键句,即含有分数或百分数的句子,把句子补充完整,与分数(或百分数)最接近的那个量是单位“1”,或“比”字“是”字后面,“的”字前面。

分数应用题的方法和技巧

分数应用题的方法和技巧

分数应用题的方法和技巧
在解答分数应用题时,以下是一些常用的方法和技巧:
1. 确定未知数:首先明确问题中的未知数,并用一个变量来表示。

例如,如果问题涉及到某个人的年龄,可以用x来表示这个人的年龄。

2. 变量的分数表达式:根据问题描述,将变量表示为一个分数表达式。

例如,如果问题中提到某个人年龄的1/3等于15岁,则可以表示为x/3 = 15。

3. 解方程:将问题转化为一个方程,并求解这个方程来得到未知数的值。

在上述例子中,通过乘以3,可以得到x = 45。

4. 确认答案的合理性:将未知数的值代入原方程中,确认答案的合理性。

在上述例子中,将x = 45代入x/3 = 15,可以验证
等式成立。

5. 注意化简:在解题过程中,可能需要对分数进行化简。

例如,将2/4简化为1/2,便于计算。

6. 注意单位转换:问题中可能涉及到单位的转换。

在解题过程中,需要注意将单位转换为一致的形式,以便计算。

7. 图形辅助:对于某些问题,可以用图形进行辅助。

例如,在解决比例问题时,可以用图形表示比例关系,帮助理解和解决问题。

8. 相关知识点:对于一些特定的类型的分数应用题,掌握相关的数学知识点会有帮助。

例如,理解分数的基本运算法则、比例关系的性质等。

以上是一些常用的方法和技巧,希望对解答分数应用题有所帮助。

分数乘除法应用题解题方法总结汇总(全面完整)

分数乘除法应用题解题方法总结汇总(全面完整)
(3)六年级男生有 50 人,女生比男生多 2 ,女生比男生多多少人? 5
(4)如果白兔有 48 只,灰兔比白兔多 3 ,灰兔比白兔多多少只? 4
2
3、求比一个数多几分之几是多少。
几 单位“1”的量×(1+ 几 )(分率)=是多少(分率对应的量)。
4 (1)人的心脏跳动的次数随着年龄而变化。青少年每分钟约跳 75 次,婴儿每分钟心跳的次数比青少年多5 。婴
几 5、求比一个数少几分之几是多少。单位“1”的量×(1- 几 )(分率)=是多少(分率对应的量)。
(1)学校有 20 个足球,篮球比足球少
1 5
,篮球有多少个?
2 (2)一种服装原价 105 元,现在降价7 ,现在售价多少元?
(3)某校计划每月用水 120 吨,实际比计划节约 1 ,实际每月用水多少吨? 6
3、已知一个数比另一个数多几分之几是多少,求这个数。 几
是多少(分率对应的量)÷(1+几 )(分率)=单位“1”的量。 1
例 1:学校有 20 个足球,足球比篮球多 4 ,篮球有多少个?
4、已知一个数比另一个数少几分之几少多少,求这个数。 几
少多少(分率对应的量)÷几 (分率)=单位“1”的量。 例 1:某工程队修筑一条公路。第一天修了 38 米,第二天了 42 米。第一天比第二天少修的是这条公路全长的 1 28 。这条公路全长多少米?
。小新储蓄多少钱?
2、求比一个数多几分之几多多少。
几 单位“1”的量×几 (分率)=多多少(分率对应的量)。
(1)人的心脏跳动的次数随着年龄而变化。青少年每分钟约跳 75 次,婴儿每分钟心跳的次数比青少年多45 。婴
儿每分钟心跳比青少年多多少次?
(2)学校有足球 20 个,篮球比足球多 1 ,篮球比足球多多少个? 2

分数乘除法应用题的解题技巧和策略

分数乘除法应用题的解题技巧和策略

分数乘除法应用题的解题技巧和策略分数乘除法是数学中的一种常见运算,解题时需要注意一些技巧和策略。

下面将介绍一些解题时常用的技巧和策略:1. 分数乘法的技巧:- 若两个分数的分子、分母都可以进行因式分解,可先对两个分数进行因式分解,再进行乘法运算,最后将结果化简。

- 若两个分数的分子和分母都有一个相同的因子,可以将相同的因子约去,使乘法运算更简便。

2. 分数乘法的策略:- 将分数转化为小数进行计算,最后再将小数化为分数形式,可以简化计算过程。

- 将一个分数从真分数形式转化为带分数形式,可以在计算过程中简化操作,最后再将带分数化为假分数形式。

3. 分数除法的技巧:- 将除法运算转化为乘法运算,即将被除数乘以除数的倒数,然后进行乘法运算。

- 若除法中出现两个分数相除的情况,可将除号乘以被除数的倒数,然后进行乘法运算,最后将结果化简。

在解答分数乘除法的应用题时,需要根据题意确立解题方法和步骤。

一般来说,解题的步骤如下:1. 阅读题目,理解题意。

2. 确定问题的解题方法,是分数乘法还是分数除法。

3. 将问题中的已知条件抽象为数学表达式。

4. 根据已知条件运用分数乘法或分数除法进行计算。

5. 化简计算结果,以最简形式表示答案。

6. 验证计算结果是否符合题意。

在解答中,需要注意以下几个方面:- 注意分数的运算规则,特别是分数与整数的运算。

- 在计算过程中,要利用分数的性质,如因式分解、约分、通分等,化简计算过程或结果。

- 注意计算过程中的正负号,根据分数的正负性进行相应的处理。

- 保持计算的准确性,注意计算过程中的小数点位置以及小数的精确度。

解答分数乘除法应用题时,需要掌握分数乘除法的基本技巧和策略,并灵活运用这些技巧和策略去解决实际问题。

分数、百分数应用题的一般解题方法

分数、百分数应用题的一般解题方法

分数、百分数应用题的一般解题方法(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--分数、百分数应用题的一般解题方法一、解决分数乘法问题1、求一个数的几分之几是多少(单位“1”已知)单位“1”×分率=分率所对应的量2、求一个数比单位“1”多几分之几是多少(单位“1”已知)单位“1”×(1+分率)=分率所对应的量3、求一个数比单位“1”少几分之几是多少(单位“1”已知)单位“1”×(1-分率)=分率所对应的量二、解决分数除法问题1、已知一个数的几分之几是多少,求这个数(单位“1”未知)数量÷数量所对应的分率=单位“1”2、已知一个数比另一个数多几分之分,求这个数(单位“1”未知)数量÷(1+分率)=单位“1”3、已知一个数比另一个数少几分之分,求这个数(单位“1”未知)数量÷(1-分率)=单位“1”三、解决百分数问题1、求百分率的问题:一个数是另一个数的百分之几。

另一个数一个数×100%=百分率2、求一个数比另一个数多(少)百分之几。

相差数÷单位“1”=多(少)百分之几 对应量÷单位“1”-13、求一个数的百分之几是多少(单位“1”已知)单位“1”×百分率=分率所对应的量已知一个数的百分之几是多少,求这个数。

(单位“1”未知)数量÷数量所对应的百分率=单位“1”4、求比一个数多(少)百分之几的数是多少单位“1”×(1+百分率)=分率所对应的数量5、已知比一个数多(少)百分之几的数是多少,求这个数。

数量÷(1+对应分率)=单位“1”6、折扣问题原价×折扣=现价7、纳税问题收入×税率=应纳税额8、利息问题本金×利率×时间=利息利息×税率=利息税利息—利息税=税后利息本息=本金+税后利息。

分数乘除法应用题解题方法总结汇总(全面完整)

分数乘除法应用题解题方法总结汇总(全面完整)

分数应用题解题方法一、解题技巧:一抓,二找,三确定,四对应。

1、一抓:抓住关键句——分率句;(含几分之几的句子)2、二找:找准单位“1”的量;(不是藏在“的”前面,就是躲在“比”、“是、占、相当于”后面。

)(看分率是谁的几分之几,谁就是单位“1”的量)3、三确定:确定单位“1”是已知还是未知(已知单位“1”用乘法,未知单位“1”用除法)4、四对应:找出相对应的数量与分率,列出算式。

( 单位“1”的量×分率=分率对应量 ) (分率对应量÷分率=单位“1”的量)二、解题方法:解答分数乘法应用题时,可以借助于线段图来分析数量关系。

线段图有直观、形象等特点。

按题中的数量比例,恰当选用实线或虚线把已知条件和问题表示出来,数形三、分数应用题主要讨论的是以下三者之间的关系。

1、分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。

2、标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。

(也叫单位“1”的数量)3、比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。

(也叫分率对应的数量)四、分数应用题的分类。

(三类)1这类问题特点是已知一个看作单位“1”的数,求它的几分之几是多少,它反映的是整体与部分之间关系的应用题,基本的数量关系是2这类问题特点是已知一个数的几分之几是多少的数量,求单位“1”的量。

基本的数量关系是:3、求一个数是另一个数的几分之几。

这类问题特点是已知两个数量,比较它们之间的倍数关系,解这类应用题用除法。

基本的数量关系是:五、分析解答实际的应用题。

第一类1、求一个数的几分之几是多少。

(用乘法计算) (1)学校买来100千克白菜,吃了 45,吃了多少千克?(2)一个排球定价60元,篮球的价格是排球的56。

篮球的价格是多少元?(3)小红体重42千克,小云体重40千克,小新体重相当于小红和小云体重总和的 2341,小新的体重是多少千克?(4)有一摞纸,共120张。

分数应用题解的技巧

分数应用题解的技巧

分数应用题解的技巧解答分数应用题要做到“四个善于”(这里的方法其实也是一种思路)分数应用题变化多端,但我们只要仔细审题,掌握一定的解题技巧,便能迎刃而解.一、善于对应.在解答分数(百分数)应用题时,找不准数量之间的对应关系是造成错误的重要原因.因而,要正确解答分数应用题首先要善于找出数量之间的对应关系.如:某工厂有工人1350人,其中男工人占,男工人比女工人多多少人?根据题意,可找出下列对应关系:二、善于比较.有意识地进行题组比较,能使我们分清分数应用题的结构特征,清晰分数应用题的解题思路.如:(1)水果店运来苹果2000千克,比运来的梨多,梨有多少千克?(2)水果店运来苹果2000千克,运来的梨比苹果多,梨有多少千克?比较两道题,就会发现:一是单位“1”不同.(1)题中的单位“1”是梨的数量(未知);(2)题中的单位“1”是苹果的数量(已知).二是数量2000千克对应的分率不同.(1)题中2000千克对应的分率是;(2)题中2000千克对应的分率是“1”.三是类型不同.(1)题是“已知一个数的几分之几是多少,求这个数”,用方程或除法解答;(2)题是“求一个数的几分之几是多少”,用乘法解答.四是列式与计算结果不同.三、善于假设.遇到某些难以解答的分数应用题,我们不妨合理假设具体条件,使抽象的数量关系具体化.如:水结成冰时,体积增加.冰化成水时,体积减少几分之几?我们可先假设水有11立方米,求出水结成冰后的体积是12立方米,再求出冰化成水后体积减少几分之几:即.四、善于沟通.对相类似的知识进行联想沟通,能使我们解题时融会贯通,举一反三.如:(1)小明去买早点,包里的钱单买油条可买10根,单买包子可买5个.他买了2根油条后,还可买几个包子?(2)一块木料单做椅子可把10把,单做桌子可做5张.李师傅先用这块木料做了2把椅子,还可做几张桌子?如果我们把这一类题与工程问题进行沟通,就会很快找到解题思路.分数应用题是小学教学中的难点之一,它主要有三种类型:1.已知两个数,求一个数是另一个数的几分之几;2.已知一个数,求它的几分之几;3.已知一个数的几分之几是多少,求这个数。

六年级分数应用题解题方法

六年级分数应用题解题方法

分数(百分数)应用题典型解法一、数形结合思想数形结合是研究数学问题的重要思想,画线段图能将题目中抽象的数量关系,直观形象地表示出来,进行分析、推理和计算,从而降低解题难度。

画线段图常常与其它解题方法结合使用,可以说,它是学生弄清分数(百分数)应用题题意、分析其数量关系的基本方法。

【例1】一桶油第一次用去51,第二次比第一次多用去20千克,还剩下22千克。

原来这桶油有多少千克?[分析与解]从图中可以清楚地看出:这桶油的千克数×(1-51-51)=20+22,则这桶油的千克数为:(20+22)÷(1-51-51)=70(千克)【例2】一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还多10千克,求原来这堆煤共有多少千克?[分析与解]显然,这堆煤的千克数×(1-20%-50%)=290+10,则这堆煤的千克数为: (290+10)÷(1-20%-50%)=1000(千克) 二、对应思想量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。

(量率对应常常和画线段图结合使用,效果极佳。

)【例3】缝纫机厂女职工占全厂职工人数的207,比男职工少144人,缝纫机厂共有职工多少人?[分析与解]解题的关键是找到与具体数量144人的相对应的分率。

从线段图上可以清楚地看出女职工占207,男职工占1-207=2013,女职工比男职工少占全厂职工人数的2013-207=103,也就是144人与全厂人数的103相对应。

全厂的人数为: 144÷(1-207-207)=480(人) 【例4】菜农张大伯卖一批大白菜,第一天卖出这批大白菜的31,第二天卖出余下的52,这时还剩下240千克大白菜未卖,这批大白菜共有多少千克?[分析与解]从线段图上可以清楚地看出240千克的对应分率是第一天卖出31后余下的(1-52)。

小学六年级分数应用题例题解析及常用公式

小学六年级分数应用题例题解析及常用公式

分数应用题例题分析以及常用公式解题详细步骤解读一、正确的找单位“1”是解决分数应用题的前提。

不管什么样的分数应用题,题中必有单位“1”。

正确的找到单位“1”是解答分数应用题的前提和首要任务。

分数应用题中的单位“1”分两种形式出现:1、有明显标志的:(1)男生人数占全班人数的4/7 (2)杨树棵树是柳树的3/5(3)小明的体重相当于爸爸的1/2 (4)苹果树比梨树多1/5条件中“占”“是”“相当于”“比”后面,分率前面的量是本题中的单位“1”。

2、无明显标志的:(1)一条路修了200米,还剩2/3没修。

这条路全长多少千米?(2)有200张纸,第一次用去1/4,第二次用去1/5。

两次共用去多少张?(3)打字员打一部5000字的书稿,打了3/10,还剩多少字没打?这3道题中的单位“1”没有明显标志,要根据问题和条件综合判断。

(1)中应把“一条路的总长”看作单位“1”(2)题中应把“200张纸”看作单位“1”(3)题中应把“5000个字”看作单位“1”。

二、正确的找对应关系是解分数应用题的关键。

每道分数应用题都有数量和分率的对应关系,正确的找到所求数量(或分率)和哪个分率(或数量)对应是解分数应用题的关键。

方法:分率对应量÷单位“1”的量=分率单位“1”的量×分率=分率对应量分率对应量÷分率=单位“1”的量三、根据数量关系式解答分数应用题“三步法”掌握以上关系和数量关系式,解分数应用题可以按以下三步进行:1、找准单位“1”的量;2、找准对应关系3、根据数量关系式列式解答四、有效练习,建立模型,提升解分数应用题的能力。

要想正确、迅速地解答分数应用题,必须多加练习,把基本型的、稍复杂型的和复杂型的结构特征理解清楚,才能熟练快速地解答分数应用题。

基础理论(一)分数应用题的构建分数应用题主要讨论的是以下三者之间的关系:(1)、分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解答分数应用题的常用方法
分数应用题是小学数学应用题的重要组成部分,分数应用题的数量关系比较复杂,学生分析起来比较困难。

下面介绍几种解答分数应用题的常用方法。

一、对应法
通过审题正确判断单位“1”的量后,把具体数量与分率对应起来,这是解答分数应用题的关键。

例:某筑路队修一段路,第一天修了全长的15 多10米,第二天修了全长的2
7 ,
还剩62米未修,这段路全长多少米?
分析:题目中总长度是单位“1”的量,(62+10)米与(1-15 -2
7 )相对
应,因此,总长度为:(62+10)÷(1-15 -2
7
)=140(米)。

二、变率法
题目中几个分率的单位“1”不相同,可先统一单位“1”的量,然后变换分率,寻找已知数量的对应分率,最终解决问题。

例:学校买了一批图书,高年级分得这些书的25 ,中年级分得余下的1
4 ,低
年级分得180本,这批图书共有多少本?
分析:该题中的“1
4 ”是把余下的本数看做单位“1”而余下本数又是总本
数的(1-25 ),因此,我们可以把中年级分得的本数理解为总本数的(1-2
5 )
×14 ,这样可求出总本数:180÷[1-25 -(1-25 )×1
4
]=400(本)。

三、常量法
题目中几个数量前后都发生了变化,而有的数量不变,这就是常量,解题时可以把常量看作单位“1”。

例:小华读一本书,已读页数占未读页数的1
5 ,如果再读30页,已读页数就
占未读页数的3
5
,这本书共有多少页?
分析:该题中再读30页后,已读页数与未读页数都在变化,唯独总页数没有变,把总页数看作单位“1”,则总页数为:30÷(
533+-5
11
+)=144(页)。

四、联系法
某些题目中有几个数量都与一个数量有联系,把这个数量作为桥梁,解题思路就顺畅了。

例:某小学四、五、六年级学生共种树576棵,五年级种树的棵数是六年级种树的棵数的45 ,四年级种树是五年级种树棵数的3
4
,五年级种树多少棵?
分析:题目中五年级种树棵数与六年级种树棵数有关,又与四年级种树棵数有关,所以,五年级种树棵数是个桥梁,把它看作单位“1”,把“五年级种树棵数是六年级种树棵数的45 ”改变为“六年级种树棵数是五年级种树棵数的5
4 倍”,
所以,五年级种树棵数为:576÷(1+34 +5
4
)=192(棵)。

五、转化法
将复杂的问题中的某些条件进行转化,结合改变成简单的问题,从而化繁为简。

例:某工厂有三个车间,第一车间人数是其余两个车间人数的1
2 ,第二车间
人数是其余两个车间人数的1
3
,第三车间500人,三个车间共多少人?
分析:把“第一车间人数是其余两个车间人数的1
2
” 转化为“第一车间人
数占三个车间总人数的
2
11
+”,“第二车间人数占其余两个车间人数的13 ”转化为
“第二车间人数占三个车间总人数的
3
11
+”,这样,就能求出三个车间的总人数:500÷(1-
211+-3
11+)=1200(人)。

六、假设法
对题目的某些数量作出假设,导致运算结果与题目不相符合,然后找出产生差异的原因,最终解决所求问题。

例:小华看一本故事书,第一天看了全书的51多6页,第二天看了全书的4
1

5页,还剩下21页没看。

小华第一天看了多少页?
分析:先假设小华第一天少看6页,即小华第一天只看了全书的5
1
;再假设小
华第二天多看5页,即小华第二天恰好看了全书的4
1。

那么,剩下没看的页数为
21+6-5=22(页)。

这没看的22页正好占全书页数的1-51-41=20
11
,由此可求出
这本书的页数为22÷2011=40(页),从而求出小华第一天看的页数为40×5
1
+6=14
(页)。

七、倒推法
题目中几个分率的单位“1”不相同,而且单位“1”难以统一,可以先求部分量,再一步一步地逆推出总数。

例:一捆电线,第一次用去全长的16 多2米,第二次用去余下的3
4 少4米,
还剩16米,这捆电线有多少米?
分析:这题中两个分率的单位“1”均为未知量,我们可以从较小的单位“1”求起:(16-4)÷(1-34 )=48(米),(48+2)÷(1-1
6
)=60(米)。

八、方程法
一些复杂的分数应用题用算术方法难以解答,不便于理解,如用方程可顺向求解,容易掌握。

如“一项工程,甲、乙两队合做8小时完成,甲独做14小时完成。

现在甲独做14小时后,剩下的由乙接着做,前后共用18小时完成。

求甲、乙各做多少小时?”设甲做x 小时,则乙做(18-x )小时,根据两个队的工作量之和为1,可列方程:x 14
1
+(18 -114 )×(18-x )=1,解得x =2,18-2=16(小时)。

相关文档
最新文档