人教版七年级下册数学实数第2课时实数与数轴的关系及实数的运算 同步练习

合集下载

新人教版数学七年级下《6.3实数》课时练习含答案(K12教育文档)

新人教版数学七年级下《6.3实数》课时练习含答案(K12教育文档)

新人教版数学七年级下《6.3实数》课时练习含答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(新人教版数学七年级下《6.3实数》课时练习含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为新人教版数学七年级下《6.3实数》课时练习含答案(word版可编辑修改)的全部内容。

新人教版数学七年级下册6。

3实数课时练习一、选择题(共15小题)1.下列实数中,为无理数的是( )A . 0。

2B .21 C.2 D . ﹣5 答案:C知识点:理数解析:理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.此题主要考查了无理数和有理数的特征和区别,要熟练了解,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.2.(2015•泰州)下列4个数:9、722、π、()03,其中无理数是( ) A .9B 722. C . π D.()03 答案:C知识点:无理数;零指数幂.解析:根据无理数是无限不循环小数,可得答案.解:π是无理数,故选:C .本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.3.下列实数中,是有理数的为( )A . 2B . 34C . π D. 0答案:D知识点:实数.解析:根据有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数进行判断即可.4.实数0是( )A . 有理数B . 无理数C . 正数D . 负数答案:A知识点:实数.解析:根据实数的分类,即可解答.5.在实数﹣0.8,2015,﹣722,33四个数中,是无理数的是( ) A . ﹣0。

七年级数学下册第六单元《实数》经典练习题

七年级数学下册第六单元《实数》经典练习题

一、选择题1.如图,数轴上O、A、B、C四点,若数轴上有一点M,点M所表示的数为m,且m m c-=-,则关于M点的位置,下列叙述正确的是()5A.在A点左侧B.在线段AC上C.在线段OC上D.在线段OB上D 解析:D【分析】根据A、C、O、B四点在数轴上的位置以及绝对值的定义即可得出答案.【详解】∵|m-5|表示点M与5表示的点B之间的距离,|m−c|表示点M与数c表示的点C之间的距离,|m-5|=|m−c|,∴MB=MC.∴点M在线段OB上.故选:D.【点睛】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应的关系是解答此题的关键.2.观察下列各等式:-+=231-5-6+7+8=4-10-l1-12+13+14+15=9-17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是()A.-130 B.-131 C.-132 D.-133C解析:C【分析】通过观察发现:每一行等式右边的数就是行数的平方,故第n行右边的数就是n的平方,而左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.【详解】解:第一行:211=;第二行:224=;=;第三行:239=;第四行:2416……第n 行:2n ;∴第11行:211121=.∵左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.∴第11行左起第1个数是-122,第11个数是-132.故选:C .【点睛】此题主要考查探索数与式的规律,正确找出规律是解题关键.3.下列各数中比( )A .2-B .1-C .12-D .0A 解析:A【分析】根据实数比较大小的方法分析得出答案即可.【详解】A .|2|2-=,|= ∴2>2∴-<B .|1|1-=,|= ∴1<,1∴->C .1122-=,|=, 1∴->2D .0>故选:A .【点睛】此题主要考查了实数的大小比较,正确掌握比较方法是解题的关键.4.1的值( )A .在7和8之间B .在6和7之间C .在5和6之间D .在4和5之间C解析:C【分析】利用36<48<49得到6<7−1进行估算.【详解】解:∵36<48<49,∴6<7,∴5-1<6.故选:C .【点睛】本题考查了估算无理数的大小:估算无理数大小要用逼近法.5.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★a b b;若a b <,则a ★b b a.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b +<★ A .①B .②C .①②D .①②③A 解析:A【分析】 ①根据新运算a b ★的运算方法,分类讨论:a b ≥,a b <,判断出a b ★是否等于b a ★即可;②由①,推得=a b b a ★★,所以()()1a b b a =★★不一定成立;③应用放缩法,判断出1a b a b+★★与2的关系即可. 【详解】解:①a b ≥时,a a bb ★, b a a b ★, ∴=a b b a ★★;a b <时,a b ba ★,b b a a★, ∴=a b b a ★★;∴①符合题意.②由①,可得:=a b b a ★★,当a b ≥时,∴()()()()22a b b a a b aa a ab b b ba b ====★★★★,∴()()a b b a ★★不一定等于1,当a b <时,∴()()()()22a b b a a b bb b b aa a aa b ====★★★★, ∴()()a b b a ★★不一定等于1,∴()()1a b b a =★★不一定成立,∴②不符合题意. ③当a b ≥时,0a >,0b >, ∴1a b≥,∴(12a b a b a b b a ab ab ++===+=≥≥★★, 当a b <时,∴(12a b a b a b a b ab ab ++===+=≥≥★★, ∴12a b a b +<★★不成立, ∴③不符合题意,∴说法中正确的有1个:①.故选:A .【点评】此题主要考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.6.81的平方根是( )A .9B .-9C .9和9-D .81C 解析:C【分析】根据平方根的定义即可求出答案.【详解】解:2(9)81±=,81的平方根是9±.故选:C【点睛】本题考查平方根的定义,解题的关键是正确理解平方根的定义,本题属于基础题型.7.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第(n﹣2)个数是()(用含n的代数式表示)A.21n- Bn-D.24n-C.23n-B.22解析:B【分析】观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n-1行的数据的个数,再加上n-2得到所求数的被开方数,然后写出算术平方根即可.【详解】解:前(n﹣1)行的数据的个数为2+4+6+…+2(n﹣1)=n(n﹣1),所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数的被开方数是n(n﹣1)+n﹣2=n2﹣2,所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数是22n-.故选:B.【点睛】本题考查了算术平方根,观察数据排列规律,确定出前(n-1)行的数据的个数是解题的关键.8.若将2-,7,11分别表示在数轴上,其中能被如图所示的墨迹覆盖的数是()A.2-B7C11D.无法确定B解析:B【分析】首先利用估算的方法分别得到2-711间),从而可判断出被覆盖的数.【详解】∵221,273<<,3114<<而墨迹覆盖的范围是1-3∴故选B.【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.9.在 -1.414π, 3.212212221…,227,3.14这些数中,无理数的个数为( )A .2B .3C .4D .5C 解析:C【分析】先计算算术平方根,再根据无理数的定义即可得.【详解】4=,22 3.1428577=小数点后的142857是无限循环的,,2π+⋯,共4个,故选:C .【点睛】 本题考查了算术平方根、无理数,熟记无理数的定义是解题关键.10.在0,3π227, 6.1010010001…(相邻两个1之间0的个数在递增)中,无理数有( ). A .1个B .2个C .3个D .4个C解析:C【分析】先计算算术平方根,再根据无理数的定义即可得.【详解】 22 3.1428577=小数点后142857是无限循环的,则227是有理数,3=-,则因此,题中的无理数有3π 6.1010010001(相邻两个1之间0的个数在递增),共有3个,故选:C .【点睛】本题考查了无理数、算术平方根,熟记无理数的定义是解题关键.二、填空题11.已知一个正数m 的平方根为2n +1和4﹣3n .(1)求m 的值;(2)|a ﹣3|(c ﹣n )2=0,a +b +c 的立方根是多少?(1)m =121;(2)a+b+c 的立方根是2【分析】(1)由正数的平方根互为相反数可得2n+1+4﹣3n =0可求n =5即可求m ;(2)由已知可得a =3b =0c =n =5则可求解【详解】解:(1)正数解析:(1)m =121;(2)a +b +c 的立方根是2【分析】(1)由正数的平方根互为相反数,可得2n +1+4﹣3n =0,可求n =5,即可求m ; (2)由已知可得a =3,b =0,c =n =5,则可求解.【详解】解:(1)正数m 的平方根互为相反数,∴2n +1+4﹣3n =0,∴n =5,∴2n +1=11,∴m =121;(2)∵|a ﹣3|(c ﹣n )2=0,∴a =3,b =0,c =n =5,∴a +b +c =3+0+5=8,∴a +b +c 的立方根是2.【点睛】本题考查平方根的性质;熟练掌握正数的平方根的特点,绝对值和偶次方根数的性质是解题的关键.12.求出x 的值:()23227x +=x =1或x =﹣5【分析】依据平方根的性质可得到x+2的值然后解关于x 的一元一次方程即可【详解】解:∵3(x+2)2=27∴(x+2)2=9∴x+2=±3解得:x =1或x =﹣5【点睛】本题主要考查的是 解析:x =1或x =﹣5【分析】依据平方根的性质可得到x +2的值,然后解关于x 的一元一次方程即可.【详解】解:∵3(x +2)2=27,∴(x +2)2=9,∴x +2=±3,解得:x =1或x =﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.13.用“<”连接2的平方根和2的立方根_________.<<【分析】先表示出2的平方根与立方根再根据有理数的大小比较可得答案【详解】解:2的平方根为±2的立方根为∴<<故答案为:<<【点睛】本题主要考查立方根解题的关键是掌握平方根算术平方根与立方根的定义解析:【分析】先表示出2的平方根与立方根,再根据有理数的大小比较可得答案.【详解】解:2的平方根为,2 ∴,故答案为:.【点睛】本题主要考查立方根,解题的关键是掌握平方根、算术平方根与立方根的定义.14. ________0.5.(填“>”“<”或“=”)<【分析】将05变形为将两数作差后借助<2即可得出﹣05<0进而即可得出<05【详解】解:∵05=∴﹣05=∵()2=322=43<4∴<2∴<0∴﹣05<0即<05故答案为:<【点睛】本题考查了实解析:<【分析】将0.5变形为12<2﹣0.5<0,进而即可得出<0.5. 【详解】解:∵0.5=12,∴12﹣0.5 ∵2=3,22=4,3<4, ∴2,∴22<0,∴﹣0.5<0,<0.5. 故答案为:<.【点睛】﹣0.5<0是解题的关键.15.若则2|1|(3)0a c --=,()c a b +=______.-1【分析】先根据绝对值算术平方根偶次方的非负性求出abc 的值再代入即可得【详解】解:∵∴a-1=0b+2=0c-3=0∴a=1b=-2c=3∴【点睛】本题考查了绝对值算术平方根偶次方的非负性的应用解析:-1【分析】先根据绝对值、算术平方根、偶次方的非负性求出a 、b 、c 的值,再代入即可得.【详解】解:∵2|1|(3)0a c --=,∴a-1=0,b+2=0,c-3=0,∴a=1,b=-2,c=3,∴()3()12=1c a b +=--. 【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用等知识点,熟练掌握绝对值、算术平方根、偶次方的非负性是解题关键.16.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.【分析】分别根据平方根立方根的定义可以求出甲数乙数进而即可求得题目结果【详解】甲数是的平方根甲数等于;乙数是的立方根乙数等于∵甲乙两个数的积是故答案:【点睛】此题主要考查了立方根平方根的定义解题的关 解析:2±.【分析】分别根据平方根、立方根的定义可以求出甲数、乙数,进而即可求得题目结果.【详解】 甲数是719的平方根 ∴甲数等于43±; 乙数是338的立方根, ∴乙数等于32. ∵43=232⨯ ∴甲、乙两个数的积是2±.故答案:2±.【点睛】此题主要考查了立方根、平方根的定义,解题的关键是根据平方根和立方根的定义求出甲数和乙数.17.已知5的整数部分为a ,5b ,则2ab b +=_________.【分析】求出的大小推出7<<8求出a 同理求出求出b 代入求出即可【详解】解:∵∴∴∴∴故答案为:【点睛】此题考查了无理数的大小的应用关键是确定和的范围解析:37-【分析】的大小,推出7<5<8,求出a ,同理求出253<-<,求出b ,代入求出即可.【详解】解:∵479<<, ∴23<<,32-<<- ∴758<+<,253<-<,∴7a =,523b =--=-,∴()(237337ab b b a b +=+=+=-.故答案为:37-【点睛】此题考查了无理数的大小的应用,关键是确定5和5-18.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数.(1)8888;(2)1134【分析】(1)根据进步数的定义分别求出四位正整数中的最大进步数与最小进步数即可得解;(2)根据进步数的定义可以推得所求数为1114112411341144中的某一个再根解析:(1)8888;(2)1134 .【分析】(1)根据进步数的定义分别求出四位正整数中的最大“进步数”与最小“进步数”即可得解; (2)根据进步数的定义可以推得所求数为1114、1124、1134、1144中的某一个,再根据这个四位正整数能被7整除逐一对4个数进行验证可以得解 .【详解】解:(1)由进步数的定义可知四位正整数中最大的“进步数”应该是9999,又最高位不能为0,所以四位正整数中的千位最小为0,所以四位正整数中最小的“进步数”应该是1111,∴9999-1111=8888,∴四位正整数中的最大的“进步数”与最小的“进步数”的差为8888;(2)由已知可得所求数的千位为1,十位为1-4中的某个数字,∴所求数为1114、1124、1134、1144中的某一个,∵这个四位正整数能被7整除,∴由1114=159×7+1,1124=160×7+4,1134=162×7,1144=163×7+3可知所求数为1134 .【点睛】本题考查新定义下的实数规律探索,由材料归纳出新定义并应用于具体问题求解是解题关键.19.下列实数0, 23,π,0.1010010001其中无理数共有___个.2【分析】根据无理数的定义解答即可【详解】解:实数0π010********中无理数有实数π共2个故答案为:2【点睛】本题考查了无理数的定义其中初中范围内学习的无理数有:π2π等;开方开不尽的数;以解析:2【分析】根据无理数的定义解答即可.【详解】解:实数0,23,π,0.1010010001π共2个, 故答案为:2.【点睛】 本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.20.比较大小,填“>”或“<”号:12<【分析】根据-1>1即可进行比较【详解】∵-1>1∴>即<故答案为:<【点睛】此题主要考查了实数大小比较解析:<【分析】>1,即可进行比较.【详解】 ∵>1,∴12>12,即12<12.故答案为:<.【点睛】此题主要考查了实数大小比较.三、解答题21.“比差法”是数学中常用的比较两个数大小的方法,即0,0,0,a b a b a b a b a b a b->>⎧⎪-==⎨⎪-<<⎩则则则2与2的大小;224-=,1619<<,则45<<,2240-=>,22>.请根据上述方法解答以下问题:(1_______3;(2)比较23-的大小,并说明理由.解析:(1)>;(2)3-<2-.【分析】(1,可得:3<4,从而可得答案;(245,从而可得:0<5-0<()23-,从而可得答案.【详解】解:(1)327<,3∴<4,故答案为:>.(2)16<4∴5,∴<5∴<3+2,∴<()23-,∴3-<2-.【点睛】本题考查的是实数的大小比较,掌握实数的大小比较的方法是解题的关键.22.计算:(1)(1)|2|3-⨯-+ (2)2111(3)2⎛⎫-+--- ⎪⎝⎭ 解析:(1)1;(2)1112.【分析】(1)先计算绝对值,再计算乘法,最后计算加法; (2)先同时计算乘方、减法、化简算术平方根,再计算乘法,最后计算加减法.【详解】(1)(1)|2|3-⨯-+=(1)23-⨯+=-2+3=1;(2)2111(3)2⎛⎫-+--- ⎪⎝⎭=11(3)42-+--⨯ =1122-+ =1112. 【点睛】此题考查有理数的混合运算,掌握绝对值的化简,乘方法则,求数的算术平方根,有理数的加减法计算法则,乘除法计算法则是解题的关键.23.求下列各式中的x 的值(1)21(1)82x +=;(2)3(21)270x -+= 解析:(1)3x =或5x =-;(2)1x =-.【分析】(1)适当变形后,利用平方根的定义即可解方程;(2)适当变形后,利用立方根的定义即可解方程.【详解】解:(1)21(1)82x += 两边乘以2得,2(1)16x +=,开平方得,14x +=±,即14x +=或14x +=-,∴3x =或5x =-;(2)3(21)270x -+=移项得,3(21)27x -=-,开立方得,213x -=-,解得,1x =-.【点睛】本题考查的是利用平方根,立方根的含义解方程,掌握平方根与立方根的定义和等式的性质是解题的关键.24.已知2x +1的算术平方根是0=4,z 是﹣27的立方根,求2x +y +z 的平方根.解析:【分析】先根据算术平方根的定义求得2x 的值,再根据算术平方根的定义求出y ,根据立方根的定义求z ,然后代入要求的式子进行计算,最后根据平方根的定义即可得出答案.【详解】解:∵2x +1的算术平方根是0,∴2x +1=0,∴2x =﹣1,∵=4,∴y =16,∵z 是﹣27的立方根,∴z =﹣3,∴2x +y +z =﹣1+16﹣3=12,∴2x +y +z 的平方根是=【点睛】本题考查了平方根、算术平方根、立方根,解决本题的关键是熟记平方根、算术平方根、立方根的定义.25.求出x 的值:()23227x += 解析:x =1或x =﹣5【分析】依据平方根的性质可得到x +2的值,然后解关于x 的一元一次方程即可.【详解】解:∵3(x +2)2=27,∴(x +2)2=9,∴x +2=±3,解得:x =1或x =﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.26.计算:3011(2)(200422-+--解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(200422-+-- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.27.计算:(12(2)22(2)8x -=解析:(1)1;(2)124,0x x ==【分析】(1)实数的混合运算,利用算术平方根和立方根的概念逐个进行化简计算; (2)直接用平方根的概念求解.【详解】解:(12=4(2)23----=4+223--=1(2)22(2)8x -=2(2)4x -=22x -=±22x =±∴124,0x x ==.【点睛】本题考查实数的混合运算及利用平方根解方程,掌握相关概念和性质正确计算是解题关键.28.设2x 、y ,试求x 、y 的值与1x -的立方根.解析:4x =,2y =,1x -【分析】根据无理数的估算、立方根的定义即可得.【详解】因为469<<,所以23<<,所以22223+<++,即425<+,所以24,小数部分是242+=,即4x =,2y =,== 【点睛】本题考查了无理数的估算、立方根,熟练掌握无理数的估算方法是解题关键.。

人教版七年级数学下册第六章《实数》同步练习(含答案)

人教版七年级数学下册第六章《实数》同步练习(含答案)

第六章 实数 6.1 平方根第1课时 算术平方根基础题知识点1 算术平方根一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a的算术平方根.a 读作“根号a ”,a 叫做被开方数.规定:0的算术平方根是0.1.(2017·桂林)4的算术平方根是( B ) A .4B .2C .-2D .±22.(2018·南京)94的值等于( A )A.32B .-32C .±32D.81163.0.49的相反数是( B )A .0.7B .-0.7C .±0.7D .04.下列说法正确的是( A )A .因为52=25,所以5是25的算术平方根B .因为(-5)2=25,所以-5是25的算术平方根C .因为(±5)2=25,所以5和-5都是25的算术平方根D .以上说法都不对5.求下列各数的算术平方根:(1)121;(2)1;(3)964;(4)0.01.解:(1)因为112=121,所以121的算术平方根是11,即121=11.(2)因为12=1,所以1的算术平方根是1,即1=1.(3)因为(38)2=964,所以964的算术平方根是38,即964=38.(4)因为(0.1)2=0.01,所以0.01的算术平方根是0.1,即0.01=0.1. 6.求下列各式的值:(1)81;(2)144289;(3) 1 000 000.解:(1)因为92=81,所以81=9.(2)因为(1217)2=144289,所以144289=1217.(3)因为1 0002=1 000 000,所以 1 000 000=1 000.知识点2 估计算术平方根一般采用“夹逼法”确定其值所在的范围.具体地说,先找出与被开方数相邻的两个能开得尽方的整数,分别求其算术平方根,即可确定所要求的数的算术平方根在哪两个整数之间.7.(2017·柳州期末)估算65的值介于( D )A.5到6之间B.6到7之间C.7到8之间D.8到9之间8.一个正方形的面积为50 cm2,则该正方形的边长约为( C )A.5 cm B.6 cm C.7 cm D.8 cm9用“>”或“<”填空).知识点3 用计算器求一个正数的算术平方根10.我们可以利用计算器求一个正数a的算术平方根,其操作方法是顺序进行按键输入:a=.小明按键输入16=显示的结果为4,则他按键输入1600=后显示的结果为40.11.用计算器求下列各式的值(结果精确到0.001):(1)800;(2)0.58;(3) 2 401.解:(1)28.284.(2)0.762.(3)49.000.易错点对算术平方根的意义理解不清12.(-6)2的算术平方根是( A )A.6 B.±6 C.-6 D. 6 13.(2018·安顺)4的算术平方根为( B )A.± 2 B. 2 C.±2 D.2中档题14.下列各数,没有算术平方根的是( B )A.2 B.-4 C.(-1)2D.0.1 15.若一个数的算术平方根等于它本身,则这个数是( D )A.1 B.-1 C.0 D.0或1 16.(2017·广州期中)已知一个自然数的算术平方根是a,则该自然数的下一个自然数的算术平方根是( D )A.a+1 B.a+1 C.a2+1 D.a2+1 17.(2017·潍坊)用计算器依次按键如下,显示的结果在数轴上对应点的位置介于________之间( A )A.B与C B.C与D C.E与F D.A与B 18.(2017·广州四校联考期中)已知a,b为两个连续整数,且a<15<b,则a+b的值为7.19.(教材P41探究变式)如图,将两个边长为3的正方形分别沿对角线剪开,将所得的4个三角形拼成一个大的正方形,则这个大正方形的边长是20.(教材P43探究变式)观察:已知 5.217≈2.284,521.7≈22.84,填空:(1)0.052 17≈0.228__4,52 170≈228.4;(2)若x≈0.022 84,则x≈0.000__521__7.21.比较下列各组数的大小:(1)12与14;(2)-5与-7;(3)5与24;(4)24-12与32.解:(1)12<14.(2)-5>-7.(3)5>24.(4)24-12>32.综合题22.(教材P43例3变式)国际比赛的足球场长在100 m到110 m之间,宽在64 m到75 m之间,为了迎接某次奥运会,某地建设了一个长方形的足球场,其长是宽的1.5倍,面积是7 560 m2,请你判断这个足球场能用作国际比赛吗?并说明理由.解:这个足球场能用作国际比赛.理由:设足球场的宽为x m,则足球场的长为1.5x m,由题意,得1.5x2=7 560.∴x2=5 040.由算术平方根的意义可知x= 5 040.又∵702=4 900,712=5 041,∴70< 5 040<71.∴70<x<71.∴105<1.5x<106.5.∴100<1.5x<110.∴符合要求.∴这个足球场能用作国际比赛.23.(教材P48习题T11变式)(1)通过计算下列各式的值探究问题:①42=4;162=16;02=0;(19)2=19.探究:对于任意非负有理数a,a2=a.②(-3)2=3;(-5)2=5;(-1)2=1;(-2)2=2.探究:对于任意负有理数a,a2=-a.综上,对于任意有理数a,a2=|a|.(2)应用(1)所得的结论解决问题:有理数a,b在数轴上对应的点的位置如图所示,化简:a2-b2-(a-b)2+|a+b|.解:a2-b2-(a-b)2+|a+b|=|a|-|b|-|a-b|+|a+b|=-a-b+a-b-a-b=-a-3b.第2课时 平方根基础题知识点1 平方根(1)一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根.这就是说,如果x 2=a ,那么x 叫做a 的平方根,记作±(2)求一个数a 的平方根的运算,叫做开平方,平方与开平方互为逆运算.正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.1.(2018·贺州)4的平方根是( C ) A .2B .-2C .±2D .162.±8是64的( A ) A .平方根B .相反数C .绝对值D .算术平方根3.13是一个数的平方根,则这个数是( D ) A .1B .3C .±19D.19 4.下列说法中,不正确的是( D ) A .6是36的平方根B .-6是36的平方根C .36的平方根是±6D .36的平方根是65.下列说法正确的是( D ) A .任何非负数都有两个平方根B .一个正数的平方根仍然是正数C .只有正数才有平方根D .负数没有平方根6.计算:±425=±25,-425=-25,425=25.7.填表:8.求下列各数的平方根:(1)16;(2)2536;(3)0.008 1.解:(1)因为(±4)2=16,所以16的平方根是±4.(2)因为(±56)2=2536,所以2536的平方根是±56.(3)因为(±0.09)2=0.008 1,所以0.008 1的平方根是±0.09.知识点2 平方根与算术平方根的关系正数a的正的平方根就是这个数的算术平方根,记作 a. 9.(2017·广州期中)下列说法正确的是( A )A.-5是25的平方根B.25的平方根是-5C.-5是(-5)2的算术平方根D.±5是(-5)2的算术平方根10.下列各式中,正确的是( D )A.4=±2 B.±9=3 C.(-3)2=- 3D.(-3)2=311.求下列各数的平方根与算术平方根:(1)25;解:25的平方根是±5,算术平方根是5.(2)0;解:0的平方根是0,算术平方根是0.(3)110 000.解:110 000的平方根是±1100,算术平方根是1100.12.求下列各式的值:(1)225;(2)-3649;(3)±144121.解:(1)∵152=225,∴225=15.(2)∵(67)2=3649,∴-3649=-67.(3)∵(1211)2=144121,∴±144121=±1211.易错点忽视一个正数的平方根有两个13.若x+3是4的平方根,则x=-1或-5.中档题14.(2017·广州期中)对于2-3来说( C )A.有平方根B.只有算术平方根C.没有平方根D.不能确定15.(易错题)(2017·广州四校联考期中)16的平方根等于( D )A.2 B.-4 C.±4 D.±2 16.(易错题)若x2=16,则5-x的算术平方根是( D )A.±1 B.±4 C.1或9 D.1或3 17.(2017·玉林期末)已知325.6≈18.044,那么± 3.256≈±1.804__4.18.“平方根”节是数学爱好者的节日,这一天的月份和日期的数字正好是当年年份最后两位数字的算术平方根,例如2009年的3月3日,2016年的4月4日,请你再写出21世纪你喜欢的一个“平方根”节(题中所举例子除外)2025年5月5日.19.下列各数是否有平方根?若有,求出它的平方根;若没有,请说明理由.(1)(-3)2;(2)-42;(3)-(a2+1).解:(1)±3.(2)没有平方根,因为-42是负数.(3)没有平方根,因为-(a2+1)是负数.20.(教材P48习题T8变式)求下列各式中x的值:(1)4x2-1=0;解:4x2=1.x2=1 4 .x=±1 2 .(2)(2017·广州四校联考期中)(2x-1)2=25.解:2x-1=5或2x-1=-5.解得x=3或x=-2.21.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根.解:依题意,得2a-1=9且3a+b-1=16,∴a=5,b=2.∴a+2b=5+4=9.∴a+2b的平方根为±3,即±a+2b=±3.综合题22.(易错题)(1)一个非负数的平方根是2a-1和a-5,这个非负数是多少?(2)已知a-1和5-2a都是m的平方根,求a与m的值.解:(1)根据题意,得(2a-1)+(a-5)=0.解得a=2.∴这个非负数是(2a-1)2=(2×2-1)2=9.(2)根据题意,分以下两种情况:①当a-1与5-2a是同一个平方根时,a-1=5-2a.解得a=2.此时,m=12=1;②当a-1与5-2a是两个平方根时,a-1+5-2a=0.解得a=4.此时,m=(4-1)2=9.综上所述,当a=2时,m=1;当a=4时,m=9.6.2 立方根基础题知识点1 立方根(1)一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根,即如果x3=a,那么x叫做a的立方根,记作a是被开方数,3是根指数.3-a=-3a.(2)求一个数的立方根的运算,叫做开立方,开立方与立方互为逆运算.正数的立方根是正数;负数的立方根是负数;0的立方根是0.1.(2018·恩施)64的立方根为( C )A.8 B.-8 C.4 D.-42.(2018·济宁)3-1的值是( B )A.1 B.-1 C.3 D.-3 3.若一个数的立方根是-3,则这个数为( B )A.-33 B.-27 C.±33 D.±274.下列说法中,不正确的是( D )A.0.027的立方根是0.3 B.-8的立方根是-2 C.0的立方根是0 D.125的立方根是±5 5.下列计算正确的是( C )A.30.012 5=0.5 B.3-2764=34C.3338=112D.-3-8125=-256.-13是-127的立方根,-16164的立方根是-54.7.求下列各数的立方根:(1)0.216;解:∵0.63=0.216,∴0.216的立方根是0.6,即30.216=0.6.(2)0;解:∵03=0,∴0的立方根是0,即30=0.(3)-210 27;解:∵-21027=-6427,且(-43)3=-6427,∴-21027的立方根是-43,即3-21027=-43.(4)-5.解:-5的立方根是3-5.8.求下列各式的值:(1)30.001;解:30.001=0.1.(2)3-343125;解:3-343125=-75.(3)-31-1927.解:-31-1927=-23.知识点2 用计算器求立方根9.用计算器计算328.36的值约为( B )A.3.049 B.3.050 C.3.051D.3.05210.一个正方体的水晶砖,体积为100 cm3,它的棱长大约在( A ) A.4 cm~5 cm之间B.5 cm~6 cm之间C.6 cm~7 cm 之间D.7 cm~8 cm之间11.计算:325≈2.92(结果精确到0.01).易错点立方根与平方根相混淆12.立方根等于本身的数为0,1或-1.中档题13.(易错题)32的立方根是( A )A.33 B.39 C.2 D.314.下列说法正确的是( D )A.一个数的立方根有两个,它们互为相反数B.一个数的立方根比这个数的平方根小C.如果一个数有立方根,那么它一定有平方根 D.3a与3-a互为相反数15.若a2=(-5)2,b3=(-5)3,则a+b的值为( D )A.0 B.±10 C.0或10 D.0或-1016.已知2x+1的平方根是±5,则5x+4的立方根是4.17.(1)填表:(2)由上表你发现了什么规律?请用语言叙述这个规律:被开方数扩大到原来的1__000倍,则立方根扩大到原来的10倍;(3)根据你发现的规律填空:①已知33≈1.442,则33 000≈14.42,30.003≈0.144__2;②已知30.000 456≈0.076 97,则3456≈7.697.18.求下列各式的值:(1)-3-0.125;解:原式=0.5.(2)-3729+3512;解:原式=-9+8=-1.(3)30.027-31-124125+3-0.001.解:原式=0.3-31125+(-0.1)=0.3-15-0.1=0.19.比较下列各数的大小:(1)39与3;解:39> 3.(2)-342与-3.4.解:-342<-3.4.20.求下列各式中x的值:(1)8x3+125=0;解:8x3=-125.x3=-125 8.x=-5 2 .(2)(2017·广州期中)(2x-1)3=-8. 解:2x-1=-2.解得x=-1 2 .21.将一个体积为0.216 m3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.解:设每个小立方体铝块的棱长为x m,则8x3=0.216.∴x3=0.027.∴x=0.3.∴6×0.32=0.54(m2).答:每个小立方体铝块的表面积为0.54 m2.综合题22.请先观察下列等式:32+27=2327,33+326=33326,34+463=43463,…(1)请再举两个类似的例子;(2)经过观察,写出满足上述各式规则的一般公式.解:(1)35+5124=535124,36+6215=636215.(2)3n+nn3-1=n3nn3-1(n>1,且n为整数).6.3 实数基础题知识点1 实数的概念及其分类1.(2018·玉林)下列实数中,是无理数的是( B )A.1 B. 2 C.-3 D.1 32.下列说法中,正确的是( C )A.无理数包括正无理数、零和负无理数B.无限小数都是无理数C.正实数包括正有理数和正无理数D.实数可以分为正实数和负实数两类知识点2 实数与数轴上的点的关系实数和数轴上的点是一一对应的,反过来,数轴上的每一个点必定表示一个实数.3.若在数轴上画出表示下列各数的点,则与原点距离最近的点是( B ) A .-1B .-12C.32D .2知识点3 实数的相反数、绝对值、倒数实数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即 |a|=⎩⎪⎨⎪⎧a ,当a>0时;0,当a =0时;-a ,当a<0时.4.-2的相反数是( C ) A .-2 B.22 C.2D .-225.π是1π的( B )A .绝对值B .倒数C .相反数D .平方根6.(2017·广州期中)3-8的绝对值是2.7.写出下列各数的相反数与绝对值.知识点4 实数的运算实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.8.(2018·包头)计算-4-|-3|的结果是( B )A.-1 B.-5 C.1 D.59.计算364+(-16)的结果是( B )A.4 B.0 C.8 D.12 10.计算:(1)33+53;解:原式=(3+5) 3=8 3.(2)|1-2|+|3-2|.解:原式=2-1+3- 2=3-1.11.计算(结果保留小数点后两位):(1)π-2+3;解:原式≈3.142-1.414+1.732 ≈3.46.(2)|2-5|+0.9.解:原式≈2.236-1.414+0.9≈1.72.易错点对无理数的判断有误12.下列说法正确的是( D )A.33是分数 B.227是无理数 C. π-3.14是有理数D.3-83是有理数中档题13.下列各组数中,互为相反数的一组是( C )A.-|-2|与3-8 B.-4与-(-4)2C.-32与|3-2|D.-2与1 214.有一个数值转换器,原理如下:当输入的x为4时,输出的y是( C )A.4 B.2 C. 2 D.- 215.(2017·宁夏)实数a在数轴上的位置如图所示,则|a-3|16.点A在数轴上和原点相距3个单位长度,点B在数轴上和原点相距5个单位长度,则A,B两点之间的距离是17.把下列各数分别填入相应的集合中.-15,39,π,3.14,-327,0,-5.123 45…,0.25,-32.(1)有理数集合:{-15,3.14,-327,0,0.25,…};(2)无理数集合:{39,π,-5.123 45…,-32,…};(3)正实数集合:{39,π,3.14,0.25,…};(4)负实数集合:{-15,-327,-5.123 45…,-32,…}.18.求下列各式中的实数x.(1)|x|=4 5;解:x=±4 5 .(2)|x-2|= 5.解:x=2± 5.19.计算:(1)23+32-53-32;解:原式=(2-5)3+(3-3) 2=-3 3.(2)|3-π|+|4-π|.解:原式=π-3+4-π=1.20.已知实数a,b,c,d,e,f,且a,b互为倒数,c,d互为相反数,e的绝对值为2,f的算术平方根是8,求12ab+c+d5+e2+3f的值.解:由题意可知ab=1,c+d=0,e=±2,f=64,∴e2=(±2)2=2,3f=364=4.∴12ab+c+d5+e2+3f=12+0+2+4=612.综合题21.阅读下列材料:如果一个数的n(n是大于1的整数)次方等于a,这个数就叫做a的n次方根,即x n=a,则x叫做a的n次方根.如:24=16,(-2)4=16,则2,-2是16的4次方根,或者说16的4次方根是2和-2;再如(-2)5=-32,则-2叫做-32的5次方根,或者说-32的5次方根是-2.回答问题:(1)64的6次方根是±2,-243的5次方根是-3,0的10次方根是0;(2)归纳一个数的n次方根的情况.解:当n为偶数时,一个正数的n次方根有两个,它们互为相反数;当n 为奇数时,一个数的n次方根只有一个.负数没有偶次方根.0的n次方根是0.章末复习(二) 实数分点突破知识点1 平方根、算术平方根、立方根1.(2017·泰州)2的算术平方根是( B )A.± 2 B. 2 C.- 2 D.2 2.(2018·铜仁)9的平方根是( C )A.3 B.-3 C.3和-3 D.81 3.(2018·荆门)8的相反数的立方根是( C )A.2 B.12C.-2 D.-124.下列各式正确的是( A )A.±31=±1 B.4=±2 C.(-6)2=-6 D.3-27=3知识点2 实数的分类5.把下列各数分别填在相应的集合中:5,-6,38,0,π5,3.141 592 6,227,-16,-234.101 001 0001…(相邻两个1之间依次多1个0).知识点3 相反数、绝对值、倒数 6.9的倒数等于( D )A .3B .-3C .-13D.137.实数1-2知识点4 无理数的估算及实数的大小比较 8.(2018·贺州)在-1,1,2,2这四个数中,最小的数是( A ) A .-1B .1C.2D .29.(2018·南通)如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数2-5的点P 应落在( B )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上知识点5 实数的运算 10.求下列各式的值: (1)(2017·广州期末)38-9;解:原式=2-3=-1.(2)(2017·南宁期末)-32+|2-3|-(-2)2;解:原式=-9+3-2-2=-8- 2.(3)121+7×(2-17)-31 000.解:原式=11+27-1-10=27.易错题集训11.下列说法正确的是( D )A.-4没有立方根B.1的立方根是±1C.136的立方根是16D.-5的立方根是3-512.下列说法中,正确的有( B )①只有正数才有平方根;②a一定有立方根;③-a没意义;④3-a=-3a;⑤只有正数才有立方根.A.1个B.2个C.3个D.4个常考题型演练13.关于12的叙述,错误的是( A )A.12是有理数B.面积为12的正方形边长是12 C.12在3与4之间D.在数轴上可以找到表示12的点14.(2017·钦州期末)下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的有( A )A.0个B.1个C.2个D.3个15.(易错题)如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有( C )A.0个B.1个C.2个D.3个16.已知30.5≈0.793 7,35≈1.710 0,那么下列各式正确的是( B )A.3500≈17.100 B.3500≈7.937C.3500≈171.00 D.3500≈79.3717.写出3-9到23之间的所有整数:-2,-1,0,1,2,3,4.18.(2018·东莞)一个正数的平方根分别是x+1和x-5,则x=2.19.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是-4π.20.求下列各式中x的值:(1)x2-5=4 9;解:x2=49 9,x=±7 3 .(2)(x-1)3=125.解:x-1=5,x=6.21.已知某正数的两个平方根分别是a+3和2a-15,b的立方根是-2,求3a+b的算术平方根.解:∵该正数的两个平方根分别是a+3和2a-15,b的立方根是-2,∴a+3+2a-15=0,b=(-2)3=-8.∴a=4,b=-8.∴3a+b=4=2,即3a+b的算术平方根是2.22.魔方又叫魔术方块,也称鲁比克方块,是匈牙利布达佩斯建筑学院厄尔诺·鲁比克教授在1974年发明的.魔方与中国人发明的“华容道”、法国人发明的“独立钻石”一同被称为智力游戏界的三大不可思议.如图是一个4阶魔方,又称“魔方的复仇”,由四层完全相同的64个小立方体组成,体积为64 cm3.(1)求组成这个魔方的小立方体的棱长;(2)图中阴影部分是一个正方形,则该正方形的面积为10cm 2cm.解:组成这个魔方的小立方体的棱长为364÷64=1(cm).。

实数(6个知识点+7类热点题型讲练+习题巩固)(原卷版)七年级数学下册

实数(6个知识点+7类热点题型讲练+习题巩固)(原卷版)七年级数学下册

第03讲实数课程标准学习目标①无理数的概念及其常见的形式②实数的概念及其分类③实数与数轴④实数的性质⑤实数的大小比较⑥实数的运算1.掌握无理数的概念及其三种形式,能够准确的判断无理数。

2.掌握无理数的概念及其分类,能够准确的进行分类。

3.掌握实数与数轴的关系,能够熟练的应用。

4.掌握实数的相关性质,并能够熟练的应用。

5.掌握实数的大小比较方法,能够准确的判定实数的大小关系。

6.掌握实数的运算法则,并能够熟练的进行计算。

知识点01无理数的概念及其形式1.无理数的概念:无限不循环小数叫做无理数。

2.无理数的三种形式:①含有,且被开方数开方。

②π以及化简后含有π的数。

③具有特定结构的数。

如0.1010010001...【即学即练1】1.下列各数:,,0,,﹣3.14,,2.101101110…(每两个0之间依次多一个1),其中是无理数的个数是()A.3个B.4个C.5个D.6个知识点02实数的概念及其分类1.实数的概念:与统称为实数。

2.实数的分类:①按定义分类:②按性质分类:【即学即练1】2.把下列各数填入相应的横线内:0.,0,﹣9,﹣6.8,2﹣π,,,80%,,0.7373373337…(两个“7”之间依次多一个“3”),.无理数:{…};整数:{…};分数:{…};实数:{…}.知识点03实数与数轴1.实数与数轴的关系:实数与数轴上的点是关系。

数轴上每一个点都只能表示1个实数,每一个实数都只能找数轴上找一个点来表示它。

【即学即练1】3.在数轴上对应的点可能是()A.点M B.点N C.点O D.点P知识点04实数的相关概念及其性质1.相反数:只有的两个数互为相反数。

实数a 的相反数是。

若a 与b 互为相反数,则=+b a 。

2.绝对值:实数a 到原点的距离用来表示。

()()()⎪⎩⎪⎨⎧-==0000><a a a a a a ;①任意实数的绝对值都是一个,即|a |0;②互为相反数的两个数绝对值。

新人教版七年级下数学同步练习,补习、复习资料 第6章《实数》

新人教版七年级下数学同步练习,补习、复习资料   第6章《实数》

第六章实数6.1 平方根第1课时算术平方根课前预习:要点感知1一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的__________,记作“__________”,读作“__________”,a叫做__________.预习练习1-12的算术平方根是( )A. C.±4 D.4要点感知2 规定:0的算术平方根为__________.预习练习2-1 若一个数的算术平方根等于它本身,则这个数是( )A.1B.-1C.0D.0或1要点感知3被开方数越大,对应的算术平方根也__________.预习练习3-1当堂练习:知识点1 算术平方根1.若x是64的算术平方根,则x=( )A.8B.-8C.64D.-642. 0.49的算术平方根的相反数是( )A.0.7B.-0.7C.±0.7D.03.(-2)2的算术平方根是( )A.2B.±2C.-2D.4.下列各数没有算术平方根的是( )A.0B.-1C.10D.1025.求下列各数的算术平方根:(1)144;(2)1;(3)1625;(4)0.008 1;(5)0.6.求下列各数的算术平方根.(1)0.062 5;(2)(-3)2;(3)225121;(4)108.知识点2 估算算术平方根7.设n为正整数,且n n+1,则n的值为( )A.5B.6C.7D.88.的值在( )A.2到3之间B.3到4之间C.4到5之间D.5到6之间9.某公司要设计一块面积为10平方米的正方形广告牌,公司在设计广告时,必须知道这个正方形的边长.这个正方形的边长是多少?估计边长的值(结果精确到十分位).知识点3 用科学计算器求一个正数的算术平方根10.用计算器比较与3.4的大小正确的是( )B.2C.2D.不能确定11.我们可以利用计算器求一个正数a的平方根,其操作方法的顺序进行按键输入:.小明按键输入显示的结果为4,则他按键输入后显示的结果为__________.12.用计算器求下列各式的值(精确到0.001):课后作业:13.( )A.100B.10 D.±1014.( )A.4B.5C.6D.715.( )A.±4B.4C.±2D.216.下列说法中:①一个数的算术平方根一定是正数;②100的算术平方根是10,=10;③(-6)2的算术平方根是6;④a2的算术平方根是a.正确的有( )A.1个B.2个C.3个D.4个17.已知a、b为两个连续的整数,且<b,则a+b=__________.18.用计算器求值,填空:__________(精确到十分位);__________(精确到个位);__________(精确到0.1);__________(精确到0.001).19.=22.84,填空:(1;(2则x=__________.20.计算下列各式:.21.比较下列各组数的大小:(3)5(4)12与1.5.22.求下列各式中的正数x的值:(1)x2=(-3)2;(2)x2+122=132.23.中国的跳水队被冠以“梦之队”的称号,他们辉煌的战绩鼓舞了几代中国人.跳水运动员要在空中下落的短暂过程中完成一系列高难度的动作.如果不考虑空气阻力等其他因素影响,人体下落到水面所需要的时间t与下落的高度h之间应遵循下面的公式:h=12gt2(其中h的单位是米,t的单位是秒,g=9.8 m/s2).在一次3米板(跳板离地面的高度是3米)的训练中,运动员在跳板上跳起至高出跳板 1.2米处下落,那么运动员在下落过程中最多有多长时间完成动作?(精确到0.01秒)挑战自我24.国际比赛的足球场长在100 m到110 m之间,宽在64 m到75 m之间,为了迎接某次奥运会,某地建设了一个长方形的足球场,其长是宽的1.5倍,面积是7 560 m2,请你判断这个足球场能用作国际比赛吗?并说明理由.参考答案课前预习要点感知1算术平方根根号a 被开方数预习练习1-1 B要点感知2 0预习练习2-1 D要点感知3越大预习练习3-1<>当堂训练1.A2.B3.A4.B5.(1)12;(2)1;(3)4 5 ;(4)0.09;(5)0.6.(1)0.25;(2)3;(3)15 11;(4)104.7.D8.B9.设这个正方形的边长为x米,于是x2=10.∵x>0,∴∵32=9,42=16,∴又∵3.12=9.61,3.22=10.24,∴又∵3.152=9.922 5,3.2.答: 3.2米.10.B 11.4012.(1)28.284;(2)0.762;(3)49.000.课后作业13.B 14.B 15.D 16.A 17.1118.(1)94.6(2)111(3)-11.4(4)0.44919.(1)0.228 4228.4(2)0.000 521 720.(1)原式=43;(2)原式=0.9-0.2=0.7;(3)原式21.(3)5(4)12>1.5.22.(1)x=3;(2)x=5.23.设运动员在下落过程中最多有t秒完成动作,根据题意,得3+1.2=12×9.8t2,整理,得t2=2 4.29.8⨯≈0.857 1,所以t≈0.93.因此运动员在下落过程中最多有0.93秒完成动作.24.这个足球场能用作国际比赛.理由如下:设足球场的宽为x m,则足球场的长为1.5x m,由题意,得1.5x2=7 560.∴x2=5 040.∵x>0,∴又∵702=4 900,712=5 041,∴7071.∴70<x<71.∴105<1.5x<106.5.∴符合要求.∴这个足球场能用作国际比赛.第2课时平方根课前预习:要点感知1 一般地,如果一个数的平方等于a,那么这个数叫做a的__________或__________,这就是说,如果x2=a,那么x叫做a的__________.预习练习1-1 4的平方根是__________.1-236的平方根是__________,-4是__________的一个平方根.要点感知2 求一个数a的平方根的运算,叫做开平方,平方与开平方互为逆运算.正数有__________个平方根,它们__________;0的平方根是__________;负数__________.预习练习2-1 下列各数:0,(-2)2,-22,-(-5)中,没有平方根的是__________.2-2下列各数是否有平方根?若有,求出它的平方根;若没有,请说明为什么?(1)(-3)2;(2)-42;(3)-(a2+1).要点感知3正数a a的负的平方根可以用表示__________,正数a的平方根可以用表示__________,读作“__________”.预习练习3-1 ,当堂练习:知识点1 平方根1. 16的平方根是( )A.4B.±4C.8D.±82.下面说法中不正确的是( )A.6是36的平方根B.-6是36的平方根C.36的平方根是±6D.36的平方根是63.下列说法正确的是( )A.任何非负数都有两个平方根B.一个正数的平方根仍然是正数C.只有正数才有平方根D.负数没有平方根4.填表:5.求下列各数的平方根:(1)100;(2)0.008 1;(3)25 36.知识点2 平方根与算术平方根的关系6.下列说法不正确的是( )A.21B.49的平方根是23C.0.01的算术平方根是0.1D.-5是25的一个平方根7.若正方形的边长为a,面积为S,则( )A.S的平方根是aB.a是S的算术平方根C.a=8.求下列各数的平方根与算术平方根:(1)(-5)2;(2)0;(3)-2;9.已知25x2-144=0,且x是正数,求.课后作业:10.下列说法正确的是( )A.因为3的平方等于9,所以9的平方根为3B.因为-3的平方等于9,所以9的平方根为-3C.因为(-3)2中有-3,所以(-3)2没有平方根D.因为-9是负数,所以-9没有平方根11.|-9|的平方根是( )A.81B.±3C.3D.-312.=__________,13.若8是m的一个平方根,则m的另一个平方根为__________.14.求下列各式的值:;(3)15.求下列各式中的x:(1)9x2-25=0;(2)4(2x-1)2=36.16.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和其生长年限,近似地满足如下的关系式:d=7≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?17.在物理学中,电流做功的功率P=I2R,试用含P,R的式子表示I,并求当P=25、R=4时,I的值.18.(1)一个非负数的平方根是2a-1和a-5,这个非负数是多少?(2)已知a-1和5-2a是m的平方根,求a与m的值.挑战自我19.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根.参考答案课前预习要点感知1 平方根 二次方根 平方根预习练习1-1 ±21-2 ±6 16要点感知2 两 互为相反数 0 没有平方根 预习练习2-1 -222-2 (1)±3;(2)没有平方根,因为-42是负数;(3)没有平方根,因为-(a 2+1)是负数.要点感知3 正、负根号a预习练习3-1 ±25 -25 25 当堂训练1.B2.D3.D4.±37 ±9 ±15 4 4 949 5.(1)±10;(2)±0.09;(3)±56. 6.B 7.B8.平方根分别是(1)±5;(2)0;(3)没有平方根;(4)±2.算术平方根分别是(1)5;(2)0;(3)没有算术平方根;(4)2.9.由25x 2-144=0,得x=±125. ∵x 是正数,∴x=125.∴×5=10. 课后作业10.D 11.B 12.6 -7 ±5 13.-814.(1)∵152=225,=15.(2)∵(67)2=3649,∴67.(3)∵(1211)2=144121,±1211.15.(1)9x 2=25,x 2=259,x=±53; (2)(2x-1)2=9,2x-1=±3,2x-1=3或2x-1=-3,x=2或x=-1.16.(1)当t=16时,d=7×2=14(cm).答:冰川消失16年后苔藓的直径为14 cm.(2)当d=35,即t-12=25,解得t=37(年).答:冰川约是在37年前消失的.17.由P=I 2R 得I 2=PR ,所以.当P=25、R=4时,52. 18.(1)根据题意,得(2a-1)+(a-5)=0.解得a=2.所以这个非负数是(2a-1)2=(2×2-1)2=9. (2)根据题意,分以下两种情况:①当a-1与5-2a 是同一个平方根时,a-1=5-2a.解得a=2.此时,m=12=1; ②当a-1与5-2a 是两个平方根时,a-1+5-2a=0.解得a=4.此时,m=(4-1)2=9. 综上,当a=2时,m=1;当a=4时,m=9. 19.依题意得:2a-1=9且3a+b-1=16,∴a=5,b=2. ∴a+2b=5+4=9.∴a+2b 的平方根为±3.=±3.《平方根》同步测试(第1课时)一、选择题1. 9的算术平方根是( ). A.3B.±3 C .81 D .±81考查目的:本题考查算术平方根的概念. 答案:A .解析:根据算术平方根的概念,因为,所以9算术平方根为3.故答案选A .2.已知,则=( ). A..5B.±0.5 C .0.0625 D .±0.0625考查目的:考查算术平方根的概念和符号表示.答案:C.解析:符号表示的算术平方根.因为算术平方根等于0.25的数是0.0625,即,所以.3.(2010?贺州)的算术平方根是( ).A.± 2 B. 2 C.±4 D.4考查目的:本题考查算术平方根的概念和符号表示.答案:B.解析:表示16的算术平方根.因此本题应先求“=?”,再求“?”的算术平方根.由于,4的算术平方根是2,故答案选B.二、填空题4.一个面积为0.64m的正方形桌面,它的边长是.考查目的:本题考查运用算术平方根的概念解决问题.答案:0.8m.解析:因为正方形的面积为边长的平方,所以边长是面积的算术平方根,故边长为.5.算术平方根等于它的相反数的数是______.考查目的:本题考查算术平方根的性质.答案:0.解析:因为算术平方根一定是非负数(0和正数),所以算术平方根等于它的相反数的数是一定是非正数(0和负数).既是非负数,又是非正数的数只有0,故算术平方根等于它相反数的数是0.6.请你观察思考下列计算过程:因为,所以;同样:因为,所以;…,由此猜想=__________.考查目的:本题考查运用算术平方根概念探究规律.答案:111111111.解析:观察过程:“因为,所以;同样:因为,所以;…”可发现:算术平方根全由1组成,1的个数与被开方数的中间的数字相同.由此猜想=111111111.三、解答题7.“欲穷千里目,更上一层楼,”说的是登得高看得远,如图,若观测点的高度为,观测者视线能达到的最远距离为,则=,其中是地球半径(通常取6400km).小丽站在海边一块岩石上,眼睛离海平面的高度为20m,她观测到远处一艘船刚露出海平面,求此时的值.考查目的:本题考查算术平方根的应用.答案:16km.解析:根据题意,将,代入=,得=16(km).8.(1)计算:①,②,③,④;(2)观察你计算的结果,用你发现的规律直接写出下面式子的值:.考查目的:本题考查算术平方根的求法以及分析结果发现规律的能力.答案:(1)①1,②3,③6,④10;(2)406.解析:(1)根据算术平方根的求法,可得:①,②,③,④;(2)分析①②③④的结果,可发现:①=1,②=3=1+2,③=6=1+2+3,④=10=1+2+3+4.所以=1+2+3+4+…+28=406.《平方根》同步测试(第2课时)一、选择题1.估计的值在( ).A.2与3之间 B.3与4之间 C.4与5之间 D.5与6之间考查目的:本题考查用有理数估计一个带算术平方根符号的(无理)数的大致范围.答案:B.解析:解题的关键是找出10在哪两个连续整数的平方之间.因为,,所以3<<4,故在3与4之间.答案选B.2.是的( ).A.10倍B.100倍C.1000倍 D.10000倍考查目的:本题考查被开方数的变化与算术平方根的变化之间的规律的应用.答案:A.解析:根据被开方数的变化与算术平方根的变化之间的规律“被开方数的小数点向左或向右移动位,它的算术平方根的小数点就相应地向左或向右移动位(为正整数)”解答.因为110是1.1的小数点向右移动2位,所以的小数点相应的向右移动1位,就得到的值,即是的10倍.3.下列关于的说法错误的是( ).A.1<<2 B.1.7<<1.8 C. D.是一个无限不循环小数考查目的:本题考查无限不循环小数的概念以及用有理数估计无理数的大小.答案:C.解析:因为,,所以1<<2,即选项A正确;因为,,所以1.7<<1.8,即选项B正确;因为是一个无限不循环小数,而1.732是一个有限小数,所以选项C错误,选项D正确.故答案选C.二、填空题4.若将边长为1的五个正方形拼成图1的形状,然后将图1按斜线剪开,再将剪开后的图形拼成图2所示的正方形,那么图1中剪开的斜线的长是_______.考查目的:本题考查运用算术平方根解决问题.答案:.解析:由于每个小正方形面积为1,所以图1的面积为5.剪开后拼成图2的正方形的面积也是5,边长是.因为图1中剪开的斜线的长就是图2正方形的边长,所以图1中剪开的斜线的长是.5.已知,则约是_______.考查目的:本题考查被开方数的变化与算术平方根的变化之间的规律,以及算术平方根的符号表示.答案:0.0735.解析:由于被开方数0.005403是由54.03小数点向左移动四位得到的,则0.005403的算术平方根就是54.03的算术平方根的小数点向左移动两位得到,即.故答案选B.6.已知,为两个连续整数,且<<,则.考查目的:本题考查用有理数估计一个(带算术平方根符号的)无理数的大致范围.答案:5.解析:因为,,所以2<<3,对比已知条件,可得,,所以.三、解答题7.根据下表回答下列问题:784(1的算术平方根是;(2)≈;(3)在哪两个数之间?考查目的:本题考查算术平方根的概念,以及用文字语言、符号语言表示算术平方根的能力和估算能力.答案:(1)28.2;(2)28.7;(3)28.4与28.5之间.解析:可根据算术平方根的定义解答,但需要一定的估算能力.(1)从表中可直接看出795.24的算术平方根是28.2;(2)表示823.7的算术平方根,表中平方数最接近823.7数是823.69,而,所以≈28.7;(3)因为 806.56<810<812.25,所以28.4<<28.5.8.某农场有一块长30米,宽20米的场地,要在这块场地上建一个正方形鱼池,使它的面积为场地面积的一半,问能否建成?若能建成,请你估计鱼池的边长为多少?(精确到0.1米)考查目的:本题考查估计算术平方根的大小的实际应用.答案:能,约17.3米.解析:设鱼池的边长为米,则,,<20,故能建成.因为,,所以17.3<<17.4,且与17.3更接近,所以可以估计鱼池的边长为17.3米.《平方根》同步测试(第3课时)一、选择题1.“16的平方根是±4”用数学式子表示正确的是( ).A.=±4 B.±=±4 C.=4 D.- =-4考查目的:本题考查平方根的符号表示.答案:B.解析:“16的平方根”用符号表示是“”,因此“16的平方根是±4”用符号表示是“”.故答案选B.2.下列命题中,正确的个数有( ).①=±3;②2的平方根是4;③的平方根是±1.A.0个B.1个C.2个 D.3个考查目的:本题考查平方根的概念,以及平方根与算术平方根的区别.答案:B.解析:因为,所以①错误;因为2的平方根是,所以②错误;因为=1,1的平方根是±1,所以③正确,故答案选B.3.如果一个正数的平方根为和,则这个正数为( ).A.25 B.36 C.49D.64考查目的:本题考查平方根的定义以及相反数的概念.答案:C.解析:由平方根的定义可知,和是一对相反数,即,解这个方程得.当时,,,所以这个正数为.故答案选C.二、填空题4.已知=,则20.14的平方根为__________(用含的代数式表示).考查目的:本题考查平方根与算术平方根之间的区别,以及被开方数的变化与算术平方根的变化之间的规律.答案:.解析:因为20.14是2014的小数点向右移动2位得到的,所以应由小数点向右移动1位得到.根据可得,所以20.13的平方根为.5.如果的平方根等于±2,那么=______.考查目的:本题考查平方根与算术平方根的概念以及它们之间的区别.答案:16.解析:根据平方根的定义,可知,4的平方根等于±2,所以;再根据算术平方根的定义,可知,算术平方根等于4的数是16.故答案应填16.6.若和是数的平方根,则=______.考查目的:本题考查平方根概念的运用.答案:256或576.解析:本题没有说明和是否为数的不同的平方根,所以有两种情况.当+=0时,解得,所以,,所以;当=时,解得,则,故答案为256或576.(注意本题与“数的平方根是和”的区别)三、解答题7.如图所示是计算机程序计算,(1)若开始输入,则最后输出= ;(2)若输出的值为22,则输入的值= .考查目的:本题考查平方运算与开平方运算是互逆运算.答案:(1)-2;(2)±3.解析:(1);(2)根据题意,可得,整理得,.8.已知正数的两个平方根分别是、.请计算代数式的值.考查目的:本题考查平方根的概念和性质.答案:0.解析:由平方根的性质:正数有两个平方根,它们互为相反数.可得;由平方根的概念和性质,可得,所以.6.2 立方根课前预习:要点感知1一般地,如果一个数的立方等于a,那么这个数叫做a的__________,即如果x3=a,那么__________叫做__________的立方根.预习练习1-1 (2014·黄冈)-8的立方根是( )A.-2B.±2C.2D.-1 21-2 -64的立方根是__________,-13是__________的立方根.要点感知2 求一个数的立方根的运算,叫做开立方,开立方与立方互为逆运算.正数的立方根是__________;负数的立方根是__________;0的立方根是__________.预习练习2-1下列说法正确的是( )A.如果一个数的立方根是这个数本身,那么这个数一定是0B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是0要点感知3一个数a,读作“__________”,其中__________是被开方数,__________是根指数.预习练习3-1当堂练习:知识点1 立方根1.的立方根是( )A.-1B.0C.1D.±12.若一个数的立方根是-3,则该数为( )B.-27C.D.±273.下列判断:①一个数的立方根有两个,它们互为相反数;②若x3=(-2)3,则x=-2;③15的.其中正确的有( )A.1个B.2个C.3个D.4个4.立方根等于本身的数为__________.__________.6.若x-1是125的立方根,则x-7的立方根是__________.7.求下列各数的立方根:(1)0.216;(2)0;(3)-21027;(4)-5.8.求下列各式的值:;知识点2 用计算器求立方根9.的值约为( )A.3.049B.3.050C.3.051D.3.05210.估计96的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间11.≈__________(精确到百分位).12.已知=1.038,=2.237,=4.820,则=__________,=__________.13.(1)(2)由上表你发现了什么规律?请用语言叙述这个规律:______________________________.(3)根据你发现的规律填空:;=0.076 96,=__________.课后作业:14.下列说法正确的是( )A.一个数的立方根有两个,它们互为相反数B.一个数的立方根比这个数平方根小C.如果一个数有立方根,那么它一定有平方根15.( )A.7B.-7C.±7D.无意义16.正方体A的体积是正方体B的体积的27倍,那么正方体A的棱长是正方体B的棱长的( )A.2倍B.3倍C.4倍D.5倍17.-27__________.18.计算:=__________=__________.19.已知2x+1的平方根是±5,则5x+4的立方根是__________.20.求下列各式的值:(1);(2)-;(3)-+;(4)-+21.比较下列各数的大小:-3.4.22.求下列各式中的x:(1)8x3+125=0;(2)(x+3)3+27=0.23.(b-27)2.24.很久很久以前,在古希腊的某个地方发生大旱,地里的庄稼都干死了,人们找不到水喝,于是大家一起到神庙里去向神祈求.神说:“我之所以不给你们降水,是因为你们给我做的正方体祭坛太小,如果你们做一个比它大一倍的祭坛放在我面前,我就会给你们降雨.”大家觉得很好办,于是很快做好了一个新祭坛送到神那里,新祭坛的棱长是原来的2倍.可是神愈发恼怒,他说:“你们竟敢愚弄我.这个祭坛的体积不是原来的2倍,我要进一步惩罚你们!”如图所示,不妨设原祭坛边长为a,想一想:(1)做出来的新祭坛是原来体积的多少倍?(2)要做一个体积是原来祭坛的2倍的新祭坛,它的棱长应该是原来的多少倍?挑战自我25.请先观察下列等式:…(1)请再举两个类似的例子;(2)经过观察,写出满足上述各式规则的一般公式.参考答案课前预习要点感知1立方根(或三次方根) x a预习练习1-1 A1-2-4 -1 27要点感知2 正数负数0预习练习2-1 D要点感知3 三次根号a a 3预习练习3-1 3当堂训练1.C2.B3.B4.0,1或-15.±26.-17.(1)∵0.63=0.216,∴0.216的立方根是0.6=0.6;(2)∵03=0,∴0的立方根是0;(3)∵-21027=-6427,且(-43)3=-6427,∴-21027的立方根是-4343;(4)-58.(1)0.1;(2)-75; (3)-23.9.B 10.C 11.2.92 12.10.38 -0.482 0 13.(1)0.01 0.1 1 10 100(2)被开方数扩大1 000倍,则立方根扩大10倍 (3)14.42 0.144 2 7.696 课后作业14.D 15.B 16.B 17.0或-6 18.-4 -3419.4 20.(1)-10; (2)4; (3)-1; (4)0.21.-3.4. 22.(1)8x 3=-125,x 3=-1258,x=-52;(2)(x+3)3=-27,x+3=-3,x=-6.23.由题意知a=-8,b=27,24.(1)8倍;.25.(n ≠1,且n 为整数).初二数学立方根练习一、填空题:1.1的立方根是________. 2.833-________.3.2是________的立方根. 4.________的立方根是1.0-. 5.立方根是65的数是________. 6.6427-是________的立方根.7.=-3)3(________. 8.3)3(-的立方根是________ 9.53-是________的立方根. 10.若a 与b 互为相反数,则它们的立方根的和是________.11.0的立方根是________. 12.36的平方根的绝对值是________. 14.327=________. 15.立方根等于它本身的数是________. 16.109)1(-的立方根是_________. 17.008.0-的立方根是________. 18.103-是________的立方根. 19.当x 为________时,333-+x x 有意义;当x 为________时,385+-x x 有意义. 20.6)2(-的平方根是________,立方根是________. 二、判断题:1.81-的立方根是21±;( ) 2.5-没有立方根;( )3.2161的立方根是61;( )4.92-是7298-的立方根;( )5.负数没有平方根和立方根;( ) 6.a 的三次方根是负数,a 必是负数;( ) 7.立方根等于它本身的数只能是0或1;( )8.如果x 的立方根是2-,那么8-=x ;( )9.5-的立方根是35-;( ) 10.8的立方根是2±;( )11.2161-的立方根是没有意义;( ) 12.271-的立方根是31-;( )13.0的立方根是0;( ) 14.53是12527±的立方根;( ) 15.33-是3-立方根;( )16.a 为任意数,式子a ,2a ,3a 都是非负数.( ) 三、选择题:1.36的平方根是( ). A .6± B .6 C .6- D .不存在 2.一个数的平方根与立方根相等,则这个数是( ).A .1B .1±C .0D .1- 3.如果b -是a 的立方根,那么下列结论正确的是( ). A .b -也是a -的立方根 B .b 也是a 的立方根 C .b 也是a -的立方根 D .b ±都是a 的立方根 4.下列语句中,正确的是( ).A .一个实数的平方根有两个,它们互为相反数B .一个实数的立方根不是正数就是负数C .负数没有立方根D .如果一个数的立方根是这个数本身,那么这个数一定是1-或0或1 5.8的立方根是( ).A .2B .2-C .4D .4-6.设n 是大于1的整数,则等式211=--nn中的n 必是( ). A .大于1的偶数 B .大于1的奇数 C .2 D .3 7.下列各式中正确的是( ).A .416±=B .3)3(2-=-C .38-2-= D .5)4()3(22-=-+-8.与数轴上的点一一对应的数是( ).A .整数B .有理数C .无理数D .实数 9.下列运算正确的是( ). A .3333--=- B .3333=- C .3333-=- D .3333-=-四、解答题:1.求下列各数的立方根.(1)1- (2)10001(3)343- (4)8515(5)512 (6)827- (7)0 (8)216.0-2.求下列各式的值.(1)38- (2)327- (3)3125.0-- (4)33)001.0(--(5)3512 (6)36427--(7)0196.0-(8)22)74()73(+的算术平方根 (9)33a - (10)33a(11)327173-(12)34112213⨯3.x 取何值时,下面各式有意义?(1)x x -+ (2)31-x (3)31--x x (4)32x4.求下列各式中的x .(1)27000)101.0(3-=+x (2)2523=+x (3)12142=x(4)05121253=+x (5)871)2(3=++x5.化简3)1)(1(a a a a +-+.五、计算(1)4332381)21()4()4()2(--⨯-+-⨯-.六、已知 310x -= ,其中x ,y 为实数,求3x -1998y -的值.七、一个长方体木箱子,它的底是正方形,木箱高1.25米,体积2.718立方米.求这个木箱底边的长.(精确到0.01米)八、一个圆形物体,面积是200平方厘米,半径r 是多少平方厘米?(π 取3.14,r 精确到0.01厘米)九、如果球的半径是r ,则球的体积用公式3π34r V =来计算.当体积500=V 立方厘米,半径r 是多少厘米?(π 取3.14,r 精确到0.01厘米)6.2《立方根》同步测试(第1课时)一、选择题1.-8的立方根为( ).A .2B .-2C .±2D .±4考查目的:考查立方根的概念. 答案:B . 解析:由于,根据立方根的概念可得-8的立方根为-2.2.下列说法正确的是( ).A .负数没有立方根B .8的立方根是±2C .立方根等于本身的数只有±1D .考查目的:考查立方根的概念和性质. 答案:D .解析:根据立方根的概念和性质可判断:所有的数都有立方根,且立方根只有一个,所以选项A 、B 错误;立方根等于本身的数有三个,分别为0,±1,所以选项C 错误;由可知,选项D 正确.3.的平方根是( ).A .±4B .4C .±2D .不存在考查目的:考查立方根和平方根的概念以及立方根的符号表示.答案:C.解析:表示64的立方根,根据立方根的概念,得=4,再根据平方根的概念,得4的平方根为±2.二、填空题4.如果,则的值是.考查目的:考查立方根的性质.答案:.解析:由已知可知,,根据立方根的性质,.5.的立方根是 (结果用符号表示).考查目的:考查算术平方根与立方根的概念以及算术平方根、立方根符号表示.答案:.解析:=9,9的立方根为.6.-27的立方根与64的平方根的和是.考查目的:考查平方根与立方根的概念和计算.答案:-11或5.解析:根据平方根与立方根的概念,可得:-27的立方根是-3,64的平方根是±8,所以-27的立方根与4的平方根的和是5或-11.三、解答题7.求下列各式的值:(1);(2);(3);(4).答案:(1);(2);(3);(4).解析:本题考查求立方根的方法,需要注意的是:在求带分数的立方根时,必须先把它化成假分数.(1);(2);(3);(4).8.有一棱长为6的正方体容器中盛满水,将这些水倒入另一正方体容器时,还需再加水127才能盛满,求另一正方体容器的棱长.考查目的:考查立方根的实际应用.答案:7.解析:原正方体容器的容积=(),另一正方体容器的容=216+127=343(),其棱长为.6.2《立方根》同步测试(第2课时)一、选择题1.估算10 000的立方根的范围大概是( ).A.10~15 B.15~20 C.20~25 D.25~30考查目的:考查无理数的估算能力.答案:C.解析:因为,,,,,又8000<10000<15625,所以10000的立方根应在20和25之间,故答案选C.2.已知:,,则等于( ).A.-17.38 B.-0.01738 C.-806.7 D.-0.08067考查目的:考查被开方数与立方根之间的小数点变化规律.答案:D.解析:根据可知,须先求出的值.0.000525是把525的小数点向左移动6位得到的,根据规律:被开方数的小数点每向右或向左移动3位,立方根的小数点向右或向左移动1位,可知,0.000525的立方根应把的立方根8.067向左移动2位,即0.08067.所以=-0.08067.4.在,1,-4,0这四个数中,最大的数是( ).A. B.1 C.-4D.0考查目的:考查立方根的定义和大小比较.答案:.解析:因为正数大于负数和零,所以最大数应在和1中选,因为>,即>1,故答案选A.二、填空题4.估计在哪两个相邻整数之间:<<.考查目的:考查估算能力.答案:8 9.解析:因为<700<,所以8<<9.5.比较大小:______.考查目的:考查对平方根和立方根估算能力以及大小比较.答案:<.解析:因为,,所以5<<6,;因为,,所以10<<11.故<.6.一个正方形的面积变为原来的倍,则边长变为原来的倍;一个正方体的体积变为原来的倍,则棱长变为原来的倍.考查目的:考查算术平方根和立方根的概念和变化规律.答案:,.解析:由于正方形的面积为边长的平方,故边长变化的倍数是面积变化倍数的算术平方根;同理,棱长变化的倍数为体积变化倍数的立方根.三、解答题7.求下列各式中x的值:(1);(2).考查目的:考查立方根的应用.答案:(1);(2).解析:(1)由立方根的概念,可得,;(2),由立方根的概念,可得,.8.不用计算器,研究解决下列问题: (1)已知,且为整数,则的个位数字一定是 ;∵8000=<10648<=27000,∴的十位数字一定是 ;∴;(2)若,且为整数,按照(1)的思考方法,直接写出的值为 .考查目的:考查对于一个能开方开得尽的较大的整数,其立方根的大小估计. 答案:(1)2 2 22 (2)95.解析:(1)个位为1的两位数的立方,其个位数为1;个位为2的两位数的立方,其个位数为8;依此类推,可以判断的个位数字一定是2,十位数字一定是2,故10648的立方根为22.(2)按照(1)中的方法可以推测(2)中857375的立方根为95.6.3 实数 第1课时 实数课前预习:要点感知1 无限__________小数叫做无理数,__________和__________统称为实数.预习练习1-1 下列说法:①有理数都是有限小数;②有限小数都是有理数;③无理数都是无限小数;④无限小数都是无理数,正确的是( )A.①②B.①③C.②③D.③④ 1-2 实数-2,0.3,17,2,-π中,无理数的个数是( )A.2B.3C.4D.5 要点感知2 实数可以按照定义和正负性两个标准分类如下:⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎭⎨⎩⎪⎧⎫⎪⎪⎨⎬⎪⎪⎭⎩⎩正有理数零负有理数实数正无理数负无理数 ⎧⎧⎧⎪⎪⎨⎪⎨⎩⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎪⎨⎪⎨⎩⎪⎪⎪⎩⎩正整数正有理数正分数正无理数实数负整数负有理数负分数负无理数预习练习2-1 给出四个数-1,0,0.5( )。

(人教版)初一数学下册实数测试题及答案解析

(人教版)初一数学下册实数测试题及答案解析

一、选择题1.已知: []x 表示不超过x 的最大整数,例: ][3.93, 1.82⎡⎤=-=-⎣⎦,令关于k 的函数()][1k 44k k f +⎡⎤=-⎢⎥⎣⎦ (k 是正整数),例:()][313344f +⎡⎤=-⎢⎥⎣⎦=1,则下列结论错误..的是( ) A .()10f = B .()()4f k f k += C .()()1f k f k +≥ D .()0f k =或12.设[x]表示最接近x 的整数(x≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( ) A .132B .146C .161D .6663.若实数p ,q ,m ,n 在数轴上的对应点的位置如图所示,且满足0p q m n +++=,则绝对值最小的数是( )A .pB .qC .mD .n4.如图,A 、B 、C 、D 是数轴上的四个点,其中最适合表示10的点是( )A .点AB .点BC .点CD .点D5.将尺寸如图的4块完全相同的长方形薄木块(厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个方框内.已知小木块的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .2192+B .194+C .2194+D .192+6.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n7.现定义一种新运算“*”,规定a *b =ab +a -b ,如1*3=1×3+1-3,则(-2*5)*6等于( ) A .120B .125C .-120D .-1258.下列说法中,正确的个数是( ).(1)64-的立方根是4-;(2)49的算术平方根是7±;(3)2的立方根为32;(4)7是7的平方根.A .1B .2C .3D .49.如图,数轴上,A B 两点表示的数分别为1,2--,点B 关于点A 的对称点为点C ,则点C 所表示的数是( )A .12B 21C .22D 2210.已知f(1)=2 (取12⨯的末位数字),f(2)=6 (取2?3的末位数字),f(3)=2 (取34⨯的末位数字),…, 则()()()()f 1f 2f 3f 2021++++的值为( )A .4036B .4038C .4042D .4044二、填空题11.在数轴上,点M ,N 分别表示数m ,n ,则点M ,N 之间的距离为|m ﹣n |. (1)若数轴上的点M ,N 分别对应的数为222M ,N 间的距离为 ___,MN 中点表示的数是 ___.(2)已知点A ,B ,C ,D 在数轴上分别表示数a ,b ,c ,d ,且|a ﹣c |=|b ﹣c |=23|d ﹣a |=1(a ≠b ),则线段BD 的长度为 ___.12.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____. 13.观察下列各式: 225-85425⨯25225-253310-27103910⨯3103310-31021n n n -+_____.14.对于任意有理数a ,b ,规定一种新的运算a ⊙b =a (a +b )﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____15.a ※b 是新规定的这样一种运算法则:a ※b=a+2b ,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x ,则x 的值是_____.16.若[x ]表示不超过x 的最大整数.如[π]=3,[4]=4,[﹣2.4]=﹣3.则下列结论: ①[﹣x ]=﹣[x ];②若[x ]=n ,则x 的取值范围是n ≤x <n +1; ③x =﹣2.75是方程4x ﹣[x ]+5=0的一个解; ④当﹣1<x <1时,[1+x ]+[1﹣x ]的值为1或2. 其中正确的结论有 ___(写出所有正确结论的序号).17.定义一种新运算a b ※,其规则是:当a b >时,2a b a b =-※,当a b =时,a b a b =+※,当a b <时,2a b b a =-※,若()21x -=※,则x =____________.18.如图,半径为1的圆与数轴的一个公共点与原点重合,若圆在数轴上做无滑动的来回滚动,规定圆向右滚动的周数记为正数,向左滚动周数记为负数,依次滚动的情况如下(单位:周):﹣3,﹣1,+2,﹣1,+3,+2,则圆与数轴的公共点到原点的距离最远时,该点所表示的数是_______.19.已知M 是满足不等式27a -<<的所有整数的和,N 是52的整数部分,则M N +的平方根为__________.20.对任意两个实数a ,b 定义新运算:a ⊕b=()()a a b b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是先做括号内的,那么(5⊕2)⊕3=___.三、解答题21.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B 类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C 类,例如3,6,9等.(1)2020属于 类(填A ,B 或C );(2)①从A 类数中任取两个数,则它们的和属于 类(填A ,B 或C ); ②从A 、B 类数中任取一数,则它们的和属于 类(填A ,B 或C );③从A 类数中任意取出8个数,从B 类数中任意取出9个数,从C 类数中任意取出10个数,把它们都加起来,则最后的结果属于 类(填A ,B 或C );(3)从A 类数中任意取出m 个数,从B 类数中任意取出n 个数,把它们都加起来,若最后的结果属于C 类,则下列关于m ,n 的叙述中正确的是 (填序号). ①2m n +属于C 类;②m n -属于A 类;③m ,n 属于同一类.22.如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此得到了一种能在数轴上画出无理数对应点的方法. (1)图2中A 、B 两点表示的数分别为___________,____________;(2)请你参照上面的方法:①把图3中51⨯的长方形进行剪裁,并拼成一个大正方形.在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长a =___________.(注:小正方形边长都为1,拼接不重叠也无空隙)②在①的基础上,参照图2的画法,在数轴上分别用点M 、N 表示数a 以及3a -.(图中标出必要线段的长)23.观察下列各式:21131222-=⨯;21241333-=⨯;21351444-=⨯;……根据上面的等式所反映的规律, (1)填空:21150-=______;2112019-=______; (2)计算:2222111111112342019⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭24.对于实数a ,我们规定:用符号⎡⎤⎣⎦a a ⎡⎣a 为a 的根整数,例如:93⎡=⎣,10⎡⎣=3.(1)仿照以上方法计算:4⎡⎣=______;26⎡⎤⎣⎦=_____.(2)若1x ⎡=⎣,写出满足题意的x 的整数值______.如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次103⎡=⎣→3⎡⎣=1,这时候结果为1.(3)对100连续求根整数,____次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____. 25.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B 类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C 类,例如3,6,9等.(1)2020属于 类(填A ,B 或C );(2)①从A 类数中任取两个数,则它们的和属于 类(填A ,B 或C ); ②从A 、B 类数中任取一数,则它们的和属于 类(填A ,B 或C );③从A 类数中任意取出8个数,从B 类数中任意取出9个数,从C 类数中任意取出10个数,把它们都加起来,则最后的结果属于 类(填A ,B 或C );(3)从A 类数中任意取出m 个数,从B 类数中任意取出n 个数,把它们都加起来,若最后的结果属于C 类,则下列关于m ,n 的叙述中正确的是 (填序号).①2m n +属于C 类;②m n -属于A 类;③m ,n 属于同一类.26.阅读下面的文字,解答问题:是无理数,而无理数是无限不循环小数,的小数部分我们不可能全部写出来,而121.请解答下列问题:_______,小数部分是_________;(2)的小数部分为a b ,求a b +(3)已知:100x y +=+,其中x 是整数,且01y <<,求24x y -的平方根. 27.观察下列各式: (x -1)(x+1)=x 2-1 (x -1)(x 2+x+1)=x 3-1 (x -1)(x 3+x 2+x+1)=x 4-1 ……(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=__________________.(2)你能否由此归纳出一般性规律(x -1)(x n +x n -1+x n -2+…+x+1)=____________.(3)根据以上规律求1+3+32+…+349+350的结果. 28.阅读下面的文字,解答问题的小数部分我们不可能全部11,将这个数减去其整数部分,差就是小数部分.23, ∴22)请解答:(1整数部分是 ,小数部分是 .(2a b ,求|a ﹣b(3)已知:x +y ,其中x 是整数,且0<y <1,求x ﹣y 的相反数. 29.探究与应用: 观察下列各式: 1+3= 2 1+3+5= 2 1+3+5+7= 2 1+3+5+7+9= 2 ……问题:(1)在横线上填上适当的数; (2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示)30.我们知道,任意一个正整数x 都可以进行这样的分解:x m n =⨯(m ,n 是正整数,且m n ≤),在x 的所有这种分解中,如果m ,n 两因数之差的绝对值最小,我们就称m n ⨯是x 的最佳分解,并规定:()=nf x m.例如:18可分解成118⨯,29⨯或36⨯,因为1819263->->-,所以36⨯是18的最佳分解,所以()311862f == (1)填空:()6f = ;()16=f ;(2)一个两位正整数t (10t a b =+,19a b ≤≤≤,a ,b 为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求()f t 的最大值; (3)填空:①()22357f ⨯⨯⨯= ;②()42357f ⨯⨯⨯= ;【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据新定义的运算逐项进行计算即可做出判断. 【详解】A. ()f 1=][11144+⎡⎤-⎢⎥⎣⎦=0-0=0,故A 选项正确,不符合题意; B. ()f k 4+=][k 41k 444+++⎡⎤-⎢⎥⎣⎦=][k 1k 1144+⎡⎤+-+⎢⎥⎣⎦=][k 1k 44+⎡⎤-⎢⎥⎣⎦,()f k =][k 1k 44+⎡⎤-⎢⎥⎣⎦, 所以()()f k 4f k +=,故B 选项正确,不符合题意;C. ()f k 1+=k 11k 1k 2k 14444+++++⎡⎤⎡⎤⎡⎤⎡⎤-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,()f k = ][k 1k 44+⎡⎤-⎢⎥⎣⎦, 当k=3时,()f 31+=323144++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=0,()f 3= ][31344+⎡⎤-⎢⎥⎣⎦=1, 此时()()f k 1f k +<,故C 选项错误,符合题意; D.设n 为正整数,当k=4n 时,()f k =4n 14n 44+⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+1时,()f k =4n 24n 144++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0,当k=4n+2时,()f k =4n 34n 244++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+3时,()f k =4n 44n 344++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n+1-n=1, 所以()f k 0=或1,故D 选项正确,不符合题意, 故选C. 【点睛】本题考查了新定义运算,明确运算的法则,运用分类讨论思想是解题的关键.2.B解析:B 【详解】分析:先计算出1.52,2.52,3.52,4.52,5.52,即可得出中有2个1,4个2,6个3,8个4,10个5,6个6,从而可得出答案. 详解:1.52=2.25,可得出有2个1; }2.52=6.25,可得出有4个2; 3.52=12.25,可得出有6个3; 4.52=20.25,可得出有8个4; 5.52=30.25,可得出有10个5; 则剩余6个数全为6.故=1×2+2×4+3×6+4×8+5×10+6×6=146. 故选B.点睛本题考查了估算无理数的大小.3.C解析:C 【分析】根据0p q m n +++=,并结合数轴可知原点在q 和m 之间,且离m 点最近,即可求解. 【详解】解:∵0p q m n +++= 结合数轴可得:()-=p q m n ++, 即原点在q 和m 之间,且离m 点最近, ∴绝对值最小的数是m , 故选:C . 【点睛】本题考查实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.4.D解析:D 【分析】根据<4即可得到答案.【详解】∵9<10<16,∴<4,∴的点是点D,故选:D.【点睛】此题考查利用数轴表示实数,实数的大小比较,正确比较实数是解题的关键.5.C解析:C【分析】设木块的长为x,结合图形知阴影部分的边长为x-2,根据其面积为19得出(x-2)2=19,利用平方根的定义求出符合题意的x的值,由AD=2x可得答案.【详解】解:设木块的长为x,根据题意,知:(x-2)2=19,则2x-=∴2x=(舍去)x=22则24==,BC x故选:C.【点睛】本题主要考查算术平方根,解题的关键是结合图形得出木块长、宽与阴影部分面积间的关系.6.B解析:B【分析】根据n+p=0可以得到n和p互为相反数,原点在线段PN的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n和p互为相反数,∴原点在线段PN的中点处,∴绝对值最大的一个是Q点对应的q.故选B.【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.7.D解析:D【详解】根据题目中的运算方法a *b =ab +a -b ,可得(-2*5)*6=(-2×5-2-5)*6=-17*6=-17×6+(-17)-6=-125.故选D .点睛:本题主要考查了新定义运算,根据题目所给的规律(或运算方法),利用有理数的混合法则计算正确是解题关键.8.C解析:C 【详解】4-,故(1)对;根据算术平方根的性质,可知49的算术平方根是7,故(2)错; 根据立方根的意义,可知23)对;7的平方根.故(4)对; 故选C.9.D解析:D 【分析】设点C 的坐标是x ,根据题意列得12x=-,求解即可. 【详解】解:∵点A 是B ,C 的中点. ∴设点C 的坐标是x ,1=-,则2x =-∴点C 表示的数是2-.故选:D. 【点睛】此题考查数轴上两点的中点的计算公式:两点的中点所表示的数等于两点所表示的数的平均数,正确掌握计算公式是解题的关键.10.C解析:C 【分析】先计算部分数的乘积,观察运算结果,发相规律,每运算5次后结果重复出现,求出f(1)+f(2)+f(3)+f(4)+f(5)和,再求2021次运算重复的次数,用除数5,商和余数表示2021=5×404+1,说明重复404次和f(2021)=2的结果,(f(1)+f(2)+f(3)+f(4)+f(5))×10+2计算结果即可. 【详解】解:f(1)=2, f(2)=6,f(3)=2,f(4)=0,f(5)=0,f(6)=2,f(7)=6,f(8)=2,f(9)=0,f(10)=0,f(11)=2,每5次运算一循环,f(1)+f(2)+f(3)+f(4)+f(5)=2+6+2+0+0=10, 2021=5×404+1,()()()()f 1f 2f 3f 2021++++=10×404+2=4040+2=4042.故选:C . 【点睛】本题考查新定义运算,读懂题目的含义与要求,掌握运算的方法,观察部分运算结果,从中找出规律,用规律解决问题是解题关键.二、填空题 11.2 【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c|=|b ﹣c|与a≠解析:2 【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c |=|b ﹣c |与a ≠b 推出C 为AB 的中点,然后根据题意分类讨论求解即可. 【详解】解:(1)由题意,M ,N 间的距离为(222==; ∵2MN =, ∴112MN =, 由题意知,在数轴上,M 点在N 点右侧, ∴MN 的中点表示的数为1;(2)∵1a c b c -=-=且ab ,∴数轴上点A 、B 与点C 不重合,且到点C 的距离相等,都为1, ∴点C 为AB 的中点,2AB =, ∵213d a -=, ∴32d a -=, 即:数轴上点A 和点D 的距离为32,讨论如下:1>若点A位于点B左边:①若点D在点A左边,如图所示:此时,37222 BD AD AB=+=+=;②若点D在点A右边,如图所示:此时,31222 BD AB AD=-=-=;2>若点A位于点B右边:①若点D在点A左边,如图所示:此时,31222 BD AB AD=-=-=;②若点D在点A右边,如图所示:此时,37222 BD AD AB=+=+=;综上,线段BD的长度为12或72,故答案为:2;21;12或72.【点睛】本题考查数轴上两点间的距离,以及与线段中点相关的计算问题,理解数轴上点的特征以及两点间的距离表示方法,灵活根据题意分类讨论是解题关键.12.20﹣.【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为等式右边的解析:20﹣208000= 401401.【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为1,2,3,,第二个数的规律为:分子为1,2,3,,分母为222112,215,3110,+=+=+=等式右边的规律为:分子为3331,2,3,,分母为222112,215,3110,+=+=+= 归纳类推得:第n 个等式为32211n n n n n -=++(n 为正整数) 当20n =时,这个等式为322202020201201-=++,即20800020401401-= 故答案为:20800020401401-=. 【点睛】 本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键. 13.n .【分析】根据已知等式,可以得出规律,猜想出第n 个等式,写出推导过程即可.【详解】解:=n .故答案为:n .【点睛】此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关解析: 【分析】根据已知等式,可以得出规律,猜想出第n 个等式,写出推导过程即可.【详解】故答案为: 【点睛】 此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关键. 14.-9【分析】直接利用已知运算法则计算得出答案.【详解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,解析:-9【分析】直接利用已知运算法则计算得出答案.【详解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可.15.4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.16.②④【分析】根据若表示不超过的最大整数,①取验证;②根据定义分析;③直接将代入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x=2.5时,[﹣2.5]=﹣3,﹣[2.5]解析:②④【分析】根据若[]x 表示不超过x 的最大整数,①取 2.5x 验证;②根据定义分析;③直接将 2.75-代入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x =2.5时,[﹣2.5]=﹣3,﹣[2.5]=﹣2,∴此时[﹣x ]与﹣[x ]两者不相等,故①不符合题意;②若[x ]=n ,∵[x ]表示不超过x 的最大整数,∴x 的取值范围是n ≤x <n +1,故②符合题意;③将x =﹣2.75代入4x ﹣[x ]+5,得:4×(﹣2.75)﹣(﹣3)+5=﹣3≠0,故③不符合题意;④当﹣1<x <1时,若﹣1<x <0,[1+x ]+[1﹣x ]=0+1=1,若x =0,[1+x ]+[1﹣x ]=1+1=2,若0<x <1,[1+x ]+[1﹣x ]=1+0=1;故④符合题意;故答案为:②④.【点睛】本题主要考查取整函数的定义,是一个新定义类型的题,解题关键是准确理解定义求解. 17.或﹣5【分析】根据新定义运算法则,分情况讨论求解即可.【详解】解:当x >﹣2时,则有,解得:,成立;当x=﹣2时,则有,解得:x=3,矛盾,舍去;当x <﹣2时,则有,解得:x=﹣5,成立 解析:12-或﹣5 【分析】根据新定义运算法则,分情况讨论求解即可.【详解】解:当x >﹣2时,则有()22(2)1x x -=--=※,解得:12x =-,成立;当x =﹣2时,则有()2(2)1x x -=+-=※,解得:x =3,矛盾,舍去;当x <﹣2时,则有()22(2)1x x -=⨯--=※,解得:x =﹣5,成立,综上,x =12-或﹣5, 故答案为:12-或﹣5.【点睛】本题考查新定义下的实数运算、解一元一次方程,理解新定义运算法则,运用分类讨论思想正确列出方程是解答的关键.18.﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4解析:﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4(周),滚动第3次,所对应的周数为0﹣3﹣1+2=﹣2(周),滚动第4次,所对应的周数为0﹣3﹣1+2﹣1=﹣3(周),滚动第5次,所对应的周数为0﹣3﹣1+2﹣1+3=0(周),滚动第6次,所对应的周数为0﹣3﹣1+2﹣1+3+2=2(周),所以圆与数轴的公共点到原点的距离最远是﹣4周,即该点所表示的数是﹣8π,故答案为:﹣8π.【点睛】题目主要考察数轴上的点及圆的滚动周长问题,确定相应滚动周数是解题关键.19.±3【分析】先通过估算确定M、N的值,再求M+N的平方根.【详解】解:∵,∴,∵,∴,∵,∴,∴a的整数值为:-1,0,1,2,M=-1+0+1+2=2,∵,∴,N=7解析:±3【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵< ∴221, ∵∴23<,∵a <∴23a -<<,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2, ∵∴78<,N=7,M+N=9,9的平方根是±3;故答案为:±3.【点睛】本题考查了算术平方根的估算,用“夹逼法”估算算术平方根是解题关键.20.【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】(⊕2)⊕3=⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关 解析:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】2)⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.三、解答题21.(1)A;(2)①B;②C;③B;(3)①③.【分析】÷,结合计算结果即可进行判断;(1)计算20203(2)①从A类数中任取两个数进行计算,即可求解;②从A、B两类数中任取两个数进行计算,即可求解;③根据题意,从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,再除以3,即可得到答案;(3)根据m,n的余数之和,举例,观察即可判断.【详解】解:(1)根据题意,÷=,∵202036731∴2020被3除余数为1,属于A类;故答案为:A.(2)①从A类数中任取两个数,如:(1+4)÷3=1…2,(4+7)÷3=3…2,……∴两个A类数的和被3除余数为2,则它们的和属于B类;②从A、B类数中任取一数,与①同理,如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,……∴从A、B类数中任取一数,则它们的和属于C类;③从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,则⨯+⨯+=,8192026÷=,∴26382∴余数为2,属于B类;故答案为:①B;②C;③B.(3)从A类数中任意取出m个数,从B类数中任意取出n个数,余数之和为:m×1+n×2=m+2n,∵最后的结果属于C类,∴m+2n能被3整除,即m+2n属于C类,①正确;②若m=1,n=1,则|m-n|=0,不属于B类,②错误;③观察可发现若m+2n属于C类,m,n必须是同一类,③正确;综上,①③正确.故答案为:①③.【点睛】本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答. 22.(1)2-,2;(2)①图见解析,5;②见解析【分析】(1)根据图1得到小正方形的对角线长,即可得出数轴上点A 和点B 表示的数(2)根据长方形的面积得正方形的面积,即可得到正方形的边长,再画出图象即可; (3)从原点开始画一个长是2,高是1的长方形,对角线长即是a ,再用圆规以这个长度画弧,交数轴于点M ,再把这个长方形向左平移3个单位,用同样的方法得到点N .【详解】(1)由图1知,小正方形的对角线长是2,∴图2中点A 表示的数是2-,点B 表示的数是2,故答案是:2-,2;(2)①长方形的面积是5,拼成的正方形的面积也应该是5,∴正方形的边长是5,如图所示:故答案是:5;②如图所示:【点睛】本题考查无理数的表示方法,解题的关键是理解题意,模仿题目中给出的解题方法进行求解.23.(1)49515050⨯;2018202020192019⨯;(2)10102019. 【分析】(1)根据已知数据得出规律,2111111n n n ⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,进而求出即可; (2)利用规律拆分,再进一步交错约分得出答案即可.【详解】解:(1)21150-=49515050⨯; 2112019-=2018202020192019⨯; (2)2222111111112342019⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=1324352018202022334420192019⨯⨯⨯⨯⨯⨯⨯⨯…… =1202022019⨯ =10102019. 【点睛】此题主要考查了实数运算中的规律探索,根据已知运算得出数字之间的变化规律是解决问题的关键.24.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1(2)根据定义可知x <4,可得满足题意的x 的整数值;(3)根据定义对120进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【详解】解:(1)∵22=4, 62=36,52=25,∴56,∴,,故答案为2,5;(2)∵12=1,22=4,且=1,∴x=1,2,3,故答案为1,2,3;(3)第一次:,第二次:,第三次:,故答案为3;(4)最大的正整数是255,理由是:∵,,,∴对255只需进行3次操作后变为1,∵,,,,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.【点睛】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力.25.(1)A;(2)①B;②C;③B;(3)①③.【分析】÷,结合计算结果即可进行判断;(1)计算20203(2)①从A类数中任取两个数进行计算,即可求解;②从A、B两类数中任取两个数进行计算,即可求解;③根据题意,从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,再除以3,即可得到答案;(3)根据m,n的余数之和,举例,观察即可判断.【详解】解:(1)根据题意,÷=,∵202036731∴2020被3除余数为1,属于A类;故答案为:A.(2)①从A类数中任取两个数,如:(1+4)÷3=1…2,(4+7)÷3=3…2,……∴两个A类数的和被3除余数为2,则它们的和属于B类;②从A、B类数中任取一数,与①同理,如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,……∴从A、B类数中任取一数,则它们的和属于C类;③从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,则⨯+⨯+=,8192026÷=,∴26382∴余数为2,属于B类;故答案为:①B;②C;③B.(3)从A类数中任意取出m个数,从B类数中任意取出n个数,余数之和为:m×1+n×2=m+2n,∵最后的结果属于C类,∴m+2n能被3整除,即m+2n属于C类,①正确;②若m=1,n=1,则|m-n|=0,不属于B类,②错误;③观察可发现若m+2n属于C类,m,n必须是同一类,③正确;综上,①③正确.故答案为:①③.【点睛】本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答.26.(1) 4;(2)1;(2) ±12.【分析】(1(2a、b的值,再代入求出即可;(3的范围,求出x、y的值,再代入求出即可.【详解】解:(1)∵45,∴4,故答案为4;(2)∵2<3,∴-2,∵34,∴b=3,∴;(3)∵100<110<121,∴1011,∴110<111,∵,其中x是整数,且0<y<1,∴x=110,,∴+10=144,的平方根是±12.【点睛】键.27.(1)x7-1;(2)x n+1-1;(3)51312-.【分析】(1)仿照已知等式写出答案即可;(2)先归纳总结出规律,然后按规律解答即可;(3)先利用得出规律的变形,然后利用规律解答即可.【详解】解:(1)根据题意得:(x-1)(x6+x5+x4+x3+x2+x+1)=x7-1;(2)根据题意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;(3)原式=12×(3-1)(1+3+32+···+349+350)=12×(x50+1-1)=51312-故答案为:(1)x7-1;(2)x n+1-1;(3)51312-.【点睛】本题考查了平方差公式以及规律型问题,弄清题意、发现数字的变化规律是解答本题的关键.28.(1)7;(2)5;(3)【分析】(1(2)分别确定出a、b的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y的值,进而求出y的值,即可求出所求.【详解】解:(1)∵78,∴7.故答案为:7.(2)∵34,∴3a,∵23,∴b=2∴=5(3)∵23∴11<12,∵,其中x是整数,且0﹤y<1,∴x=11,y=,∴x-y==【点睛】本题考查的是无理数的小数部分和整数部分及其运算.估算无理数的整数部分是解题关键.29.(1)2、3、4、5;(2)第n个等式为1+3+5+7+…+(2n+1)=n2;(3)﹣1.008016×106.【分析】(1) 根据从1开始连续n各奇数的和等于奇数的个数的平方即可得到.(2) 根据规律写出即可.(3) 先提取符号,再用规律解题.【详解】解:(1)1+3=221+3+5=321+3+5+7=421+3+5+7+9=52……故答案为:2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=2(1)n +(3)原式=﹣(1+3+5+7+9+ (2019)=﹣10102=﹣1.0201×106.【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可.30.(1)23,1;(2)两位正整数为39,28,17,()f t 的最大值为47;(3)①2021;②2021【分析】(1)仿照样例进行计算即可;(2)由题设可以看出交换前原数的十位上数字为a ,个位上数字为b ,则原数可以表示为10a+b ,交换后十位上数字为b ,个位上数字为a ,则交换后数字可以表示为10b+a ,根据“交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54”确定出a 与b 的关系式,进而求出所有的两位数,然后求解确定出()f t 的最大值即可;(3)根据样例分解计算即可.【详解】解:(1)61623=⨯=⨯,∵6132->-,∴()263f =; 161162844=⨯=⨯=⨯∵1618244->->-,∴()161f =, 故答案为:23;1; (2)由题意可得:交换后的数减去交换前的数的差为:10109()54b a a b b a +--=-=,∴6b a -=,∵19a b ≤≤≤,∴93b a ==,或82b a ==,或71b a ==,,∴t 为39,28,17;∵39=1×39=3×13,∴()33913f =; 28=1×28=2×14=4×7,∴()28f =47; 17=1×17,∴()11717f =; ∴()f t 的最大值47. (3)①∵223572021⨯⨯⨯=⨯∴()220235721f ⨯⨯⨯=; ②423574042⨯⨯⨯=⨯∴()4402023574221f ⨯⨯⨯==; 故答案为:2021;2021 【点睛】本题主要考查了有理数的运算,理解最佳分解的定义,并将其转化为有理数的运算是解题的关键.。

人教版七年级下册《6.3第2课时实数的运算》同步练习(含答案)

人教版七年级下册《6.3第2课时实数的运算》同步练习(含答案)

第2课时实数的运算关键问答①本题用到的运算律是什么?1.-5的绝对值是( )A .-15B .-5C. 5 D .5 2.①计算:3 2-2+2=________.3.计算:327+16-14.命题点 1 实数的大小比较 [热度:90%]4.比较大小:|3-2|________|3|+|-2|.5.数轴上表示-3.14的点在表示-π的点的________边.6.实数a 在数轴上对应的点的位置如图6-3-6所示,试确定a ,-a ,1a,a 2的大小关系.图6-3-6命题点 2 实数的性质 [热度:93%]7.4的倒数是( )A .-2 B.12C .2 D .±128.下列实数中绝对值最小的是( )A .-4B .-2C .1D .39.②实数2-1的相反数是( )A.2-1B.2+1 C .1-2D .-2-1方法点拨②a 的相反数是-a .若两个数的和为0,则这两个数互为相反数.10.计算|3-2|的结果是( ) A .2-3B.3-2 C .-2-3D .2+ 311.③观察下列各式:①a 2;②|a |+1;③-a ;④23a .取一个适当的实数作为a 的值代入求值后,不可能互为相反数的式子序号为( )A .②④B .①②C .①③D .③④解题突破③两个数的符号不同才有可能互为相反数(0除外).12.④如果一个实数的绝对值为11-5,那么这个实数为______________.易错警示 ④本题容易丢掉11-5这种情况.13.若无理数a 使得|a -4|=4-a ,则a 的一个值可以是________.14.若(x +3)2+|y -2|=0,则|x +y |=________.15.若a 是15的整数部分,b 是15的小数部分,则a -b -ab =____________.16.已知7+5=x +y ,其中x 是整数,且0<y <1,求x -y +5的相反数.17.⑤在数轴上点A 表示的数是 5.(1)若把点A 向左平移2个单位长度得到点B ,求点B 表示的数;(2)若点C 和(1)中的点B 所表示的数互为相反数,求点C 表示的数;(3)在(1)(2)的条件下,求线段OA ,OB ,OC 的长度之和.解题突破⑤求线段OA ,OB ,OC 的长度之和,即求A ,B ,C 三个点所表示的数的绝对值之和. 命题点 3 实数的运算 [热度:98%]18.若等式2□2=2 2成立,则□内的运算符号为( )A .+B .-C .×D .÷19.计算|3-4|-3-22的结果是( )A .23-8B .0C .-23D .-820.定义新运算“☆”:a ☆b =ab +1,则2☆(3☆5)=__________. 21.⑥有四个实数分别是|-9|,22,-38,2 2.请你计算其中有理数的积与无理数的积的差,结果是__________.解题突破⑥(1)先确定四个数中的有理数和无理数;(2)再分别计算它们的积;(3)最后求两个积 的差.22.⑦已知数轴上有A ,B 两点,且这两点之间的距离为4 2.若点A 在数轴上表示的数为3 2,则点B 在数轴上表示的数为____________.解题突破⑦点B 在点A 的左边还是右边?23.计算: (1)19+32627-1+|3-2|-(-2)2+2 3;(2)(-1)3+||3-2+2÷23- 4.24.⑧我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q (p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解.并规定:F (n )=p q.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F (12)=34. (1)如果一个正整数a 是另外一个正整数b 的平方,那么我们称正整数a 是完全平方数,求证:对任意一个完全平方数m ,总有F (m )=1;(2)如果一个两位正整数t ,t =10x +y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数字与十位上的数字得到的新数减去原来的两位正整数所得的差为18,那么我们称t 为“吉祥数”,求所有“吉祥数”中,F (t )的最大值.解题突破⑧(1)读懂新定义的条件:一个正整数分解成两个正整数的积,且取两因数之差的绝对值最小的情况.(2)在列举的所有情况中,找出满足条件的情况.典题讲评与答案详析1.C 2.22+23.解:原式=3+4-12=132. 4.< [解析]∵|3-2|=3-2,|3|+|-2|=3+2,∴3-2<3+ 2.故填“<”.5.右 [解析] 因为3.14<π,所以-3.14>-π,所以数轴上表示-3.14的点在表示-π的点的右边.6.解:∵-1<a <0,不妨令a =-12,∴-a =12,1a =-2,a 2=14. ∵-2<-12<14<12,∴1a<a <a 2<-a . 7.B [解析] 因为4=2,所以4的倒数是12. 8.C [解析] -4的绝对值是4,-2的绝对值是2,1的绝对值是1,3的绝对值是3.因为4>3>2>1,所以这些实数中绝对值最小的是1.9.C [解析] 实数2-1的相反数是-(2-1)=1- 2.10.A [解析] 因为3<2,所以3-2<0,所以|3-2|=-(3-2)=2- 3.11.B [解析]∵a 2≥0,|a |+1≥1,∴①和②不可能互为相反数.12.11-5或5-11[解析] 因为|11-5|=11-5,|5-11|=11-5,所以这个实数为11-5或5-11.13.2(答案不唯一) [解析] 答案不唯一,只要a 是小于4的无理数即可.14.3-2 [解析] 由题意,得x =-3,y =2,所以|x +y |=|-3+2|=-(-3+2)=3- 2.15.15-415 [解析] 因为3<15<4,所以a =3,b =15-3,所以a -b -ab = 3-(15-3)-3×(15-3)=3-15+3-315+9=15-415.16.解:∵4<5<9,∴2<5<3.又∵7+5=x +y ,其中x 是整数,且0<y <1,∴x =9,y =5-2,∴x -y +5=9-(5-2)+5=11,∴x -y +5的相反数是-11.17.解:(1)点B 表示的数是5-2.(2)点C 表示的数是2- 5.(3)由题意,得点A 表示5,点B 表示5-2,点C 表示2-5,∴OA =5,OB =5-2,OC =|2-5|=5-2,∴OA +OB +OC =5+5-2+5-2=3 5-4.18.A [解析] 因为2+2=2 2,2-2=0,2×2=2,2÷2=1,所以选A.19.C [解析] 原式=4-3-3-4=-2 3.故选C. 20.3 [解析] 2☆(3☆5)=2☆(3×5+1)=2☆4=2×4+1=3.21.-20 [解析] 有理数为|-9|,-38,它们的积为|-9|×(-38)=-18.无理数为22, 2 2,它们的积为22×2 2=2.有理数与无理数积的差为-18-2=-20. 22.-2或7 2[解析] 本题要分两种情况进行分析:①当点B 在点A 的左边时, 则3 2-4 2=-2,故点B 表示的数是-2;②当点B 在点A 的右边时, 则4 2+3 2=7 2,故点B 表示的数是7 2.综上,点B 在数轴上表示的数为-2或7 2.23.解:(1)原式=13-13+2-3-4+2 3=3-2. (2)原式=-1+2-3+2×32-2=-1. 24.解:(1)证明:对任意一个完全平方数m ,设m =n 2(n 为正整数).∵|n -n |=0,∴n ×n 是m 的最佳分解,∴对任意一个完全平方数m ,总有F (m )=n n=1. (2)设交换t 的个位上的数字与十位上的数字得到的新数为t ′,则t ′=10y +x . ∵t 为“吉祥数”,∴t ′-t =(10y +x )-(10x +y )=9(y -x )=18,∴y =x +2.∵1≤x ≤y ≤9,x ,y 为自然数,∴“吉祥数”有13,24,35,46,57,68,79.∵F (13)=113,F (24)=46=23,F (35)=57, F (46)=223,F (57)=319,F (68)=417, F (79)=179, 又∵57>23>417>319>223>113>179, ∴所有“吉祥数”中,F (t )的最大值是57. 【关键问答】①乘法分配律的逆用.。

初中七年级数学下册,第六章《实数》,全章新课教学,课时同步强化训练,(附详细参考答案)

初中七年级数学下册,第六章《实数》,全章新课教学,课时同步强化训练,(附详细参考答案)

初中七年级数学下册第六章《实数》全章新课教学课时同步强化训练一、6.1《平方根》第一课时同步强化训练(附详细参考答案)二、6.1《平方根》第一课时同步强化训练(附详细参考答案)三、6.2《立方根》同步强化训练(附详细参考答案)四、6.3《实数》第一课时同步强化训练(附详细参考答案)五、6.3《实数》第二课时同步强化训练(附详细参考答案)六、第六章《实数》单元质量检测卷(一)(附详细参考答案)七、第六章《实数》单元质量检测卷(二)(附详细参考答案)七年级数学下册6.1《平方根》第一课时新课教学课时同步强化训练(30分钟50分)一、选择题(每小题4分,共12分)1.( )(A)3 (B)-3(C)±3 (D)9( )2.(A)2 (B)4(C)15 (D)16的算术平方根是( )(A)169 (B)13二、填空题(每小题4分,共12分)4.某建筑工地用一根钢筋围成一个面积为36 m2的正方形框,还剩下13 m,则这根钢筋的长度为_______m.5.已知a,b为两个连续的整数,且a b,则a+b=______.6.=2,则110x+5的算术平方根是_______.三、解答题(共26分)7.(8分)已知|a|=5 =7,且|a+b|=a+b,求a-b的值.8.(8分)已知2a-1的算术平方根是3,3a+b-1的算术平方根是4,ca+2b-c的算术平方根.9.(10分)填空找规律(结果保留4位有效数字).(1)利用计算器分别求=_______.(2)由(1)的结果,你能发现什么规律呢?(3) 1.414的值.新课教学课时同步强化训练答案解析1.【解析】选92.【解析】选B.由于9<15<16,所以15的平方根应在3和4 之间,又因为3.52=12.254.3.【解析】选C.=13,∴134.【解析】∵正方形的面积为36 m2∴钢筋长为6×4+13=37(m).答案:375.【解析】∵,∴56,即a=5,b=6,即a+b=11.答案:116.【解析】由题意知,x+2=4,解得x=2,所以110x+5=225=152,所以110x+5的算术平方根是15.答案:157.【解析】∵|a|=5,∴a=±5=7,∴b2=49,∴b=±7,∵|a+b|=a+b,∴a+b>0.∴当a=5时,b=7,a-b=-2;当a=-5时,b=7,a-b=-12.8.【解析】由题意知:2a-1=9,3a+b-1=16,c=3,解得:a=5,b=2,c=3,所以a+2b-c=6,.9.【解析】0.707 2.236≈22.36.(2)被开方数扩大或缩小100倍,算术平方根扩大或缩小10倍.(3)14.14≈141.4.新课教学课时同步强化训练(30分钟50分)一、选择题(每小题4分,共12分)1.设a是9的平方根,b=2(,则a与b的关系是( )(A)a=±b (B)a=b(C)a=-b (D)|a|≠|b|2.若正方形的边长为a,面积为S,那么( )(A)S的平方根是a (B)a是S的算术平方根(C)a=3.下列各式中,正确的是( )±±3二、填空题(每小题4分,共12分)有意义,则b的取值范围是4.已知a+3的一个平方根为-4,_______.=0,以x,y为两边长的等腰三角形的周长为5.已知_______.6.已知a,b=b+4,则a+b的平方根是_______.三、解答题(共26分)7.(8分)求满足下列各式的x的值:(1)4(x+1)2=25; (2)4(2x+3)2=(-3)2.8.(8分)已知a,b满足,-3|b|,求S的取值范围.9.(10分)(1)分别计算下列各式的值:=________=_______=_______(2)根据计算的结果,可以得到:①当a>0②当a<0时,(3)应用所得的结论解决:如图,已知a,b在数轴上的位置,化简--.七年级数学下册6.1《平方根》第二课时新课教学课时同步强化训练答案解析1.【解析】选A.因为(±3)2=9,所以a=±3,又因为b=3,所以a=±b.2.【解析】选B.由题意知,a2=S,再根据实际问题的意义得a是正数,故选B.3.【解析】选B.A,C,D的结果都为3.4.【解析】由题意知:a+3=(-4)2=16,∴a=13.2a+b>0,b>-26.答案:b>-265.【解析】由题意得:x=3,y=6.当三角形的三边长为6,6,3时,周长为15;当三边长为3,3,6时,不满足三角形的三边关系.答案:156.【解析】由于a-5≥0,∴a≥5,同理10-2a≥0,∴a≤5,∴a=5.当a=5时,b+4=0,∴b=-4,∴a+b=5-4=1.∴a+b的平方根为±1.答案:±17.【解析】(1)4(x+1)2=25,(x+1)2=254,x+1=±52,x=±52-1,x=-3.5或1.5. (2)4(2x+3)2=(-3)2, (2x+3)2=94,2x+3=±32,2x=±32-3,2x=-1.5或-4.5, x=-0.75或-2.25. 8.【解析】由+5|b|=7和-3|b|=S 联立解得:|b|=143S 19-,=215S 19+.∵|b|≥0≥0,∴143S 19-≥0且215S 19+≥0, 解之,得-215≤S ≤143,故-3|b|的取值范围为-215≤S ≤143.9.【解析】(1)①2 233 ②2 23 3(2)①a ②-a(3)由题意知a <0,b >0,所以a-b <0,-=-a-b+(a-b)=-a-b+a-b=-2b.七年级数学下册6.2《立方根》新课教学课时同步强化训练(30分钟50分)一、选择题(每小题4分,共12分)1.如果a≠0,b≠0,且-b是a的立方根,那么下列结论中正确的是( )(A)-b是-a的立方根(B)b是a的立方根(C)b是-a的立方根(D)a的立方根是±a=8.067,则有( )2.(A)x=52 500,y=-0.052 5(B)x=52 500,y=-0.525(C)x=525 000,y=-0.005 25(D)x=525 000,y=-0.000 5253.一个正方体的水晶砖,体积为100 cm3,它的棱长大约在( )(A)4~5 cm之间(B)5~6 cm之间(C)6~7 cm之间(D)7~8 cm之间二、填空题(每小题4分,共12分)_______.5.已知x-2的平方根是±2,2x+y+7的立方根是3,则x2+y2的平方根是______.6.方程8(1-x)3-1=0的解为_______.27三、解答题(共26分)7.(8分)(b-27)2-.8.(8分)=1-a2,求a的值.9.(10分)(1)若正方体的棱长为1,则其体积为1;若正方体的棱长为2,则其体积为8;若正方体的棱长为4,则其体积为64;若其棱长为8,则其体积为512,…,当棱长为2n时,其体积为多少?(2)某正方体的体积为1时,其棱长为1;体积为2体积为3,…,若体积扩大到原来的n倍,则棱长扩大多少倍?七年级数学下册6.2《立方根》新课教学课时同步强化训练答案解析1.【解析】选C.因为-b是a的立方根,所以(-b)3=a,即-b3=a,所以b3=-a,即b是-a的立方根,因此,C正确.2.【解析】选D.开立方小数点移动的规律是:被开方数的小数点向左或者向右移动三位,结果的小数点向相同方向移动1位;因为80.67是8.067小数点向右移动1位得到的,所以x应该是525的小数点向右移动3位得到的,即x=525 000,同样道理,y应该是525的小数点向左移动6位再取相反数,即y=-0.000 525.3.【解析】选A.∵64<100<125,∴43<100<53,故选A.4.【解析】因为=-8,(-2)3=-8,所以的立方根为-2.答案:-25.【解析】由题意知:x-2=4,2x+y+7=27,解得x=6,y=8,所以x2+y2=100,所以其平方根为±10.答案:±106.【解析】移项,得8(1-x)3=127,系数化1,(1-x)3=1216,两边开立方得1-x=16,化简整理得x=56.答案:567.【解析】2=0,0,(b-27)2≥0,所以a+8=0,b-27=0,所以a=-8,b=27,-,-8.【解析】一个数的立方根等于它本身的数有0,1,-1.当1-a2=0时,a2=1,a=±1;当1-a2=1时,a2=0,a=0;当1-a2=-1时,a2=2,a=所以a的值为0,±1,9.【解析】(1)正方体棱长为1,则体积为1,棱长为2,体积为8,比较两者棱长扩大了2倍,体积扩大了8倍,棱长又扩大了1倍,其体积相应增大7倍,为原来的8倍,故当棱长为2n时,体积为8n3.(2)当体积扩大到原来的n七年级数学下册6.3《实数》第一课时新课教学课时同步强化训练(30分钟50分)一、选择题(每小题4分,共12分)1.已知实数m,n在数轴上的对应点的位置如图所示,则下列判断正确的是( )(A)m>0 (B)n<0 (C)mn<0 (D)m-n>02.下列说法中:①无理数是无限小数;②有理数是有限小数;③带根号的数是无理数;④0.202 002 000 2…(相邻两个2之间0的个数依次加1)是有理数;⑤两个无理数的和、积一定是无理数;⑥一个正数的立方根一定小于它的平方根.其中正确的有( )(A)1个 (B)2个 (C)3个 (D)4个3.在实数范围内,下列判断正确的是( )(A)=a=b(B)若|a|=|b|,则a=b(C)=a=b(D)若a2>b2,则a>b二、填空题(每小题4分,共12分)4.若a,b和|a-2|互为相反数,则(a+b)2 011=_______.5. 5的倒数是_______,(22-=_______. 6.已知a12-3-4…,a n -可知:S 1=a 1-1,S 2=a 1+a 21--1,S 3=a 1+a 2+a 3-…,则S n =_______(用含有n 的式子表示).三、解答题(共26分)7.(8分)若|x|=|2-|,求实数x .8.(8分)写出所有适合下列条件的数: (1)大于(2)9.(10分)阅读下面的文字,解答问题.部分我们不可能全部地写出来,分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,1,将这个数减去其整数部分,差就是小数部分.请解答:已知的整数部分为x,小数部分为y,求x-y 的相反数.七年级数学下册6.3《实数》第一课时新课教学课时同步强化训练答案解析1.【解析】选C.因为实数m 的对应点在原点左方,所以m <0;实数n 的对应点在原点右方,所以n >0.从而mn <0,故选C .2.【解析】选A.①对,无理数是无限不循环小数;②错,无限循环小数也是有理数;③错,④错,0.202 002 000 2……(相邻两个2之间0的个数依次加1)是无限小数,但不是循环小数;也是有理数;⑥错,例如当a=0.13.【解析】选A.若|a|=|b|,则a=b 或a=-b ,B 错;同样在a=-b时,==a=b 或a=-b ,C 错;若a=-1,b=0,则a 2>b 2成立,但此时a <b ,D 错. 4.【解析】+|a-2|=0,由算术平方根的性质与绝对值的性质可得2b 60a 20+=⎧⎨-=⎩,,解得a 2b 3.=⎧⎨=-⎩, 所以(a+b)2 011=(-1)2 011=-1. 答案:-15.【解析】5的倒数为15,(22-=-22=-1.答案:156.【解析】根据规律可知:S n =a 1+a 2+a 3+…+a n-…+…--…-7.【解析】2|,即2,∴2或28.【解析】(1)∵16<17<25,9<11<16, ∴-5<<-4,34,∴大于-4,±3,±2,±1,0;(2)∵16<18<25,∴45,±4,±3,±2,±1,0. 9.【解析】∵12,∴11<12.∴-1,∴∴x-y七年级数学下册6.3《实数》第二课时新课教学课时同步强化训练(30分钟50分)一、选择题(每小题4分,共12分)1.如图所示,数轴上表示A,B,点C到点A 的距离与点B到点A的距离相等,则点C所表示的数是( )2.如图,有一个数值转换器,当输入x值为16时,输出的y是( )3.--3与无理数的积的差,计算的结果为( )(A)2 (B)-2 (C)4 (D)-4二、填空题(每小题4分,共12分)4.计算:+.,如3☆5.若规定一种运算为a☆☆2=_______.b a-b-ab=_______.6.如果a三、解答题(共36分)7.(8分)计算:(1)计算:(-1)322-+÷-+(-1)2 012-|-5|.(2)128.(8分)如图一只蚂蚁从A点沿数轴向右直爬2个单位到达点B,点A表示设点B所表示的数为m.(1)求m的值;(2)求|m-1|-|m+1|的值.9.(10分)=7,反过来,得到,由此我们可以将式子和进行化简,即=仿照上面的方法,化简下列各式:;10.(10分)在下面两个集合中各有一些实数,请你分别从中选出2个有理数和2个无理数,再用“+、-、×、÷”中的3种符号将选出的4个数进行3次运算,使得运算的结果是一个正整数.七年级数学下册6.3《实数》第二课时新课教学课时同步强化训练答案解析1.【解析】选C.由题意知-1,∴.2.【解析】选C.16的算术平方根为4,4的算术平方根为2,2的算y 3.【解析】选A.=-8,∴其中有理数的和与无理数的积的差为]-3×=(9-8)-(-1)=1+1=2.4.【解析】原式=4.答案:45.2答案:6.【解析】因为34,所以a=3,所以答案:7.【解析】(1)(-1)3×2-2=-1.(2)原式=11122++-5=1+1-5=-3.8.【解析】(1)∵蚂蚁从点A向右爬两个单位到达点B,∴点B所表示的数比点A表示的数大2.∵点A表示点B所表示的数为m,∴(2)|m-1|-|m+1|9.【解析】==;====.10.【解析】答案不唯一.如(1)0÷3+π×3π=0+3=3.(2) 3×23)(3) 23-(-43)+π×3π=2+3=5.七年级数学下册第六章《实数》单元综合测试卷(一)班级:__________ 姓名:__________ 成绩:_________(45分钟100分)一、选择题(每小题4分,共28分)1.(-0.7)2的平方根是( )(A)-0.7 (B)±0.7 (C)0.7 (D)0.492.下列判断中,你认为正确的是( )π是分数(A)0的倒数是0 (B)223.下列说法正确的是( )(A)a一定是正数(B)2011是有理数3(C)(D)平方等于自身的数只有14.如图,在数轴上点A,B对应的实数分别为a,b,则有( )(A)a+b>0 (B)a-b>0>0(C)ab>0 (D)ab5.下列说法正确的有:①一个数的立方根的相反数等于这个数的相反数的立方根;②64的平方根是±8,立方根是±4;③表示非负数a 的平方根,a 的立方根;④.( )(A)①③ (B)①③④ (C)②④ (D)①④6.如图,下列各数中,数轴上点A 表示的可能是( )(A)4的算术平方根 (B)4的立方根 (C)8的算术平方根 (D)8的立方根7.如果m 是2 012的算术平方根,那么2 012100的平方根为( ) (A)m100±(B)m 10(C)m 10-(D)m ±10二、填空题(每小题5分,共25分) 8..9.3m=-,则m 的取值范围为___________.10.比较大小: (用“<”或“>”号填空).11.若x ,y y 20-=,则x+y=_______.12.对于两个不相等的实数a 、b ,定义一种新的运算如下,a b->0),如:32-那么6*(5*4)=________.三、解答题(共47分)13.(10分)如图所示,数轴上表示1A ,B ,点B到点A 的距离与点C 到点O 的距离相等,设点C 所表示的数为x , (1)请你写出数x 的值;(2)求2(x -的立方根.14.(12分)计算.(1)21121(2)----||;(2)15.(12分)“欲穷千里目,更上一层楼”说的是登得高看得远,若观测点的高度为h ,观测者能看到的最远距离为d,则d≈r为地球半径(通常取6 400 km),小明站在海边一块岩石上,眼睛离地面的高度为20m ,他观测到远处一艘轮船刚露出海平线,此时该船离小明约有多远?16.(13分)若a,b 为实数,且b 7a 2=++,求a+b 的平方根.七年级数学下册第六章《实数》单元综合测试卷(一)答案解析1.【解析】选B.∵(-0.7)2=0.49,又∵(±0.7)2=0.49,∴0.49的平方根是±0.7.π是一个无理数,故B错误2是指4的算术平方根,结果为2,故D错误.3.【解析】选B.a有可能是小于等于0的数,即不一定是正数;20113是分数,即也是有理数;0和是有理数正确.1,不单单只有1,所以只有201134.【解析】选A.∵由数轴上a、b两点的位置可知,a<0,b>0,|a|<b,<0,∴ a+b>0,a-b<0,ab<0,ab故选项A正确;选项B,C,D错误.5.【解析】选A.①因为一对相反数的立方根仍是一对相反数,故说法①正确;②因为64的立方根是4,故说法②错误;③本题符合非负数平方根的表示方法,实数立方根的表示方法,故说法③正确;④因为=0,故说法④错误.故选A.6.【解析】选C.由数轴知,点A表示的数是2与3之间的数,而4的算术平方根和8的立方根都是2,4的立方根小于2,8的算术平方根大于2小于3.7.【解析】选D.把2 012缩小100倍,根据被开方数小数点的移动规律,其算术平方根为原来的十分之一,易得2 012100的平方根.故选D.8.【解析】8==.答案:89.【解析】3m=-,∴3-m ≥0,∴m ≤3.答案:m ≤310.【解析】将2然后再进行大小的比较.答案:>11.【解析】由题意得,x=-3,y=2,所以x+y=-1.答案:-112.【解析】5*4354==-,所以6*3163==-.答案:113.【解析】(1)因为OA=1,所以,所以所以点C 所表示的数x(2)由(1)得22(x 11-=-=,即2(x -=1,1的立方根为1.14.【解析】(1)原式=1121144-+-=;(2)原式=3243655--+=-.15.【解析】根据题意得,h=20 m=0.02 km ,r=6 400 km ,所以小明离船的距离d 16.【解析】由题意得a 2-4=0,且a+2≠0, 所以a=2,所以b=7, 所以a+b 的平方根为±3.七年级数学下册第六章《实数》单元综合测试卷(二)班级:__________ 姓名:__________ 成绩:_________(45分钟100分)一、选择题(每小题4分,共28分)中,无1.在实数:3.141 59 1.010 010 001,4.21,π,227理数有( )(A)1个(B)2个(C)3个(D)4个( )(A)-2 (B)2 (C)-4 (D)43.下列计算正确的是( )=1 - =1±24.| =( )(C)-5.( )(A)3 (B)-3 (C)±3 (D)9( )6.(A)2 (B)4 (C)15 (D)16的算术平方根是( )二、填空题(每小题5分,共25分)π,-4,0这四个数中,最大的数是___________.9.计算:|-2|+(-3)010.写出一个比4小的正无理数:___________.11.某建筑工地用一根钢筋围成一个面积为36 m2的正方形框,还剩下13 m,则这根钢筋的长度为_______m.12.已知a,b为两个连续的整数,且ab,则a+b=______.三、解答题(共25分)13.(10分)(1)计算:|-2|+(-1)2 012×(π-3)0+(-2)-2;(2)计算:0|(3).-π14.(12分)已知|a|=5 =7,且|a+b|=a+b,求a-b的值.15.(12分)已知2a-1的算术平方根是3,3a+b-1的算术平方根是4,c a+2b-c的算术平方根.16.(13分)我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题,求59 319的立方根.华罗庚脱口而出:39.众人十分惊奇,忙问计算的奥妙.你知道他是怎样迅速准确地计算出结果的吗?请按照下面的问题试一试怎样求能开得尽的数的立方根.(1)由103=1 000,1003=1 000 000,你能确定59 319的立方根是几位数吗?(2)由59 319的个位数是9,你能确定59 319的立方根的个位数是几吗?(3)如果划去59 319后面的三位319得到数59,而33=27,43=64,由此你能确定59 319的立方根的十位数是几吗?七年级数学下册第六章《实数》 单元综合测试卷(二答案解析)1.【解析】选A.由无理数的定义可知,这组数中只有π是无理数.2.【解析】选B.,-2的相反数是2,故选B.3.【解析】选A.根据二次根式的意义及运算法则,可得:=1是正确的.4.【解析】选D.<0,∴,故选D.5.【解析】选96.【解析】选B.由于9<15<16,所以15的平方根应在3和4 之间,又因为3.52=12.254.7.【解析】选C.=13,∴138、π9.【解析】|-2|+(-3)0答案:110.【解析】此题答案不惟一,举例如:4π,,.答案:4(答案不惟一)11.【解析】∵正方形的面积为36 m 2,=6(m).∴钢筋长为6×4+13=37(m).答案:37∴56,即12.【解析】∵a=5,b=6,即a+b=11.答案:1113.【解析】(1)原式=113+⨯-=-21144(2)原式=1 1.14.【解析】∵|a|=5,∴a=±5,∴b2=49,∴b=±7,∵|a+b|=a+b,∴a+b>0.∴当a=5时,b=7,a-b=-2;当a=-5时,b=7,a-b=-12.15.【解析】由题意知:2a-1=9,3a+b-1=16,c=3,解得:a=5,b=2,c=3,所以a+2b-c=6,.16.【解析】(1)因为59 319比103大,比1003小,所以59 319的立方根是两位数.(2)只有9的立方最后一位数是9,所以59 319的立方根的个位数是9.(3)因为27<59<64,所以59 319的立方根的十位数是3,所以这个数是39.【变式训练】你能用上面的方法求出148 877的立方根吗?【解析】因为148 877比103大,比1003小,所以这个数的立方根是两位数,由148 877的个位数是7,所以确定148 877的立方根的个位数是3,如果划去148 877后面的三位877得到数148,而5的立方=125,6的立方=216,由此确定148 877的立方根的十位数是5,所以148 877的立方根是53.。

实数(知识讲解)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

实数(知识讲解)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

专题6.7 实数(知识讲解)【学习目标】1. 了解无理数和实数的意义;2. 了解有理数的概念、运算法则在实数范围内仍适用 .【要点梳理】要点一、有理数与无理数有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数.特别说明:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式.(2)常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:1.313113111…….5.要点二、实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数2.实数与数轴上的点一一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.要点三、实数大小的比较对于数轴上的任意两个点,右边的点所表示的实数总是比左边的点表示的实数大. 正实数大于0,负实数小于0,两个负数,绝对值大的反而小.要点四、实数的运算有理数关于相反数和绝对值的意义同样适合于实数.当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.在进行实数的运算时,有理数的运算法则及运算性质等同样适用.【典型例题】类型一、实数➽➼概念的理解✬✬分类1. 把下列各数写入相应的集合内:12-,22,364-,0.26,7π,0.10,5.12,33-,327+.(1) 有理数集合:{ }; (2) 正实数集合:{ }; (3) 无理数集合:{ } 【答案】(1) 12-,364-,0.26, 0.10,5.12(2) 22,0.26,7π,0.10,5.12,33-,327+(3) (3) 22,7π, 33-,327+【分析】(1)根据有理数的定义进行作答即可; (2)根据正数的定义进行判断即可; (3)根据无理数的定义进行判断即可. 解:(1)有理数有:12-,3644-=-,0.26, 0.10,5.12故答案为:12-, 364-,0.26, 0.10,5.12(2)12-,3644-=-是负数,33-绝对值是正数正实数有:22,0.26,7π,0.10,5.12,33-,327+ 故答案为:22,0.26,7π,0.10,5.12,33-,327+ (3)无理数有:22, 7π, 33-,327+故答案为:22, 7π, 33-,327+【点拨】本题考查了实数的分类,即实数分为正实数,零,负实数;实数还可以分为有理数和无理数,有理数包括正数和分数,无理数是无线不循环小数,熟练掌握有理数、无理数的定义是解题的关键.举一反三:【变式1】 把下列各数填入相应的集合内.32π、-5222034905380.3737737773…(相邻两个3之间的7逐次加1个),(1)有理数集合{…}(2)无理数集合{…}(3)负实数集合{… }【答案】(1) -52,49,0,38-(2) 32,π,2,203,-5,0.3737737773(3)-52,-5,38-.【分析】(1)根据有理数的定义进行判定即可得出答案;(2)根据无理数的定义进行判定即可得出答案;(3)根据负实数的定义进行判定即可得出答案.解:(1)有理数集合:{-52,49,0,38-…}(2)无理数集合:{32,π,2,203,-5,0.3737737773……}(3)负实数集合:{-52,-538-【点拨】本题主要考查了实数的分类,熟练掌握实数的分类进行求解是解决本题的关键.把下列各数序号分别填入相应的集合内:32① 14,10,①π-,①52-,15203①6-①38-①0.979779777···(相邻两个9之间7的个数逐次增加1)【答案】有理数集合:①①①;无理数集合:①①①①①①①;负实数集合:①①①①【分析】根据实数的性质即可分类.解:有理数为14,52-,38-;无理数为32,10,π-,15,203,6-,0.979779777···(相邻两个9之间7的个数逐次增加1);负实数为π-,52-,38-,6-,①有理数集合:①①①;无理数集合:①①①①①①①;负实数集合:①①①①.【点拨】此题主要考查实数的分类,解题的关键是熟知实数的分类方法及特点.类型二、实数➽➼实数性质✬✬实数与数轴➽➼运算✬✬化简3 50.2-11-327825-3π-相反数倒数绝对值【分析】根据相反数、倒数、绝对值的定义依次即可得出答案.解:3 50.2-11-327825-3π-相反数350.21132-52-3π-倒数53-51111-2325--13π-绝对值350.2113252-3π-【点拨】本题考查实数的分类,立方根、分母有理化.对于分母中是二次根式的要分母有理化.举一反三:【变式1】实数a,b,c2a|a-b|+|c-a|.【答案】a b c --+【分析】先判断0a b c <<<,进而得到0a b -<,0c a ->,再化简即可. 解:由数轴上点的位置可得 0a b c <<<,①0a b -<,0c a ->, ①2a a b c a --+- a a b c a =-+-+-a b c =--+.【点拨】本题考查了求一个数的算术平方根,化简绝对值,整式的加减运算,实数与数轴,根据数轴及运算法则判断0a b -<,0c a ->是解本题的关键.【变式2】 我们在学习“实数”时画了这样一个图,即“以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O 为圆心,正方形的对角线长为半径画弧交数轴于点A ”,请根据图形回答下列问题:(1) 线段OA 的长度是多少?(要求写出求解过程) (2) 这个图形的目的是为了说明什么?(3) 这种研究和解决问题的方式体现了 的数学思想方法(将下列符合的选项序号填在横线上)A .数形结合B .代入C .换元D .归纳【答案】(1) OA =2;(2)数轴上的点和实数是一一对应关系;(3)A【分析】(1)首先根据勾股定理求出线段OB 的长度,然后结合数轴的知识即可求解; (2)根据数轴上的点与实数的对应关系即可求解; (3)本题利用实数与数轴的对应关系即可解答. 解:(1) OB 2=12+12=2①OB =2 ①OA =OB =2(2)数轴上的点和实数是一一对应关系(3) 这种研究和解决问题的方式,体现的数学思想方法是数形结合.故选A【点拨】本题主要考查了实数与数轴之间的关系,此题综合性较强,不仅要结合图形,还需要熟悉平方根的定义.也要求学生了解数形结合的数学思想.类型三、实数➽➼估算✬✬无理数的整数(小数)部分✬✬➽➼运算✬✬化简3.[阅读材料]459253,①151<251的整数部分为15152(1)91的小数部分是.(2)已知a21b21a)3+(b+4)2的值.【答案】(1)91﹣9 (2)-43【分析】(1)估算出91的范围99110<<,可得到91的整数部分,进而得到91的小数部分;(2)估算出21的范围4215<<,可得到21的整数部分,进而得到21的小数部分,从而得到a,b的值,再求代数式的值即可.<<,(1)解:①8191100①99110<<,①91的整数部分是9,①91的小数部分91﹣9,故答案为:91﹣9;<<,(2)解:①162125①4<21<5,①21的整数部分是4,小数部分是21﹣4, ①a =4,b =21﹣4,①原式=(﹣4)3+(21-4+4)2 =﹣64+21 =﹣43.∴代数式的值为43-.【点拨】本题考查了实数的大小比较,代数式求值,无理数估算知识.解题的关键在与正确的计算求值.举一反三:【变式1】 比较下列各组数的大小: (1356;(2325-3-;(3513 【答案】(1)356<;(2)3253->-;(3)3512-> 【分析】(1)直接化简二次根式进而比较得出答案; (2)直接估算无理数的取值范围进而比较即可; (3)直接估算无理数的取值范围进而比较即可. 解:(1)①366=,①356<; (2)①33252-<-<-,①3253->-; (3)①132<<,①13122<<, ①253<<, ①1512<-<, ①3512->. 【点拨】本题主要考查了实数比较大小,正确估算无理数取值范围是解题关键.【变式2】2212221来表2(129的整数部分是,小数部分是;(2)如果55a,55b,求a5的值.【答案】(1)5,29﹣5;(2)35﹣2【分析】(1)估算29的近似值,即可得出29的整数部分和小数部分;(2)求出a、b的值,再代入计算即可.解:(1)①25<29<36,①5<29<6,①29的整数部分为5,小数部分为29﹣5,故答案为:5,29﹣5;(2)①2<5<3,①7<5+5<8,①5+5的小数部分a=5+5﹣7=5﹣2,①2<5<3,①﹣3<﹣5<﹣2,①2<5﹣5<3,①5﹣5的整数部分为b=2,①a+5b=5﹣2+25=35﹣2.【点拨】本题考查了无理数的估算,正确估算无理数的取值范围是解题的关键.类型四、实数➽➼实数的混合运算➼运算✬✬化简4.计算:(13325181276464 (23226511274⎛⎫-- ⎪⎝⎭【答案】(1)558;(2)112-. 【分析】直接利用立方根的性质及平方根的性质分别化简,然后根据实数的运算法则求得计算结果解:(1)原式=519384-⨯- ,=152988-- , =558(2)原式=3151274-+- , =1134-+ , =112-【点拨】此题主要考查了实数运算,正确化简各数是解题关键. 举一反三:【变式1】 计算题:(1)233111(2)2789⎛-+-⨯-- ⎝ (2238321253 【答案】(1)-3;(2)11【分析】(1)根据有理数的乘方,求一数的立方根和算术平方根进行计算; (2)根据求一数的立方根和算术平方根,化简绝对值,进行实数的混合运算. 解:(1)原式11183111383⎛⎫=--⨯+⨯-=---=- ⎪⎝⎭;(2)2383212538235311--+-=-++-=.【点拨】本题考查了实数的混合运算,求一数的立方根和算术平方根,掌握实数的运算法则是解题的关键.【变式2】 计算: (1)3112548(2) ()20223912712-【答案】(1)5 (2)22-【分析】对于(1),由1142=,255=,31182=,再计算即可;对于(2),由93=,(-1)2022=1,3273=,1221-=-,再计算即可. 解:(1)原式=115522+-=;(2)原式=3132122--+-=-.【点拨】本题主要考查了实数的运算,求出各数的平方根和立方根是解题的关键.类型五、实数➽➼实数的运算➼程序设计✬✬新定义5. 一个数值转换器,如图所示:(1) 当输入的x 为81时.输出的y 值是_________;(2) 若输入有效的x 值后,始终输不出y 值,请写出所有满足要求的x 的值; (3) 若输出的y 2,请写出两个满足要求的x 值.【答案】(1)3; (2)0x =,1; (3)4x =,2x =(答案不唯一) 【分析】(1)根据运算规则即可求解;(2)根据0的算术平方根是0,1的算术平方根是1即可判断; (3)根据运算法则,进行逆运算即可求得无数个满足条件的数. (1)解:当81x =时,取算术平方根81=9,不是无理数,继续取算术平方根93=,不是无理数,继续取算术平方根得3,是无理数,所以输出的y 值为3;(2)解:当0x =,1时,始终输不出y 值.因为0,1的算术平方根是0,1,一定是有理数;(3)解:4的算术平方根为2,2的算术平方根是2,①4x =,2x =都满足要求.【点拨】本题考查了算术平方根的计算和无理数的判断,正确理解给出的运算方法是关键.举一反三:【变式】思考与探究:(1)在如图所示的计算程序中,若开始输入的数值是4,则最后输出的结果是___________.(2)在如图所示的计算程序中,若最后输出的结果是58,则开始输入的数值是___________.(3)按下面的程序计算,若开始输入的值x为正数,最后输出的结果为1621,则满足条件的x的不同值最多有多少个?【答案】(1)17;(2)6或-10;(3)6个【分析】(1)根据程序运算图可得算式4×3+5,按运算顺序进行求解即可;(2)设输入的数字为m,根据题意可得关于x的方程,解方程即可求得答案;(3)根据最后输出的结果,可计算出它前面的那个数,依此类推,可将符合题意的正数求出.解:(1)由题意得:4×3+5=17,故答案为:17;(2)设输入的数字为m,则有(m+2)2-6=58,解得:m=6或m=-10,故答案为:6或--10;(3)①最后输出的数为1621,①4[(x+5)-(-2)2]-3=1621,解得:x=405>0,又①4[(x+5)-(-2)2]-3=405,解得:x=101>0,又①4[(x+5)-(-2)2]-3=101,解得:x=25>0,又①4[(x+5)-(-2)2]-3=25,解得:x=6>0,又①4[(x+5)-(-2)2]-3=6,解得:x=54>0, 又①4[(x+5)-(-2)2]-3=54, 解得:x=116>0, 又①4[(x+5)-(-2)2]-3=116, 解得:x=1564-<0,(不符合题意) ①符合题意的正数最多有6个.【点拨】本题考查了程序运算,涉及了一元一次方程,利用平方根的解方程等知识,正确审题,弄清程序运算中的运算顺序,熟练掌握相关和运算法则和解题方法是解此类问题的关键.6. 对于两个不相等的实数a 、b ,定义一种新的运算如下,(0)a b a b a b a b+*=+>-,如:323*2532+==-,求()654**的值. 【答案】1【分析】根据已知条件先求出5*4的值,再求出6*(5*4)的值即可求出结果. 解:①(0)a b a b a b a b +*=+>-, ①545*4354+==-, ①()636*5*46*3163+===-. 【点拨】此题主要考查实数的运算,解题的关键是根据新定义运算法则进行求解. 举一反三:【变式】 定义新运算:对于任意实数a ,b ,都有2a b a b =+※,例如2747423=+=※.(1)求54※的值.(2)求(712※※的平方根. 【答案】(1)21;(2)±4【分析】(1)根据定义新运算即可求54※的值;(2)根据定义新运算求()712※※的值,再计算平方根即可得出答案. 解:(1)由定义新运算得:2545451621=+=+=※;(2)由定义新运算得:()7127(12)737916=+==+=※※※※, ①()712※※的平方根为164±=±. 【点拨】本题考查新定义的有理数运算,掌握新定义的运算法则是解题的关键. 类型六、实数➽➼实数的运算➼实际运用✬✬规律7. 数学阅读是学生个体根据已有的知识经验,通过阅读数学材料建构数学意义和方法的学习活动,是学生主动获取信息,汲取知识,发展数学思维,学习数学语言的途径之一.请你先阅读下面的材料,然后再根据要求解答提出的问题:问题情境:设a ,b 是有理数,且满足2322+=-a b ab 的值.解:由题意得(3)(2)20-++a b ,①a ,b 都是有理数,①3,2a b -+也是有理数,2①30,20a b -=+=,①3,2a b ==-,①(2)36ab =-=-解决问题:设x ,y 都是有理数,且满足22585x y -+=+x y +的值.【答案】8或0【分析】根据题目中例题的方法,对所求式子进行变形,求出x 、y 的值,从而可以求得x +y 的值.解:①225845x y y -+=+,①(x 2-2y -8)+(y -4)5=0,①x 2-2y -8=0,y -4=0,解得,x =±4,y =4,当x =4,y =4时,x +y =4+4=8,当x=-4,y=4时,x+y=(-4)+4=0,即x+y的值是8或0.【点拨】本题考查实数的运算,解题的关键是明确题目中例题的解答方法,然后运用类比的思想解答所求式子的值.举一反三:【变式】如图1,有5个边长为1的小正方形组成的纸片,可以把它剪拼成一个正方形.(1)拼成的正方形的面积是,边长是;(2)仿照上面的做法,你能把下面这十个小正方形组成的图形纸,剪开并拼成一个大正方形吗?若能,在图2中画出拼接后的正方形,并求边长;若不能,请说明理由.【答案】(1)5;5(2)10【分析】(1)一共有5个小正方形,那么组成的大正方形的面积为5,边长为5的算术平方根;(2)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,在所给图形中截取两条长为10的且互相垂直的线段,进而拼合即可.解:(1)拼成的正方形的面积是:5,边长为:5.(2)如图所示,能,正方形的边长为10.【点拨】本题考查了图形的剪拼、勾股定理、正方形的面积和正方形的有关画图,巧妙地根据网格的特点画出正方形是解此题的关键.8. 阅读下列材料:设:0.30.333x ==,①则10 3.333x =.①由①-①,得93x =,即13x =. 所以10.30.3333==. 根据上述提供的方法.把0.7•和1.3•化成分数,并想一想.是不是任何无限循环小数都可以化成分数? 【答案】70.70.7779•=⋯=,41.33•=.任何无限循环小数都可以化成分数. 【分析】设0.70.777x ==⋯①则107.777x =⋯,①;由-②①,得97x =;由已知,得10.30.3333==,所以11.310.31.3=+=+任何无限循环小数都可以这样化成分数. 解:设0.70.777x ==⋯①则107.777x =⋯,①由①-①,得97x =,即79x =.所以70.70,7779=⋯=. 由已知,得10.30.3333==, 所以141.310.3133=+=+=. 任何无限循环小数都能化成分数.【点拨】考核知识点:无限循环小数和有理数.模仿,理解材料是关键.举一反三:【变式】(2020春·山西太原·八年级太原师范学院附属中学校考阶段练习)阅读下列解题过程:231111()4422-===; 254221()9933-=; 279331()161644-===;… (111136-=________. (2)按照你所发现的规律,请你写出第n 个等式:________.(335799(1)(1)(1)(1)49162500----【答案】(1)56;(2)2211(1)1n n n n +-=++;(3)150 【分析】(1)仿照已知等式确定出所求即可;(2)归纳总结得到一般性规律,写出即可;(3)原式变形后,仿照上式得出结果即可.解:(1)11255136366-==; 故答案为:56; (2)观察上面的解题过程,发现的规律为:2222221(1)211(1)(1)(1)1n n n n n n n n n ++---===++++, 故答案为:2211(1)1n n n n +-=++; (3)35799(1)(1)(1)(1)49162500---- 149240149162500=⨯⨯⨯⨯ 12500=150=. 【点拨】本题考查了实数的运算,规律型:数字的变化类,弄清题中的规律是解本题的关键.中考真题专练【1】(2020·重庆·统考中考真题)在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数——“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”.例如:14524÷=,14342÷=,所以14是“差一数”;19534÷=,但19361÷=,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由;(2)求大于300且小于400的所有“差一数”.【答案】(1)49不是“差一数”,74是“差一数”,理由见分析;(2)314、329、344、359、374、389【分析】(1)直接根据“差一数”的定义计算判断即可;(2)解法一:根据“差一数”的定义可知被5除余4的数个位数字为4或9,被3除余2的数各位数字之和被3除余2,由此可依次求得大于300且小于400的所有“差一数”;解法二:根据题意可得:所求数加1能被15整除,据此可先求出大于300且小于400的能被15整除的数,进一步即得结果.解:(1)①49594÷=;493161÷=,①49不是“差一数”,①745144÷=;743242÷=,①74是“差一数”;(2)解法一:①“差一数”这个数除以5余数为4,①“差一数”这个数的个位数字为4或9,①大于300且小于400的符合要求的数为304、309、314、319、324、329、334、339、344、349、354、359、364、369、374、379、384、389、394、399,①“差一数”这个数除以3余数为2,①“差一数”这个数的各位数字之和被3除余2,①大于300且小于400的所有“差一数”为314、329、344、359、374、389.解法二:①“差一数”这个数除以5余数为4,且除以3余数为2,①这个数加1能被15整除,①大于300且小于400的能被15整除的数为315、330、345、360、375、390,①大于300且小于400的所有“差一数”为314、329、344、359、374、389.【点拨】此题主要考查了带余数的除法运算,第(2)题的解法一是用逐步增加条件的方法依此找到满足条件的所有数;解法二是正确得出这个数加1能被15整除,明确方法是关键.【2】(2019·重庆·统考中考真题)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特殊的自然数—“纯数”.定义;对于自然数n ,在计算n+(n +1)+(n +2)时,各数位都不产生进位,则称这个自然数n 为“数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数. 【答案】(1)2019不是“纯数”,2020时“纯数”,见分析;(2)13个.【分析】(1)根据题目中的新定义可以解答本题,注意各数位都不产生进位的自然数才是“纯数”;(2)根据题意可以推出不大于100的“纯数”的个数,本题得以解决.解:(1)当2019n =时,12020n +=,22022n +=∵计算时,个位为90110++=,需要进位,∴2019不是“纯数”;当2020n =时,12021n +=,22022n +=∴个位为0123++=,不需要进位:十位为226++,不需要进位:百位为0000++=,不需要进位:千位为2226++=,不需要进位:∴2020是“纯数”;综上所述,2019不是“纯数”,2020时“纯数”.(2)由题意,连续的三个自然数个位不同,其他位都相同;并且,连续的三个自然数个位为0、1、2时,不会产生进位;其他位的数字为0、1、2、3时,不会产生进位;①当这个数为一位的自然数的时候,只能是0、1、2,共3个;②当这个数为二位的自然数的时候,十位只能为1、2、3,个位只能为0、1、2,共9个;③当这个数为100时,100是“纯数”;∴不大于100的“纯数”有39113++=个.【点拨】本题考查整式的加减、有理数的加法、新定义,解答本题的关键是明确题意,利用题目中的新定义解答.。

《13.3实数》同步测试 人教版

《13.3实数》同步测试 人教版

《13.3实数》2010年同步测试一、填空题(共7小题,每小题3分,满分21分)1、(2003•金华)若无理数a满足不等式1<a<4,请写出两个你熟悉的无理数a:_________.2、在数轴上,到原点距离为错误!未找到引用源。

个单位的点表示的数是_________.3、错误!未找到引用源。

的相反数是_________,错误!未找到引用源。

﹣错误!未找到引用源。

的相反数是_________.4、|2﹣错误!未找到引用源。

|=_________,|3﹣π|=_________.5、比较大小:3_________错误!未找到引用源。

,7错误!未找到引用源。

_________6错误!未找到引用源。

,﹣错误!未找到引用源。

_________﹣3错误!未找到引用源。

,错误!未找到引用源。

_________(错误!未找到引用源。

)3.6、大于﹣错误!未找到引用源。

而错误!未找到引用源。

的所有整数的和_________.7、设a是最小的自然数,b是最大负整数,c是绝对值最小的实数,则a+b+c=_________.二、选择题(共5小题,每小题4分,满分20分)8、(2003•上海)下列命题中正确的是()A、有限小数不是有理数B、无限小数是无理数有限小数不是有理数C、数轴上的点与有理数一一对应D、数轴上的点与实数一一对应9、(2004•芜湖)下列四个实数中是无理数的是()A、2.5B、错误!未找到引用源。

C、πD、1.41410、(2004•杭州)有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④错误!未找到引用源。

是17的平方根.其中正确的有()A、0个B、1个C、2个D、3个11、在﹣错误!未找到引用源。

,﹣错误!未找到引用源。

,﹣错误!未找到引用源。

,﹣错误!未找到引用源。

四个数中,最小的数是()A、﹣错误!未找到引用源。

B、﹣错误!未找到引用源。

C、﹣错误!未找到引用源。

七年级数学下册 6 实数章末复习(二)实数习题 新人教版(2021学年)

七年级数学下册 6 实数章末复习(二)实数习题 新人教版(2021学年)

2017春七年级数学下册6实数章末复习(二)实数习题(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017春七年级数学下册6实数章末复习(二)实数习题(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017春七年级数学下册 6 实数章末复习(二)实数习题(新版)新人教版的全部内容。

章末复习(二) 实数基础题知识点1 平方根、算术平方根、立方根的概念与性质1.(武汉中考)若式子x-2在实数范围内有意义,则x 的取值范围是(C )A.x ≥-2 B .x>-2C .x ≥2D .x ≤22.(滨州中考)数5的算术平方根为(A )A.\r(5) B .25 C .±25 D .±错误!3.下列说法中正确的是(D )A .-4没有立方根B .1的立方根是±1C。

\f(1,36)的立方根是错误! D.-5的立方根是错误!4.利用计算器计算:52-32=4,\r (552-332)=44,错误!=444.猜想23802580333555 个个-=480444个⋯ . 5.已知2a+1的算术平方根是0,b-a 的算术平方根是错误!,求错误!ab 的算术平方根.解:∵2a+1=0,∴a =-错误!。

∵错误!=错误!,∴b -a =\f(1,4)。

∴b=-\f(1,4).∴\f (1,2)ab =\f(1,2)×错误!×错误!=错误!。

∴错误!ab 的算术平方根是错误!.知识点2 实数的分类与估算6.(烟台中考)下列实数中,有理数是(D )A .错误!B 。

错误!C .π2D .0.101 001 001 7.下列语句中,正确的是(A ) A .无理数都是无限小数B .无限小数都是无理数C .带根号的数都是无理数D .不带根号的数都是无理数8.估算错误!+4的值在(D )A.5和6之间 B .6和7之间C.7和8之间 D.8和9之间知识点3 实数与数轴9.如图,下列各数中,数轴上点A 表示的数可能是(C )A .4的算术平方根 B.4的平方根C .8的算术平方根D .10的算术平方根10.如图,数轴上的两个点A,B所表示的数分别是a,b ,在a +b,a -b,ab,|a|-|b|中,是正数的有1个.知识点4 实数的性质及运算11.计算:错误!-2错误!+2错误!=3错误!-2错误!.12.实数1-\r(2)的相反数是错误!-1,绝对值是错误!-1.13.求下列各式的值:(1)(错误!)2-错误!;解:原式=5-2=3。

人教版七年级下知识点试题精选-实数与数轴

人教版七年级下知识点试题精选-实数与数轴

七年级下册实数与数轴一.选择题(共20小题)1.下列各式估算正确的是()A.B.C.D.2.比较3,,的大小,正确的是()A.3<<B.<<3 C.3<<D.<3<3.实数a、b在数轴上对应点的位置如图所示,则下列各式正确的是()A.a>b B.a=b C.|a|>|b|D.|a|<|b|4.估计的值()A.在3和4之间B.在4和5之间C.在5和6之间D.在6和7之间5.在0,﹣3,3.2,﹣这四个数中,最小的数是()A.0 B.﹣3 C.3.2 D.﹣6.估计的大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间7.在实数0,﹣,2,﹣中最小的实数为()A.﹣B.﹣C.2 D.08.实数m、n在数轴上的位置如图所示,则下列不等关系正确的是()A.n<m B.n2<m2C.n0<m0D.|n|<|m|9.比较2,,的大小,正确的是()A. B. C. D.10.点P在数轴上运动,它所对应的数值为a,如图,当点P从点A运动到点B,则代数式+a+3的最大值为()A.4 B.a+1 C.6 D.a+311.数轴上A、B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.﹣2+B.﹣1+C.﹣2﹣D.3﹣12.设a<<b,且a、b是两个连续整数,则()A.a=1,b=2 B.a=2,b=3 C.a=3,b=4 D.a=4,b=513.在实数﹣2、0、2、﹣3中,最小的实数是()A.﹣2 B.0 C.2 D.﹣314.设a=+1,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和515.如图,数轴上A、B两点分别对应实数a、b,有如下4个结论①a<b,②|a|>|b|,③a+b>0,④a﹣b>0,则正确的结论有()个.A.1 B.2 C.3 D.416.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,相反数最大的是()A.a B.b C.c D.d17.下列各数中最小的数是()A.﹣2 B.﹣πC.﹣D.118.已知实数x,y在数轴上表示的两个点相距4个单位长度,且y比x的2倍少1,则x+y的值是()A.±14 B.10或﹣14 C.﹣10或14 D.10或1419.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2018次后,数轴上数2018所对应的点是()A.点C B.点D C.点A D.点B20.估算的值在()A.7和8之间B.4和5之间C.3和4之间D.2和3之间二.填空题(共20小题)21.比较大小: 1.5(填“>”或“<”)22.小于的正整数是.23.若4<<10,则满足条件的整数a有个.24.比较大小(填“>”“<”或“=”)25.在:1,﹣2,,0,π五个数中最小的数是.26.设a=﹣|﹣2|,b=﹣(﹣2),c=,则a,b,c中最小的实数是.27.比﹣大的非正整数有.28.如图,数轴上A,B两点表示的数分别是1和,点A关于点B的对称点是点C,则点C所表示的数是.29.比较大小:(1)﹣﹣3.2;(2)5;(3)23.30.一个正方形的面积是15,估计它的边长大小介于整数之间.31.写一个在﹣2和﹣1之间的无理数.32.数轴上与原点的距离等于个单位长度的点表示的数是.33.比较大小:π(填“<”、“=”、“>”)34.点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为.35.如图,数轴上A,B两点表示的数分别为﹣2和6,数轴上的点满足AC=BC,点D在线段AC的延长线上,若AD=AC,则BD=.36.如图所示,直角三角形中较长的直角边是较短的直角边长度的2倍,且两个顶点在数轴上对应的数分别为﹣1和1,以斜边为半径的弧交数轴于点A,点C所表示的数为2,点A与点B关于点C对称,则点B表示的数为.37.如图所示,在数轴上点A所表示的数为a,则a的值为.38.实数a、b在数轴上的位置如图所示,化简|a+b|﹣|a﹣b|=.39.如果的整数部分是m,小数部分是n,则m+=.40.若,且n是正整数,则n=.三.解答题(共10小题)41.在数轴上标出下列各数,并用“<”连接起来..42.比较﹣与﹣的大小.43.比较﹣与﹣的大小.44.阅读材料:学习了无理数后,某数学兴趣小组开展了一次探究活动:估算的近似值.小明的方法:∵,设(0<k<1).∴.∴13=9+6k+k2.∴13≈9+6k.解得.∴.问题:(1)请你依照小明的方法,估算的近似值;(2)请结合上述具体实例,概括出估算的公式:已知非负整数a、b、m,若,且m=a2+b,则(用含a、b的代数式表示);(3)请用(2)中的结论估算的近似值为:.45.如图所示,按下列方法将数轴的正半轴绕在一个圆(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数字0,1,2)上;先让原点与圆周上0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.(1)圆周上数字a与数轴上的数5对应,则a=;(2)数轴刚刚绕过圆周100圈后,一个整数点落在圆周上数字2所对应的位置,这个整数是.46.如图,OA=OB,(1)写出数轴上点A表示的数;(2)比较点A表示的数与﹣1.5的大小;并在数轴上作出﹣所对应的点.47.如图,已知OA=OB.(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小;(3)在数轴上作出表示数的点C.48.实数A,B,C在数轴上的位置如图所示,请你化简下面的式子.|A﹣C|﹣|C﹣2B|+|A+2B|49.比较下列四个算式结果的大小:(在横线上选填“>”、“<”或“=”>42+522×4×5;(﹣1)2+222×(﹣1)×2;()2+()22××;32+322×3×3.通过观察归纳,写出反映这一规律的一般结论.50.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵,即,∴的整数部分为2,小数部分为.请解答:(1)如果的小数部分为a,的整数部分为b,求的值;(2)已知:,其中x是整数,且0<y<1,求x﹣y的相反数.七年级下册实数与数轴参考答案与试题解析一.选择题(共20小题)1.下列各式估算正确的是()A.B.C.D.【分析】分别求出30=,25==,5.2==,4.1==,再找出最接近的即可.【解答】解:A、30=,故本选项错误;B、25==,故本选项错误;C、5.2==,故本选项错误;D、4.1==,故本选项正确;故选D.【点评】本题考查了估算无理数的大小和二次根式的性质,关键是能正确把根号外的移入根号内.2.比较3,,的大小,正确的是()A.3<<B.<<3 C.3<<D.<3<【分析】根据非负数本身越大,开方的结果越大分析即可.【解答】解:∵3=,2=,∴3<2,∵<=2,∴<3,∴3,,的大小顺序为<3<2.故选D.【点评】本题考查了比较实数的大小,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.3.实数a、b在数轴上对应点的位置如图所示,则下列各式正确的是()A.a>b B.a=b C.|a|>|b|D.|a|<|b|【分析】根据数轴的性质,可得a、b的符号与其绝对值的大小关系,比较分析选项可得答案.【解答】解:根据图示知,a<0<1<b,∴a<b,故A、B选项错误;根据图示知,a距离原点的距离比b距离原点的距离小,∴|a|<|b|;故C选项错误;故选D.【点评】此题主要考查了实数与数轴之间的对应关系,解答此题的关键是熟知数轴的特点,即数轴上的两个数,右边的数总比左边的数大;距原点的距离越大,绝对值越大.4.估计的值()A.在3和4之间B.在4和5之间C.在5和6之间D.在6和7之间【分析】利用”夹逼法“得出的范围,继而也可得出+1的范围.【解答】解:∵<<,∴4<<5,∴5<+1<6.故选C.【点评】此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.5.在0,﹣3,3.2,﹣这四个数中,最小的数是()A.0 B.﹣3 C.3.2 D.﹣【分析】根据正数大于负数,两个负数相比较,绝对值大的反而小可得最小数为﹣.【解答】解:在0,﹣3,3.2,﹣这四个数中,最小的数是﹣,故选:D.【点评】此题主要考查了实数的比较大小,关键是掌握正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.6.估计的大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【分析】先对进行估算,再确定是在哪两个相邻的整数之间.【解答】解:∵16<20<25,∴4<<5,∴5<+1<6,即的大小在5与6之间.故选D.【点评】此题是考查估算无理数的大小,“夹逼法”估算方根的近似值在实际生活中有着广泛的应用,我们应熟练掌握.7.在实数0,﹣,2,﹣中最小的实数为()A.﹣B.﹣C.2 D.0【分析】根据正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小比较即可.【解答】解:在实数0,﹣,2,﹣中最小的实数是﹣,故选B.【点评】本题考查了实数的大小比较的应用,主要考查学生能否选择适当的方法比较两个实数的大小.8.实数m、n在数轴上的位置如图所示,则下列不等关系正确的是()A.n<m B.n2<m2C.n0<m0D.|n|<|m|【分析】先由点n,m在数轴上的位置确定n,m的取值范围,用取特殊值进行计算再比较即可.【解答】解:根据数轴可以知道n<﹣1<m<0,令n=﹣1.5,m=﹣0.5可知,A、﹣1.5<﹣0.5,即n<m,故选项A正确;B、(﹣1.5)2=2.25>(﹣0.5)2=0.25,即n2>m2,故选项B错误;C、(﹣1.5)0=(﹣.05)0=1,即n0=m0,故选项错误;|﹣1.5|=1.5>|﹣0.5|=0.5,即|n|>|m|,故选项D错误.故选A.【点评】本题主要考查了实数与数轴之间的对应关系,比较简单,因为是选择题故可用取特殊值的方法进行比较,以简化计算.9.比较2,,的大小,正确的是()A. B. C. D.【分析】先把2写成的形式,再按照实数大小比较的法则判断即可.【解答】解:∵2=,∴<<,∴2<<.故选A.【点评】本题考查了实数的大小比较法则,解题的关键是牢记法则,此题比较简单,易于掌握.10.点P在数轴上运动,它所对应的数值为a,如图,当点P从点A运动到点B,则代数式+a+3的最大值为()A.4 B.a+1 C.6 D.a+3【分析】根据数轴确定点P在点A,B所对应的值,代入进行计算,即可解答.【解答】解:+a+3=|a﹣1|+a+3,当点P在点A时,a=﹣1,∴原式=|﹣1﹣1|﹣1+3=4,当点P在点B时,a=2,∴原式=|2﹣1|+2+3=6,∴代数式+a+3的最大值为6,故选:C.【点评】本题考查数轴与实数,解决本题的关键是由数轴找到点对应的数值.11.数轴上A、B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.﹣2+B.﹣1+C.﹣2﹣D.3﹣【分析】根据点B关于点A的对称点为C,知点B到点A的距离等于点C到点A 的距离,且点C在点A的左边.根据数轴上两点间的距离等于两点对应的数的差的绝对值进行计算.【解答】解:设点C所表示的数为x.根据题意,得﹣1﹣x=﹣(﹣1),解得x=﹣2﹣.故选C.【点评】此题考查了两点对称的性质以及数轴上两点间的距离的计算方法.数轴上两点间的距离等于两点对应的数的差的绝对值;两点关于某点对称,则两点到这点的距离相等.12.设a<<b,且a、b是两个连续整数,则()A.a=1,b=2 B.a=2,b=3 C.a=3,b=4 D.a=4,b=5【分析】先估算出的范围,即可得出答案.【解答】解:∵3<<4,∴a=3,b=4,【点评】本题考查了估算无理数的大小的应用,能估算无理数的大小是解此题的关键.13.在实数﹣2、0、2、﹣3中,最小的实数是()A.﹣2 B.0 C.2 D.﹣3【分析】依据比较实数大小的法则进行判断即可.【解答】解:﹣3<﹣2<0<2,所以最小的实数是﹣3.故选:D.【点评】本题主要考查的是比较实数的大小,熟练掌握比较实数大小的法则是解题的关键.14.设a=+1,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和5【分析】首先得出的取值范围,进而得出a,b的值.【解答】解:∵3<<4,a=+1,a在两个相邻整数之间,∴这两个整数是:4和5.故选:D.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.15.如图,数轴上A、B两点分别对应实数a、b,有如下4个结论①a<b,②|a|>|b|,③a+b>0,④a﹣b>0,则正确的结论有()个.A.1 B.2 C.3 D.4【分析】根据数轴得出a<b,|a|>|b|,a+b<0,a﹣b<0,即可得出选项.【解答】解:∵根据数轴可知:a<b,|a|>|b|,a+b<0,a﹣b<0,∴①②正确,③④错误,即正确的个数为2个;【点评】本题考查了实数与数轴的应用,能读懂数轴是解此题的关键.16.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,相反数最大的是()A.a B.b C.c D.d【分析】根据数轴可以得到a、b、c、d表示的数是多少,从而可以得到它们的相反数,从而可以得到哪个数的相反数最大,本题得以解决.【解答】解:由数轴可得,a=﹣2,则a的相反数是2;b=﹣1,则b的相反数是1;c=0.5,则c的相反数是﹣0.5;d=2,则d的相反数是﹣2;故选A.【点评】本题考查实数大小比较、相反数、实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答问题.17.下列各数中最小的数是()A.﹣2 B.﹣πC.﹣D.1【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可解答.【解答】解:∵﹣π<﹣2<﹣<1,∴最小的数是﹣π,故选:B.【点评】此题主要考查了实数的大小的比较,实数比较大小的方法:(1)正数都大于0,负数都小于0,正数大于一切负数;(2)两个负数绝对值大的反而小.18.已知实数x,y在数轴上表示的两个点相距4个单位长度,且y比x的2倍少1,则x+y的值是()A.±14 B.10或﹣14 C.﹣10或14 D.10或14【分析】由于题目没有说明该点的具体位置,故要分情况讨论.【解答】解:当y在x的左边,x﹣(2x﹣1)=4,解得x=﹣3,y=﹣7,x+y=﹣3﹣7=﹣10;当y在x的右边,2x﹣1﹣x=4,解得x=5,y=9,x+y=5+9=14.故x+y的值是﹣10或14故选:C.【点评】本题考查数轴,涉及有理数的加法运算、分类讨论的思想.19.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2018次后,数轴上数2018所对应的点是()A.点C B.点D C.点A D.点B【分析】由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一循环,由次可确定出2018所对应的点.【解答】解:当正方形在转动第一周的过程中,1所对应的点是A,2所对应的点是B,3所对应的点是C,4所对应的点是D,∴四次一循环,∵2018÷4=504…2,∴2018所对应的点是B.故选D.【点评】本题主要考查实数与数轴,确定出点的变化规律是解题的关键.20.估算的值在()A.7和8之间B.4和5之间C.3和4之间D.2和3之间【分析】根据算术平方根的定义由16<23<25得到4<<5.【解答】解:∵16<23<25,∴4<<5.故选B.【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.二.填空题(共20小题)21.比较大小:< 1.5(填“>”或“<”)【分析】求出1.5的平方,即可得出答案.【解答】解:∵1.52=2.25>2,∴<1.5,故答案为:<.【点评】本题考查了实数的大小比较的应用,主要考查学生的判断能力.22.小于的正整数是1,2,3.【分析】先求出的范围,再求出即可.【解答】解:∵3<<4,∴小于的正整数是1,2,3,故答案为:1,2,3.【点评】本题考查了估算无理数的大小的应用,关键是求出的范围.23.若4<<10,则满足条件的整数a有83个.【分析】求出a的范围是16<a<100,求出16和100之间的整数即可.【解答】解:∵4<<10,a为整数,∴<<,∴整数a有17、18、19、…99,共99﹣17+1=83个数,故答案为:83.【点评】本题考查了算术平方根和估算无理数的大小的应用,关键是求出a的范围.24.比较大小<(填“>”“<”或“=”)【分析】本题是比较两个负数的大小关系,可以比较两个数的绝对值与的大小关系,根据两个负数,绝对值大的反而小,即可作出判断.【解答】解:∵,∴﹣<﹣.故答案是:<.【点评】本题主要考查了两个负数比较大小的方法,依据绝对值大的反而小转化为比较绝对值的大小.25.在:1,﹣2,,0,π五个数中最小的数是﹣2.【分析】根据正数大于所有负数,负数绝对值大的反而小进行比较即可.【解答】解:因为|﹣2|>|﹣|,所以﹣2<﹣.∴﹣2<﹣<0<1<π.故五个数中最小的数是﹣2.【点评】此题主要考查的实数的大小的比较,实数比较大小的法则:正数大于0,0大于负数,两个负数,绝对值大的反而小.26.设a=﹣|﹣2|,b=﹣(﹣2),c=,则a,b,c中最小的实数是c.【分析】首先求出a、b、c的大小,然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:a=﹣|﹣2|=﹣2,b=﹣(﹣2)=2,c==﹣3,∵﹣3<﹣2<2,∴c<a<b,∴a,b,c中最小的实数是c.故答案为:c.【点评】(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.(2)此题还考查了一个数的绝对值的求法,以及一个数的三次方根的计算,要熟练掌握.27.比﹣大的非正整数有﹣2、﹣1、0.【分析】利用算术平方根的定义得到2<<3,则﹣3<﹣<﹣2,于是可得到﹣2,﹣1,0是比﹣大的非正整数.【解答】解:∵4<5<9,∴2<<3,∴﹣3<﹣<﹣2,∴比﹣大的非正整数为﹣2,﹣1,0.故答案为﹣2,﹣1,0.【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查了算术平方根.28.如图,数轴上A,B两点表示的数分别是1和,点A关于点B的对称点是点C,则点C所表示的数是.【分析】由题意可得AB=BC,列式计算即可.【解答】解:点C所表示的数是=2﹣1,故答案为2﹣1.【点评】本题考查了实数在数轴上的表示,注:数轴上两点间的距离等于右边点的坐标减去左边点的坐标.29.比较大小:(1)﹣>﹣3.2;(2)>5;(3)2<3.【分析】(1)根据两个负实数绝对值大的反而小进行比较;(2)根据立方的概念计算,比较即可;(3)利用平方法比较.【解答】解:(1)∵<3.2,∴﹣>﹣3.2;(2)∵53=125<130,∴>5;(3)∵(2)2=12,(3)2=18,∴2<3.故答案为:(1)>;(2)>;(3)<.【点评】本题考查的是实数的大小比较,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.30.一个正方形的面积是15,估计它的边长大小介于整数3和4之间.【分析】求出正方形的边长,估算的范围,即可得出答案.【解答】解:设正方形的边长为x,∵正方形的面积是15,∴它的边长x=,∵3<<4,∴它的边长在3和4之间,故答案为:3和4.【点评】本题考查了估算无理数的大小,正方形的性质的应用,解此题的关键是估算出的范围.31.写一个在﹣2和﹣1之间的无理数﹣,﹣等.【分析】先画出数轴,然后根据在﹣2和﹣1之间的无理数即可解答.【解答】解:在﹣2和﹣1之间的无理数是﹣,﹣..【点评】此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.32.数轴上与原点的距离等于个单位长度的点表示的数是±.【分析】设数轴上与原点的距离等于的点所表示的数是x,则|x|=,进而可得出结论.【解答】解:数轴上与原点的距离等于的点所表示的数是x,则|x|=,解得x=±.故答案为:±.【点评】本题考查的是实数与数轴,熟知数轴上两点间的距离公式是解答此题的关键.33.比较大小:π<(填“<”、“=”、“>”)【分析】求出π2和的平方的值比较即可.【解答】解:∵π2<10,∴π<.故答案为:<.【点评】本题考查了实数的大小比较的应用,能正确比较两无理数的大小是解此题的关键.34.点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为4.【分析】根据已知得出算式:|3﹣(﹣)|,求出即可.【解答】解:∵A在数轴上表示的数为,点B在数轴上表示的数为,∴A,B两点的距离是:|3﹣(﹣)|=4,故答案为:4.【点评】本题考查了实数与数轴、绝对值,关键是能根据题意列出算式.35.如图,数轴上A,B两点表示的数分别为﹣2和6,数轴上的点满足AC=BC,点D在线段AC的延长线上,若AD=AC,则BD=2.【分析】根据点A、B表示的数求出AB的长,再根据中点的定义求出AC=BC,再求出AD的长,然后求出OD的长,再求出BD,即可得解.【解答】解:∵A,B两点表示的数分别为﹣2和6,∴AB=6﹣(﹣2)=8,∵AC=BC=AB=×8=4,∵AD=AC=×4=6,∴OD=AD﹣AC=6﹣2=4,∴BD=6﹣4=2,故答案为:2.【点评】本题考查了两点间的距离,数轴,主要利用了线段中点的定义,数轴上两点间距离的求法.36.如图所示,直角三角形中较长的直角边是较短的直角边长度的2倍,且两个顶点在数轴上对应的数分别为﹣1和1,以斜边为半径的弧交数轴于点A,点C 所表示的数为2,点A与点B关于点C对称,则点B表示的数为5﹣.【分析】先根据勾股定理计算出斜边的长,进而得到A的坐标,再根据A点表示的数,可得B点表示的数.【解答】解:∵直角三角形中较长的直角边是较短的直角边长度的2倍,∴斜边的长==,∴A点表示的数为﹣1,∵C所表示的数为2,点A与点B关于点C对称,∴点B表示的数为5﹣,故答案为:5﹣.【点评】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.同时考查了实数与数轴.37.如图所示,在数轴上点A所表示的数为a,则a的值为﹣1﹣.【分析】根据勾股定理求出直角三角形的斜边,即可得出答案.【解答】解:如图:由勾股定理得:BC==,即AC=BC=,∴a=﹣1﹣,故答案为:﹣1﹣.【点评】本题考查了数轴和实数,勾股定理的应用,能求出BC的长是解此题的关键.38.实数a、b在数轴上的位置如图所示,化简|a+b|﹣|a﹣b|=﹣2b.【分析】根据图示,可得:a<0<b,﹣a>b,再根据绝对值的含义和求法,化简|a+b|﹣|a﹣b|即可.【解答】解:根据图示,可得:a<0<b,﹣a>b,∴a+b<0,∴|a+b|﹣|a﹣b|=|a+b|﹣|a﹣b|=﹣a﹣b﹣(b﹣a)=﹣2b.故答案为:﹣2b.【点评】此题主要考查了实数与数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握,解答此题的关键是要明确:一般来说,当数轴方向朝右时,右边的数总比左边的数大.39.如果的整数部分是m,小数部分是n,则m+=.【分析】根据的大小,可得+1的大小,可得m、n的值,根据有理数的加法,可得答案.【解答】解:1<,2+1<3,m=2n=﹣1,m+=2=,故答案为:【点评】本题考查了估算无理数的大小,注意1<,2+1<3是解题关键.40.若,且n是正整数,则n=3.【分析】先估算出的范围,即可得出答案.【解答】解:∵3<<4,∴n=3,故答案为:3.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.三.解答题(共10小题)41.在数轴上标出下列各数,并用“<”连接起来..【分析】先画出数轴并在数轴上标出各数,再根据数轴的特点从左到右用“<”把各数连接起来.【解答】解:﹣22=﹣4,=2.画出数轴并表示出各数如图:根据数轴的特点,从左到右用“<”把各数连接起来为:﹣22<﹣1<0<.【点评】本题考查的是有理数的大小比较及数轴的特点,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.42.比较﹣与﹣的大小.【分析】先分别求出它们的倒数,然后根据两个正数,倒数大的反而小即可求解.【解答】解:∵==+,==+,又∵+>+,∴>,∴﹣<﹣.【点评】本题考查了实数大小比较,运用求倒数法是解题的关键.43.比较﹣与﹣的大小.【分析】先把两数分别取倒数,比较出其倒数的大小,再根据分母大的反而小进行解答.【解答】解:∵﹣的倒数是=+;﹣的倒数是=+,∵>,∴>,∴﹣<﹣.【点评】本题考查的是实数的大小比较,熟知实数比较大小的法则是解答此题的关键.44.阅读材料:学习了无理数后,某数学兴趣小组开展了一次探究活动:估算的近似值.小明的方法:∵,设(0<k<1).∴.∴13=9+6k+k2.∴13≈9+6k.解得.∴.问题:(1)请你依照小明的方法,估算的近似值;(2)请结合上述具体实例,概括出估算的公式:已知非负整数a、b、m,若,且m=a2+b,则a+(用含a、b的代数式表示);(3)请用(2)中的结论估算的近似值为:7.57.【分析】(1)根据题目信息,找出41前后的两个平方数,从而确定出=6+k (0<k<1),再根据题目信息近似求解即可;(2)根据题目提供的求法,先求出k值,然后再加上a即可;(3)把a换成7,b换成8代入公式进行计算即可得解.【解答】解:(1)∵<<,设=5+k(0<k<1),∴()2=(5+k)2,∴31=25+10k+k2,∴31≈25+10k.解得k≈,∴≈5+≈5+0.6=5.6;(2)设=a+k(0<k<1),∴m=a2+2ak+k2≈a2+2ak,∵m=a2+b,∴a2+2ak=a2+b,解得k=,∴≈a+;(3)≈7+≈7.57.【点评】本题考查了无理数的估算,读懂题目提供信息,然后根据信息中的方法改变数据即可,找出一般性的方法解决问题.45.如图所示,按下列方法将数轴的正半轴绕在一个圆(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数字0,1,2)上;先让原点与圆周上0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.(1)圆周上数字a与数轴上的数5对应,则a=2;(2)数轴刚刚绕过圆周100圈后,一个整数点落在圆周上数字2所对应的位置,这个整数是302.【分析】整数与圆周上的数字建立的对应关系:数字除以3,余数是几,就和周上数字几对应;(1)计算5除以3,看得出的余数判断即可;(2)用循环的数字个数3乘圈数再加上余数(圆周上数字)求得答案即可.【解答】解:(1)5÷3=1…2,所以圆周上数字a与数轴上的数5对应,则a=2;(2)数轴刚刚绕过圆周100圈后,一个整数点落在圆周上数字2所对应的位置,这个整数是3×100+2=302.故答案为:2,302.【点评】此题考查数字与图形的变化规律,找出两个数字之间的对应关系是解决问题的关键.46.如图,OA=OB,(1)写出数轴上点A表示的数;﹣(2)比较点A表示的数与﹣1.5的大小;并在数轴上作出﹣所对应的点.【分析】(1)根据勾股定理计算即可;(2)根据=解答.【解答】解:(1)OB==,OA=OB,∴数轴上点A表示的数是﹣,故答案为:﹣;(2)|﹣|<|﹣1.5|,∴点A表示的数>﹣1.5,在数轴上作出﹣所对应的点如图所示:点C即为所求.【点评】本题考查的是实数的大小比较、实数与数轴,掌握勾股定理、绝对值比较有理数的大小的方法是解题的关键.47.如图,已知OA=OB.(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小;(3)在数轴上作出表示数的点C.【分析】(1)根据图示可以直接回答问题;(2)数轴上,左边的数总是比右边的数小;(3)由勾股定理进行答题.【解答】解:(1)如图所示,点A所表示的数是﹣2;(2)如图所示,﹣2.5在﹣2的左边,则﹣2.5<﹣2;(3)如图所示,过表示数1的点B作数轴的垂线BD,取BD=2,以O为圆心,OB为半径画弧与数轴相交于点C,则C点就是表示的点.【点评】此题主要考查了利用数轴比较实数的大小,解答此题的关键是熟知:数轴上的任意两个数,右边的数总比左边的数大.48.实数A,B,C在数轴上的位置如图所示,请你化简下面的式子.|A﹣C|﹣|C﹣2B|+|A+2B|【分析】根据数轴得出A<B<0<C,||A|>|C|>|B|,求出A﹣C<0,C﹣2B >0,A+2B<0,去掉绝对值符号后合并即可.。

人教版 数学七年级下册课时练 第六章 实数 6.3 第2课时 实数的性质及运算

人教版 数学七年级下册课时练  第六章 实数  6.3 第2课时 实数的性质及运算

人教版 数学七年级下册 第六章 实数第2课时 实数的性质及运算1.(2019·山东聊城中考)-2的相反数是( D ) A .-22 B.22 C .- 2D. 22.(2019·湖北荆门中考)-2的倒数的平方是( B ) A .2 B.12 C .-2D .-123.(2019·江苏扬州中考)下列各数中,小于-2的数是( A ) A .- 5 B .- 3 C .- 2D .-14.(2019·辽宁鞍山台安期中)下列各组数中,互为相反数的一组是( C ) A .-2与-12 B .-2与3-8 C .-2与(-2)2D .|-2|与 45.(2019·山东淄博周村区一模)实数a 在数轴上的位置如图所示,则化简|a -2 019|的结果正确的是( A )A .2 019-aB .-a -2 019C .a -2 019D .a +2 0196.(2019·山东临沂费县期中)3-10的绝对值是10-3__. 7.比较下列各组数的大小: (1)-π和-3.141 5; (2)113和2; (3)3-13和13; (4)-342和-3.4.解:(1)-π<-3.141 5.(2)∵⎝ ⎛⎭⎪⎫1132=169,(2)2=2,169<2,∴113< 2.(3)∵3-13-13=3-1-13=3-23=3-43<0,∴3-13<13.(4)-3.4=-339.304>-342,即-342<-3.4.8.(2019·河南信阳浉河区月考)已知a ,b 互为相反数,c ,d 互为倒数,m 的值对值为3,求a +b m-m 2-|2-cd |的值. 解:根据题意,得a +b =0,cd =1,m =±3,∴原式=0-9-2+1=-8- 2.9.(2018·宁夏中考)计算:⎪⎪⎪⎪⎪⎪-12-14的结果是( C )A .1 B.12 C .0D .-1 10.(2019·河南许昌禹州二模)计算:(-1)2-3-8=__3__.11.(2019·云南昭通昭阳区期中)用“*”表示一种新运算:对于任意正实数a ,b ,都有a *b =b +1.例如8*9=9+1=4,那么15*196=__15__,m *(m *16)=__5+1__. 12.计算: (1)π-2+3;(2)|2-5|+0.9.(精确到0.01) 解:(1)原式≈3.46. (2)原式≈1.72.13.计算下列各式的值. (1)63+23; (2)5-(5-3);(3)(23-32)-(33-22); (4)|-2|-(3-2)+|3-2|.解:(1)原式=(6+2)3=8 3. (2)原式=5-5+3= 3.(3)原式=23-32-33+22=-3- 2. (4)原式=2-3+2+2-3=22-23+2.14.(2019·山东淄博月考)下列计算,正确的是( A ) A.⎝ ⎛⎭⎪⎫12-1=2 B.⎪⎪⎪⎪⎪⎪12-2=-32 C.38=2 2D .-5-|-5|=015.实数a ,b 在数轴上的位置如图所示,则a 2-|a -b |=__-b __.16.(2019·河南安阳内黄期末)计算(-3)2-327-|3-2|-94=__-72+3__.17.已知||x -1=2,则x =__1+2或1-2__.18.如图,数轴上,AB =AC ,A ,B 两点对应的实数分别是3和-1,求点C 对应的实数.解:∵AC =AB =3+1,∴OC =OA +AC =3+3+1=23+1,∴点C 对应的实数是23+1. 19.计算:(1)(2019·湖北十堰中考)(-1)3+|1-2|+38; (2)3-0.125+|3-2|-3-34+|-3|-(-2)2;(3)||1-3-3-27+3⎝⎛⎭⎪⎫3-13; (4)38+4925-2(2+2).解:(1)原式=-1+2-1+2= 2.(2)原式=-0.5+2-3-32+3-2=-2.(3)原式=3-1+3+3-1=3+4.(4)原式=2+75-2-22=75-2 2.20.(教材P54,探究变式)如图,直径为1的圆从原点沿数轴向左滚动一周,圆上与原点重合的点O到达点O′,设点O′表示的数为a.(1)求a的值;(2)求-(a-16)-π的算术平方根.解:(1)由题意,知OO′的长度等于直径为1的圆的周长,∴OO′=π.∵点O′在原点左侧,∴a =-π.(2)当a=-π时,原式=-(-π-16)-π=π+16-π=16=4.∵4的算术平方根为2,∴-(a-16)-π的算术平方根为2.21.(2019·四川广安武胜期中)如图,一只蚂蚁从点A沿数轴向右爬行3个单位长度到达点B,若点A表示-3,设点B所表示的数为m.(1)求m的值;(2)求|m-1|+3(m+6)+1的值.解:(1)m的值为-3+3.(2)|m-1|+3(m+6)+1=|-3+3-1|+3×(-3+3+6)+1=2-3-3+93+1=8 3.22.阅读下面的内容,并解决问题.我们定义:如果一个数的平方等于-1,记作i2=-1,那么这个i就叫做虚数单位.虚数与我们学过的实数结合在一起叫做复数,一个复数可以表示为a+b i(a,b均为实数)的形式,其中a叫做它的实部,b叫做它的虚部.复数的加、减、乘的运算与我们学过的整式加、减、乘的运算类似.例如:计算(5+i)+(3-4i)=(5+3)+(1-4)i=8-3i.根据上述材料,解决下列问题:(1)填空:i3=__-i__,i4=__1__;(2)计算:(6-5i)+(-3+7i);(3)计算:3(2-6i)-4(5-i).解:(2)原式=6-5i-3+7i=3+2i.(3)原式=6-18i-20+4i=-14-14i.。

_人教版七年级下册第六章实数6.3实数同步训练

_人教版七年级下册第六章实数6.3实数同步训练

2020-2021学年度初一数学第二学期人教(2012)七年级下册第六章实数6.3实数同步训练一、选择题1.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>02.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A.点C B.点D C.点A D.点B3.下列结论:①两个无理数的和一定是无理数②两个无理数的积一定是无理数③任何一个无理数都能用数轴上的点表示④实数与数轴上的点一一对应,其中正确的是()A.①②B.②③C.③④D.②③④4.在实数1)0))1))2中)最小的实数是()A.-2B.-1C.1D.05.已知甲、乙、丙三数,甲=5+15,乙=3+17,丙=1+19,则甲、乙、丙的大小关系,下列何者正确 ( )A .丙<乙<甲B .乙<甲<丙C .甲<乙<丙D .甲=乙=丙6.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a <﹣3C .a >﹣bD .a <﹣b7.在实数-1.414)2)π)3.14)2+3)3.212212221…)3.14中,无理数的个数是()个. A .1 B .2 C .3 D .48.在下列式子中,正确的是( )A .20200->B .3π->-C .33-=D .03>-9.3-的倒数是( )A .3B .13 C .13- D .3-10.若2a =–a,则实数a 在数轴上的对应点一定在( )A .原点左侧B .原点右侧C .原点或原点右侧D .原点或原点左侧11.﹣2的绝对值是( )A .2B .12 C .12- D .2-12.下列实数3π,78-,02 3.1593( ).A .1个B .2个C .3个D .4个二、填空题13.高斯函数[]x ,也称为取整函数,即[]x 表示不超过x 的最大整数.例如:[]2.32=,[]1.52-=-.则下列结论:)[][]2.112-+=-; )[][]0x x +-=; ③若[]13x +=,则x 的取值范围是23x ≤<;④当11x -≤<时,[][]11x x ++-+的值为0、1、2.其中正确的结论有_____(写出所有正确结论的序号).14.如图,观察所给算式,找出规律:1+2+1=4)1+2+3+2+1=9)1+2+3+4+3+2+1=16)1+2+3+4+5+4+3+2+1=25)……根据规律计算1+2+3+…+99+100+99+…+3+2+1=____________15.写出一个大于3且小于4的无理数:___________.16.比较大小:填“>”、“<”或“=”).17.点 M ,N 在数轴上,且两点间的距离是 个单位,已知点 N 表示的数是 1,则点 M 表示的实数是_____.18之间,整数个数有_________个三、解答题19.计算:2(2)1-+20.在 13-,π,02,22-,2.121121112⋯⋯(两个 2 之间依次多一个 1),0.3中. (1)是有理数的有 .(2)是无理数的有 .(3)是整数的有 .(4)是分数的有 .21.a ,b 均为正整数,且a,b,求a +b 的最小值.22.利用计算器,求下列各式的值(结果精确到万分位)(1(2.参考答案1.B2.B3.C4.A5.A6.D7.D8.C9.C10.D11.A12.C 13.)).14.1000015π等,答案不唯一.16.>171 或118.319.20.(1)13-,0,2,22-,0.3;(2)π-2.121121112⋯⋯(两个 2 之间依次多一个 1);(3)13-,0,2,22-;(4)0.3 . 21.422.(1)28.2843;(2)1.6386。

人教版七年级下册数学实数

人教版七年级下册数学实数
阅读课本84页第二自然段, 然后完成思考
思考:
2的相反数是 ____2___
-π的相反数是____π_____ 0的相反数是____0_____
2 ___2_,| π| _π____,| 0 | __0_____
在实数范围内,相反数、倒数、绝对值的意义和有理数 范围内的相反数、绝对值的意义完全一样。
3 5
3
的相反数是__5__

-π的相反数__π___
0的相反数是__0___
3
2 __2____, 3 ___5___, 0 ___0____;
5
2 ___2_,| π| _π____,| 0 | __0_____
●在实数范围内,相反数、绝对值的意义和有理 数范围内的相反数、绝对值的意义完全一样。
如:,2,3 3是正无理数,
, 2, 3 3是负无理数。
2、按性质(或大小)分类:
正实数
3 正有理数 如:6, 1,0. •
3

正无理数 如:,5,3 4

3 0
负有理数 如: 6, 1 ,0. • ,
负实数
3
负无理数如: , 5,3 4
☆:分类可以有不同的方法,但要按同一标
准,不重不漏。
A.a+c
B.-a-2b+c
C.a+2b-c
D. -a-c
3.已知 (a4)2 a 4,求a的取值范围。
a4
任务3实数的运算
阅读课本85页 自学实数的运算法则和性质
3.实数运算
当数从有理数扩充到实数以后,实数之间不仅
可以进行加 减 乘 除 乘方运算,又增加了非
负数的开平方运算,任意实数可以进行开立方运 算。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.3 实数第2课时实数与数轴的关系及实数的运算基础训练知识点1 实数与数轴上的点的关系1.和数轴上的点一一对应的数是( )A.整数B.有理数C.无理数D.实数2.若实数a,b在数轴上的位置如图所示,则下列判断错误的是( )A.a<0B.ab<0C.a<bD.a,b互为倒数3.实数a,b在数轴上对应的点的位置如图所示,计算|a-b|的结果为( )A.a+bB.a-bC.b-aD.-a-b4.在如图所示的数轴上,点B与点C关于点A对称,A,B两点对应的实数分别是错误!未找到引用源。

和-1,则点C所对应的实数是( )A.1+错误!未找到引用源。

B.2+错误!未找到引用源。

C.2错误!未找到引用源。

-1D.2错误!未找到引用源。

+15.如图,圆的直径为1个单位长度,该圆上的点A与数轴上表示-1的点重合,将该圆沿数轴滚动1周,点A 到达点A'的位置,则点A'表示的数是( )A.π-1B.-π-1C.-π+1D.π-1或-π-1知识点2 实数的大小比较6.下列四个数中,最大的一个数是( )A.2B.错误!未找到引用源。

C.0D.-27.(2016·泰安)如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是( )A.pB.qC.mD.n8.若a,b为实数,下列说法中正确的是( )A.若a>b,则a2>b2B.若a>|b|,则a2>b2C.若|a|>b,则a2>b2D.若a>0,a>b,则a2>b2知识点3 实数的运算9.有一个数值转换器,原理如图所示.当输入的x为-512时,输出的y是( )A.-2B.-错误!未找到引用源。

C.-3错误!未找到引用源。

D.-3错误!未找到引用源。

10.已知实数a,b在数轴上对应的点如图所示,则下列式子正确的是( )A.a·b>0B.a+b<0C.|a|<|b|D.a-b>011.实数a,b在数轴上对应的点的位置如图,则必有( )A.错误!未找到引用源。

<0B.ab>0C.a-|b|>0D.a+b>0易错点1 比较大小时不注意分类讨论而出错12.若x>0,试比较x与错误!未找到引用源。

的大小.易错点2 去绝对值符号时,常因考虑问题不全面而出错13.已知a为实数,化简|a+1|-|a-2|.提升训练考查角度1 利用实数与数轴的关系进行化简14.实数a在数轴上对应的点的位置如图,化简:|a-π|+|错误!未找到引用源。

-a|.15.已知实数a,b,c在数轴上对应的点的位置如图,化简:错误!未找到引用源。

-|a-b|+|c-a|+错误!未找到引用源。

.考查角度2 利用实数的运算法则进行计算16.计算:(1)(-3)2-错误!未找到引用源。

+错误!未找到引用源。

-错误!未找到引用源。

;(2)错误!未找到引用源。

错误!未找到引用源。

+错误!未找到引用源。

错误!未找到引用源。

-错误!未找到引用源。

错误!未找到引用源。

(结果精确到0.01).考查角度3 利用数轴上两点之间的距离求值17.如图,一只蚂蚁从点A沿数轴向右直爬2个单位长度到达点B,再直爬向点C停止,已知点A所表示的数为-错误!未找到引用源。

,点C所表示的数为2,设点B所表示的数为m.(1)求m的值;(2)求BC的长.考查角度4 利用实数与绝对值的非负性解决方程问题18.已知a,b满足错误!未找到引用源。

+|b-错误!未找到引用源。

|=0,解关于x的方程(a+2)x+b2=a-1.探究培优拔尖角度1 利用实数的运算设计方案(数形结合思想)19.用长48 m的篱笆,在空地上围成一块场地,现有两种设计方案:一种是围成正方形,另一种是围成圆形.试问选用哪种方案围成的场地面积大,并说明理由.拔尖角度2 利用实数解决相关问题20.如图,每个小正方形的边长均为1.(1)图中阴影部分的面积是多少?它的边长是多少?(2)估计阴影部分的边长在哪两个整数之间?参考答案1.【答案】D2.【答案】D3.【答案】C4.【答案】D解:由题图可知:点A与点B的距离为错误!未找到引用源。

-(-1)=错误!未找到引用源。

+1,而点C与点B关于点A对称,故点A与点C的距离也为错误!未找到引用源。

+1,所以点C所表示的实数为错误!未找到引用源。

+1+错误!未找到引用源。

=2错误!未找到引用源。

+1.故选D.5.【答案】D6.【答案】A7.【答案】A8.【答案】B9.【答案】D解:由题图可知输入x=-512,先开立方得-8,-8为有理数,返回继续开立方得-2,-2为有理数,再返回继续开立方得错误!未找到引用源。

=-错误!未找到引用源。

,-错误!未找到引用源。

为无理数,符合输出条件,所以y=-错误!未找到引用源。

.10.【答案】D 11.【答案】A12.解:当0<x<1时,x<错误!未找到引用源。

;当x=1时,x=错误!未找到引用源。

;当x>1时,x>错误!未找到引用源。

.分析:此题在比较大小时,对 x的取值范围需分情况讨论. 本题易不分类或分类不全而出错.13.解:当|a+1|=0时,a=-1.当|a-2|=0时,a=2.因为a为实数,所以需分以下三种情况进行讨论:当a≤-1时,原式=-(a+1)-[-(a-2)]=-3;当-1<a<2时,原式=a+1-[-(a-2)]=2a-1;当a≥2时,原式=a+1-(a-2)=3.分析:本题易错之处在于对a的取值范围考虑不全面,不能正确分类,从而导致漏解.14.解:由数轴可知2<a<3,因为π>3,错误!未找到引用源。

<2,所以|a-π|+|错误!未找到引用源。

-a|=π-a+a-错误!未找到引用源。

=π-错误!未找到引用源。

.15.解:由数轴可知 a<b<0<c.所以a<0,a-b<0,c-a>0,b-a>0,所以原式=|a|-[-(a-b)]+c-a+|b-a|=-a+(a-b)+c-a+b-a=c-2a.16.解:(1)原式=9-错误!未找到引用源。

+错误!未找到引用源。

-3=6.(2)原式≈错误!未找到引用源。

×1.732+错误!未找到引用源。

×1.414-错误!未找到引用源。

×2.236=1.125 8≈1.13.17.解:(1)m-(-错误!未找到引用源。

)=2,所以m=2-错误!未找到引用源。

.(2)BC=|2-(2-错误!未找到引用源。

)|=|2-2+错误!未找到引用源。

|=错误!未找到引用源。

.18.解:由错误!未找到引用源。

+|b-错误!未找到引用源。

|=0,可知2a+8=0,b-错误!未找到引用源。

=0,即a=-4,b=错误!未找到引用源。

.代入方程得-2x+3=-5,解得x=4.19.解:围成圆形场地的面积大.理由如下:设围成的正方形场地的边长为 a m,则4a=48,解得a=12.所以围成的正方形场地的面积为a2=144(m2).设围成的圆形场地的半径为r m,则2πr=48,解得r=错误!未找到引用源。

.所以围成的圆形场地的面积为πr2=π·错误!未找到引用源。

=错误!未找到引用源。

≈183.4(m2).因为183.4>144,所以围成圆形场地的面积大.解:当数的范围从有理数扩充到实数后,现实生活中原来许多用有理数无法描述和解决的问题便能得到很好地解决了.20.解:(1)阴影部分的面积是16-4×错误!未找到引用源。

×3×1=10,它的边长是错误!未找到引用源。

.(2)因为错误!未找到引用源。

<错误!未找到引用源。

<错误!未找到引用源。

,即3<错误!未找到引用源。

<4,所以阴影部分的边长在3与4之间.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。

但由于某些不确定因素的存在,人生目标不一定非常具体详细,只要有一个明确的方向就可以。

而对于中学生来说,你们的目标应该是进入自己理想中的学校。

因此,每个学生都会为自己制定一个学习目标,学习目标可以分为两方面内容:一是阶段性目标,如自己要知道学习到底是为了什么?为自己、为父母,或是为其他需要感激和感恩的人?为了将来的发展,为了上大学,为了证明自己的价值?这都是很不错的理由。

只要你认为,它可以给你带来源源的动力,促使你向着自己希望的方向去发展,去努力,就可以当作自己的目标确定下来。

可以说,这是人生中的阶段性目标。

二是步骤性目标,由步骤性目标最终才能实现自己学习的总目标。

比如,这一节课必须掌握哪些知识,一天的复习要包括哪些内容,一个月的学习要达到什么效果。

小到一小时,大到一月、一学期、一年,都要有目标,只有这样,才可以不懈怠,不放松,一步一个脚印地朝着自己的最终目标前进。

当然,要进入理想的学校,你还要制定一个年度目标根据年度目标,可以具体量化学科分数指标和自己的心理成长指标。

年度目标的制定既要符合你当前的学习水平,又要适当地高于自己的实际水平,以便促进一年中自身的发展和成长同时,为了目标的清晰直观,你可以在班级中大致估算对比一下,找到和自己目标接近的同学。

比如,某位同学目前的水平应该可以考上你理想的学校,就把他作为实际中追赶的对象。

经验告诉我们,只要目标明确、方法得当,初三一年成绩在班级提升10至20名是常有的事情。

有了年度目标,还要学会将目标阶段化,这也是中考状元们为大家分享的经验,因为只有这样才能由目标逐步落实到任务。

首先,由年度目标得出中期目标。

按照前松后紧的原则,中考状元们建议大家在初三前半年落实任务的40%,比如全年要提高10名,那么期中要提高4名。

这是因为初三前半年还有些新课程要学,而且就像物理学习中所知道的那样,启动时的静摩擦力是最大的,我们需要在上半年付出一点时间和精力,调整自己的心态,使之进入良好的状态。

可以说,前半年能够完成中期目标的学生,年度目标通常都能够顺利完成,因为越到后面,我们所擅长的心理因素和压力调整就会发挥越大的作用。

接下来就是每个月的短期目标了。

制定短期目标应注意以下几个方面的问题。

第一,要对自己做一个全面的分析。

制定目标为自己的未来勾画了一个蓝图,描绘了到达最终目的地的时间和要求,但究竟如何起步,还得从自身的现状出发。

因此,要充分分析自己的目前情况。

比如,自己有哪些优势和不足,如何发挥优势、克服不足,自己的各科潜能如何,是否已经充分发挥出来了,自己各科成绩如何,偏科情况如何,如何补救;自己的学习毅力和勤奋程度如何;自己的学习方法和学习效率怎样,需做哪些改进,等等第二,可以把每个月定名,确定主题。

相关文档
最新文档