最优控制课后习题答案
最优控制胡寿松版部分习题答案
2-5 求通过(0)1x =,(1)2x =,使下列性能泛函为极值的极值曲线*()x t :2(1)ft t J x dt =+⎰解:由题可知,始端和终端均固定被积函数21L x =+,0L x ∂=∂,2L x x ∂=∂, 2d L x dt x∂⋅=∂ 代入欧拉方程0L d L x dt x∂∂-⋅=∂∂,可得20x =,即0x = 故1x c = 其通解为:12x c t c =+代入边界条件(0)1x =,(1)2x =,求出11c =,21c = 极值曲线为*()1x t t =+2-6 已知状态的初值和终值为(1)4x =,()4f x t =式中f t 自由且f t >1,试求使下列性能泛函达到极小值的极值轨线*()x t :211[2()()]2ft J x t x t dt =+⎰ 解:由题可知,2122L x x =+,()4f t ψ=,()14x =,()4f x t = 欧拉方程:L 0d L x dt x∂∂-=∂∂ 横截条件:()00t x =x ,()()f f x t t ψ=,()0fTt L L x x ψ∂⎛⎫+-= ⎪∂⎝⎭易得到2dxdt= 故12x t c =+ 其通解为:()212x t t c t c =++根据横截条件可得:()()()122121114424f f f f f x c c x t t c t c x t t c ⎧=++=⎪⎪=++=⎨⎪=+=⎪⎩解以上方程组得:12569f t c c =⎧⎪=-⎨⎪=⎩将f t ,1c ,2c 代入J 可得5*201500502150233J x x dt =+=-=⎰ 极值轨线为()*269x t t t =-+2-7 设性能泛函为120(1)J x dt =+⎰求在边界条件(0)0x =,(1)x 自由情况下,使性能泛函取极值的极值轨线*()x t 。
解:由题可知,21L x =+,()00x =,()1x 自由欧拉方程:L 0d L x dt x∂∂-=∂∂ 横截条件:()00t x =x ,L 0ft x∂=∂,0fTt L L x x ∂⎛⎫+= ⎪∂⎝⎭易得到()x t a =其通解为:()x t at b =+代入边界条件()f x t a =,()00x =,1f t =,求出0a =,0b = 将f t ,a ,b 代入J 可得()1*211J x dt =+=⎰极值轨线为()*0x t = 2-9 求使泛函22211220(2)J x x x x dt π=++⎰为极值并满足边界条件1(0)0x =,2(0)0x =1()12x π=,2()12x π=- 的极值轨线*1()x t 和*2()x t 。
(完整word版)最优控制理论与系统胡寿松版部分习题答案
2-5 求通过(0)1x =,(1)2x =,使下列性能泛函为极值的极值曲线*()x t :2(1)ft t J x dt =+⎰解:由题可知,始端和终端均固定被积函数21L x =+,0L x ∂=∂,2L x x ∂=∂, 2d Lx dt x ∂⋅=∂代入欧拉方程0L d Lx dt x ∂∂-⋅=∂∂,可得20x =,即0x =故1x c = 其通解为:12x c t c =+代入边界条件(0)1x =,(1)2x =,求出11c =,21c = 极值曲线为*()1x t t =+2-6 已知状态的初值和终值为(1)4x =,()4f x t =式中f t 自由且f t 〉1,试求使下列性能泛函达到极小值的极值轨线*()x t :211[2()()]2ft J x t x t dt =+⎰ 解:由题可知,2122L x x =+,()4f t ψ=,()14x =,()4f x t = 欧拉方程:L 0d Lx dt x ∂∂-=∂∂横截条件:()00t x =x ,()()f f x t t ψ=,()0fT t L L x x ψ∂⎛⎫+-= ⎪∂⎝⎭易得到2dxdt= 故12x t c =+ 其通解为:()212x t t c t c =++根据横截条件可得:()()()122121114424f f f f f x c c x t t c t c x t t c ⎧=++=⎪⎪=++=⎨⎪=+=⎪⎩解以上方程组得:12569f t c c =⎧⎪=-⎨⎪=⎩将f t ,1c ,2c 代入J 可得5*201500502150233J x x dt =+=-=⎰ 极值轨线为()*269x t t t =-+2-7 设性能泛函为120(1)J x dt =+⎰求在边界条件(0)0x =,(1)x 自由情况下,使性能泛函取极值的极值轨线*()x t 。
解:由题可知,21L x =+,()00x =,()1x 自由欧拉方程:L 0d L x dt x∂∂-=∂∂ 横截条件:()00t x =x ,L 0ft x∂=∂,0fT t L L x x ∂⎛⎫+= ⎪∂⎝⎭易得到()x t a =其通解为:()x t at b =+代入边界条件()f x t a =,()00x =,1f t =,求出0a =,0b = 将f t ,a ,b 代入J 可得()1*2011J x dt =+=⎰极值轨线为()*0x t = 2-9 求使泛函22211220(2)J x x x x dt π=++⎰为极值并满足边界条件1(0)0x =,2(0)0x =1()12x π=,2()12x π=- 的极值轨线*1()x t 和*2()x t 。
最优控制复习题
x = c1 t + c2
第二章习题
习题2-6
x(1) = 4,x(tf ) = 4,tf 自由且tf > 1。求x∗ (t)使
tf
J=
1
1 2 ˙ (t)] dt [2x(t) + x 2
取极小值 解:这时始端固定,末端受约束的泛函极值问 题,F = 2x(t) + 1 ˙ 2 (t),x(tf ) = c(tf ) = 4。由欧拉方程 2x ∂L d ∂ d − =2− x ˙ (t) = 2 − x ¨(t) = 0 ∂x dt ∂ x ˙ dt x ˙ (t) = 2t + c1 , 由x(1) = 4得 1 + c1 + c2 = 4 ⇒ c1 + c2 = 3 由x(tf ) = 4得 t2 f + c1 tf + c2 = 4
图 A-1 : 天然气管道网络
课后习题解答 最优控制理论与系统 December 27, 2013 12 / 33
E 2
4 H
G 1 2 3 3 K J 4 L
第四章习题
解:首先由L开始逆向计算每一个压缩机站的最大流通能力,并标注在 站点编号右侧,为了便于区别,同时用加粗线条标注由该站点出发的最 优路径。首先,G,J,I,K四个站点只有一条路径(一种决策)通向下 一个站点,只须标注最大流通能力,无需给出最优路径。 B 3 A 4 C 2 2 2 3 D 3 5 2 1 4 2 F 5 I(5) E 2 H 2 3 3 K(3) 4 G(5) 1 J(4) 4 L
课后习题解答
最优控制理论与系统
December 27, 2013
第二部分最优控制理论习题答案
x c1 , x c1t c2 (通解形式)
由边界条件
x(0) c2 1 c1 1 , 解之,得 x(1) c1 c2 2 c2 1
*
故最优轨线为 x (t ) t 1
2-2、求一阶系统 x(t ) u(t ), x(0) 1,当性能指标为 J
构造哈密顿函数: H x1 u12 u2 2 1 u1 2 ( x1 u2 ) 最优轨线 x1* (t ) t , x2* (t ) 0.5t 2 0.5t 最优控制 u1* 1 , u2* 0.5
2-8、 设二阶系统状态方程为 x1 x1 u,
x2 (1) ,
1
故
H H 1 2 , 2 0, x1 x2
1 1 2 11 c1et c2 Nhomakorabea c2
由横截条件
1 (1)
0, 2 (1) 1 x1 (1) x2 (1)
那么 所以
代入边界条件
x(0) 1 (c1 c2 1)
,
(1) 0
(c1e c2e 0)
1
, [终端横截条件 t f
] x(t f )
得 c1 0.12, c2 0.88
最优轨线 x* (t ) 0.12et 0.88et 最优控制 u* (t ) 0.12et 0.88et
-1
最优轨线是齐次方程 x x 的解
x(t ) [ A BR1BT K ]x(t )
由 x(0) 1 ,解得: x (t ) e
* t
所以: u (t ) e
最优控制第五章习题答案
1. ·2.已知二阶系统的状态方程122()(),()()x t x t x t u t ==性能泛函3222221212120111[(3)2(3)][2()4()2()()()]222J x x x t x t x t x t u t dt =+++++⎰求最优控制。
解:把状态方程和性能指标与标准状态方程和标准性能指标比较,可得0,101,02,11,,,,0,010,21,42A B P Q R ⎡⎤⎡⎤⎡⎤⎡⎤=====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦考虑到()K t 是对称阵,设11121222,(),k k K t k k ⎡⎤=⎢⎥⎣⎦代入黎卡提方程1()()()()()()()()()()()T T K t K t A t A t K t K t B t R t B t K t Q t -=--+-即1112111211121112111212221222122212221222,,,,,0,10,002,12[0,1],0,01,0,,1,1,4,k k k k k k k k k k k k k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=--+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦令上式等号左右端的对应元相等,得211121211122222212222221224k k k k k k k k k =-=-+-=-+-这是一组非线性微分方程。
由边界条件(3)K P =即11121222(3),(3)1,0(3),(3)0,2k k k k ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦ 最优控制为11112112122212222()()(),()2*[0,1]2()2(),()T u t R B K t X t k k x t k x t k x t k k x t -=-⎡⎤⎡⎤=-=--⎢⎥⎢⎥⎣⎦⎣⎦3. )4.能控的系统状态方程为122()(),()()x t x t x t u t ==这是一种双积分系统,其输出为1()x t ,其输入为()u t ,其传递函数为12()1()()x s G s u s s==其性能泛函为222112201[()2()()()()]2J x t bx t x t ax t u t dt ∞=+++⎰其中220a b ->求最优控制。
最优控制试题答案(在职研究生班)2
广西工学院在职研究生班课程《最优控制》参考答案一、简答题1、系统数学模型、边界条件与目标集、容许控制、性能指标。
2、积分型性能指标,末值型性能指标,综合型性能指标3、控制向量不受约束,且是时间的连续函数。
4、控制向量受到约束,哈密顿函数对控制向量的偏导不存在时。
5、状态调节器问题;输出调节器问题;跟踪问题。
6、不论初始状态和初始决策如何,当把其中的任何一级和状态再作为初始级和初始状态时,其余的决策对此必定也是一个最优控制。
二、计算题(70分)1、解 本题 t f 固定,末态自由。
由题意 ∙+=21x L欧拉方程2=-=∂∂-∂∂∙∙∙x L dtd xL x解得 ()21c t c t x += 由边界条件及横截条件021==∂∂∙=∙x xLf t解得 c1=0 ,c2=0 故所求极值曲线为 ()0=*t x2、解 本题是求解最短曲线问题,可以将性能指标设定为曲线长度函数的积分,当该指标为最小时,所得的曲线即为最短曲线。
根据几何知识,在直角坐标系中弧线元的长度表示为dtdx dt ds x21)()(22∙+=+=设性能指标为 dt J tftox⎰∙+=21由题意可知,tf 固定,末态固定,21xL ∙+=,由欧拉方程0=∂∂-∂∂∙xL dtd xL ,22c x=∙(常量)解得 x(t)=ct+d根据边界条件,可得c=1,d=0,故所求曲线为:()t t x =*3、解 本题为定常系统,tf 固定,末端自由,末值型指标,控制受约束的最后控制问题,可采用极小值原理求解。
由题意知,性能指标为末值型的,即 [])1()1(2)(22x x tf x +=ϕ 令哈密顿函数 H=1211)(x u x λλ++-协态方程022=∂∂-=∙x H λ,2c =λ2112111,c e c x H t+=-=∂∂-=∙λλλλ,横截条件()()1,1211=+=-t e t t λλ 求出 c1=e 1-t +1,c2=1,则有()()1,1211=+=-t e t t λλ极值条件 u ⎩⎨⎧<>-==*0,10,1)sgn()(111λλλt因为()111+=-t e t λ>0,t []1,0∈,故可确定 10,1)(<≤-=*t t u4、解 根据性能指标的形式,可知本题是线性二次型问题,且是有限时间状态调节器问题。
最优控制第五章习题答案
1. 已知二阶系统的状态方程122()(),()()x t x t x t u t ==性能泛函3222221212120111[(3)2(3)][2()4()2()()()]222J x x x t x t x t x t u t dt =+++++⎰求最优控制。
解:把状态方程和性能指标与标准状态方程和标准性能指标比较,可得0,101,02,11,,,,0,010,21,42A B P Q R ⎡⎤⎡⎤⎡⎤⎡⎤=====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦考虑到()K t 是对称阵,设11121222,(),k k K t k k ⎡⎤=⎢⎥⎣⎦代入黎卡提方程1()()()()()()()()()()()T T K t K t A t A t K t K t B t R t B t K t Q t -=--+-即1112111211121112111212221222122212221222,,,,,0,10,002,12[0,1],0,01,0,,1,1,4,k k k k k k k k k k k k k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=--+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦令上式等号左右端的对应元相等,得211121211122222212222221224k k k k k k k k k =-=-+-=-+-这是一组非线性微分方程。
由边界条件(3)K P =即11121222(3),(3)1,0(3),(3)0,2k k k k ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦ 最优控制为11112112122212222()()(),()2*[0,1]2()2(),()T u t R B K t X t k k x t k x t k x t k k x t -=-⎡⎤⎡⎤=-=--⎢⎥⎢⎥⎣⎦⎣⎦2. 能控的系统状态方程为122()(),()()x t x t x t u t ==这是一种双积分系统,其输出为1()x t ,其输入为()u t ,其传递函数为12()1()()x s G s u s s==其性能泛函为222112201[()2()()()()]2J x t bx t x t ax t u t dt ∞=+++⎰其中220a b ->求最优控制。
最优控制习题及参考答案
最优控制习题及参考答案6212最优控制习题及参考答案习题 1求通过 x (0) = 1 , x (1) = 2 ,使下列性能指标为极值的曲线:t f J = ∫(x2 +1)dt t 0解: 由已知条件知: t 0=0 , t f= 1d由欧拉方程得:(2x ) = 0dtx = C 1x = C 1t + C 2将 x (0) = 1,x (1) = 2 代入,有:C 2 = 1,C 1 = 1得极值轨线: x *(t ) = t +1习题 2求性能指标:J = ∫ 1(x 2 +1)dt在边界条件 x (0) = 0 , x (1) 是自由情况下的极值曲线。
解: 由上题得:x * (t ) = C t + Cx * (t )63x f由 x (0) = 0 得: C 2= 0∂L由 ∂xt =tf= 2x (t f ) = 2C 1 t =t = 0t0 1于是: x *(t ) = 0【分析讨论】对于任意的 x (0) = x,x (1)自由。
6421∫ ⎩λ =有: C = x , C = 0 ,即: x *(t ) = x其几何意义: x (1) 自由意味着终点在虚线上任意点。
习题 3已知系统的状态方程为:x 1 (t ) = x 2 (t ), x 2 (t ) = u (t )边界条件为: x 1(0) = x 2(0) = 1 , x 1(3)= x 2(3) = 0 ,31 试求使性能指标 J =u 2(t )dt 2取极小值的最优控制 u *(t ) 以及最优轨线 x *(t ) 。
⎡ x ⎤解: 由已知条件知: f = ⎢ 2⎥⎢⎣ u ⎥⎦Hamiton 函数: H = L + λTfH = 1u 2+ λ x + λ u⎧λ = 0由协态方程: ⎨12121 2 2⎧λ = C① 得: ⎨1 1⎩λ2 = −C 1t + C2 ② ∂H由控制方程:∂u= u + λ2 = 0 得: u = −λ2= C 1t − C 2③由状态方程:x2 = u = C1t −C2得:x (t) = 1 C t2 −C t + C ④2 2由状态方程:x1 = x21 2 3得:x (t) = 1 C t3 −1 C t 2 + C t + C ⑤1 6 12 23 465661⎪⎩=− ∫⎡1⎤ ⎡0⎤将x (0) = ⎢ ⎢,x (3) = ⎢0⎢代入④,⑤, ⎣1⎦⎣ ⎦ 10联立解得: C 1 =由③、④、⑤式得:u * (t ) = 10t − 29,C 2 = 2 , C3=C 4 =1 9x * (t ) = 5 t 3 −t 2+ t +1 27 x *(t ) = 5 t 2 − 2t +1 29习题 4已知系统状态方程及初始条件为x =u , x (0) = 1试确定最优控制使下列性能指标取极小值。
最优控制习题及参考答案
最优控制习题及参考答案(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--62最优控制习题及参考答案习题 1 求通过 x (0) = 1 , x (1) = 2 ,使下列性能指标为极值的曲线:J = ∫(x+1)dt解: 由已知条件知: t = 0 , t = 1d由欧拉方程得: (2x ) = 0dtx = Cx = Ct + C将 x (0) = 1,x (1) = 2 代入,有:C = 1,C = 1得极值轨线: x (t ) = t +1习题 2求性能指标: J =∫(x +1)dt在边界条件 x (0) = 0 , x (1) 是自由情况下的极值曲线。
解:由上题得: x (t ) = C t + C由 x (0) = 0 得: C = 0∂L由∂x= 2x (t ) = 2C = 0t于是: x (t ) = 0【分析讨论】对于任意的 x (0) = x ,x (1) 自由。
63∫ ⎩ λ = −λ 有: C = x , C = 0 ,即: x (t ) = x其几何意义: x (1) 自由意味着终点在虚线上任意点。
习题 3已知系统的状态方程为: x(t ) = x (t ) , x (t ) = u (t )边界条件为: x (0) = x (0) = 1 , x (3) = x (3) = 0 ,1 试求使性能指标 J = u (t )dt2取极小值的最优控制 u (t ) 以及最优轨线 x (t ) 。
⎩ x ⎩ 解:由已知条件知: f = ⎩ ⎩⎩⎩ u ⎩⎩Hamiton 函数: H = L + λf H = 1u + λ x+ λ u⎩λ = 0 由协态方程: ⎩ 2⎩λ = C①得: ⎩⎩λ= −Ct + C ②∂H由控制方程: ∂u= u + λ= 0得: u = −λ= Ct − C ③由状态方程: x = u = Ct − C得: x (t ) = 1C t − C t + C④2 由状态方程: x = x得: x (t ) = 1C t − 1C t + C t + C⑤6 264⎩ ⎩=− =− ∫⎩1⎩ ⎩0⎩将 x (0) = ⎩ ⎩ , x (3) = ⎩0⎩ 代入④,⑤,⎩1⎩ ⎩ ⎩10联立解得: C =由③、④、⑤式得:u (t ) = 10t − 29 ,C = 2 , C = C = 1 9x (t ) = 5 t −t + t +1 27 x (t ) = 5t − 2t +1 9习题 4 已知系统状态方程及初始条件为x =u , x (0) = 1试确定最优控制使下列性能指标取极小值。
最优控制理论与系统胡寿松版课后习题答案
最优控制理论与系统胡寿松版课后习题答案2-5 求通过(0)1x =,(1)2x =,使下列性能泛函为极值的极值曲线*()x t :2(1)ft t J x dt =+?&解:由题可知,始端和终端均固定,被积函数21L x=+&,0L x ?=?,2L x x ?=?&&, 2d L x dt x=?&&& 代入欧拉方程0L d Lx dt x ??-?=??&,可得20x =&&,即0x =&& 故1xc =& 其通解为:12x c t c =+ 代入边界条件(0)1x =,(1)2x =,求出11c =,21c = 极值曲线为*()1x t t =+2-6 已知状态的初值和终值为(1)4x =,()4f x t =式中f t 自由且f t >1,试求使下列性能泛函达到极小值的极值轨线*()x t :211[2()()]2ft J x t x t dt =+& 解:由题可知,2122L x x =+&,()4f t ψ=,()14x =,()4f x t = 欧拉方程:L 0d L x dt x-=??& 横截条件:()00t x =x ,()()f f x t t ψ=,()0fTt L L x x ψ+-=&&&易得到2dxdt=& 故12xt c =+& 其通解为:()212x t t c t c =++根据横截条件可得:()()()122121114424f f f f f x c c x t t c t c x t t c ?=++=??=++=??=+=??& 解以上方程组得:12569f t c c =??=-??=? 还有一组解===12121c c t f (舍去,不符合题意f t >1)将f t ,1c ,2c 代入J 可得3140)3(4)212(5025.2*=-=+=??t dt x x J . 极值轨线为()*269x t t t =-+2-7 设性能泛函为120(1)J x dt =+?&求在边界条件(0)0x =,(1)x 自由情况下,使性能泛函取极值的极值轨线*()x t 。
最优控制第五章习题答案
1. 已知二阶系统的状态方程122()(),()()x t x t x t u t ==性能泛函3222221212120111[(3)2(3)][2()4()2()()()]222J x x x t x t x t x t u t dt =+++++⎰求最优控制。
解:把状态方程和性能指标与标准状态方程和标准性能指标比较,可得0,101,02,11,,,,0,010,21,42A B P Q R ⎡⎤⎡⎤⎡⎤⎡⎤=====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦考虑到()K t 是对称阵,设11121222,(),k k K t k k ⎡⎤=⎢⎥⎣⎦代入黎卡提方程1()()()()()()()()()()()T T K t K t A t A t K t K t B t R t B t K t Q t -=--+-即1112111211121112111212221222122212221222,,,,,0,10,002,12[0,1],0,01,0,,1,1,4,k k k k k k k k k k k k k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=--+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦令上式等号左右端的对应元相等,得211121211122222212222221224k k k k k k k k k =-=-+-=-+-这是一组非线性微分方程。
由边界条件(3)K P =即11121222(3),(3)1,0(3),(3)0,2k k k k ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦ 最优控制为11112112122212222()()(),()2*[0,1]2()2(),()T u t R B K t X t k k x t k x t k x t k k x t -=-⎡⎤⎡⎤=-=--⎢⎥⎢⎥⎣⎦⎣⎦2. 能控的系统状态方程为122()(),()()x t x t x t u t ==这是一种双积分系统,其输出为1()x t ,其输入为()u t ,其传递函数为12()1()()x s G s u s s==其性能泛函为22211221[()2()()()()]2J x t b x t x t a x t u t d t∞=+++⎰其中220a b ->求最优控制。
最优控制与滤波作业解答
·变分学1. 求泛函2220[()]()J x t x x dt π=-⎰,的(0)1,22x x π⎛⎫== ⎪⎝⎭极值曲线。
解:两端固定,无约束泛函极值。
Euler 方程: 0x x dF F dt-= 其中:22(,(),())F t x t x t x x =-2x F x =- 2x F x =∴Euler 方程为:0x x += 解为:*12()cos sin x t c t c t =+代入边界条件得:c 1=1,c 2=2 ∴x*(t )=cos t +2sin t或用Laplace 变换解:22*22(0)(0)0()(0)(0)()0()11()(0)(0)()(0)cos (0)sin 11sx x x x s X s sx x X s X s s s X s x x x t x t x ts s ++=⇒--+=⇒=+=+⇒=+++2. 已知线性系统的状态方程x =Ax +Bu其中11220110A =,B =,x ,u 0001x u x u ⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦给定1x(0)1⎡⎤=⎢⎥⎣⎦,1(2)0x =,求u()t ,使性能指标2201u 2J dt =⎰为最小。
解:始端时间和状态固定,终端时间固定t f =2,终端状态约束,终端约束条件为:1(2)0x =,即g (x(t f ), t f )=x 1(t f )=0 (一个约束方程)。
等式约束条件下的泛函极值问题。
u = 2221201()2J u u dt ∴=+⎰ 21121222,f x u x x u x u u +⎡⎤=+=⇒=⎢⎥⎣⎦2212121221(x,u,λ,)(x,u,)λ()f(x,u,)()()2TH t L t t t u u x u u λλ=+=++++泛函极值的必要条件为: 系统方程:12122,x x u x u =+=伴随方程:1112212λλ0λx λλλH x H H x ∂⎧=-⇒=⎪∂∂⎪=-⇒⎨∂∂⎪=-⇒=-⎪∂⎩ 控制方程:11111222220000u 0Hu u u H u H u u λλλλ∂⎧=+=⎪∂+=⎧∂⎪=⇒⇒⎨⎨+=∂∂⎩⎪=+=⎪∂⎩横截条件:111122122(x(),)g (x(),)(x(),)λ()μ0x()x()x()(2)(2)(2)(2)(2)(2)(2)0(2)T f f f f f f f f f f t t t t t g t t t t t t x x x x ϕμμλλμλλμ=∂∂∂=+=+∂∂∂∂⎡⎤⎢⎥∂⎡⎤⎡⎤⎡⎤⎢⎥=⇒=⎢⎥⎢⎥⎢⎥⎢⎥∂⎣⎦⎣⎦⎣⎦⎢⎥∂⎣⎦边界条件:[]x(0)11T= 解上述方程:11121212212λ0λλλλ2λ(2)0c c t c c c =⇒=⎫=-⇒=-+⎪⇒=⎬=⎪⎭1111222100u u c u u c t c λλ+=⇒=-+=⇒=-321123142212311()6212x c t c t c c t c x c t c t c =-+-+=-+ 将边界条件[]x(0)11T=以及1(2)0x =代入上述方程,有:12918,1414c c == 故,使性能指标J 达到最小的最优控制为:u*(t )=[-9/14 9t /14-18/14]T代入上述方程,有:3. 受控系统的状态方程、初始条件和目标集分别为1122x x x x u=-+=12(0)0(0)0x x ==22212()()1f f f x t x t t +=+试写出使2012f t J u dt =⎰为最小的必要条件,其末端时间f t 是可变的。
最优控制第四章习题答案教学提纲
最优控制第四章习题答案11212212min ,(0)1,(0)1,,()0,()0,||1f f f J t x x x x x u x t x t u =======≤&&求最优控制。
解:哈密顿函数:1221H x u λλ=++由极小值原理知,要使(,,)H x u λ极小,就要使2u λ达到极小。
由控制约束条件||1u ≤可得,最优控制为2*21,0()1,0u t λλ->⎧=⎨<⎩协态方程:121120,H H x x λλλ∂∂=-==-=∂∂&& 从而11212(),()t c t c t c λλ==+容易判断,12,c c 不能同时为零,否则有*()1f H t =与定理矛盾。
根据12,c c 的不同选择可以得到*2()t λ和*()u t 的可能曲线如图所示。
因而可候选的最优控制顺序为:{}{}{}{}1,1,1,1,1,1---。
状态方程:12x x =&,2x u =&2134231,2x ut c t c x ut c =++=+ 边界条件:12(0)1,(0)1,x x ==,12()0,()0,f f x t x t ==431,1c c ==21211122x x u u=+- 当1u =时,最优曲线方程2121122x x =+, 当1u =-时,最优曲线方程2121322x x =-+,2121221:(,)|,02x x x x x γ+⎧⎫=≤⎨⎬⎩⎭同理2121221:(,)|,02x x x x x γ-⎧⎫=-≥⎨⎬⎩⎭画在同一图中2. 0min ,ft u J dt =⎰112()()()x t x t u x t u =-+=&&且有110220(0)(0)x x x x =⎧⎨=⎩12()0()0f f x t x t =⎧⎪⎨=⎪⎩||1u ≤,求最优控制。
解:哈密顿函数:11211121()1()H x u u x u λλλλλ=+-++=-++不难判断最优控制为:1,121,12u λλλλ->-⎧=⎨<-⎩协态方程:11212,0H H x x λλλ∂∂=-==-=∂∂&&从而1122,t c e c λλ== 状态方程:112x x u x u=-+=&&,13t x u c e -=-,24x ut c =+ 边界条件:110220(0),(0)x x x x ==代入得:420c x =,310c u x =-202202110(1)x x x x uux u ex e--=-+ 当1u =,202202202211010511(1)1x x x x x x x x e x e x e c e ----=-+=--=-,当1u =-,220211061(1)1x x x x x e c e -=-++=-+当图像经过原点时:561,1c c ==所以1u =时,最优曲线方程为:211x x e -=- 1u =-时,最优曲线方程为:211x x e =-+222||1||12112||12112|1|:{(,)||1|,0,0}:{(,)||1|,0,0}x x x x e x x x e x x x x x e x x γγ+-=-=-><=-<>3. 0min ,ft u J dt =⎰21220102,2x x x x x u ϖξϖ=-=--+&&且有110220(0)(0)x x x x =⎧⎨=⎩,12()0()0f fx t x t =⎧⎪⎨=⎪⎩||1u ≤,求最优控制。
最优控制习题及参考问题详解
标准文档1 2f最优控制习题及参考答案习题 1 求通过 x (0) = 1 , x (1) = 2 ,使下列性能指标为极值的曲线:t f J = ∫(x2 +1)dt t 0解: 由已知条件知: t 0 = 0 , t f = 1d由欧拉方程得: (2x ) = 0dtx = C 1x = C 1t + C 2将 x (0) = 1,x (1) = 2 代入,有:C 2 = 1,C 1 = 1得极值轨线: x *(t ) = t +1习题 2 求性能指标: J = ∫ 1(x 2 +1)dt在边界条件 x (0) = 0 , x (1) 是自由情况下的极值曲线。
解:由上题得: x *(t ) = C t + C由 x (0) = 0 得: C 2 = 0∂L由∂xt =t f= 2x (t f ) = 2C 1 t =t = 0 t于是: x *(t ) = 0【分析讨论】对于任意的 x (0) = x 0 ,x (1) 自由。
2 0 1∫⎩ λ = −λ有: C = x , C = 0 ,即: x *(t ) = x 其几何意义: x (1) 自由意味着终点在虚线上任意点。
习题 3 已知系统的状态方程为: x1 (t ) = x2 (t ) , x 2 (t ) = u (t )边界条件为: x 1 (0) = x 2 (0) = 1 , x 1 (3) = x 2 (3) = 0 ,31 试求使性能指标 J =u 2(t )dt 2取极小值的最优控制 u *(t ) 以及最优轨线 x *(t ) 。
⎡ x ⎤解:由已知条件知: f = ⎢ 2⎥⎢⎣ u ⎥⎦Hamiton 函数: H = L + λT f H = 1u 2 + λ x + λ u⎧λ = 0由协态方程: ⎨ 12 121 22⎧λ = C① 得: ⎨11⎩λ2 = −C 1t + C 2②∂H由控制方程: ∂u= u + λ2 = 0得: u = −λ2 = C 1t − C 2 ③由状态方程: x 2 = u = C 1t − C 2得: x (t ) = 1C t 2− C t + C④22 由状态方程: x 1 = x 21 2 3得: x (t ) = 1C t 3− 1C t 2+ C t + C⑤16 122 3 41 ∫⎪⎩=−=−⎡1⎤ ⎡0⎤将 x (0) = ⎪ ⎪ , x (3) = ⎪0⎪ 代入④,⑤,⎣1⎦ ⎣ ⎦10联立解得: C 1 =由③、④、⑤式得:u * (t ) = 10t − 29 , C 2 = 2 , C 3 = C 4 = 1 9x *(t ) = 5 t 3 −t 2 + t +127 x *(t ) = 5 t 2 − 2t +1 29习题 4 已知系统状态方程及初始条件为x =u , x (0) = 1试确定最优控制使下列性能指标取极小值。
最优控制第三章课后习题答案
1. 2**'2**'*'*01min ()2y J y y y y y y dx ⎡⎤=+++⎢⎥⎣⎦⎰,若(0)y 与(2)y 任意,求*y 及(*)J y 。
解:这是端点自由问题,相应的欧拉—拉格朗日方程为:()0f d f y dt y∂∂-=∂∂即''1(1)0d y y y dt +-++=得''1y =则'1y x c =+,21212y x c x c =++由横截条件:0f y∂=∂得'1y y ++=0即21121(1)102x c x c c +++++=0x =,1210c c ++=;2x =,12350c c ++=。
联立得122,1c c =-=所以*21212y x x =-+,*'2y x =-代入得2**'2**'*'*02321()21(221)243J y y y y y y dxx x x dx⎡⎤=+++⎢⎥⎣⎦=-+-=-⎰⎰2.电枢控制的直流电动机忽略阻尼时的运动方程:()u t θ=式中,θ为转轴的角位移,()u t 为输入。
目标函数为221min ()2u J dt θ=⎰,使初态(0)1θ=及(0)1θ=转移到终态(2)0θ=及(2)0θ=,求最优控制*()u t 及最优角位移*()t θ,最优角速度*()t θ。
解: 设12,x x θθ==则122,x x x u ==。
哈密顿函数:212212H u x u λλ=++ 协态方程: 121120,0H Hx x λλλ∂∂=-==-=-=∂∂ 控制方程:20Hu uλ∂=+=∂即*2()()u t t λ=-将*()u t 代入状态方程,可得 1222121(),(),0,()x x t x t t λλλλ==-==-边界条件为1212(0)1,(0)1,(2)0,(2)0x x x x ==== 可见这是两点边值问题,对正则方程进行拉氏变换,可得11222211221()(0)()()(0)()()(0)0()(0)()sX s x X s sX s x s s s s s s λλλλλλ-=-=--=-=-联立以上四式,可解出43211221()(0)(0)(0)(0)s X s s x s x s λλ=+-+代入初始条件12(0)1,(0)1x x ==,可得1212341111()(0)(0)X s s s s sλλ=+-+ 故 2312111()1(0)(0)26x t t t t λλ=+-+同样可解得 22212322221111()(0)(0)(0)1()(0)(0)(0)2X s x s s sx t x t t λλλλ=-+=-+利用终端条件12(2)0,(2)0x x ==可得2121432(0)(0)0312(0)2(0)0λλλλ-+=-+=解得127(0)3,(0)2λλ== 1111(0)(),()(0)s t s λλλλ==;221221211()(0)(0),()(0)(0)s t t s sλλλλλλ=-=-即 127()3,()32t t t λλ==-所以:最优控制*27()()32u t t t λ=-=-+最优角位移*23171()142x t t t t θ==+-+最优角速度*2273()122x t t t θ==-+3. 222201min (2)()22.,(),(0) 1.()u s J x u t dt s t x u t x s =+==⎰为常量试求出最优控制*u ()t 及相应的轨线*()x t 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最优控制课后习题答案
最优控制课后习题答案
最优控制是现代控制理论中的重要分支,它研究如何在给定约束条件下,使系
统的性能指标达到最优。
在最优控制的学习过程中,课后习题是巩固理论知识、培养解决问题能力的重要环节。
本文将为大家提供一些最优控制课后习题的答案,希望能对大家的学习有所帮助。
1. 线性二次型最优控制问题
考虑一个线性时不变系统,其状态方程和性能指标分别为:
$$
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) \\
J(u) &= \int_{0}^{T} (x^T(t)Qx(t) + u^T(t)Ru(t))dt
\end{align*}
$$
其中,$x(t)$为系统的状态向量,$u(t)$为控制输入向量,$A$和$B$为系统矩阵,$Q$和$R$为正定矩阵,$T$为最优控制的时间段。
求解该问题的最优控制输入$u^*(t)$。
答案:根据最优控制的原理,最优控制输入$u^*(t)$满足以下的最优性条件:$$
\begin{align*}
\frac{\partial J}{\partial u}(u^*(t)) &= 2R u^*(t) + 2B^T P(t)x(t) = 0 \\
\dot{P}(t) &= -PA - A^T P - Q + PBR^{-1}B^T P
\end{align*}
$$
其中,$P(t)$为状态向量的共轭变量矩阵。
通过求解上述的代数方程和微分方程,可以得到最优控制输入$u^*(t)$和状态向量的共轭变量矩阵$P(t)$。
2. 非线性最优控制问题
考虑一个非线性系统,其状态方程和性能指标分别为:
$$
\begin{align*}
\dot{x}(t) &= f(x(t), u(t)) \\
J(u) &= \int_{0}^{T} g(x(t), u(t)) dt
\end{align*}
$$
其中,$f(x(t), u(t))$为非线性函数,$g(x(t), u(t))$为性能指标函数。
求解该问题
的最优控制输入$u^*(t)$。
答案:对于非线性系统的最优控制问题,通常采用动态规划的方法进行求解。
首先,通过构建哈密顿函数:
$$
H(x(t), u(t), \lambda(t)) = g(x(t), u(t)) + \lambda^T(t) f(x(t), u(t))
$$
其中,$\lambda(t)$为状态向量的共轭变量。
然后,根据最优性条件:
$$
\frac{\partial H}{\partial u}(x^*(t), u^*(t), \lambda^*(t)) = 0
$$
可以得到最优控制输入$u^*(t)$。
接下来,根据状态方程和共轭变量的微分方程:$$
\begin{align*}
\dot{x}(t) &= f(x(t), u^*(t)) \\
\dot{\lambda}(t) &= -\frac{\partial H}{\partial x}(x^*(t), u^*(t), \lambda^*(t))
\end{align*}
$$
可以求解状态向量的轨迹$x^*(t)$和共轭变量的轨迹$\lambda^*(t)$。
最优控制是一门复杂而又有深度的学科,通过课后习题的解答,可以更好地理
解和应用最优控制的理论知识。
希望本文提供的最优控制课后习题答案能够对
大家的学习和探索有所启发,帮助大家更好地掌握最优控制的方法和技巧。