2017年高中数学《课程标准》考试试题-(1)

合集下载

2017版高中数学课程标准测试题及答案

2017版高中数学课程标准测试题及答案

2017版高中数学课程标准测试题及答案一、选择题(每题4分,共40分)1. 以下哪项不属于《2017版高中数学课程标准》提出的基本理念?A. 坚持以人为本,促进学生全面发展B. 立足我国实际情况,注重数学文化的传承C. 强调学科间的融合,发展学生的创新精神D. 培养学生的数学素养,提高学生的生活质量答案:D2. 高中数学课程分为几个必修模块?A. 2个B. 3个C. 4个D. 5个答案:C3. 以下哪个模块属于高中数学选修课程?A. 必修1B. 必修2C. 选修1D. 选修2答案:C4. 以下哪个课程内容属于《2017版高中数学课程标准》中的“概率与统计”?A. 函数的性质B. 导数与微分C. 随机事件的概率D. 平面向量的运算答案:C5. 以下哪个教学方法在《2017版高中数学课程标准》中得到了强调?A. 灌输式教学B. 探究式教学C. 演示式教学D. 讲授式教学答案:B6. 以下哪个数学思想在《2017版高中数学课程标准》中得到了强调?A. 类比法B. 归纳法C. 演绎法D. 构造法答案:A7. 以下哪个数学技能是《2017版高中数学课程标准》要求学生掌握的?A. 逻辑推理B. 数学建模C. 数学证明D. 数学实验答案:B8. 高中数学课程的总目标不包括以下哪项?A. 提高学生的数学素养B. 培养学生的创新能力C. 增强学生的实践能力D. 提高学生的综合素质答案:D9. 以下哪个课程内容属于《2017版高中数学课程标准》中的“空间几何”?A. 空间向量的运算B. 解析几何C. 空间几何图形的识别D. 空间几何图形的性质答案:D10. 以下哪个课程内容属于《2017版高中数学课程标准》中的“数列”?A. 等差数列B. 等比数列C. 递推数列D. 所有以上选项答案:D二、填空题(每题4分,共40分)11. 《2017版高中数学课程标准》将高中数学课程分为______个必修模块和______个选修模块。

普通高中数学课程标准试题与答案(2017年版2020年修订)

普通高中数学课程标准试题与答案(2017年版2020年修订)

普通高中数学课程标准试题与答案(2017年版2020年修订)一、填空题1.高中数学课程应力求通过各种不同形式的自主学习,探究活动,让学生体验数学发现和创造的历程,发展他们的创新意识。

2.高中数学课程应注重提高学生的数学思维能力,这是一数学教育的基本目标之一。

3.高中数学“四基”基础知识、基本技能、基本思想、基本活动经验4.数学学科核心素养包括:数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。

5.数学教育在学校教育中占有特殊的地位,它使学生掌握数学的基础知识、基本技能、基本思想,使学生表达清晰、思考有条理,使学生具有实事求是的态度、锲而不舍的精神,使学生会用一数学的思考方式解决问题、认识世界。

6.人们在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演经证明、反思与建构等思维过程。

7.高中数学课程标准最突出的特点就是体现了基础性、多样性和选择性。

8.高中数学课程分为必修课程、选择性必修课程和选修课程。

9.为了适应信息时代发展的需要,高中数学课程应增加算法的内容,把最基本的数据处理、统计知识等作为新的数学基础知识和基本技能;同时,应删减繁琐的计算、人为技巧化的难题和过分强调细枝末节的内容,克服“双基异化”的倾向。

10.高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。

11.数学学习的评价既要重视结果,也要重视过程。

对学生-数学学习过程的评价,包括学生参加数学活动的兴趣和态度、数学学习的自信、独立思考的习惯、合作交流的意识、数学认知的发展水平等方面。

12.高中数学课程内容突出函数、几何与代数、概率与统计、数学建模活动与数学探究活动四条主线。

13.解析几何是17世纪数学发展的重大成果之一,其本质是用代数方法研究图形的几何性质。

2017年高中数学《课程标准》考试试题-(1)

2017年高中数学《课程标准》考试试题-(1)

2017年高中数学《课程标准》考试试题1•高中数学课程在情感、态度、价值观方面的要求下面说法不正确的是<>A. 提高学习数学的兴趣,树立学好数学的信心B•形成锲而不舍的钻研精神和科学态度C.开阔数学视野,体会数学的文化价值D•只需崇尚科学的理性精神2.《高中数学课程标准》在课程目标中提出的基本能力是<>A•自主探究、数据处理、推理论证、熟练解题、空间想象B•运算求解、数据处理、推理论证、空间想象、抽象概括C•自主探究、推理论证、空间想象、合作交流、动手实践D•运算求解、熟练解题、数学建模、空间想象、抽象概括3•高中数学新课程习题设计需要<>A. 无需关注习题类型的多样性,只需关注习题功能的多样性B. 只需关注习题类型的多样性,无需关注习题功能的多样性C. 既要关注习题类型的多样性,也要关注习题功能的多样性D. 无需关注习题类型的多样性,也无需关注习题功能的多样性4•下面关于高中数学课程结构的说法正确的是<>A.高中数学课程中的必修课程和选修课程的各模块没有先后顺序的必要B•高中数学课程包括4个系列的课程C.高中数学课程的必修学分为16学分D•高中数学课程可分为必修与选修两类5•在教学中激发学生的学习积极性方法说法正确的是<>A•让学生大量做题,挑战难题B.创设问题情境,让学生有兴趣、有挑战C.让学生合作交流讨论、动手操作、有机会板演讲解D•通过数学应用的教学使学生了解数学在现实生活中的作用和意义6•要实现数学课程改革的目标,关键是依靠<>A•学生B•教师C•社会D•政府领导7•在新课程中教师的教学行为将发生变化中正确的是<>A.在对待自我上,新课程强调反思B•在对待师生关系上,新课程强调权威、批评C•在对待教学关系上,新课程强调教导、答疑D•在对待与其他教育者的关系上,新课程强调独立自主精神8•在新课程改革中,受新的理念指导,教师在课堂中的地位、角色发生了较大的变化,这种变化主要体现在多方面,下面说法中不正确的选项是<>①教师是数学知识的象征、代表;②教师是数学探究与创新的先锋③教师是数学活动的设计者;④教师是数学活动的组织者;⑤教师是学生活动的主体者;⑥教师是学生思维活动的调控者;⑦教师是学生学习动力的激励者;⑧教师是学生学习与选择的导师.A.①②⑤⑧B.②③⑥⑦C.①④⑥⑧D.②③⑦⑧9•实现课程目标、实施教学的重要资源是<>A•课程资源B•教师C•教材D•仪器设备10•新课程教学改革要求我们首先确立起<>A.先进的教学观念B.与新课程相适应的、体现素质教育精神的教学观念C•教师为主导,学生为主体的教学观念D.以课堂教学为中心教学观念11.高中数学课程的基础性是指<>A. 只有必修课程是基础B•必修和选修课程是所有高中生的基础C•高中数学课程为全体高中学生提供必要的数学基础,高中数学课程为不同学生提供不同的基础D.必修课程是基础,选修课程不是基础12•培养学生的学习习惯对今后发展至关重要,下面说法中不正确的是<>A•自学成才,无需培养B•培养学生会提问题、勤于思考的习惯C. 培养学生用图形描述、刻画和解决问题的习惯D.培养学生与时反思和总结的习惯13•对于函数的教学以下说法不正确的是<>A•对函数的学习不能停留在抽象的讨论,要突出函数图形的地位B. 函数是最重要、最基本的数学模型,要加深对函数思想的理解与应用C•在学生头脑中留下几个具体的最基本的函数模型就可以了D. 结合具体的数学内容采用多种模式,让学生经历函数知识的形式与应用过程14. 整体把握高中数学课程是理解高中数学课程的基点•请根据培训内容说说看,高中数学课程内容的主线可大致分为<>A•函数思想、几何思想、算法思想、运算思想、随机思想与统计思想B.数形结合思想、分类讨论思想、函数与方程思想、概率与统计思想C.函数与方程的思想、数形结合思想、向量和坐标思想D•函数思想、算法思想、数形结合思想、分类讨论思想15•高中课程改革追求基本的目标是由应试教育向素质教育的转轨,真正实施<> A•全民教育B•大众教育C•素质教育D•精英教育16. 《普通高中数学课程标准》提出的新课程基本理念,下面各组选项中说法不正确的是<>①构建共同基础,提供发展平台;②提供针对课程,适应个性选择;③倡导积极主动、勇于探索的学习方式;④注重提高学生的数学思维能力;⑤发展学生的数学思维能力;⑥与时俱进地认识双基;⑦强调本质,注意适度形式化;⑧体现数学的文化价值;⑨注重信息技术与数学课程的整合;⑩建立合理、科学的评价体系;A.①③④⑦B.②④⑤⑧C.③⑤⑥⑨D.①⑤⑨⑩17•运算与推理的关系是<>A•运算与推理无关B•运算与推理是不同的思维形式C•运算本身就是一种推理,推理是运算的一种D.推理是运算18•任何新课程的研制,一般都要经过哪几个阶段进行<>A•准备、研制、编写、推广B•研制、编写、实验、推广C•准备、研制、实验、推广D•准备、研制、编写、实验、推广19•从以下选项看,确定教学目标和教学要求的主要依据是<>A•课程标准B.教科书C•考试大纲D•教辅资料20.与社会、科技的进步紧密相连,体现时代精神的课程时代性的选择是指<>A•课程安排B•课程内容C•课程管理D•课程评价1•高中数学课程应力求通过各种不同形式的自主学习,探究活动,让学生体验数学发现和创造的历程,发展他们的—创新意识.2•高中数学课程应注重提高学生的数学思维能力,这是—数学教育的基本目标之一.3•数学教育在学校教育中占有特殊的地位,它使学生掌握数学的基础知识、基本技能、基本思想,使学生表达清晰、思考有条理,使学生具有实事求是的态度、锲而不舍的精神,使学生会用数学的思考方式解决问题、认识世界.4•人们在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程.5•高中数学课程标准最突出的特点就是体现了—基础性、多样性和选择性.6•为了适应—信息时代发展的需要,高中数学课程应增加算法的内容,把最基本的数据处理、统计知识等作为新的数学基础知识和基本技能;同时,应删减繁琐的计算、人为技巧化的难题和过分强调细枝末节的内容,克服"双基异化"的倾向.7•高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展•智力和创新意识具有基础性的作用.8•数学学习的评价既要重视结果,也要重视过程•对学生_数学学习过程的评价,包括学生参加数学活动的兴趣和态度、数学学习的自信、独立思考的习惯、合作交流的意识、数学认知的发展水平等方面.9•解析几何是17世纪数学发展的重大成果之一,其本质是—•用代数方法研究图形的几何性质,体现了数形结合的重要数学思想.10. 数学是研究—空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具.11. 普通高中数学课程的总目标是:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的—数学素养,以满足个人发展与社会进步的需要.12•高中数学课程要求把数学探究、—数学建模的思想以不同的形式渗透在各个模块和专题内容之中.13. ______________________________________________ 选修课程系列1是为希望在—•人文、社会科学等方面发展的学生设置的,系列2是为希望在理工、经济等方面发展的学生设置的.14. 数学探究即数学探究性课题学习,是指学生围绕某个数学问题,自主探究、学习的过程.15. 算法是一个全新的课题,己经成为计算机科学的重要基础,它在科学技术和社会发展中起着越来起重要的作用.16•课程目标要求学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观.17. 新课程标准的目标要求包括三个方面:知识与技能,__过程与方法和情感、态度、价值观18. 高中数学选修2-2的内容包括:导数与其应用、推理与证明、数系的扩充与复数的引入.19. 向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与—三角函数的一种工具,有着极其丰富的实际背景.20. 用空间向量处理立体几何问题,提供了新的视角•空间向量的引入,为解决三维空间中图形的位置关系与—度量问题提供了一个十分有效的工具.21. 简述高中数学课程标准课程的基本理念.<〈普通高中数学课程标准>>提出的基本理念有:1.构建共同基础,提供发展平台.2.提供多样课程,适应个性选择.3.倡导积极主动,用于探索的学习方式.4.注重提高学生的数学思维能力.5.发展学生的数学应用意识.6.与时俱进地认识"双基".7.强调本质,注意适度形式化.8.体现数学的文化价值.9.注意信息技术与数学课程的整合.10.建立合理、科学的评价体系.<<普通高中数学课程标准>>提出的这些基本理念,对我们理解和把握新课程启发可以从以下几个方面来看1.教师和学生地位的把握在以前的学习中我就了解到,新课改下,教师不该再是课堂的主宰者,而应当是学生学习的引导者.而学生也不应当再被动的接受知识,应该成为课堂的主体,老师要善于引导学生积极、自觉、自主的去发现生活中存在的数学,并鼓励、引领他们去探究、去学习.新课改下的课堂应该是以教师引导、学生自主学习为主的,富有生机和活力的课堂!2.学习目标的变化过去的应试教育迫使教师和学生只注重双基,而忽略了学生的能力和情感价值的培养,而新课程标准理念强调学习的三维发展目标,不仅要求双基,更强调学生的能力目标和情感价值观目标.这样就引起了我的深思:作为一名教师,我能交给我的学生什么?经过反复思考,我认为教师不应该只传授给学生知识、解题方法和技巧,而应当主动给学生创造机会,培养学生的实践能力和应用能力,让他们在学习数学的过程中发现数学的美,从意识上彻底的植入数学的"根",这样才能让他们学好数学这一门课.3.学生思维的培养我觉得数学课堂不应该再是老师满堂教,学生埋头听这种沉闷的气氛.这种气氛下,学生的思维很容易受到限制、得不到发展,学生成绩自然不会有所长进.在新课程理念下,我觉得教师应该有针对性的课堂情景的创设,好的情景能充分调动绝大多数学生的学习的积极性,也能激起他们对本课程的兴趣,充分的使他们的注意力高度集中,老师再层层递进的引导学生去大胆、积极的思考,最终达到对问题的解决,老师再从一般到特殊,特殊到一般的举一反三的给学生进行总结.这样既让学生学会了知识又锻炼了他们的学习能力,学生对知识的理解和掌握自然就上了一个层次.所以说,学生思维的培养与教师的教学凡是方法有着密不可分的关系,这就要求我们在以后的教学工作中不断的总结教学经验、不断的改进教学方法了.路漫漫其修远兮,我将上下而求索!22. 数学教学要体现课程改革的基本理念,请您结合自己的教学经验,谈谈在教学中应该把握好哪几个方面的问题.答:应把握好以下几个方面:<1>以学生发展为本,指导学生合理选择课程、制定学习计划;<2>帮助学生打好基础,发展能力;<3>注重联系,提高对数学整体的认识;<4>注重数学知识与实际的联系,发展学生的应用意识和能力;<5>关注数学的文化价值,促进学生科学观的形成;<6>改善教与学的方式,使学生主动地学习;<7>恰当运用现代信息技术,提高教学质量.。

2017年全国统一高考数学 理科 新课标1 (解析版)

2017年全国统一高考数学 理科 新课标1 (解析版)

2017年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017?新课标Ⅰ)已知集合A={x|x <1},B={x|3x <1},则( ) A .A ∩B={x|x <0} B .A ∪B=R C .A ∪B={x|x >1} D .A ∩B=?2.(5分)(2017?新课标Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .B .C .D .3.(5分)(2017?新课标Ⅰ)设有下面四个命题 p 1:若复数z 满足∈R ,则z ∈R ; p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=;p 4:若复数z ∈R ,则∈R . 其中的真命题为( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 44.(5分)(2017?新课标Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) A .1 B .2C .4D .85.(5分)(2017?新课标Ⅰ)函数f (x )在(﹣∞,+∞)单调递减,且为奇函数.若f (1)=﹣1,则满足﹣1≤f (x ﹣2)≤1的x 的取值范围是( ) A .[﹣2,2]B .[﹣1,1]C .[0,4]D .[1,3]6.(5分)(2017?新课标Ⅰ)(1+)(1+x )6展开式中x 2的系数为( )A .15B .20C .30D .357.(5分)(2017?新课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10 B.12 C.14 D.168.(5分)(2017?新课标Ⅰ)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+29.(5分)(2017?新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)(2017?新课标Ⅰ)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.1011.(5分)(2017?新课标Ⅰ)设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z12.(5分)(2017?新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440 B.330 C.220 D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)(2017?新课标Ⅰ)已知向量,的夹角为60°,||=2,||=1,则|+2|= .14.(5分)(2017?新课标Ⅰ)设x,y满足约束条件,则z=3x﹣2y的最小值为.15.(5分)(2017?新课标Ⅰ)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.16.(5分)(2017?新课标Ⅰ)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)(2017?新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)(2017?新课标Ⅰ)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.19.(12分)(2017?新课标Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得==9.97,s==≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)(2017?新课标Ⅰ)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.21.(12分)(2017?新课标Ⅰ)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程](2017?新课标Ⅰ)在直角坐标系xOy中,曲线C的参数方程为,22.(10分)(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.(2017?新课标Ⅰ)已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.2017年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017?新课标Ⅰ)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0} B.A∪B=R C.A∪B={x|x>1} D.A∩B=?【考点】1E:交集及其运算.【专题】11 :计算题;37 :集合思想;4O:定义法;5J :集合.【分析】先分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.【点评】本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.2.(5分)(2017?新课标Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .B .C .D .【考点】CF :几何概型.【专题】35 :转化思想;4O :定义法;5I :概率与统计.【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2, 则黑色部分的面积S=,则对应概率P==,故选:B .【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决本题的关键.3.(5分)(2017?新课标Ⅰ)设有下面四个命题 p 1:若复数z 满足∈R ,则z ∈R ; p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=;p 4:若复数z ∈R ,则∈R . 其中的真命题为( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4【考点】2K :命题的真假判断与应用;A1:虚数单位i 、复数;A5:复数的运算. 【专题】2A :探究型;5L :简易逻辑;5N :数系的扩充和复数.【分析】根据复数的分类,有复数性质,逐一分析给定四个命题的真假,可得答案. 【解答】解:若复数z 满足∈R ,则z ∈R ,故命题p 1为真命题;p 2:复数z=i满足z2=﹣1∈R,则z?R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p 4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.【点评】本题以命题的真假判断与应用为载体,考查了复数的运算,复数的分类,复数的运算性质,难度不大,属于基础题.4.(5分)(2017?新课标Ⅰ)记Sn 为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为()A.1 B.2 C.4 D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{an}的公差.【解答】解:∵Sn 为等差数列{an}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{an}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.5.(5分)(2017?新课标Ⅰ)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2] B.[﹣1,1] C.[0,4] D.[1,3]【考点】3P:抽象函数及其应用.【专题】35 :转化思想;4R:转化法;51 :函数的性质及应用.【分析】由已知中函数的单调性及奇偶性,可将不等式﹣1≤f(x﹣2)≤1化为﹣1≤x ﹣2≤1,解得答案.【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.【点评】本题考查的知识点是抽象函数及其应用,函数的单调性,函数的奇偶性,难度中档.6.(5分)(2017?新课标Ⅰ)(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.35【考点】DA:二项式定理.【专题】35 :转化思想;4R:转化法.【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.7.(5分)(2017?新课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【考点】L!:由三视图求面积、体积.【专题】11 :计算题;31 :数形结合;44 :数形结合法;5Q :立体几何.【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S=×2×(2+4)=6,梯形∴这些梯形的面积之和为6×2=12,故选:B.【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题.8.(5分)(2017?新课标Ⅰ)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+2【考点】EF:程序框图.【专题】11 :计算题;38 :对应思想;49 :综合法;5K :算法和程序框图.【分析】通过要求A>1000时输出且框图中在“否”时输出确定“”内不能输入“A>1000”,进而通过偶数的特征确定n=n+2.【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.【点评】本题考查程序框图,属于基础题,意在让大部分考生得分.9.(5分)(2017?新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11 :计算题;35 :转化思想;57 :三角函数的图像与性质.【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算能力.10.(5分)(2017?新课标Ⅰ)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.10【考点】K8:抛物线的性质.【专题】11 :计算题;34 :方程思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】方法一:根据题意可判断当A 与D ,B ,E 关于x 轴对称,即直线DE 的斜率为1,|AB|+|DE|最小,根据弦长公式计算即可.方法二:设直线l 1的倾斜角为θ,则l 2的倾斜角为 +θ,利用焦点弦的弦长公式分别表示出|AB|,|DE|,整理求得答案【解答】解:如图,l 1⊥l 2,直线l 1与C 交于A 、B 两点, 直线l 2与C 交于D 、E 两点, 要使|AB|+|DE|最小,则A 与D ,B ,E 关于x 轴对称,即直线DE 的斜率为1, 又直线l 2过点(1,0), 则直线l 2的方程为y=x ﹣1, 联立方程组,则y 2﹣4y ﹣4=0,∴y 1+y 2=4,y 1y 2=﹣4,∴|DE|=?|y 1﹣y 2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l 1的倾斜角为θ,则l 2的倾斜角为 +θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin 22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16, 故选:A .【点评】本题考查了抛物线的简单性质以及直线和抛物线的位置关系,弦长公式,对于过焦点的弦,能熟练掌握相关的结论,解决问题事半功倍属于中档题. 11.(5分)(2017?新课标Ⅰ)设x 、y 、z 为正数,且2x =3y =5z ,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【考点】72:不等式比较大小.【专题】35 :转化思想;51 :函数的性质及应用;59 :不等式的解法及应用.【分析】x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.可得3y=,2x=,5z=.根据==,>=.即可得出大小关系.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.==>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.【点评】本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力,属于中档题.12.(5分)(2017?新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( ) A .440 B .330 C .220 D .110 【考点】8E :数列的求和.【专题】35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n }的通项公式及前n 项和,可知当N 为时(n ∈N +),数列{a n }的前N 项和为数列{b n }的前n 项和,即为2n+1﹣n ﹣2,容易得到N >100时,n ≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n 项和S n =2n+1﹣2﹣n ,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n 消去即可,分别即可求得N 的值. 【解答】解:设该数列为{an },设b n =+…+=2n+1﹣1,(n ∈N +),则=a i ,由题意可设数列{a n }的前N 项和为S N ,数列{b n }的前n 项和为T n ,则T n =21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n ﹣2, 可知当N 为时(n ∈N +),数列{a n }的前N 项和为数列{b n }的前n 项和,即为2n+1﹣n ﹣2,容易得到N >100时,n ≥14, A 项,由=435,440=435+5,可知S 440=T 29+b 5=230﹣29﹣2+25﹣1=230,故A 项符合题意. B 项,仿上可知=325,可知S 330=T 25+b 5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为Sn:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N>100,∴该款软件的激活码440.故选:A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)(2017?新课标Ⅰ)已知向量,的夹角为60°,||=2,||=1,则|+2|= 2.【考点】9P:平面向量数量积的坐标表示、模、夹角.【专题】31 :数形结合;4O:定义法;5A :平面向量及应用.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4?+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.【点评】本题考查了平面向量的数量积的应用问题,解题时应利用数量积求出模长,是基础题.14.(5分)(2017?新课标Ⅰ)设x,y满足约束条件,则z=3x﹣2y的最小值为﹣5 .【考点】7C:简单线性规划.【专题】11 :计算题;31 :数形结合;35 :转化思想;5T :不等式.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)(2017?新课标Ⅰ)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.【考点】KC:双曲线的性质.【专题】11 :计算题;35 :转化思想;49 :综合法;5D :圆锥曲线的定义、性质与方程.【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.【点评】本题考查双曲线的简单性质的应用,点到直线的距离公式以及圆的方程的应用,考查转化思想以及计算能力.16.(5分)(2017?新课标Ⅰ)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为4cm3.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11 :计算题;35 :转化思想;49 :综合法;5E :圆锥曲线中的最值与范围问题.【分析】由题,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,设OG=x,则=3,BC=2x,DG=5﹣x,三棱锥的高h=,求出S△ABCV==,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,f(x)≤f(2)=80,由此能求出体积最大值.【解答】解:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h===,=3,则V===,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.【点评】本题考查三棱锥的体积的最大值的求法,考查空间中线线、线面、面面间的位置关系、函数性质、导数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)(2017?新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【考点】HP:正弦定理;HR:余弦定理.【专题】11 :计算题;33 :函数思想;4R:转化法;56 :三角函数的求值;58 :解三角形.【分析】(1)根据三角形面积公式和正弦定理可得答案,(2)根据两角余弦公式可得cosA=,即可求出A=,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.【解答】解:(1)由三角形的面积公式可得S=acsinB=,△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=?===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.【点评】本题考查了三角形的面积公式和两角和的余弦公式和诱导公式和正弦定理余弦定理,考查了学生的运算能力,属于中档题.18.(12分)(2017?新课标Ⅰ)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【考点】MJ:二面角的平面角及求法;LY:平面与平面垂直.【专题】15 :综合题;31 :数形结合;41 :向量法;5G :空间角.【分析】(1)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB⊥AD,则四边形ABCD为矩形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA?平面PAD,PD?平面PAD,∴AB⊥平面PAD,又AB?平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B (),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD?平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB 的一个法向量,.∴cos <>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C 的余弦值为.【点评】本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.19.(12分)(2017?新课标Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得==9.97,s==≈0.212,其中x为抽取的第i个零件的尺寸,i=1,2, (16)i用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】11 :计算题;35 :转化思想;4A :数学模型法;5I :概率与统计.【分析】(1)通过P(X=0)可求出P(X≥1)=1﹣P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;(2)(ⅰ)由(1)及知落在(μ﹣3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;(ⅱ)通过样本平均数、样本标准差s估计、可知(﹣3+3)=(9.334,10.606),进而需剔除(﹣3+3)之外的数据9.22,利用公式计算即得结论.【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(﹣3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的. (ⅱ)由=9.97,s ≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个 零件的尺寸在(﹣3+3)之外,因此需对当天的生产过程进行检查.剔除(﹣3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97﹣9.22)=10.02, 因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(﹣3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134﹣9.222﹣15×10.022)≈0.008, 因此σ的估计值为≈0.09.【点评】本题考查正态分布,考查二项分布,考查方差、标准差,考查概率的计算,考查运算求解能力,注意解题方法的积累,属于中档题. 20.(12分)(2017?新课标Ⅰ)已知椭圆C :+=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3(﹣1,),P 4(1,)中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为﹣1,证明:l 过定点.【考点】KI :圆锥曲线的综合;K3:椭圆的标准方程.【专题】14 :证明题;35 :转化思想;49 :综合法;5E :圆锥曲线中的最值与范围问题.【分析】(1)根据椭圆的对称性,得到P 2(0,1),P 3(﹣1,),P 4(1,)三点在椭圆C 上.把P 2(0,1),P 3(﹣1,)代入椭圆C ,求出a 2=4,b 2=1,由此能求出椭圆C 的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l :y=kx+t ,(t ≠1),联立,得(1+4k 2)x 2+8ktx+4t 2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l 过定点(2,﹣1). 【解答】解:(1)根据椭圆的对称性,P 3(﹣1,),P 4(1,)两点必在椭圆C上,又P 4的横坐标为1,∴椭圆必不过P 1(1,1), ∴P 2(0,1),P 3(﹣1,),P 4(1,)三点在椭圆C 上.把P 2(0,1),P 3(﹣1,)代入椭圆C ,得:,解得a 2=4,b 2=1,∴椭圆C 的方程为=1.证明:(2)①当斜率不存在时,设l :x=m ,A (m ,y A ),B (m ,﹣y A ), ∵直线P 2A 与直线P 2B 的斜率的和为﹣1, ∴===﹣1,解得m=2,此时l 过椭圆右顶点,不存在两个交点,故不满足. ②当斜率存在时,设l :y=kx+t ,(t ≠1),A (x 1,y 1),B (x 2,y 2), 联立,整理,得(1+4k 2)x 2+8ktx+4t 2﹣4=0,,x 1x 2=,则==。

2017年高考新课标1理科数学及答案

2017年高考新课标1理科数学及答案

2017年普通高等学校招生全国统一考试(新课标全国卷Ⅰ)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分,考试时间120分钟。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合A ={x |x <1},B ={x |31x <},则A. B. C. D.(2)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A. B. C. D.(3)设有下面四个命题:若复数满足,则;:若复数满足,则; :若复数满足,则;:若复数,则.其中的真命题为A. B. C. D. (4)记为等差数列的前项和.若,,则的公差为A.1B.2C.4D.8{|0}A B x x =<I A B =R U {|1}A B x x =>U A B =∅I 14π812π41p z 1z∈R z ∈R 2p z 2z ∈R z ∈R 3p 12,z z 12z z ∈R 12z z =4p z ∈R z ∈R 13,p p 14,p p 23,p p 24,p p n S {}n a n 4524a a +=648S ={}n a(5)函数在单调递减,且为奇函数.若,则满足的的取值范围是A. B. C. D. (6)展开式中的系数为 A.15 B.20 C.30 D.35 (7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10B.12C.14D.16 (8)右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A.A >1 000和n =n +1B.A >1 000和n =n +2C.A ≤1 000和n =n +1D.A ≤1 000和n =n +2()f x (,)-∞+∞(11)f =-21()1x f --≤≤x [2,2]-[1,1]-[0,4][1,3]621(1)(1)x x++2x(9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +),则下面结论正确的是A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把 得到的曲线向右平移个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2 C.把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2(10)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为A.16B.14C.12D.10 (11)设x ,y ,z 为正数,且,则A.2x <3y <5zB.5z <2x <3yC.3y <5z <2xD.3y <2x <5z(12)几位大学生响应国家的创业号召,开发了一款应用软件。

2017版普通高中数学新课标测试题及答案(两套试题)

2017版普通高中数学新课标测试题及答案(两套试题)

最新课程标准考试数学试题(一)一、填空题(本大题共10道小题,每小题3分,共30分)1、数学是研究(空间形式和数量关系)的科学,是刻画自然规律和社会规律的科学语言和有效工具。

2、数学教育要使学生掌握数学的基本知识、(基本技能)、基本思想。

3、高中数学课程应具有多样性和(选择性),使不同的学生在数学上得到不同的发展。

4、高中数学课程应注重提高学生的数学(思维)能力。

5、高中数学选修2-2的内容包括:导数及其应用、(推理与证明)、数系的扩充与复数的引入。

6、高中数学课程要求把数学探究、(数学建模)的思想以不同的形式渗透在各个模块和专题内容之中。

7、选修课程系列1是为希望在(人文、社会科学)等方面发展的学生设置的,系列2是为希望在理工、经济等方面发展的学生设置的。

8、新课程标准的目标要求包括三个方面:知识与技能,过程与方法,(情感、态度、价值观)。

9、向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与(三角函数)的一种工具。

10、数学探究即数学(探究性课题)学习,是指学生围绕某个数学问题,自主探究、学习的过程。

二、判断题(本大题共5道小题,每小题2分,共10分)1、高中数学课程每个模块1学分,每个专题2学分。

(错)改:高中数学课程每个模块2学分,每个专题1学分。

2、函数关系和相关关系都是确定性关系。

(错)改:函数关系是一种确定性关系,而相关关系是一种非确定性关系。

3、统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。

(对)4、数学是人类文化的重要组成部分,为此,高中数学课程提倡体现数学的文化价值。

(对)5、教师应成为学生进行数学探究的领导者。

(错)改:教师应成为学生进行数学探究的组织者、指导者和合作者。

三、简答题(本大题共4道小题,每小题7分,共28分)1、高中数学课程的总目标是什么?使学生在九年制义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。

(word完整版)2017年高中数学《课程标准》考试试题

(word完整版)2017年高中数学《课程标准》考试试题

1.高中数学课程在情感、态度、价值观方面的要求下面说法不正确的是( )A.提高学习数学的兴趣,树立学好数学的信心B.形成锲而不舍的钻研精神和科学态度C.开阔数学视野,体会数学的文化价值D.只需崇尚科学的理性精神2.《高中数学课程标准》在课程目标中提出的基本能力是( )A.自主探究、数据处理、推理论证、熟练解题、空间想象B.运算求解、数据处理、推理论证、空间想象、抽象概括C.自主探究、推理论证、空间想象、合作交流、动手实践D.运算求解、熟练解题、数学建模、空间想象、抽象概括3.高中数学新课程习题设计需要( )A.无需关注习题类型的多样性,只需关注习题功能的多样性B.只需关注习题类型的多样性,无需关注习题功能的多样性C.既要关注习题类型的多样性,也要关注习题功能的多样性D.无需关注习题类型的多样性,也无需关注习题功能的多样性4.下面关于高中数学课程结构的说法正确的是( )A.高中数学课程中的必修课程和选修课程的各模块没有先后顺序的必要B.高中数学课程包括4个系列的课程C.高中数学课程的必修学分为16学分D.高中数学课程可分为必修与选修两类5.在教学中激发学生的学习积极性方法说法正确的是( )A.让学生大量做题,挑战难题B.创设问题情境,让学生有兴趣、有挑战C.让学生合作交流讨论、动手操作、有机会板演讲解D.通过数学应用的教学使学生了解数学在现实生活中的作用和意义6.要实现数学课程改革的目标,关键是依靠( )A.学生B.教师C.社会D.政府领导7.在新课程中教师的教学行为将发生变化中正确的是( )A.在对待自我上,新课程强调反思B.在对待师生关系上,新课程强调权威、批评C.在对待教学关系上,新课程强调教导、答疑D.在对待与其他教育者的关系上,新课程强调独立自主精神8.在新课程改革中,受新的理念指导,教师在课堂中的地位、角色发生了较大的变化,这种变化主要体现在多方面,下面说法中不正确的选项是( )①教师是数学知识的象征、代表;②教师是数学探究与创新的先锋③教师是数学活动的设计者;④教师是数学活动的组织者;⑤教师是学生活动的主体者;⑥教师是学生思维活动的调控者;⑦教师是学生学习动力的激励者;⑧教师是学生学习与选择的导师。

2017年数学新课标(一)

2017年数学新课标(一)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I【答案】A 【解析】试题分析:由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}A B x x x x =<<I I{|0}x x =<,{|1}{|0}{|1}A B x x x x x x =<<=<U U ,故选A.【考点】集合的运算,指数运算性质【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理. 2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248aa⋅=,选B.秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p满足1142p<<,故选B.【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A区域的几何度量,最后计算()P A.3.设有下面四个命题1p:若复数z满足1z∈R,则z∈R;2p:若复数z满足2z∈R,则z∈R;3p:若复数12,z z满足12z z∈R,则12z z=;4p:若复数z∈R,则z∈R.其中的真命题为A.13,p p B.14,p p C.23,p p D.24,p p 【答案】B【考点】复数的运算与性质【名师点睛】分式形式的复数,分子、分母同乘以分母的共轭复数,化简成i(,)z a b a b=+∈R的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.4.记nS为等差数列{}na的前n项和.若4524a a+=,648S=,则{}na的公差为A.1 B.2 C.4 D.8【答案】C【解析】【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D 【解析】试题分析:因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤成立的x 的取值范围为[1,3],选D. 【考点】函数的奇偶性、单调性【名师点睛】奇偶性与单调性的综合问题,要充分利用奇、偶函数的性质与单调性解决不等式和比较大小问题,若()f x 在R 上为单调递增的奇函数,且12()()0f x f x +>,则120x x +>,反之亦成立. 6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x ++=⋅++⋅+,则6(1)x +展开式中含2x 的项为22261C 15x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为442621C 15x x x⋅=,故2x 的系数为151530+=,选C.【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,用第一个二项式中的每项乘以第二个二项式的每项,分析含2x 的项共有几项,进行相加即可.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项展开式中的r不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B【解析】试题分析:由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.【考点】简单几何体的三视图【名师点睛】三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图. 8.下面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1 B.A>1 000和n=n+2C.A≤1 000和n=n+1 D.A≤1 000和n=n+2【答案】D【考点】程序框图【名师点睛】解决此类问题的关键是读懂程序框图,明确顺序结构、条件结构、循环结构的真正含义.本题巧妙地设置了两个空格需要填写,所以需要抓住循环的重点,偶数该如何增量,判断框内如何进行判断可以根据选项排除.9.已知曲线C1:y=cos x,学优高考网C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.【考点】三角函数图象变换【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住ππsin cos(),cos sin()22αααα=-=+;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A【考点】抛物线的简单几何性质【名师点睛】对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为α,则22||sin p AB α=,则2222||πcos sin (+)2p pDE αα==,所以222221||||4(cos sin cos p p AB DE ααα+=+=+ 222222222111sin cos )4()(cos sin )4(2)4(22)16sin cos sin cos sin ααααααααα=++=++≥⨯+=. 11.设x 、y 、z 为正数,且235x y z==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D【考点】指、对数运算性质【名师点睛】对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A 【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -LL L则该数列的前(1)122k k k ++++=L 项和为 11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭L L ,要使(1)100 2k k+>,有14k≥,此时122kk++<,所以2k+是第1k+组等比数列1,2,,2kL的部分和,设1212221t tk-+=+++=-L,所以2314tk=-≥,则5t≥,此时52329k=-=,所以对应满足条件的最小整数293054402N⨯=+=,故选A.【考点】等差数列、等比数列【名师点睛】本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断.二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a,b的夹角为60°,|a|=2,|b|=1,则| a +2b |= .【答案】23【解析】试题分析:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+=oa b a a b b,所以|2|1223+==a b.秒杀解析:利用如下图形,可以判断出2+a b的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为23.【考点】平面向量的运算【名师点睛】平面向量中涉及有关模长的问题时,常用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.14.设x,y满足约束条件2121x yx yx y+≤⎧⎪+≥-⎨⎪-≤⎩,,,则32z x y=-的最小值为.【答案】5- 【解析】试题分析:不等式组表示的可行域如图所示,易求得1111(1,1),(,),(,)3333A B C ---,由32z x y =-得322zy x =-在y 轴上的截距越大,z 就越小,所以,当直线32z x y =-过点A 时,z 取得最小值, 所以z 的最小值为3(1)215⨯--⨯=-. 【考点】线性规划【名师点睛】本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.15.已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为 .【答案】233【解析】试题分析:如图所示,作AP MN ⊥,因为圆A 与双曲线C 的一条渐近线交于M 、N 两点,则MN 为双曲线的渐近线by xa=上的点,且(,0)A a,||||AM AN b==,而AP MN⊥,所以30PAN∠=o,点(,0)A a到直线by xa=的距离22||||1bAPba=+,在Rt PAN△中,||cos||PAPANNA∠=,代入计算得223a b=,即3a b=,由222c a b=+得2c b=,所以22333c bea b===.【考点】双曲线的简单几何性质【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题备受出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b;③双曲线的顶点到渐近线的距离是abc.16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O 上的点,△DBC,△ECA,△F AB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△F AB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.【答案】415【解析】试题分析:如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则1332OG x =⨯36x =.∴356FG SG x ==-, 222233566SO h SG GO x x ⎛⎫⎛⎫==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 3553x ⎛⎫=- ⎪ ⎪⎝⎭, ∴三棱锥的体积21133553343ABC V S h x x ⎛⎫=⋅=⨯⨯- ⎪ ⎪⎝⎭△451535123x x =-. 设()45353n x x x =-,x >0,则()3453203n x x x '=-, 令()0n x '=,即43403x x -=,得43x =,易知()n x 在43x =处取得最大值.∴max 15485441512V =⨯⨯-=.【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 【解析】试题分析:(1)由三角形面积公式建立等式21sin 23sin a ac B A=,再利用正弦定理将边化成角,从而得出sin sin B C 的值;(2)由1cos cos 6B C =和2sin sin 3B C =计算出1cos()2B C +=-,从而求出角A ,根据题设和余弦定理可以求出bc 和b c +的值,从而求出ABC △的周长为333+.【考点】三角函数及其变换【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.(12分)如图,在四棱锥P −ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=o ,求二面角A −PB −C 的余弦值. 【解析】试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD . 由于AB//CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)在平面PAD 内作PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA u u u r的方向为x 轴正方向,||AB uuu r 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得2(,0,0)2A ,2(0,0,)2P ,2(,1,0)2B ,2(,1,0)2C -. 所以22(,1,)22PC =--u u u r ,(2,0,0)CB =u u u r ,22(,0,)22PA =-u u u r ,(0,1,0)AB =u u u r . 设(,,)x y z =n 是平面PCB 的法向量,则0,0,PC CB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n 即220,2220,x y z x ⎧-+-=⎪⎨⎪=⎩可取(0,1,2)=--n .设(,,)x y z =m 是平面PAB 的法向量,则0,0,PA AB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r m m 即220,220.x z y ⎧-=⎪⎨⎪=⎩可取(1,0,1)=m . 则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为33-. 【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2≈,0.0080.09≈.【解析】试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此16(1)1(0)10.99740.0408P X P X ≥=-==-≈.X 的数学期望为160.00260.0416EX =⨯=.(2)(i )如果生产状态正常,一个零件尺寸在(3,3)μσμσ-+之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(3,3)μσμσ-+之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii )由9.97,0.212x s =≈,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=,由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外,因此需对当天的生产过程进行检查.剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的平均数为1(169.979.22)10.0215⨯-=,因此μ的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈, 因此σ的估计值为0.0080.09≈. 【考点】正态分布,随机变量的期望和方差【名师点睛】数学期望是离散型随机变量中重要的数学概念,反映随机变量取值的平均水平.求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望.正态分布是一种重要的分布,之前考过一次,尤其是正态分布的3σ原则. 20.(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 【解析】试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此234,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,再设直线l 的方程,当l 与x轴垂直时,通过计算,不满足题意,再设l :y kx m =+(1m ≠),将y kx m =+代入2214x y +=,写出判别式,利用根与系数的关系表示出x 1+x 2,x 1x 2,进而表示出12k k +,根据121k k +=-列出等式表示出k 和m 的关系,从而判断出直线恒过定点.试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此22211,131,4b ab ⎧=⎪⎪⎨⎪+=⎪⎩解得224,1.a b ⎧=⎪⎨=⎪⎩故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t ,242t -),(t ,242t --).则22124242122t t k k t t---++=-=-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=. 由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-. 当且仅当1m >-时,0∆>,于是l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-).【考点】椭圆的标准方程,直线与圆锥曲线的位置关系【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简. 21.(12分) 已知函数2()e(2)e xx f x a a x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【解析】试题分析:(1)讨论()f x 单调性,首先进行求导,发现式子特点后要及时进行因式分解,再对a 按0a ≤,0a >进行讨论,写出单调区间;(2)根据第(1)问,若0a ≤,()f x 至多有一个零点.若0a >,当ln x a =-时,()f x 取得最小值,求出最小值1(ln )1ln f a a a-=-+,根据1a =,(1,)a ∈+∞,(0,1)a ∈进行讨论,可知当(0,1)a ∈时有2个零点.易知()f x 在(,ln )a -∞-有一个零点;设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n nf n a a n n n =+-->->->.由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点.从而可得a 的取值范围为(0,1). 试题解析:(1)()f x 的定义域为(,)-∞+∞,2()2e(2)e 1(e 1)(2e 1)xx x x f x a a a '=+--=-+,(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n nf n a a n n n =+-->->->.由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).【考点】含参函数的单调性,利用函数零点求参数取值范围【名师点睛】研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数()f x 有2个零点求参数a 的取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断y a =与其交点的个数,从而求出a 的取值范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若()f x 有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证最小值两边存在大于0的点.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为17,求a . 【解析】试题分析:(1)先将曲线C 和直线l 的参数方程化成普通方程,然后联立两方程即可求出交点坐标;(2)由直线l 的普通方程为440x y a +--=,设C 上的点为(3cos ,sin )θθ,易求得该点到l 的距离为|3cos 4sin 4|17a d θθ+--=.对a 再进行讨论,即当4a ≥-和4a <-时,求出a 的值.试题解析:(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.由22430,19x y x y +-=⎧⎪⎨+=⎪⎩解得3,0x y =⎧⎨=⎩或21,2524.25x y ⎧=-⎪⎪⎨⎪=⎪⎩从而C 与l 的交点坐标为(3,0),2124(,)2525-. (2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为|3cos 4sin 4|17a d θθ+--=.当4a ≥-时,d 的最大值为917a +.由题设得91717a +=,所以8a =; 当4a <-时,d 的最大值为117a -+.由题设得11717a -+=,所以16a =-. 综上,8a =或16a =-. 【考点】坐标系与参数方程【名师点睛】化参数方程为普通方程的关键是消参,可以利用加减消元、平方消元、代入法等等;在极坐标方程与参数方程的条件下求解直线与圆的位置关系问题时,通常将极坐标方程化为直角坐标方程,参数方程化为普通方程来解决. 23.[选修4−5:不等式选讲](10分)已知函数2–4()x ax f x =++,11()x x g x =++-||||.(1)当a =1时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围. 【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出不等式的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.则()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,从而得11a -≤≤.试题解析:(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤.所以()()f x g x ≥的解集为117{|1}2x x -+-≤≤.【考点】绝对值不等式的解法,恒成立问题【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图象解题.。

2017高考新课标1卷理科数学试题及答案

2017高考新课标1卷理科数学试题及答案

绝密★启用前2017 年普通高等学校招生全国统一考试(新课标1)1.2.理科数学、选择题:本题共 12小题,每小题 5 分,共 60分。

在每小题给出的四个选项中,只有项是符合题目要求的。

x已知集合 A={ x|x<1} ,B={ x|3A.AI B {x|x 0}C.AUB {x|x 1}4.5.1},则B.AUB RD.AI B如图,正方形 ABCD 内的图形来自中国古代的太极图 .正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率A.C.3.设有下面四个命题p1 :若复数z 满足p2 :若复数p3 :若复数p4 :若复数z其中的真命题为A .p1,p3z 满足z1,z2 满足记S n 为等差数列A.1函数f (x) 在(R,R,z1z2R ,则z R.的x 的取值范围是πB.8πD.4则z R;R ,则z1B.p1, p4{a n} 的前n 项和.若a4B.2z2 ;C.p2, p3 D.p2,p4a5 24 ,S6C.4)单调递减,且为奇函数.若f(1)48,则{a n} 的公差为D.81,则满足1 f (x 2) 1A . [ 2,2]B . [ 1,1]1 6 26. (1 2)(1 x)6展开式中 x 2 的系数为 x7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为 2,俯视图为等腰直角三角形 .该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .A>1 000和 n=n+1B .A>1 000和 n=n+2C .A 1 000和 n=n+1D .A 1 000和 n=n+2个单位长度,得到曲线 C 2C . [0,4]D . [1,3]A .15B .20C .30D .35A .10B .12 C .14 D .168.右面程序框图是为了求出满足 3n - 2n >1000 的最小偶数 n ,那么在 和 两个空白框中,可以分别填入9.已知曲线 C 1: y=cos x , C 2:2πy=sin (2x+ ),则下面结论正确的是A .把 C 1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移B .把C 1 上各点的横坐标伸长到原来的 2 倍, 纵坐标不变, 再把得到的曲线向左平移12个单位长度,得到曲线 C21πC.把 C1 上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移26 个单位长度,得到曲线 C21πD.把 C1 上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移2 12 个单位长度,得到曲线 C210.已知 F为抛物线 C:y2=4x的焦点,过 F作两条互相垂直的直线 l1,l2,直线 l1与C 交于A、B两点,直线 l2与C交于 D、E两点,则 |AB|+|DE |的最小值为A . 16 B.14 C.12 D.10 11.设 xyz 为正数,且2x 3y5z,则A . 2x<3y<5 zB 5z<2x<3y C.3y<5z<2x D.3y<2x<5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动 .这款软件的激活码为下面数学问题的答案:已知数列 1,1, 2,1,2,4,1,2,4,8,1,2,4,8,16,⋯,其中第一项是 20,接下来的两项是 20, 21,再接下来的三项是 20, 21,22,依此类推 .求满足如下条件的学科网 &最小整数 N:N>100 且该数列的前 N 项和为 2 的整数幂.那么该款软件的激活码是A . 440 B. 330 C. 220 D.110二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

2017高考新课标1卷理科数学试题及答案

2017高考新课标1卷理科数学试题及答案

绝密★启用前2017年普通高等学校招生全国统一考试(新课标1)1.2.理科数学、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有项是符合题目要求的。

X已知集合A={ x|x<1} , B={ x|3A. AI B {x|x 0}C. AU B {x|x 1}1},则B. AUB RD. AI B如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率3 .设有下面四个命题5 :若复数z满足P2 :若复数P3 :若复数P4:若复数z其中的真命题为A . P1, P3z满足Z1, Z2满足记S n为等差数列函数f(x)在(Z1Z2R,则z R.的x的取值范围是B. P1, P4{a n}的前n项和.若a4z2 ;C. P2, P3 D . P2, P4a524 , S648,则{a n}的公差为)单调递减,且为奇函数.若f(1)1,则满足1 f(x 2)16121 6 26 . (1 2)(1 x)6展开式中x 2的系数为x7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形 •该多面体的各个面中有若干个是梯形,这 些梯形的面积之和为A . A>1 000 和 n=n+1B . A>1 000 和 n=n+2C . A 1 000 和 n=n+1D . A 1 000 和 n=n+2A • [ 2,2]B • [ 1,1]C . [0,4]D . [1,3]A . 15B . 20C . 30D . 35A . 10B .12 C . 14 D . 16&右面程序框图是为了求出满足3n -2n >1000的最小偶数n ,那么在 和=两个空白框中,可以分别填入9. 已知曲线 C 1: y=cos x ,C 2: 2 n y=s in (2x+),则下面结论正确的是3A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B .把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C26121nC .把C i 上各点的横坐标缩短到原来的一倍,纵坐标不变,再把得到的曲线向右平移一2 6个单位长度,得到曲线 C 21 nD .把C i 上各点的横坐标缩短到原来的 一倍,纵坐标不变,再把得到的曲线向左平移 —2 12个单位长度,得到曲线 C 210. 已知F 为抛物线C : y 2=4x 的焦点,过F 作两条互相垂直的直线 l i , 12,直线l i 与C 交 于A 、B两点,直线12与C 交于D 、E 两点,贝U |AB|+|DE|的最小值为 A . 16B . 14C . 12D . 1011.设xyz 为正数,且2x 3y 5z ,则A . 2x<3y<5zB . 5z<2x<3yC . 3y<5z<2xD . 3y<2x<5z12.几位大学生响应国家的创业号召,开发了一款应用软件 .为激发大家学习数学的兴趣,他们推出了 解数学题获取软件激活码”的活动•这款软件的激活码为下面数学问题的答 案:已知数列 1 , 1, 2, 1 , 2, 4, 1 , 2, 4, 8, 1 , 2, 4, 8, 16,…,其中第一项是 2°,接下来的两项是 20, 21,再接下来的三项是 20, 21, 22,依此类推•求满足如下条件 的学科网&最小整数N : N>100且该数列的前N 项和为2的整数幕.那么该款软件的激活码 是 A . 440B . 330C . 220D . 110二、填空题:本题共 4小题,每小题5分,共20分。

2017年高考新课标1文科数学真题及答案

2017年高考新课标1文科数学真题及答案

2017年普通高等学校招生全国统一考试(新课标全国卷Ⅰ)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分,考试时间120分钟。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合{}{}2,|320A x x B x x =<=->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭ D .A B=R (2)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地 的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可 以用来评估这种农作物亩产量稳定程度的是A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数 (3)下列各式的运算结果为纯虚数的是A .i(1+i)2B .i 2(1-i) C .(1+i)2D .i(1+i) (4)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内 切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方 形内随机取一点,则此点取自黑色部分的概率是A.14B.π8C.12D.π4(5)已知F是双曲线C:2213yx-=的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3).则△APF的面积为A.13B.12C.23D.32(6)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是(7)设x,y满足约束条件33,1,0,x yx yy+≤⎧⎪-≥⎨⎪≥⎩则z=x+y的最大值为A.0 B.1 C.2 D.3(8)函数sin21cosxyx=-的部分图像大致为(9)已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称(10)如图是为了求出满足321000n n->的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +2 (11)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0,B A C C +-=2a =,c =C =A .π12B .π6C .π4D .π3(12)设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M满足∠AMB =120°,则m 的取值范围是A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞第Ⅱ卷二、填空题:本大题共4小题,每小题5分(13)已知向量a=(–1,2),b=(m,1).若向量a+b与a垂直,则m=______________.(14)曲线21y xx=+在点(1,2)处的切线方程为_________________.(15)已知π(0)2a∈,,tan α=2,则πcos()4α-=__________.(16)已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O 的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为________.三、解答题:解答应写出文字说明,证明过程或演算步骤.(一)必考题:共60分.(17)(本小题满分12分)记S n为等比数列{}n a的前n项和,已知S2=2,S3=-6.(Ⅰ)求{}n a的通项公式;(Ⅱ)求S n,并判断S n+1,S n,S n+2是否成等差数列.如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=(Ⅰ)证明:平面PAB ⊥平面PAD ;(Ⅱ)若PA =PD =AB =DC ,90APD ∠= ,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==≈18.439≈,161()(8.5) 2.78ii x x i =--=-∑,其中ix 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅. (Ⅰ)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(Ⅱ)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.(20)(本小题满分12分)设A,B为曲线2:4xC y=上两点,A与B的横坐标之和为4.(Ⅰ)求直线AB的斜率;(Ⅱ)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.(21)(本小题满分12分)已知函数()2()e e .x x f x a a x =--(Ⅰ)讨论()f x 的单调性; (Ⅱ)若()0f x ≥,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.(22)[选修4―4:坐标系与参数方程] (10分) 在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (Ⅰ)若1a =-,求C 与l 的交点坐标;(Ⅱ)若C 上的点到la .(23)[选修4—5:不等式选讲](10分) 已知函数()()24,11f x x ax g x x x =-++=++-. (Ⅰ)当1a =时,求不等式()()f x g x ≥的解集;(Ⅱ)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围.2017年高考文科数学真题及答案全国卷1本试卷共5页,满分150分。

2017年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2017 年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12 小题,每小题5 分,共60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5 分)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x<} B.A∩B=∅C.A∪B={x|x<} D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n 的平均数B.x1,x2,…,x n 的标准差C.x1,x2,…,x n 的最大值D.x1,x2,…,x n 的中位数3.(5 分)下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5 分)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)已知F 是双曲线C:x2﹣=1 的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为()A.B.C.D.6.(5 分)如图,在下列四个正方体中,A,B 为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是()A.B.C.D.7.(5 分)设x,y 满足约束条件,则z=x+y 的最大值为()A.0 B.1 C.2 D.3 8.(5分)函数y=的部分图象大致为()A.B.C.D.9.(5 分)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1 对称D.y=f(x)的图象关于点(1,0)对称10.(5 分)如图程序框图是为了求出满足3n﹣2n>1000 的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000 和n=n+1 B.A>1000 和n=n+2C.A≤1000 和n=n+1 D.A≤1000 和n=n+211.(5 分)△ABC 的内角A,B,C 的对边分别为a,b,c,已知sinB+sinA(sinC ﹣cosC)=0,a=2,c=,则C=()A.B.C.D.12.(5 分)设A,B 是椭圆C:+=1 长轴的两个端点,若C 上存在点M 满足∠AMB=120°,则m 的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1] ∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4 小题,每小题5 分,共20 分。

普通高中数学课程标准试题与答案(2017年版2020年修订)

普通高中数学课程标准试题与答案(2017年版2020年修订)

普通高中数学课程标准试题与答案(2017年版2020年修订)一、填空题1.高中数学课程应力求通过各种不同形式的自主学习,探究活动,让学生体验数学发现和创造的历程,发展他们的创新意识。

2.高中数学课程应注重提高学生的数学思维能力,这是一数学教育的基本目标之一。

3.高中数学“四基”基础知识、基本技能、基本思想、基本活动经验4.数学学科核心素养包括:数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。

5.数学教育在学校教育中占有特殊的地位,它使学生掌握数学的基础知识、基本技能、基本思想,使学生表达清晰、思考有条理,使学生具有实事求是的态度、锲而不舍的精神,使学生会用一数学的思考方式解决问题、认识世界。

6.人们在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演经证明、反思与建构等思维过程。

7.高中数学课程标准最突出的特点就是体现了基础性、多样性和选择性。

8.高中数学课程分为必修课程、选择性必修课程和选修课程。

9.为了适应信息时代发展的需要,高中数学课程应增加算法的内容,把最基本的数据处理、统计知识等作为新的数学基础知识和基本技能;同时,应删减繁琐的计算、人为技巧化的难题和过分强调细枝末节的内容,克服“双基异化”的倾向。

10.高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。

11.数学学习的评价既要重视结果,也要重视过程。

对学生-数学学习过程的评价,包括学生参加数学活动的兴趣和态度、数学学习的自信、独立思考的习惯、合作交流的意识、数学认知的发展水平等方面。

12.高中数学课程内容突出函数、几何与代数、概率与统计、数学建模活动与数学探究活动四条主线。

13.解析几何是17世纪数学发展的重大成果之一,其本质是用代数方法研究图形的几何性质。

2017年新课标i理科数学

2017年新课标i理科数学

2017年新课标i理科数学
2017年新课标I理科数学试卷强调了对学生数学基础知识、基本技能、基本思想和基本活动经验的考查,同时也注重了对学生发现问题、提
出问题、分析问题和解决问题能力的培养。

试卷内容覆盖了高中数学
的多个重要领域,包括但不限于函数与方程、几何与代数、概率与统计、数列与极限等。

在函数与方程部分,试卷可能会考查函数的性质,如单调性、奇偶性、周期性等,以及方程的求解方法,包括一元二次方程、不等式等。


部分内容要求学生能够理解函数的概念,掌握函数图像的绘制和性质
分析,以及运用方程求解问题。

在几何与代数部分,试卷可能会包括平面几何、立体几何以及代数方
程组的解法。

学生需要掌握几何图形的性质、相似和全等的判定与证明,以及代数方程组的解法,如加减消元法、代入消元法等。

概率与统计部分则考查了学生对随机事件的概率计算、统计图表的解
读以及数据的分析能力。

这要求学生能够运用概率论的基本原理解决
实际问题,如计算事件的概率、进行统计推断等。

数列与极限部分是高等数学的基础,试卷可能会考查数列的通项公式、递推关系以及极限的概念和计算。

学生需要理解数列的基本概念,掌
握数列的求和方法,以及极限的计算技巧。

此外,试卷还可能包含一些综合性问题,这些问题往往需要学生综合
运用多个领域的知识来解决,考查学生的综合分析能力和创新思维。

总体来说,2017年新课标I理科数学试卷旨在全面考查学生的数学素
养,强调数学知识的应用性和实践性,鼓励学生在学习过程中发展批判性思维和解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年高中数学《课程标准》考试试题-(1)2017年高中数学《课程标准》考试试题1.高中数学课程在情感、态度、价值观方面的要求下面说法不正确的是( )A.提高学习数学的兴趣,树立学好数学的信心B.形成锲而不舍的钻研精神和科学态度C.开阔数学视野,体会数学的文化价值D.只需崇尚科学的理性精神2.《高中数学课程标准》在课程目标中提出的基本能力是( )A.自主探究、数据处理、推理论证、熟练解题、空间想象B.运算求解、数据处理、推理论证、空间想象、抽象概括C.自主探究、推理论证、空间想象、合作交流、动手实践D.运算求解、熟练解题、数学建模、空间想象、抽象概括3.高中数学新课程习题设计需要( )A.无需关注习题类型的多样性,只需关注习题功能的多样性B.只需关注习题类型的多样性,无需关注习题功能的多样性C.既要关注习题类型的多样性,也要关注习题功能的多样性D.无需关注习题类型的多样性,也无需关注习题功能的多样性4.下面关于高中数学课程结构的说法正确的是( )A.高中数学课程中的必修课程和选修课程的各模块没有先后顺序的必要B.高中数学课程包括4个系列的课程C.高中数学课程的必修学分为16学分D.高中数学课程可分为必修与选修两类5.在教学中激发学生的学习积极性方法说法正确的是( )A.让学生大量做题,挑战难题B.创设问题情境,让学生有兴趣、有挑战C.让学生合作交流讨论、动手操作、有机会板演讲解D.通过数学应用的教学使学生了解数学在现实生活中的作用和意义6.要实现数学课程改革的目标,关键是依靠( )A.学生B.教师C.社会D.政府领导7.在新课程中教师的教学行为将发生变化中正确的是( )A.在对待自我上,新课程强调反思B.在对待师生关系上,新课程强调权威、批评C.在对待教学关系上,新课程强调教导、答疑D.在对待与其他教育者的关系上,新课程强调独立自主精神8.在新课程改革中,受新的理念指导,教师在课堂中的地位、角色发生了较大的变化,这种变化主要体现在多方面,下面说法中不正确的选项是( )①教师是数学知识的象征、代表;②教师是数学探究与创新的先锋③教师是数学活动的设计者;④教师是数学活动的组织者;⑤教师是学生活动的主体者;⑥教师是学生思维活动的调控者;⑦教师是学生学习动力的激励者;⑧教师是学生学习与选择的导师。

A.①②⑤⑧B.②③⑥⑦C.①④⑥⑧D.②③⑦⑧9.实现课程目标、实施教学的重要资源是( )A.课程资源B.教师C.教材D.仪器设备10.新课程教学改革要求我们首先确立起( )A.先进的教学观念B.与新课程相适应的、体现素质教育精神的教学观念C.教师为主导,学生为主体的教学观念D.以课堂教学为中心教学观念11.高中数学课程的基础性是指( )A.只有必修课程是基础B.必修和选修课程是所有高中生的基础C.高中数学课程为全体高中学生提供必要的数学基础,高中数学课程为不同学生提供不同的基础D.必修课程是基础,选修课程不是基础12.培养学生的学习习惯对今后发展至关重要,下面说法中不正确的是( )A.自学成才,无需培养B.培养学生会提问题、勤于思考的习惯C.培养学生用图形描述、刻画和解决问题的习惯D.培养学生及时反思和总结的习惯13.对于函数的教学以下说法不正确的是( )A.对函数的学习不能停留在抽象的讨论,要突出函数图形的地位B.函数是最重要、最基本的数学模型,要加深对函数思想的理解与应用C.在学生头脑中留下几个具体的最基本的函数模型就可以了D.结合具体的数学内容采用多种模式,让学生经历函数知识的形式与应用过程14.整体把握高中数学课程是理解高中数学课程的基点。

请根据培训内容说说看,高中数学课程内容的主线可大致分为( )A.函数思想、几何思想、算法思想、运算思想、随机思想与统计思想B.数形结合思想、分类讨论思想、函数与方程思想、概率与统计思想C.函数与方程的思想、数形结合思想、向量和坐标思想D.函数思想、算法思想、数形结合思想、分类讨论思想15.高中课程改革追求基本的目标是由应试教育向素质教育的转轨,真正实施( )A.全民教育B.大众教育C.素质教育D.精英教育16.《普通高中数学课程标准》提出的新课程基本理念,下面各组选项中说法不正确的是( )①构建共同基础,提供发展平台;②提供针对课程,适应个性选择;③倡导积极主动、勇于探索的学习方式;④注重提高学生的数学思维能力;⑤发展学生的数学思维能力;⑥与时俱进地认识双基;⑦强调本质,注意适度形式化;⑧体现数学的文化价值;⑨注重信息技术与数学课程的整合;⑩建立合理、科学的评价体系; A.①③④⑦ B.②④⑤⑧ C.③⑤⑥⑨ D.①⑤⑨⑩17.运算与推理的关系是( )A.运算与推理无关B.运算与推理是不同的思维形式C.运算本身就是一种推理,推理是运算的一种D.推理是运算18.任何新课程的研制,一般都要经过哪几个阶段进行( ) A.准备、研制、编写、推广 B.研制、编写、实验、推广 C.准备、研制、实验、推广 D.准备、研制、编写、实验、推广19.从以下选项看,确定教学目标和教学要求的主要依据是( )A.课程标准B.教科书C.考试大纲D.教辅资料20.与社会、科技的进步紧密相连,体现时代精神的课程时代性的选择是指( )A.课程安排B.课程内容C.课程管理D.课程评价1.高中数学课程应力求通过各种不同形式的自主学习,探究活动,让学生体验数学发现和创造的历程,发展他们的___创新意识________。

2.高中数学课程应注重提高学生的数学思维能力,这是__数学教育______的基本目标之一。

3.数学教育在学校教育中占有特殊的地位,它使学生掌握数学的基础知识、基本技能、基本思想,使学生表达清晰、思考有条理,使学生具有实事求是的态度、锲而不舍的精神,使学生会用___数学的思考方式_____________解决问题、认识世界。

4.人们在学习数学和______运用数学解决问题____时,不断地经历直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程。

5.高中数学课程标准最突出的特点就是体现了___基础性________、多样性和选择性。

6.为了适应___信息时代__________发展的需要,高中数学课程应增加算法的内容,把最基本的数据处理、统计知识等作为新的数学基础知识和基本技能;同时,应删减繁琐的计算、人为技巧化的难题和过分强调细枝末节的内容,克服“双基异化”的倾向。

7.高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展____.智力和创新意识_______具有基础性的作用。

8.数学学习的评价既要重视结果,也要重视过程。

对学生_数学学习过程______________的评价,包括学生参加数学活动的兴趣和态度、数学学习的自信、独立思考的习惯、合作交流的意识、数学认知的发展水平等方面。

9.解析几何是17世纪数学发展的重大成果之一,其本质是__.用代数方法研究图形的几何性质___________________,体现了数形结合的重要数学思想。

10.数学是研究__空间形式和数量关系_____的科学,是刻画自然规律和社会规律的科学语言和有效工具。

11.普通高中数学课程的总目标是:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的__数学素养_________,以满足个人发展与社会进步的需要。

12.高中数学课程要求把数学探究、_数学建模_______的思想以不同的形式渗透在各个模块和专题内容之中。

13.选修课程系列1是为希望在__.人文、社会科学_________等方面发展的学生设置的,系列2是为希望在理工、经济等方面发展的学生设置的。

14.数学探究即数学____探究性课题______学习,是指学生围绕某个数学问题,自主探究、学习的过程。

15.算法是一个全新的课题,己经成为计算机科学的重要基础,它在科学技术和____社会发展_______中起着越来起重要的作用。

16.课程目标要求学生具有一定的数学视野,逐步认识数学的科学价值、应用______价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

17.新课程标准的目标要求包括三个方面:知识与技能,__过程与方法________________和情感、态度、价值观18.高中数学选修2-2的内容包括:导数及其应用、推理与证明_______、数系的扩充与复数的引入。

19.向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与___三角函数______的一种工具,有着极其丰富的实际背景。

20.用空间向量处理立体几何问题,提供了新的视角。

空间向量的引入,为解决三维空间中图形的位置关系与__度量______问题提供了一个十分有效的工具。

21.简述高中数学课程标准课程的基本理念。

<<普通高中数学课程标准>>提出的基本理念有:1.构建共同基础,提供发展平台。

2.提供多样课程,适应个性选择。

3.倡导积极主动,用于探索的学习方式。

4.注重提高学生的数学思维能力。

5.发展学生的数学应用意识。

6.与时俱进地认识“双基”。

7.强调本质,注意适度形式化。

8.体现数学的文化价值。

9.注意信息技术与数学课程的整合。

10.建立合理、科学的评价体系。

<<普通高中数学课程标准>>提出的这些基本理念,对我们理解和把握新课程启发可以从以下几个方面来看:1.教师和学生地位的把握在以前的学习中我就了解到,新课改下,教师不该再是课堂的主宰者,而应当是学生学习的引导者。

而学生也不应当再被动的接受知识,应该成为课堂的主体,老师要善于引导学生积极、自觉、自主的去发现生活中存在的数学,并鼓励、引领他们去探究、去学习。

新课改下的课堂应该是以教师引导、学生自主学习为主的,富有生机和活力的课堂!2.学习目标的变化过去的应试教育迫使教师和学生只注重双基,而忽略了学生的能力和情感价值的培养,而新课程标准理念强调学习的三维发展目标,不仅要求双基,更强调学生的能力目标和情感价值观目标。

这样就引起了我的深思:作为一名教师,我能交给我的学生什么?经过反复思考,我认为教师不应该只传授给学生知识、解题方法和技巧,而应当主动给学生创造机会,培养学生的实践能力和应用能力,让他们在学习数学的过程中发现数学的美,从意识上彻底的植入数学的“根”,这样才能让他们学好数学这一门课。

3.学生思维的培养我觉得数学课堂不应该再是老师满堂教,学生埋头听这种沉闷的气氛。

这种气氛下,学生的思维很容易受到限制、得不到发展,学生成绩自然不会有所长进。

相关文档
最新文档