高二数学上册各章节知识点总结(大纲版)

合集下载

高二数学上学期知识点

高二数学上学期知识点

高二数学上学期知识点第一部分:三角恒等变换1.两角和与差正弦、余弦、正切公式:=±)sin(βαβαβαsin cos cos sin ± =±)cos(βαβαβαsin sin cos cos =±)(βαtg βαβαtg tg tg tg ⋅± 1注意正用、逆用、变形用。

例如:tanA+tanB=tan(A+B)(1-tanAtanB) 2.二倍角公式:sin2α=ααcos sin 2⋅,cos2α=αα22sin cos-=1cos 22-α=α2sin 21-tan 2α=αα2tan 1tan 2-。

3.升幂公式是:2cos 2cos 12αα=+2sin 2cos 12αα=-。

4.降幂公式是:22cos 1sin 2αα-=22cos 1cos 2αα+=。

5.万能公式:sin α=2tan12tan22αα+ cos α=2tan12tan 122αα+- tan α=2tan12tan 22αα-6.三角函数恒等变形的基本策略:(1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ(2)项的分拆与角的配凑。

如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α=(α+β)-β,β=2βα+-2βα-等。

(3)降次与升次。

2sin2cos 12αα=-,22cos 2sin sin 1⎪⎭⎫ ⎝⎛+=+ααα,sin α ,cos α可凑倍角公式;22cos 2sin sin 1⎪⎭⎫ ⎝⎛-=-ααα等. (4)化弦(切)法。

将三角函数利用同角三角函数基本关系化成弦(切)。

注意函数关系,尽量异名化同名、异角化同角。

(5)引入辅助角。

asin θ+bcos θ=22b a +sin(θ+ϕ),ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定。

高二上册数学书知识点

高二上册数学书知识点

高二上册数学书知识点高二上册数学书涵盖了许多重要的数学知识点,这些知识点是我们在学习和理解数学概念以及解题过程中所必须掌握的。

本文将会整理和总结这些数学知识点,以帮助大家更好地复习和掌握数学。

一、集合与函数1. 集合的概念和表示方法- 集合:由一些特定的元素构成的整体。

- 元素:属于一个集合的个体。

- 表示方法:列举法、描述法、解析法。

2. 集合的运算- 交集:包含属于两个(或两个以上)集合中的共同元素的集合。

- 并集:包含属于两个(或两个以上)集合中的所有元素的集合。

- 差集:属于一个集合而不属于另一个集合的元素所构成的集合。

- 互斥:两个集合没有共同元素。

3. 函数的概念和性质- 定义:函数是两个集合之间的对应关系。

- 性质:自变量、因变量、单射、满射、一一对应。

二、数列与数列的前n项和1. 等差数列- 定义:数列中任意两个相邻项之间的差值相等。

- 通项公式:an = a1 + (n-1)d。

- 前n项和公式:Sn = (n/2)(a1 + an)。

2. 等比数列- 定义:数列中任意两个相邻项之间的比值相等。

- 通项公式:an = a1 * r^(n-1)。

- 前n项和公式:Sn = a1 * (1 - r^n) / (1 - r)。

3. 递推数列- 定义:数列中的每一项都是前一项通过某种规则计算得到的。

三、平面向量与几何应用1. 向量的概念和运算- 定义:有大小和方向的量。

- 向量的表示:用有向线段表示,箭头指向表示方向。

- 向量的运算:加法、减法、数量积、向量积。

2. 向量的数量积与向量的模长- 定义:向量的数量积是两个向量的模长之积与它们夹角的余弦值的乘积。

- 经验:两个向量的数量积等于其中一个向量在另一个向量上的投影与第二个向量的模长的乘积。

3. 向量的向量积与向量的模长- 定义:向量的向量积是两个向量的模长之积与它们夹角的正弦值的乘积。

- 经验:两个向量的向量积等于以它们为两边的平行四边形的面积。

最全面高二上册数学知识点归纳总结

最全面高二上册数学知识点归纳总结

最全面高二上册数学知识点归纳总结高二上册数学知识点归纳总结一、函数的基本知识1. 概念:函数可以理解为一种变量间关系,在数学上,常用符号表示为y=f(x),y是自变量x的函数。

2. 函数的定义域:指函数中自变量的取值范围。

3. 函数的值域:指函数值的取值范围。

4. 奇偶性:奇函数指f(-x)=-f(x),偶函数指f(-x)=f(x),若函数同时满足这两个限制,则称其为周期为2的函数。

5. 函数图象:表示函数在坐标系中的图形。

6. 函数的单调性:函数的单调性可以分为单调递增和单调递减,指的是函数在定义域上单调的增加或者减少。

7. 函数的极值:指函数在定义域上取到的最大值或最小值,可以分为极大值和极小值。

二、三角函数1. 正弦函数sina和余弦函数cosa:定义在坐标平面上以x轴为横轴为一周期的函数。

2. 正切函数tana和余切函数cota:正切函数定义为y=tanx=sinx/cosx,余切函数定义为y=cotx=cosx/sinx。

3. 三角函数的诱导公式:即sin(a±b)=sinacosb±cosasinb,cos(a±b)=cosacosb∓sinasinb,tan(a±b)=(tana±tanb)/(1∓tana*tanb)。

4. 三角函数的基本关系:根据定义,sin^2x+cos^2x=1,1+tan^2x=sec^2x,1+cot^2x=csc^2x。

三、解方程1. 一元一次方程:即形如ax+b=0的方程,通过变形可解得x=-b/a。

2. 一元二次方程:即形如ax^2+bx+c=0的方程,通过配方法、求根公式或者绝对值法可解。

3. 不等式:可以通过加缀、化解绝对值、移项变形、整体乘除等方法进行求解。

4. 二元一次方程组:即形如ax+by=c,dx+ey=f的两个方程,通过消元法(加减、代入、变形)可以求解方程组。

四、图像的性质1. 轨迹:指定一条件,在坐标系中任取一点,不断执行该条件操作,所得的点形成的图形。

高二数学全册知识点总结

高二数学全册知识点总结

高二数学全册知识点总结数学是一门既抽象又理性的学科,对于高中生来说,学习数学是一项重要的任务。

在高二阶段,学生将开始涉及更加深入和复杂的数学知识和概念。

本文将总结高二数学全册的知识点,帮助学生系统地回顾和整理自己的学习成果。

1. 几何1.1 平面几何- 向量的基本概念和性质- 平面向量的共线与非共线- 平面向量的加法与减法- 平面向量的数量积与向量积- 平面向量的平移与旋转- 线段中点、三角形中线1.2 空间几何- 空间直线的位置关系- 空间平面的位置关系- 空间直线与平面的位置关系 - 空间切线、切平面和法线- 空间中点、线段比例分点公式 1.3 解析几何- 直线的方程与性质- 圆的方程与性质- 抛物线的方程与性质- 椭圆的方程与性质- 双曲线的方程与性质2. 三角函数- 三角函数的定义和性质- 常用三角函数的图像和周期- 三角函数的基本关系式- 三角函数的和差化简公式- 三角函数的倍角化简公式- 三角函数的半角化简公式- 三角恒等变换与方程的解法 - 三角函数与平面坐标系3. 数列与数学归纳法- 等差数列的通项公式和性质 - 等比数列的通项公式和性质 - 通项公式的应用- 数列极限的概念和性质- 数学归纳法的原理和应用4. 导数与微分- 导数的概念和几何意义- 导数的四则运算和求导法则 - 高阶导数和隐函数求导- 微分的概念和应用- 函数的单调性和极值点- 函数的凸凹性和拐点- 函数的曲线绘制与变化规律5. 不等式与线性规划- 一元一次不等式与一元一次方程- 一元二次不等式与一元二次方程- 绝对值不等式与绝对值方程- 线性规划基本概念和最优解的求解方法6. 概率与统计- 随机事件的概念和性质- 概率的定义和性质- 条件概率与独立事件- 事件的运算与重复试验- 离散型随机变量与概率分布- 期望与方差的计算- 参数估计与假设检验7. 数学证明与思维方法- 数学归纳法与递推关系- 直接证明与间接证明- 反证法与逆否命题- 解决问题的思维方法与策略以上是高二数学全册的知识点总结。

高二数学上学期知识点归纳

高二数学上学期知识点归纳

高二数学上学期知识点归纳1.高二数学上学期知识点归纳篇一总体和样本①在统计学中,把研究对象的全体叫做总体。

②把每个研究对象叫做个体。

③把总体中个体的总数叫做总体容量。

④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,_研究,我们称它为样本.其中个体的个数称为样本容量。

简单随机抽样也称为纯随机抽样。

即从整体来看,没有任何分组、分类、排队等。

,完全跟随。

机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础,高三。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

简单随机抽样常用的方法①抽签法②随机数表法③计算机模拟法④使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

抽签法①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查。

2.高二数学上学期知识点归纳篇二函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;3.高二数学上学期知识点归纳篇三立体几何初步(1)棱柱:定义:由两个平行面围成的几何体,其他面为四边形,每两个相邻四边形的公共边相互平行。

分类:根据底部多边形的边数,可分为三棱柱、四棱柱、五棱柱。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

数学高二上学期所学知识点汇总

数学高二上学期所学知识点汇总

数学高二上学期所学知识点汇总高二上学期数学知识点汇总一、复数1. 复数的定义和表示2. 复数的加减法和乘法3. 复数的除法及倒数的表示4. 复数的共轭与模5. 复数的乘方和根的表示6. 复数方程的解法二、二次函数1. 二次函数的定义和基本性质2. 二次函数的图像和平移3. 二次函数的对称性与零点4. 二次函数的最值和单调性5. 二次函数与一元二次方程的关系6. 二次函数的应用三、三角函数1. 弧度制与角度制的转换2. 三角函数的定义与性质3. 三角函数的图像和周期4. 三角函数的坐标变换5. 三角函数的和差化积公式6. 三角函数的应用四、统计与概率1. 统计的基本概念和方法2. 频数表和频率表的制作及应用3. 描述统计的指标:均值、中位数、众数、四分位数4. 概率的基本概念和性质5. 事件与概率的计算6. 条件概率和独立事件五、数列与数列的表示1. 数列的定义和基本性质2. 等差数列的通项公式和前n项和3. 等比数列的通项公式和前n项和4. 递推数列的递推公式和前n项和5. 等差数列与等差数列的应用6. 等比数列与等比数列的应用六、三角恒等变换1. 三角恒等式的定义和性质2. 三角恒等式的证明方法3. 三角恒等式的应用4. 半角公式和倍角公式5. 锐角三角函数的定义和性质6. 驻弦公式和余弦定理以上是高二上学期数学的主要知识点汇总,希望对你的学习有所帮助。

通过系统地掌握这些知识,你将能够更好地应对数学学习中的各种问题,提高自己的数学水平。

加油!。

高二上册数学知识点汇总

高二上册数学知识点汇总

高二上册数学知识点汇总本文将对高二上册数学课程中的重要知识点进行汇总和总结,以帮助学生回顾和巩固所学内容。

一、函数与方程函数是数学中非常重要的概念,它描述了两种量之间的关系。

在高二上册数学中,我们学习了常见的函数类型,如线性函数、二次函数、指数函数和对数函数等。

我们了解了它们的特点和性质,并学会了如何根据函数的图像、表达式和定义域来进行分析和运算。

方程是数学中描述等式关系的工具。

高二上册主要学习了一元二次方程、一次方程组、二元一次方程组和不等式等。

我们通过解方程和不等式来确定未知数的值,并应用它们解决实际问题。

二、平面几何在高中数学中,平面几何是一门重要的课程,其中包括了点、线、面等基本概念和定理。

高二上册平面几何的重点内容有:相似三角形、勾股定理、中线定理、角平分线定理等。

我们通过这些定理和方法,能够计算图形的周长、面积和体积,并解决实际问题。

三、概率与统计概率与统计是高中数学中一门实用性较强的分支,它涉及到各种事物发生的可能性和规律性的研究。

高二上册我们学习了排列和组合、事件概率、样本空间等内容。

通过学习,我们能够计算事件的概率、利用概率模型进行推理,并解决涉及概率的问题。

统计学是通过收集、整理和分析数据来描述和预测现象的学科。

我们学习了统计图表的绘制和数据的分析、统计量的计算以及抽样调查等内容。

通过统计学的学习,我们可以对大量数据进行分析和解读,并通过统计推断来得出结论。

四、导数与微分导数和微分是高等数学的基本概念,它们是解析几何和微积分的重要内容。

高二上册中,我们学习了导数的定义和性质、求导法则以及一些常见函数的导数。

通过学习导数,我们可以求函数的斜率、切线和函数的最值,并应用导数解决实际问题。

微分是导数的逆运算,它描述了函数在某点附近的变化情况。

高二上册我们学习了微分的定义和性质,以及一些基本的微分公式。

通过微分,我们可以求函数的极值、确定函数的增减性,并应用微分解决实际问题。

五、三角函数三角函数是高中数学中的一个重要分支,它研究了三角形中角度和边长的关系。

数学高二上册知识点归纳

数学高二上册知识点归纳

数学高二上册知识点归纳数学高二上册知识点归纳一:总体和样本①在统计学中,把研究对象的全体叫做总体。

②把每个研究对象叫做个体。

③把总体中个体的总数叫做总体容量。

④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,研究,我们称它为样本.其中个体的个数称为样本容量。

简单随机抽样也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随。

机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础,高三。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

数学高二上册知识点归纳二:简单随机抽样常用的方法①抽签法②随机数表法③计算机模拟法④使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

抽签法①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查。

数学高二上册知识点归纳三:函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;数学高二上册知识点归纳四:立体几何初步(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

高二上学期数学知识点总结

高二上学期数学知识点总结

高二上学期数学知识点总结高二上学期数学知识点总结学习数学最重要是懂得去总结知识点,下面是小编为大家整理了高二上学期数学知识点总结,希望能帮到大家!一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式四、三角函数(46课时17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4,单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式’7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16余弦定理;17斜三角形解法举例五、平面向量(12课时,8个)1.向量2.向量的加法与减法3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元不等式表示平面区域;8.简单线性规划问题.9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程八、圆锥曲线(18课时,7个)1椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质九、(B)直线、平面、简单何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5,直线和平面垂直的判与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14异面直线的`距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球.十、排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理.2.排列;3.排列数公式’4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质十一、概率(12课时,5个)1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验.选修Ⅱ(24个)十二、概率与统计(14课时,6个)1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归十三、极限(12课时,6个)1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性.十四、导数(18课时,8个)1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8函数的最大值和最小值十五、复数(4课时,4个)1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法高二上册数学数列知识点1.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合2.数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是唯一的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非唯一.如:数列1,2,3,4,…,由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.再强调对于数列通项公式的理解注意以下几点:(1)数列的通项公式实际上是一个以正整数集N*或它的有限子集{1,2,…,n}为定义域的函数的表达式.(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.(4)有的数列的通项公式,形式上不一定是唯一的,正如举例中的:(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不唯一.4.数列的图象对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:序号:1234567项:45678910这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N*(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.数列是一种特殊的函数,数列是可以用图象直观地表示的.数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.5.递推数列一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.①数列①还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1。

高二数学上册各章节知识点总结(大纲版)

高二数学上册各章节知识点总结(大纲版)

高二数学上册各章节知识点总结(大纲版) 不等式单元知识总结一、不等式的性质1.两个实数a与b之间的大小关系:1) a-b>0 ⇔ a>b;2) a-b=0 ⇔ a=b;3) a-b<0 ⇔ a<b;4) a/b>1 ⇔ a>b (若a、b∈R+)5) a/b=1 ⇔ a=b (若a、b∈R+)6) a/b<1 ⇔ a<b (若a、b∈R+)2.不等式的性质:1) a>b ⇔ b<a (对称性)2) a>b ∧ b>c ⇒ a>c (传递性)3) a>b ⇔ a+c>b+c (加法单调性)4) a>b ∧ c<0 ⇒ ac<bc (乘法单调性)5) a+b>c ⇔ a>c-b (移项法则)6) a>b ∧ c>d ⇒ a+c>b+d (同向不等式可加)7) a>b ∧ cb-d (异向不等式可减)8) a>b ∧ c>d ⇒ ac>bd (同向正数不等式可乘)9) a>b ∧ cd (异向正数不等式可除)10) a>b ∧ n∈N ⇒ a^n>b^n (正数不等式可乘方)11) a>b ∧ n∈N ⇒ n√a>n√b (正数不等式可开方)12) a>b ⇒ 1/a<1/b (正数不等式两边取倒数)3.绝对值不等式的性质:1) |a|≥a;|a|=a (a≥0),|a|=-a (a<0)2) 若a>0,则 |x|a ⇔ x^2>a^2 ⇔ x>a 或 x<-a。

3) |a·b|=|a|·|b|4) |a/b|=|a|/|b| (b≠0)5) |a|-|b|≤|a±b|≤|a|+|b|6) |a1+a2+…+an|≤|a1|+|a2|+…+|an|二、不等式的证明1.不等式证明的依据:1) 实数的性质:a、b同号⇔ ab>0;a、b异号⇔ ab0 ⇔a>b;a-b<0 ⇔ a<b;a-b=0 ⇔ a=b2) 不等式的性质 (略)3) 重要不等式:①|a|≥a^2;②a^2+b^2≥2ab (a、b∈R,当且仅当a=b时取“=”号);③(a+b)/2≥√(ab) (a、b∈R+,当且仅当a=b时取“=”号)2.不等式的证明方法 (略)直线方程的基本形式有点斜式、斜截式、两点式、截距式、参数式和一般式。

高二数学上知识点

高二数学上知识点

高二数学上 知识点总结第一章 空间几何体1.1柱、锥、台、球的结构特征----棱柱:棱锥:棱台:圆柱:圆锥:圆台:球: 1.2空间几何体的三视图和直观图1 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下2 画三视图的原则: 长对齐、高对齐、宽相等 3斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; 1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和 2 圆柱的表面积3 圆锥的表面积2S rl r ππ=+4 圆台的表面积22Srl r Rl R ππππ=+++5 球的表面积24S R π= 6扇形的面积公式213602n R S lr π==扇形(其中l 表示弧长,r 表示半径) (二)空间几何体的体积1柱体的体积 V S h =⨯底2锥体的体积 13V S h =⨯底3台体的体积1)3V S S h =+⨯下上(4球体的体积343V R π= 第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.1 1 平面含义:平面是无限延展的,无大小,无厚薄。

2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

3 三个公理:222rrl S ππ+=(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为A l B l l A B ααα∈⎫⎪∈⎪⇒⊂⎬∈⎪⎪∈⎭ 公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 ⇒ 有且只有一个平面α,使A ∈α、B ∈α、C ∈α。

高中数学各章节知识点汇总

高中数学各章节知识点汇总

高中数学各章节知识点汇总高中数学各章节知识点汇总名目第一章集合与命题 (1)一、集合 (1)二、四种命题的形式 (2)三、充分条件与必要条件 (2)第二章别等式 (1)第三章函数的基本性质 (2)第四章幂函数、指数函数和对数函数(上) (3)一、幂函数 (3)二、指数函数 (3)三、对数 (3)四、反函数 (4)五、对数函数 (4)六、指数方程和对数方程 (4)第五章三角比 (5)一、任意角的三角比 (5)二、三角恒等式 (5)三、解歪三角形 (7)第六章三角函数的图像与性质 (8)一、周期性 (8)第七章数列与数学归纳法 (9)一、数列 (9)二、数学归纳法 (10)第八章平面向量的坐标表示 (12)第九章矩阵和行列式初步 (14)一、矩阵 (14)二、行列式 (14)第十章算法初步 (16)第十一章坐标平面上的直线 (17)第十二章圆锥曲线 (19)第十三章复数 (21)第一章集合与命题一、集合1.1 集合及其表示办法集合的概念1、把可以确切指定的一些对象组成的整体叫做集合简称集2、集合中的各个对象叫做那个集合的元素3、假如a是集合A的元素,就记做a∈A,读作“a属于A”4、假如a别是集合A的元素,就记做a ? A,读作“a别属于A”5、数的集合简称数集:全体自然数组成的集合,即自然数集,记作N别包括零的自然数组成的集合,记作N*全体整数组成的集合,即整数集,记作Z全体有理数组成的集合,即有理数集,记作Q全体实数组成的集合,即实数集,记作R我们把正整数集、负整数集、正有理数、负有理数、正实数集、负实数集表示为Z+、Z-、Q+、Q-、R+、R-6、把含有有限个数的集合叫做有限集、含有无限个数的集合叫做无限极7、空集是指别用含有任何元素的集合,记作?集合的表示办法1、在大括号内先写出那个集合的元素的普通形式,再画一条竖线,在竖线之后写上集合中元素所共同具有的特性,这种集合的表示办法叫做描述法1.2 集合之间的关系子集1、关于两个集合A和B,假如集合A中任何一具元素都属于集合B,这么集合A叫做集合B 的子集,记做A?B或B?A,读作“A包含于B”或“B包含A”2、空集包含于任何一具集合,空集是任何集合的子集3、用平面区域来表示集合之间关系的办法叫做集合的图示法,所用图叫做文氏图相等的集合1、关于两个集合A和B,假如A?B,且B?A,这么叫做集合A与集合B相等,记作“A=B”,读作“集合A等于集合B”,假如两个集合所含元素彻底相同,这么这两个集合相等1.3 集合的运算交集1、由交集A和交集B的所有公共元素的集合叫做A与B的交集,记作A∩B,读作A交B并集1、由所有属于集合A或者属于集合B的元素组成的集合叫做集合A、B 的并集,记作A∪B,读作A并B补集1、在研究集合与集合之间的关系时,这些集合往往是某个给定集合的子集,那个确定的集合叫做全集2、U是全集,A是U的子集。

高二上学期知识点总结 高二数学知识点总结

高二上学期知识点总结 高二数学知识点总结

《高二上学期知识点总结高二数学知识点总结》摘要:12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)},5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)},2.安培力F=BIL;(注:LB){B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}高中物理学科强调注重基础,把那些最重要、最基本的主干知识作为高中物理的主要内容。

小编整理了高二上学期知识点第一章静电场1.两种电荷、电荷守恒定律、元电荷:(e=1.6010-19C);带电体电荷量等于元电荷的整数倍2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}5.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}6.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}7.电势与电势差:UAB=B,UAB=WAB/q=-EAB/q8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}9.电势能:EA=qA{EA:带电体在A点的电势能(J),q:电量(C),A:A点的电势(V)}10.电势能的变化EAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值}11.电场力做功与电势能变化EAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}13.平行板电容器的电容C=S/4kd(S:两极板正对面积,d:两极板间的垂直距离,:介电常数)常见电容器〔见第二册P111〕14.带电粒子在电场中的加速(Vo=0):W=EK或qU=mVt2/2,Vt=(2qU/m)1/215.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;(3)常见电场的电场线分布要求熟记〔见图[第二册P98];(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;(6)电容单位换算:1F=106F=1012PF;(7)电子伏(eV)是能量的单位,1eV=1.6010-19J;(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。

高二数学上册知识点大汇总

高二数学上册知识点大汇总

高二数学上册知识点大汇总1. 函数与方程1.1 一次函数一次函数的定义及性质函数图像与斜率的关系函数的应用1.2 二次函数二次函数的定义及性质函数图像的特点二次函数的最值问题二次函数的应用1.3 指数函数与对数函数指数函数的性质与图像对数函数的性质与图像指数方程与对数方程的解法指数函数与对数函数的应用2. 三角函数2.1 三角函数的定义正弦函数、余弦函数、正切函数的图像与性质三角函数的周期性及相关公式2.2 三角函数的应用三角函数在直角三角形中的应用三角函数在解三角形中的应用三角函数在周期性现象中的应用3. 解析几何3.1 平面直角坐标系与图形的性质点、直线、圆的方程图形的对称性3.2 直线与圆的位置关系直线与圆的交点问题直线与圆的切线问题3.3 向量与坐标向量的定义及运算向量在几何中的应用坐标系与向量方程的转化4. 平面向量4.1 平面向量的定义及性质向量的加法、减法及数量积向量的线性相关性与线性无关性 4.2 平面向量的应用向量与几何平移、旋转的关系向量在力学中的应用5. 概率论与统计5.1 随机事件与概率随机事件的概率定义与性质事件的组合与概率计算5.2 随机变量与概率分布随机变量的概念与性质离散型随机变量及其概率分布连续型随机变量及其概率分布5.3 统计与抽样样本与总体的关系抽样调查与样本估计统计量与抽样分布总结:高二数学上册内容涵盖了函数与方程、三角函数、解析几何、平面向量以及概率论与统计等知识点。

通过掌握这些知识,学生可以建立起数学思维能力和解决实际问题的能力。

在学习过程中,要注重理论与实践的结合,灵活运用所学知识,加强与其他学科的联系,提高数学应用能力。

同时,通过刷题和做练习来巩固所学知识,提高解题能力。

相信只要用心学习,每个学生在高二数学上册中都能有所收获。

高二数学上册各章节知识点 总结(大纲版)

高二数学上册各章节知识点    总结(大纲版)

不等式单元知识总结一、不等式的性质1.两个实数a与b之间的大小关系2.不等式的性质(4) (乘法单调性)3.绝对值不等式的性质(2)如果a>0,那么(3)|a·b|=|a|·|b|.(5)|a|-|b|≤|a±b|≤|a|+|b|.(6)|a1+a2+……+a n|≤|a1|+|a2|+……+|a n|.二、不等式的证明1.不等式证明的依据(2)不等式的性质(略)(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)2.不等式的证明方法(1)比较法:要证明a>b(a<b),只要证明a-b>0(a-b<0),这种证明不等式的方法叫做比较法.用比较法证明不等式的步骤是:作差——变形——判断符号.(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.三、解不等式1.解不等式问题的分类(1)解一元一次不等式.(2)解一元二次不等式.(3)可以化为一元一次或一元二次不等式的不等式.①解一元高次不等式;②解分式不等式;③解无理不等式;④解指数不等式;⑤解对数不等式;⑥解带绝对值的不等式;⑦解不等式组.2.解不等式时应特别注意下列几点:(1)正确应用不等式的基本性质.(2)正确应用幂函数、指数函数和对数函数的增、减性.(3)注意代数式中未知数的取值范围.3.不等式的同解性(5)|f(x)|<g(x)与-g(x)<f(x)<g(x)同解.(g(x)>0)(6)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解.(9)当a>1时,a f(x)>a g(x)与f(x)>g(x)同解,当0<a<1时,a f(x)>a g(x)与f(x)<g(x)同解.单元知识总结一、坐标法1.点和坐标建立了平面直角坐标系后,坐标平面上的点和一对有序实数(x,y)建立了一一对应的关系.2.两点间的距离公式设两点的坐标为P1(x1,y1),P2(x2,y2),则两点间的距离特殊位置的两点间的距离,可用坐标差的绝对值表示:(1)当x1=x2时(两点在y轴上或两点连线平行于y轴),则|P1P2|=|y2-y1|(2)当y1=y2时(两点在x轴上或两点连线平行于x轴),则|P1P2|=|x2-x1|3.线段的定比分点(2)公式:分P1(x1,y2)和P2(x2,y2)连线所成的比为λ的分点坐标是公式二、直线1.直线的倾斜角和斜率(1)当直线和x轴相交时,把x轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角,叫做这条直线的倾斜角.当直线和x轴平行线重合时,规定直线的倾斜角为0.所以直线的倾斜角α∈[0,π).(2)倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜∴当k≥0时,α=arctank.(锐角)当k<0时,α=π-arctank.(钝角)(3)斜率公式:经过两点P1(x1,y1)、P2(x2,y2)的直线的斜率为2.直线的方程(1)点斜式已知直线过点(x0,y0),斜率为k,则其方程为:y-y0=k(x-x0)(2)斜截式已知直线在y轴上的截距为b,斜率为k,则其方程为:y=kx+b(3)两点式已知直线过两点(x1,y1)和(x2,y2),则其方程为:(4)截距式已知直线在x,y轴上截距分别为a、b,则其方程为:(5)参数式已知直线过点P(x0,y0),它的一个方向向量是(a,b),v(cosα,sinα)(α为倾斜角)时,则其参数式方程为(6)一般式 Ax+By+C=0 (A、B不同时为0).(7)特殊的直线方程①垂直于x轴且截距为a的直线方程是x=a,y轴的方程是x=0.②垂直于y轴且截距为b的直线方程是y=b,x轴的方程是y=0.3.两条直线的位置关系(1)平行:当直线l1和l2有斜截式方程时,k1=k2且b1≠b2.(2)重合:当l1和l2有斜截式方程时,k1=k2且b1=b2,当l1和l2是(3)相交:当l1,l2是斜截式方程时,k1≠k24.点P(x0,y0)与直线l:Ax+By+C=0的位置关系:5.两条平行直线l1∶Ax+By+C1=0,l2∶Ax+By+C2=0间6.直线系方程具有某一共同属性的一类直线的集合称为直线系,它的方程的特点是除含坐标变量x,y以外,还含有特定的系数(也称参变量).确定一条直线需要两个独立的条件,在求直线方程的过程中往往先根据一个条件写出所求直线所在的直线系方程,然后再根据另一个条件来确定其中的参变量.(1)共点直线系方程:经过两直线l1∶A1x+B1y+C1=0,l2∶A2x+B2y+C2=0的交点的直线系方程为:A1x+B1y+C1+λ(A2x+B2y+C2)=0,其中λ是待定的系数.在这个方程中,无论λ取什么实数,都得不到A2x+B2y+C2=0,因此它不表示l2.当λ=0时,即得A1x+B1y+C1=0,此时表示l1.(2)平行直线系方程:直线y=kx+b中当斜率k一定而b变动时,表示平行直线系方程.与直线Ax+By+C=0平行的直线系方程是Ax+By+λ=0(λ≠C),λ是参变量.(3)垂直直线系方程:与直线Ax+By+C=0(A≠0,B≠0)垂直的直线系方程是:Bx-Ay+λ=0.如果在求直线方程的问题中,有一个已知条件,另一个条件待定时,可选用直线系方程来求解.7.简单的线性规划(1)二元一次不等式Ax+By+C>0(或<0)表示直线Ax+By+C=0某一侧所有点组成的平面区域.二元一次不等式组所表示的平面区域是各个不等式所表示的平面点集的交集,即各个不等式所表示的平面区域的公共部分.(2)线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,称为线性规划问题,例如,z=ax+by,其中x,y满足下列条件:求z的最大值和最小值,这就是线性规划问题,不等式组(*)是一组对变量x、y的线性约束条件,z=ax+by叫做线性目标函数.满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域,使线性目标函数取得最大值和最小值的可行解叫做最优解.三、曲线和方程1.定义在选定的直角坐标系下,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下关系:(1)曲线C上的点的坐标都是方程f(x,y)=0的解(一点不杂);(2)以方程f(x,y)=0的解为坐标的点都是曲线C上的点(一点不漏).这时称方程f(x,y)=0为曲线C的方程;曲线C为方程f(x,y)=0的曲线(图形).设P={具有某种性质(或适合某种条件)的点},Q={(x,y)|f(x,y)=0},若设点M的坐标为(x0,y0),则用集合的观点,上述定义中的两条可以表述为:以上两条还可以转化为它们的等价命题(逆否命题):为曲线C的方程;曲线C为方程f(x,y)=0的曲线(图形).2.曲线方程的两个基本问题(1)由曲线(图形)求方程的步骤:①建系,设点:建立适当的坐标系,用变数对(x,y)表示曲线上任意一点M的坐标;②立式:写出适合条件p的点M的集合p={M|p(M)};③代换:用坐标表示条件p(M),列出方程f(x,y)=0;④化简:化方程f(x,y)=0为最简形式;⑤证明:以方程的解为坐标的点都是曲线上的点.上述方法简称“五步法”,在步骤④中若化简过程是同解变形过程;或最简方程的解集与原始方程的解集相同,则步骤⑤可省略不写,因为此时所求得的最简方程就是所求曲线的方程.(2)由方程画曲线(图形)的步骤:①讨论曲线的对称性(关于x轴、y轴和原点);②求截距:③讨论曲线的范围;④列表、描点、画线.3.交点求两曲线的交点,就是解这两条曲线方程组成的方程组.4.曲线系方程过两曲线f1(x,y)=0和f2(x,y)=0的交点的曲线系方程是f1(x,y)+λf2(x,y)=0(λ∈R).四、圆1.圆的定义平面内与定点距离等于定长的点的集合(轨迹)叫圆.2.圆的方程(1)标准方程(x-a)2+(y-b)2=r2.(a,b)为圆心,r为半径.特别地:当圆心为(0,0)时,方程为x2+y2=r2(2)一般方程x2+y2+Dx+Ey+F=0当D2+E2-4F<0时,方程无实数解,无轨迹.(3)参数方程以(a,b)为圆心,以r为半径的圆的参数方程为特别地,以(0,0)为圆心,以r为半径的圆的参数方程为3.点与圆的位置关系设点到圆心的距离为d,圆的半径为r.4.直线与圆的位置关系设直线l:Ax+By+C=0和圆C:(x-a)2+(y-b)2=r2,则5.求圆的切线方法(1)已知圆x2+y2+Dx+Ey+F=0.①若已知切点(x0,y0)在圆上,则切线只有一条,其方程是过两个切点的切点弦方程.②若已知切线过圆外一点(x0,y0),则设切线方程为y-y0=k(x-x0),再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线.③若已知切线斜率为k,则设切线方程为y=kx+b,再利用相切条件求b,这时必有两条切线.(2)已知圆x2+y2=r2.①若已知切点P0(x0,y0)在圆上,则该圆过P0点的切线方程为x0x+y0y=r2.6.圆与圆的位置关系已知两圆圆心分别为O1、O2,半径分别为r1、r2,则单元知识总结一、圆锥曲线1.椭圆(1)定义定义1:平面内一个动点到两个定点F1、F2的距离之和等于常数(大于|F1F2|),这个动点的轨迹叫椭圆(这两个定点叫焦点).定义2:点M与一个定点的距离和它到一条定直线的距离的比是常(2)图形和标准方程(3)几何性质2.双曲线(1)定义定义1:平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线(这两个定点叫双曲线的焦点).定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e>1)时,这个动点的轨迹是双曲线(这定点叫做双曲线的焦点).(2)图形和标准方程图8-3的标准方程为:图8-4的标准方程为:(3)几何性质3.抛物线(1)定义平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.(2)抛物线的标准方程,类型及几何性质,见下表:①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离.②p的几何意义:焦点F到准线l的距离.焦点弦长公式:|AB|=p+x1+x24.圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e表示,当0<e<1时,是椭圆,当e>1时,是双曲线,当e=1时,是抛物线.二、利用平移化简二元二次方程1.定义缺xy项的二元二次方程Ax2+Cy2+Dx+Ey+F=0(A、C不同时为0)※,通过配方和平移,化为圆型或椭圆型或双曲线型或抛物线型方程的标准形式的过程,称为利用平移化简二元二次方程.A=C是方程※为圆的方程的必要条件.A与C同号是方程※为椭圆的方程的必要条件.A与C异号是方程※为双曲线的方程的必要条件.A与C中仅有一个为0是方程※为抛物线方程的必要条件.2.对于缺xy项的二元二次方程:Ax2+Cy2+Dx+Ey+F=0(A,C不同时为0)利用平移变换,可把圆锥曲线的一般方程化为标准方程,其方法有:①待定系数法;②配方法.中心O′(h,k)中心O′(h,k)抛物线:对称轴平行于x轴的抛物线方程为(y-k)2=2p(x-h)或(y-k)2=-2p(x-h),顶点O′(h,k).对称轴平行于y轴的抛物线方程为:(x-h)2=2p(y-k)或(x-h)2=-2p(y-k)顶点O′(h,k).以上方程对应的曲线按向量a=(-h,-k)平移,就可将其方程化为圆锥曲线的标准方程的形式.。

高二上数学知识点归纳总结

高二上数学知识点归纳总结

高二上数学知识点归纳总结高二上学期是数学学科中重要的阶段之一,学习了许多数学知识点。

本文将对高二上学期的数学知识点进行归纳总结,以帮助同学们更好地掌握和复习这些内容。

一、代数与函数1.集合与数与代数运算:集合的表示方法、交集与并集、绝对值、等式与方程2.函数的概念与性质:函数的定义、对应关系、函数图像、函数的增减性、函数的奇偶性、函数的周期性等3.一次函数与二次函数:一次函数的表达式与图像、二次函数的表达式与图像、二次函数的性质、平方根函数等4.指数与对数函数:指数函数的性质、对数函数的性质、指对关系、指数方程与对数方程5.三角函数:弧度制、三角函数的定义域和值域、三角函数的图像、三角函数的性质、三角函数的和差化积、倍角公式和半角公式等二、平面几何1.平面几何基础知识:点、直线、线段、射线等基本概念2.相似与全等:三角形的相似性判定、全等三角形的判定与性质、相似三角形的性质与比例等3.三角形的性质:角平分线与垂心、中线与重心、高线与垂直、垂直线段与三角形的性质、三角形内切圆与外接圆等4.平行线与比例:平行线的性质、平行线分线段的比例等5.次序关系:三角形内角、三角形内线段等的大小关系、直线的角问题等三、空间几何1.空间几何基础知识:平行直线与平面、空间图形的投影与截面等2.平面与直线的位置关系:直线与平面的位置关系、两平面的位置关系等3.空间几何的计算:空间向量的运算、空间点与直线的距离、空间点与平面的距离、空间角等4.空间几何的应用:空间图形的体积与表面积等四、概率与统计1.概率基础知识:事件与样本空间的概念、概率的定义与性质、基本概率公式等2.随机变量与概率分布:离散型随机变量的概念与性质、离散型概率分布、连续型随机变量的概念与性质、连续型概率分布等3.统计基础知识:统计量的概念与计算、抽样与估计等五、解析几何1.直线与圆:直线的方程与性质、圆的方程与性质、直线与圆的位置关系等2.抛物线与椭圆:抛物线的方程与性质、椭圆的方程与性质、椭圆的性质与参数等3.曲线的极坐标方程:极坐标方程的定义与性质、曲线的极坐标方程的图像、极坐标方程与直角坐标方程的转化等通过对高二上学期数学知识点的归纳总结,同学们可以更好地理清自己的学习思路,有针对性地进行知识巩固与复习,为下学期的学习打下坚实的基础。

高二上数学知识点总结

高二上数学知识点总结

高二上数学知识点总结高二上数学知识点总结高二上学期的数学内容主要包括数列与数学归纳法、平面向量、三角函数、解三角形、图像的相关内容。

以下是对这些知识点的总结。

1. 数列与数学归纳法:数列是按照一定顺序排列的一组数,分为等差数列和等比数列。

等差数列的通项公式为an=a1+(n-1)d,等比数列的通项公式为an=a1*r^(n-1)。

数学归纳法是一种证明数学命题的常用方法,分为三个步骤:证明基本情况、假设成立、证明递推关系式。

2. 平面向量:平面向量是用有向线段表示的,包括向量的定义、向量的运算(加减、数乘、数量积、向量积)、向量共线、向量垂直、平面向量的夹角、平行四边形法则、共线定理等内容。

3. 三角函数:三角函数是由单位圆上一个动点的坐标定义的,分为正弦函数、余弦函数、正切函数等。

在直角三角形的应用中,可以通过已知角度和一个边长求解其他未知量。

同时,还有诱导公式、和角公式、半角公式等相关内容。

4. 解三角形:解三角形是根据已知条件来确定三角形的边长和角度的过程。

根据已知条件的不同,分为解决直角三角形和一般三角形的方法。

直角三角形的特殊情况是三边比例相同,可以通过三边比例确定三角形的形状。

一般三角形则可以利用正弦定理、余弦定理和正弦化余弦定理来解决。

5. 图像的相关内容:图像的相关内容包括函数与方程、圆锥曲线和几何变换。

函数与方程中,一元二次函数是重点,通过一元二次函数的图像分析函数的性质。

圆锥曲线包括圆、椭圆、双曲线和抛物线,通过标准方程和参数方程等形式来研究其性质。

几何变换包括平移、旋转、对称、缩放等,可以通过矩阵运算的方法来表示几何变换。

以上是高二上学期数学的主要知识点总结。

通过学习这些内容,可以提高数学分析和解决问题的能力,同时也为后续的高阶数学知识打下坚实的基础。

高二数学上册知识点总结

高二数学上册知识点总结

高二数学上册知识点总结在高二数学上册的学习中,我们接触到了许多重要的数学知识点。

下面将对这些知识点进行总结和归纳,以帮助大家更好地理解和记忆这些内容。

一、函数与方程1. 函数的定义与性质:函数的定义、定义域、值域、单调性、奇偶性等。

2. 一次函数:函数的形式、斜率、截距、函数与方程的相互转化等。

3. 二次函数:函数的标准形式、顶点形式、根的性质、判别式等。

4. 指数函数与对数函数:指数函数的性质、对数函数的性质、换底公式等。

5. 三角函数:正弦函数、余弦函数、正切函数以及其性质、图像等。

二、数列与数列的极限1. 数列的概念与表示:数列的定义、通项公式、递推公式等。

2. 数列的性质:有界数列、单调数列、等差数列、等比数列等。

3. 数列的极限:数列极限的定义、数列趋向于正无穷或负无穷的情况、夹逼准则等。

4. 利用数列的极限解决问题:数列极限的应用、极限运算规则等。

三、平面向量1. 向量的表示与运算:向量的定义、向量在直角坐标系中的表示、向量的加减法、数量积与向量积等。

2. 向量的性质与判定:共线、垂直、平行等性质与判定方法。

3. 空间向量与平面向量的关系:平面向量的法向量、向量共面的充分必要条件等。

四、解三角形1. 三角函数的进一步性质:三角函数的周期性、区间上的单调性、反函数等。

2. 三角函数的和差化积:两角和与差的三角函数表达式、倍角与半角的三角函数表达式等。

3. 解三角形的基本原理:解直角三角形的基本关系、解任意三角形的三边或两角一边关系等。

4. 解三角形的辅助线方法:角平分线定理、高线定理等。

五、概率与统计1. 概率的基本概念:概率的定义、基本性质、计算方法等。

2. 排列与组合:排列、组合的概念与计算方法、排列组合与概率的关系等。

3. 随机变量与概率分布:随机变量的概念、离散型和连续型随机变量的概率分布等。

4. 统计与抽样:总体与样本的概念、统计量的计算、抽样与抽样误差等。

六、解析几何1. 平面与直线的位置关系:平面与直线的平行、垂直、相交等关系。

高二年级上学期数学知识点总结

高二年级上学期数学知识点总结

高二年级上学期数学知识点总结(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高二年级上学期数学知识点总结本店铺为各位同学整理了《高二年级上学期数学知识点总结》,希望对你的学习有所帮助!1.高二年级上学期数学知识点总结篇一空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

高二上册数学知识点总结

高二上册数学知识点总结

⾼⼆上册数学知识点总结⾼⼆上册数学知识点总结 马上开学了,数学对⽂理科学⽣都很重要的⼀门学科,尤其在⽂科考试中拉分尺度更⼤,要想在⾼⼆的起步线上不落后与⼈,赶紧看看⾼⼆数学有哪些知识点吧!下⾯是⼩编为⼤家整理的⾼⼆上册数学知识点,请认真复习! ⾼⼆上册数学知识点总结篇1 ⼀、直线与圆: 1、直线的倾斜⾓的范围是 在平⾯直⾓坐标系中,对于⼀条与轴相交的直线,如果把轴绕着交点按逆时针⽅向转到和直线重合时所转的最⼩正⾓记为,就叫做直线的倾斜⾓。

当直线与轴重合或平⾏时,规定倾斜⾓为0; 2、斜率:已知直线的倾斜⾓为α,且α≠90°,则斜率k=tanα. 过两点(x1,y1),(x2,y2)的直线的斜率k=( y2-y1)/(x2-x1),另外切线的斜率⽤求导的⽅法。

3、直线⽅程:⑴点斜式:直线过点斜率为,则直线⽅程为 , ⑵斜截式:直线在轴上的截距为和斜率,则直线⽅程为 4、, ,①∥ , ; ② . 直线与直线的位置关系: (1)平⾏ A1/A2=B1/B2 注意检验(2)垂直 A1A2+B1B2=0 5、点到直线的距离公式 ; 两条平⾏线与的距离是 6、圆的标准⽅程: .⑵圆的⼀般⽅程: 注意能将标准⽅程化为⼀般⽅程 7、过圆外⼀点作圆的切线,⼀定有两条,如果只求出了⼀条,那么另外⼀条就是与轴垂直的直线. 8、直线与圆的位置关系,通常转化为圆⼼距与半径的关系,或者利⽤垂径定理,构造直⾓三⾓形解决弦长问题.①相离②相切③相交 9、解决直线与圆的关系问题时,要充分发挥圆的平⾯⼏何性质的作⽤(如半径、半弦长、弦⼼距构成直⾓三⾓形) 直线与圆相交所得弦长 ⼆、圆锥曲线⽅程: 1、椭圆:①⽅程 (a>b>0)注意还有⼀个;②定义: |PF1|+|PF2|=2a>2c; ③ e= ④长轴长为2a,短轴长为2b,焦距为2c; a2=b2+c2 ; 2、双曲线:①⽅程 (a,b>0) 注意还有⼀个;②定义: ||PF1|-|PF2||=2a<2c; ③e= ;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或 c2=a2+b2 3、抛物线:①⽅程y2=2px注意还有三个,能区别开⼝⽅向; ②定义:|PF|=d焦点F( ,0),准线x=- ;③焦半径 ; 焦点弦=x1+x2+p; 4、直线被圆锥曲线截得的弦长公式: 5、注意解析⼏何与向量结合问题:1、 , . (1) ;(2) . 2、数量积的定义:已知两个⾮零向量a和b,它们的夹⾓为θ,则数量|a||b|cosθ叫做a与b的.数量积,记作a·b,即 3、模的计算:|a|= . 算模可以先算向量的平⽅ 4、向量的运算过程中完全平⽅公式等照样适⽤: 三、直线、平⾯、简单⼏何体: 1、学会三视图的分析: 2、斜⼆测画法应注意的地⽅: (1)在已知图形中取互相垂直的轴Ox、Oy。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式单元知识总结一、不等式的性质1.两个实数a 与b 之间的大小关系(1)a b 0a b (2)a b =0a =b (3)a b 0a b ->>;-;-<<.⇔⇔⇔⎧⎨⎪⎩⎪若、,则>>;;<<. a b R (4)a b 1a b (5)a b=1a =b (6)a b 1a b ∈⇔⇔⇔⎧⎨⎪⎪⎪⎩⎪⎪⎪+2.不等式的性质(1)a b b a()><对称性⇔(2)a b b c a c()>>>传递性⎫⎬⎭⇒(3)a b a c b c()>+>+加法单调性⇔a b c 0 ac bc >>>⎫⎬⎭⇒(4)(乘法单调性)a b c 0 ac bc ><<⎫⎬⎭⇒(5)a b c a c b()+>>-移项法则⇒(6)a b c d a c b d()>>+>+同向不等式可加⎫⎬⎭⇒(7)a b c d a c b d()><->-异向不等式可减⎫⎬⎭⇒(8)a b 0c d 0ac bd()>>>>>同向正数不等式可乘⎫⎬⎭⇒(9)a b 00c d b d ()>><<>异向正数不等式可除⎫⎬⎭⇒a c(10)a b 0n N a b ()n n >>>正数不等式可乘方∈⎫⎬⎭⇒(11)a b 0n N a ()n >>>正数不等式可开方∈⎫⎬⎭⇒b n(12)a b 01a ()>><正数不等式两边取倒数⇒1b 3.绝对值不等式的性质(1)|a|a |a|= a (a 0)a (a 0)≥;≥,-<.⎧⎨⎩(2)如果a >0,那么|x|a x a a x a 22<<-<<;⇔⇔|x|a x a x a x a 22>>>或<-.⇔⇔(3)|a ·b|=|a|·|b|.(4)|a b | (b 0)=≠.||||a b(5)|a|-|b|≤|a ±b|≤|a|+|b|.(6)|a 1+a 2+……+a n |≤|a 1|+|a 2|+……+|a n |.二、不等式的证明1.不等式证明的依据(1)a b ab 0a b ab 0a b 0a b a b 0a b a b =0a =b实数的性质:、同号>;、异号<->>;-<<;-⇔⇔⇔⇔⇔(2)不等式的性质(略)(3)重要不等式:①|a|≥0;a 2≥0;(a -b)2≥0(a 、b ∈R)②a 2+b 2≥2ab(a 、b ∈R ,当且仅当a=b 时取“=”号) ③≥、,当且仅当时取“”号a b +∈+2ab(a b R a =b =)2.不等式的证明方法(1)比较法:要证明a >b(a <b),只要证明a -b >0(a -b <0),这种证明不等式的方法叫做比较法.用比较法证明不等式的步骤是:作差——变形——判断符号.(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.三、解不等式1.解不等式问题的分类(1)解一元一次不等式.(2)解一元二次不等式.(3)可以化为一元一次或一元二次不等式的不等式.①解一元高次不等式;②解分式不等式;③解无理不等式;④解指数不等式;⑤解对数不等式;⑥解带绝对值的不等式;⑦解不等式组.2.解不等式时应特别注意下列几点:(1)正确应用不等式的基本性质.(2)正确应用幂函数、指数函数和对数函数的增、减性.(3)注意代数式中未知数的取值范围.3.不等式的同解性(1)f(x)g(x)0f(x)0g(x)0f(x)0g(x)0·>与>>或<<同解.⎧⎨⎩⎧⎨⎩(2)f(x)g(x)0f(x)0g(x)0f(x)0g(x)0·<与><或<>同解.⎧⎨⎩⎧⎨⎩(3)f(x)g(x)0f(x)0g(x)0 f(x)0g(x)0(g(x)0)>与>>或<<同解.≠⎧⎨⎩⎧⎨⎩(4)f(x)g(x)0f(x)0g(x)0 f(x)0g(x)0(g(x)0)<与><或<>同解.≠⎧⎨⎩⎧⎨⎩(5)|f(x)|<g(x)与-g(x)<f(x)<g(x)同解.(g(x)>0)(6)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解.(7)f(x)g(x) f(x)[g(x)] f(x)0g(x)0f(x)0g(x)02>与>≥≥或≥<同解.⎧⎨⎪⎩⎪⎧⎨⎩(8)f(x)g(x)f(x)[g(x)]f(x)02<与<≥同解.⎧⎨⎩(9)当a >1时,a f(x)>a g(x)与f(x)>g(x)同解,当0<a <1时,a f(x)>a g(x)与f(x)<g(x)同解.(10)a 1log f(x)log g(x)f(x)g(x)f(x)0a a 当>时,>与>>同解.⎧⎨⎩当<<时,>与<>>同解.0a 1log f(x)log g(x)f(x)g(x) f(x)0g(x)0a a ⎧⎨⎪⎩⎪单元知识总结一、坐标法1.点和坐标建立了平面直角坐标系后,坐标平面上的点和一对有序实数(x ,y)建立了一一对应的关系.2.两点间的距离公式设两点的坐标为P 1(x 1,y 1),P 2(x 2,y 2),则两点间的距离|P P |=12()()x x y y 212212-+-特殊位置的两点间的距离,可用坐标差的绝对值表示:(1)当x 1=x 2时(两点在y 轴上或两点连线平行于y 轴),则|P 1P 2|=|y 2-y 1|(2)当y 1=y 2时(两点在x 轴上或两点连线平行于x 轴),则|P 1P 2|=|x 2-x 1|3.线段的定比分点(1)P P P P P PP P P PP P P P =P P P P 12121212112定义:设点把有向线段分成和两部分,那么有向线段和的数量的比,就是点分所成的比,通常用λ表示,即λ,点叫做分线段为定比λ的定比分点.P PP 2当点内分时,λ>;当点外分时,λ<.P P P 0P P P 01212(2)公式:分P 1(x 1,y 2)和P 2(x 2,y 2)连线所成的比为λ的分点坐标是x x x y y y =++=++⎧⎨⎪⎪⎩⎪⎪-1212111λλλλλ≠()特殊情况,当是的中点时,λ,得线段的中点坐标P P P =1P P 1212公式x x x y y y =+=+⎧⎨⎪⎪⎩⎪⎪121222二、直线1.直线的倾斜角和斜率(1)当直线和x 轴相交时,把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角,叫做这条直线的倾斜角.当直线和x 轴平行线重合时,规定直线的倾斜角为0.所以直线的倾斜角α∈[0,π).(2)倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,直线的斜率常用表示,即αα≠π.k k =tan ()2∴当k ≥0时,α=arctank .(锐角)当k <0时,α=π-arctank .(钝角)(3)斜率公式:经过两点P 1(x 1,y 1)、P 2(x 2,y 2)的直线的斜率为k =y (x x )212--y x x 121≠2.直线的方程(1)点斜式已知直线过点(x 0,y 0),斜率为k ,则其方程为:y -y 0=k(x -x 0)(2)斜截式已知直线在y 轴上的截距为b ,斜率为k ,则其方程为:y=kx +b(3)两点式已知直线过两点(x 1,y 1)和(x 2,y 2),则其方程为:y y y y x x x ----121121=x (x x )12≠(4)截距式已知直线在x ,y 轴上截距分别为a 、b ,则其方程为:x a y b +=1(5)参数式已知直线过点P(x 0,y 0),它的一个方向向量是(a ,b),则其参数式方程为为参数,特别地,当方向向量为x x at y y bt =+=+⎧⎨⎩00(t )v(cos α,sin α)(α为倾斜角)时,则其参数式方程为x x t y y t =+=+⎧⎨⎩00cos sin αα为参数(t )这时,的几何意义是,→→t tv =p p |t|=|p p|=|p p|000(6)一般式 Ax +By +C=0 (A 、B 不同时为0).(7)特殊的直线方程①垂直于x 轴且截距为a 的直线方程是x=a ,y 轴的方程是x=0.②垂直于y 轴且截距为b 的直线方程是y=b ,x 轴的方程是y=0.3.两条直线的位置关系(1)平行:当直线l 1和l 2有斜截式方程时,k 1=k 2且b 1≠b 2.当和是一般式方程时,≠l l 12A A B B C C 121212=(2)重合:当l 1和l 2有斜截式方程时,k 1=k 2且b 1=b 2,当l 1和l 2是一般方程时,A A B B C C 121212==(3)相交:当l 1,l 2是斜截式方程时,k 1≠k 2当,是一般式方程时,≠l l 12A A B B 2212①斜交交点:的解到角:到的角θ≠夹角公式:和夹角θ≠A x B y C A x B y C k k k k k k k k k k k k 11122222112121221121200110110++=++=⎧⎨⎩=-++=-++⎧⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪l l l l 1tan ()tan ||()②垂直当和有叙截式方程时,-当和是一般式方程时,+l l l l 1212121212k k =1A A B B =0⎧⎨⎩4.点P(x 0,y 0)与直线l :Ax +By +C=0的位置关系: Ax By C =0P ()Ax By C 0P 0000++在直线上点的坐标满足直线方程++≠在直线外.⇔⇔l l点,到直线的距离为:P(x y )d =|Ax +By +C|0000l A B 22+ 5.两条平行直线l 1∶Ax +By +C 1=0,l 2∶Ax +By +C 2=0间的距离为:.d =|C C |12-+A B 226.直线系方程 具有某一共同属性的一类直线的集合称为直线系,它的方程的特点是除含坐标变量x ,y 以外,还含有特定的系数(也称参变量).确定一条直线需要两个独立的条件,在求直线方程的过程中往往先根据一个条件写出所求直线所在的直线系方程,然后再根据另一个条件来确定其中的参变量.(1)共点直线系方程:经过两直线l 1∶A 1x +B 1y +C 1=0,l 2∶A 2x +B 2y +C 2=0的交点的直线系方程为:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,其中λ是待定的系数.在这个方程中,无论λ取什么实数,都得不到A 2x +B 2y +C 2=0,因此它不表示l 2.当λ=0时,即得A 1x +B 1y +C 1=0,此时表示l 1.(2)平行直线系方程:直线y=kx +b 中当斜率k 一定而b 变动时,表示平行直线系方程.与直线Ax +By +C=0平行的直线系方程是Ax +By +λ=0(λ≠C),λ是参变量.(3)垂直直线系方程:与直线Ax +By +C=0(A ≠0,B ≠0)垂直的直线系方程是:Bx -Ay +λ=0.如果在求直线方程的问题中,有一个已知条件,另一个条件待定时,可选用直线系方程来求解.7.简单的线性规划(1)二元一次不等式Ax +By +C >0(或<0)表示直线Ax +By +C=0某一侧所有点组成的平面区域.二元一次不等式组所表示的平面区域是各个不等式所表示的平面点集的交集,即各个不等式所表示的平面区域的公共部分.(2)线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,称为线性规划问题,例如,z=ax +by ,其中x ,y 满足下列条件:A xB yC 0(0)A x B y C 0(0)A x B x C 0(0)111222n n n ++≥或≤++≥或≤……++≥或≤⎧⎨⎪⎪⎩⎪⎪(*)求z 的最大值和最小值,这就是线性规划问题,不等式组(*)是一组对变量x 、y 的线性约束条件,z=ax +by 叫做线性目标函数.满足线性约束条件的解(x ,y)叫做可行解,由所有可行解组成的集合叫做可行域,使线性目标函数取得最大值和最小值的可行解叫做最优解.三、曲线和方程1.定义在选定的直角坐标系下,如果某曲线C 上的点与一个二元方程f(x ,y)=0的实数解建立了如下关系:(1)曲线C 上的点的坐标都是方程f(x ,y)=0的解(一点不杂);(2)以方程f(x ,y)=0的解为坐标的点都是曲线C 上的点(一点不漏).这时称方程f(x ,y)=0为曲线C 的方程;曲线C 为方程f(x ,y)=0的曲线(图形). 设P={具有某种性质(或适合某种条件)的点},Q={(x ,y)|f(x ,y)=0},若设点M 的坐标为(x 0,y 0),则用集合的观点,上述定义中的两条可以表述为:(1)M P (x y )Q P Q (2)(x y )Q M P Q P 0000∈,∈,即;,∈∈,即.⇒⊆⇒⊆以上两条还可以转化为它们的等价命题(逆否命题):(1)(x y )Q M P (2)M P (x y )Q 0000,;,.∉⇒∉∉⇒∉显然,当且仅当且,即时,才能称方程,P Q Q P P =Q f(x y)=0⊆⊆ 为曲线C 的方程;曲线C 为方程f(x ,y)=0的曲线(图形).2.曲线方程的两个基本问题(1)由曲线(图形)求方程的步骤:①建系,设点:建立适当的坐标系,用变数对(x ,y)表示曲线上任意一点M 的坐标; ②立式:写出适合条件p 的点M 的集合p={M|p(M)};③代换:用坐标表示条件p(M),列出方程f(x ,y)=0;④化简:化方程f(x ,y)=0为最简形式;⑤证明:以方程的解为坐标的点都是曲线上的点.上述方法简称“五步法”,在步骤④中若化简过程是同解变形过程;或最简方程的解集与原始方程的解集相同,则步骤⑤可省略不写,因为此时所求得的最简方程就是所求曲线的方程.(2)由方程画曲线(图形)的步骤:①讨论曲线的对称性(关于x 轴、y 轴和原点);②求截距:方程组,的解是曲线与轴交点的坐标;f x y y ()==⎧⎨⎩00x方程组,的解是曲线与轴交点的坐标;f x y x ()==⎧⎨⎩00y ③讨论曲线的范围;④列表、描点、画线.3.交点求两曲线的交点,就是解这两条曲线方程组成的方程组.4.曲线系方程过两曲线f 1(x ,y)=0和f 2(x ,y)=0的交点的曲线系方程是f 1(x ,y)+λf 2(x ,y)=0(λ∈R).四、圆1.圆的定义平面内与定点距离等于定长的点的集合(轨迹)叫圆.2.圆的方程(1)标准方程(x -a)2+(y -b)2=r 2.(a ,b)为圆心,r 为半径. 特别地:当圆心为(0,0)时,方程为x 2+y 2=r 2(2)一般方程x 2+y 2+Dx +Ey +F=0配方()()x D y E D E F +++=+-22442222当+->时,方程表示以-,-为圆心,以为半径的圆;D E 4F 0()22D E D E F 2212422+-当+-时,方程表示点-,-D E 4F =0()22D E 22 当D 2+E 2-4F <0时,方程无实数解,无轨迹.(3)参数方程以(a ,b)为圆心,以r 为半径的圆的参数方程为 x a r y b r =+=+⎧⎨⎩cos sin θθθ为参数()特别地,以(0,0)为圆心,以r 为半径的圆的参数方程为x r y r ==⎧⎨⎩cos sin θθθ为参数()3.点与圆的位置关系设点到圆心的距离为d ,圆的半径为r .(1)d r (2)d =r (3)d r 点在圆外>;点在圆上;点在圆内<.⇔⇔⇔4.直线与圆的位置关系设直线l :Ax +By +C=0和圆C :(x -a)2+(y -b)2=r 2,则d Aa Bb C A B=+++||22.(1)0d r (2)=0d =r (3)0d r 相交直线与圆的方程组成的方程组有两解,△>或<;相切直线与圆的方程组成的方程组有一组解,△或;相离直线与圆的方程组成的方程组无解,△<或>.⇔⇔⇔5.求圆的切线方法(1)已知圆x 2+y 2+Dx +Ey +F=0.①若已知切点(x 0,y 0)在圆上,则切线只有一条,其方程是x x y y D x x E y y F 0000220=+++++=()().当,在圆外时,++++表示(x y )x x y y D(x )E(y )F =0000000++x y22过两个切点的切点弦方程.②若已知切线过圆外一点(x 0,y 0),则设切线方程为y -y 0=k(x -x 0),再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③若已知切线斜率为k ,则设切线方程为y=kx +b ,再利用相切条件求b ,这时必有两条切线.(2)已知圆x 2+y 2=r 2.①若已知切点P 0(x 0,y 0)在圆上,则该圆过P 0点的切线方程为x 0x +y 0y=r 2.②已知圆的切线的斜率为,圆的切线方程为±.k y =kx r k 2+16.圆与圆的位置关系已知两圆圆心分别为O 1、O 2,半径分别为r 1、r 2,则(1)|O O |=r r (2)|O O |=|r r |(3)|r r ||O O |r r 12121212121212两圆外切+;两圆内切-;两圆相交-<<+.⇔⇔⇔单元知识总结一、圆锥曲线 1.椭圆(1)定义定义1:平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|),这个动点的轨迹叫椭圆(这两个定点叫焦点).定义2:点M 与一个定点的距离和它到一条定直线的距离的比是常数=<<时,这个点的轨迹是椭圆.e (0e 1)ca(2)图形和标准方程图-的标准方程为:+=>>图-的标准方程为:+=>>811(a b 0)821(a b 0)x a y b x b y a 22222222(3)几何性质2.双曲线(1)定义定义1:平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线(这两个定点叫双曲线的焦点).定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e>1)时,这个动点的轨迹是双曲线(这定点叫做双曲线的焦点).(2)图形和标准方程图8-3的标准方程为:x ayb2222-=>,>1(a0b0)图8-4的标准方程为:y axb2222-=>,>1(a0b0)(3)几何性质3.抛物线(1)定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.(2)抛物线的标准方程,类型及几何性质,见下表:①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离.②p 的几何意义:焦点F 到准线l 的距离.③弦长公式:设直线为=+抛物线为=,=y kx b y 2px |AB|212+k|x x ||y y |2121-=-112+k焦点弦长公式:|AB|=p +x 1+x 24.圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e 表示,当0<e <1时,是椭圆,当e >1时,是双曲线,当e =1时,是抛物线. 二、利用平移化简二元二次方程 1.定义缺xy 项的二元二次方程Ax 2+Cy 2+Dx +Ey +F =0(A 、C 不同时为0)※,通过配方和平移,化为圆型或椭圆型或双曲线型或抛物线型方程的标准形式的过程,称为利用平移化简二元二次方程.A =C 是方程※为圆的方程的必要条件. A 与C 同号是方程※为椭圆的方程的必要条件. A 与C 异号是方程※为双曲线的方程的必要条件. A 与C 中仅有一个为0是方程※为抛物线方程的必要条件.2.对于缺xy 项的二元二次方程:Ax 2+Cy 2+Dx +Ey +F =0(A ,C 不同时为0)利用平移变换,可把圆锥曲线的一般方程化为标准方程,其方法有:①待定系数法;②配方法.椭圆:+=或+=()()()()x h a y k b x h b y k a ----2222222211中心O ′(h ,k)双曲线:-=或-=()()()()x h a y k b y k a x h b ----2222222211中心O ′(h ,k)抛物线:对称轴平行于x 轴的抛物线方程为 (y -k)2=2p(x -h)或(y -k)2=-2p(x -h), 顶点O ′(h ,k).对称轴平行于y 轴的抛物线方程为:(x -h)2=2p(y -k)或(x -h)2=-2p(y -k) 顶点O ′(h ,k).以上方程对应的曲线按向量a =(-h ,-k)平移,就可将其方程化为圆锥曲线的标准方程的形式.。

相关文档
最新文档