2021最新人教版小升初数学专题复习讲义
人教版小学数学小升初《整理和复习》总复习精品PPT课件
1、相同数位对齐。
2、从个位减起。
3、被减数哪一位 上的数不够减,就
5010 - 4 78
从前一位退1作10, 和本位上的数加起
45 3 2
来,再减。
9
三、整数乘法:先用一
个因数每一位上的数
分别去乘另一个因数
各个数位上的数,246×305= 75030
用因数哪一位上
246
的数去乘,乘得
×305
的数的末尾就对 齐哪一位,然后 把各次乘得的数
它的边长是多少米?
10
30
4、(1)把 3 平均分成4份,每 份是多少? 5
(2)什么数乘6等于 3 ? 20
(3)一个正方形的周长是 7
米,
它的边长是多少米?
10
(1) 3 ÷ 4
5 =3
5
×
1 4
=
3 20
31
4、(1)把 3 平均分成4份,每 份是多少? 5
(2)什么数乘6等于 3 ? 20
123 0 7 38
加起来。
7 5 0 3 0 10
四、整数除法:先从被
除数的高位除起,除数
是几位数,就看被除数
的前几位; 如果不够3876÷38=102
除,就多看一位,除到 被除数的哪一位,商就 写在哪一位的上面。如 果哪一位上不够商1, 要补“0”占位。每次除
10 2 38 3876
38 76 76
(1)分数除法的意义与整数除法 的意义完全相同。( )
(2) 5 ÷2= 5 × 1
6
62
( )
(3) 5 ×2= 5 × 1 ( ×)
6
62
(4)
5 6
÷1=
5× 6
2021-2022学年人教版小升初数学讲义第2讲《数轴和相反数》
第二讲 数轴和相反数知识 1.掌握数轴的三要素和画法;2.掌握相反数的定义.方法 1.掌握数轴上的点之间的距离的求法;2.掌握数轴上两点中点的求法;3.掌握相反数的运用.1.数轴的三要素是指____________,____________,____________.2.只有____________不同的两个数,我们称它们互为相反数。
3.正数的相反数是____________,负数的相反数是____________,零的相反数是____________.4.互为相反数的两个数分别在原点的____________,并且到原点的____________相等.【注意】:相反数等于它本身的数是_________.下列说法正确的是( )A .有原点、正方向的直线是数轴B .数轴上两个不同的点可以表示同一个有理数01课堂目标02知识梳理03例题精析数轴的认识题型一 例1C.有些有理数不能在数轴上表示出来D.任何一个有理数都可以用数轴上的点表示数轴上原点及原点右边的点表示的数是()A.正数B.负数C.非负数D.非正数数轴上原点及原点左边的点表示的数是()A.正数B.负数C.非负数D.非正数数轴上A,B两点对应的有理数分别是23和313,则A,B之间的整数有()A.4个B.5个C.6个D.7个有有有a有b有有有有有有有有有有有有有a有b有有有有a_____b有有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>-3 B.a>b C.ab>0 D.-a>c在数轴上表示-3的点与表示2的点之间的距离是()A.-5B.5C.0D.-1例2变式1例3例4变式2数轴的应用题型二例1【方法总结】数轴上计算两点之间的距离的方法是____________________________.数轴上表示5和-1的点之间的距离是.数轴上点M到原点的距离是5,则点M表示的数是()A.5B.-5C.5或-5D.不能确定数轴上与+2的点距离3个单位长度的点有个,它们分别是.数轴上与原点距离是5的点有个,表示的数是.在数轴上与表示数4的点距离2个单位长度的点表示的数是()A.-2B.2C.6D.2或6在数轴上,到表示-5的点的距离等于5个单位的点所表示的数是()A.10B.-10C.0或-10D.-10或10数轴上点A和点B表示的数分别是-1和3,点P到A、B两点的距离之和为6,则点P表示的数是()A.-3B.-3或5C.-2D.-2或4数轴上点M与点N表示的数分别是5和-2,点P到点M、N两点的距离之和为10,则点P所在的点表示的数是.数轴上点A表示的数是a,点B表示的数是b,则A、B两点的距离是,A、B两点的变式1例2例3变式2变式3变式4例4变式5例5中点是.若a=2,b=-4,那么A、B两点的中点是.数轴上有A、B、C三点,A、B两点所表示的数如图所示,若BC=2,则C点表示的数是,AC的中点所表示的数是.如下图所示,A、B两点的距离是,A、B的中点所表示的数是.一只蚂蚁沿数轴从点A向右爬5个单位长度到达点B,点B表示的数是-2,则点A所表示的数是()A.5B.3C.-3D.-7如图,在数轴上,点A表示的数是-2,将点A沿数轴正方向向右移动4个单位长度得到点P,则点P表示的数是()A.4B.3C.2D.-2在数轴上,点A表示-2,从A点出发,沿数轴向右移动3个单位长度到达B点,则点B表示的【方法总结】数轴上计算两点中点的方法是____________________________.例6变式6数轴上的动点问题题型三例1【方法总结】右+左-.例2变式1数是 . 数轴上一动点A 向左移动3个单位长度到达点B ,再向右移动6个单位长度到达点C ,若C 表示的数为3,则点A 表示的数为( )A .6B .0C .-6D .-2下列说法正确的是( )A .符号相反的两个数互为相反数B .一个数的相反数一定是正数C .一个数的相反数一定比这个数本身小D .一个数的相反数的相反数等于原数+5的相反数是_______;_______的相反数是-2.3;531-与_______互为相反数. 如果一个数与-2021互为相反数,那么这个数是 .下列各数中,3的相反数的倒数是( )A .3B .-3C .31D .31-若a 、b 互为相反数,则a +b -2的值为 .有理数a 向左移动4个单位得到a 的相反数,则a 的值是 .变式2 相反数的定义题型四 例1 例2 变式1 变式2 相反数的应用题型五 例1 例2若a,b互为相反数,则a(a+b)的值为.如图所示,已知A,B,C,D四个点在一条没有标明原点的数轴上.(1)若点A和点C表示的数互为相反数,则原点为_______;(2)若点B和点D表示的数互为相反数,则原点为_______;(3)若点A和点D表示的数互为相反数,则在数轴上表示出原点O的位置.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C、D表示的数是多少?第二讲数轴和相反数作业1.下列说法中错误的是()变式1例3变式2作业一数轴的认识及应用A.规定了原点、正方向和长度的直线叫数轴B.数轴上的原点表示数零C.在数轴上表示的数,右边的数总比左边的数大D.所有的有理数都可以用数轴上的点表示2.如图,数轴上被墨水遮盖的数可能是()A.-3.2B.-3C.-2D.-0.53.如图,数轴上蚂蚁所在点表示的数可能为()A.3B.0C.-1D.-24.如图,在数轴上,注明了四段的范围,若某段上有两个整数,则这段是()A.段①B.段②C.段③D.段④5.数轴上表示-6和4的点分别是A和B,则线段AB的长度是()A.-2B.2C.-10D.106.如图所示,A,B两点在数轴上,点A对应的数为2.若线段AB的长为3,则点B对应的数为()A.-1B.-2C.-3D.-47.在数轴上距离原点6个单位长度的点所表示的数是()A .6B .-6C .6或-6D .3或-38.在数轴上与表示-3的点的距离等于5的点所表示的数是__________.9.在数轴上,到表示-5的点的距离等于5个单位的点所表示的数是__________.10.数轴上有A 、B 、C 三点,A 、B 两点所表示的数分别为0和6,若BC=4,则AC 的中点所表示的数是_______. 11.已知A ,B 是数轴上两点,点A 在原点左侧且距原点20个单位,点B 在原点右侧且距原点100个单位.(1)点A 表示的数是:_______;点B 表示的数是:_______.(2)A ,B 两点间的距离是_______个单位,线段AB 中点表示的数是_______.1..若一个点在数轴上从原点处向左移动3个单位长度,再向右移动5个单位长度,此时终点所表示的数是________.2.数轴上点A 表示的数是-3,将点A 在数轴上平移7个单位长度得到点B ,则平移后点B 表示的数是________.3.点A 在数轴上距离原点3个单位长度,将A 向右移动4个单位长度,再向左移动7个单位长度,此时点A 表示的数是________.1.下面说法正确的是( )A .0没有相反数B .符号相反的数互为相反数C .一个数和它的相反数可能相等D .正数与负数互为相反数 2.20211的相反数为( ) A .2021 B .2021- C .20211 D .20211- 3.)6(--的相反数是( )作业二 数轴的动点问题 作业三 相反数的定义A.61-B.61C.6-D.64.下列各组数中,互为相反数的是()A.-5与-(+5)B.-8与-(-8)C.+(-8)与-(+8)D.8与-(-8)5.相反数等于它本身的数是______.1.若a、b互为相反数,则_________.2.若a、b互为相反数,则2(a+b)-3的值为()A.-1B.-3C.1D.23.有理数a,b在数轴上的位置如图所示.(1)在数轴上分别用A、B两点表示-a,-b.(2)若数b与-b表示的点相距20个单位长度,则b与-b表示的数分别是什么?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,则a与-a表示的数是多少?作业四相反数的应用。
2021-2022学年人教版小升初数学讲义第4讲《有理数的加减运算》
第四讲 有理数的加减运算知识1.掌握有理数的加法的运算法则;2.掌握有理数的减法的运算法则. 方法1.能够正确计算有理数的加减运算;2.能够灵活应用绝对值在有理数的加减法中的计算.1.有理数的加法法则:(先确定符号,再算绝对值) ◆同号两数相加,取相同的符号,并把绝对值相加;◆异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; ◆互为相反数的两个数相加得_____;(如果两个数的和为0,那么这两个数互为相反数) ◆一个数同0相加,仍得这个数. 2.有理数的减法法则:减去一个数等于加上这个数的_______,即)(b a b a -+=-. 【注意】:计算过程中,一定要注意符号.计算下列各题:(1))2(6-+ (2))2(6-+- (3))2(6---01课堂目标02知识梳理03例题精析有理数的加减运算题型一例1(4)2)3(5+--- (5)21)61(31--+- (6)2)341(312---计算下列各题:(1))8(7)17(18-++--- (2))1712(129175---- (3)12714111253+- 计算下列各题:(1))852()25.1(833)5.6(411---++-+ (2)125.0)125.0()413(75.0----++-(3)53)75.2()412(21152-+--+--- (4)⎥⎦⎤⎢⎣⎡+---+-+--)611()61(127)65()23( 变式1 例2计算下列各题:(1))217()75.2()413(5.0---+-+- (2))321(742)312(731-++-+(3))85.1()432()75.0(85.0-++-++- (4))83.5(32.217.1432.12-+----变式2已知71=+a ,8=b ,且a 、b 异号,求b a -的值.已知4=x ,21=+y ,且0>+y x ,求y x 、的值. 已知6=x ,9=y ,且y x y x +=+,求y x -的值.已知8=x ,2=y ,且x y y x -=-,求y x +的值.已知2=a ,3=b ,且b a b a +=+,求b a -的值.绝对值的性质题型二例1 【方法总结】若|x |=a (a ≥0),则x =±a .变式1 例2 【方法总结】若|a |=a ,则a ≥0;若|a |=-a ,则a ≤0.例3 变式2第四讲 有理数的加减法作业1.计算(-4)+6的值是( )A .-10B .-2C .10D .22.某地区一天三次测量气温如下,早上是-6◆,中午上升了7◆,半夜下降了9◆,则半夜的气温是( )A .4◆B .-8◆C .10◆D .-22◆3.计算2-|-3|的结果是( )A .-5B .-1C .1D .54.两个负数相加,其和一定是( )A .正数B .负数C .非负数D .05.计算)61(32--的结果等于( ) A .65B .21-C .21 D .65-6.计算下列各题:(1))8(51)3(---+- (2))8(4)10()3(--+-+- (3))1213543(1279+- (4)75.4874411125.11-+- 作业一 有理数的加减法(5)25)32(6143--++- (6)25.1)819()435(8119--+-+1.已知|a |=4,|b |=2,且ab <0,求a -b 的值.2.已知|x |=1,|y |=5,且x <0,y >0求x +2y 的值.作业二 绝对值的性质。
专题02《有理数》(精编讲义)(原卷版)-【暑期精品课】2021年小升初数学衔接精编讲义(人教版)
2021年人教版暑假小升初数学衔接精编讲义专题02《有理数》知识互联网学习目标1.掌握有理数的分类方法,初步建立分类讨论的思想.2.理解有理数的意义3.熟练掌握数轴及相反数的相关概念,并能灵活运用;理解有理数与数轴上的点的关系,并会借助数轴比较两个数的大小;会求一个数的相反数,并能借助数轴理解相反数的概念及几何意义;4.掌握多重符号的化简;5.掌握一个数的绝对值的求法和性质;进一步学习使用数轴,借助数轴理解绝对值的几何意义;知识要点要点1:有理数的分类(1)按整数、分数的关系分类:(2(1)画一条直线(通常画成水平位置);(2)在这条直线上取一点作为原点,这点表示0;(3)规定直线上向右为正方向,画上箭头;(4)再选取适当的长度,从原点向右每隔一个单位长度取一点,依次标上1,2,3,…从原点向左,每隔一个单位长度取一点,依次标上-1,-2,-3,…要点分析:(1)原点的位置、单位长度的大小可根据实际情况适当选取.(2)确定单位长度时根据实际情况,有时也可以每隔两个(或更多的)单位长度取一点.要点5:数轴与有理数的关系任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如p.要点分析:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)一般地,在数轴上表示的两个数,右边的数总比左边的数大.要点6、相反数1.定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数.特别地,0的相反数是0.要点分析:(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.要点7、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点分析: (1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5.题型1:有理数典例精讲【典型例题1】(2020秋•海淀区校级期末)在下列数数的有( )【变式训练1】(2020秋•徐汇区校级月考)这个两位数是 .【典型例题1】(2020秋•宽城区期末)有理数a b a -<<,则b 的值不可能是( )变式训练典例精讲题型2:数轴【变式训练1】(2020秋•邗江区期末)数轴上数为 .【典型例题1】(2011•拱墅区校级模拟)若A .2a -和2b -B .1a +和1b +变式训练典例精讲题型3:相反数3【变式训练1】(2016秋•南阳期末)12017-【变式训练2】(2017秋•霸州市校级月考)如图所示,已知【典型例题1】(2017秋•山东月考)已知a 【完整解答】a Q 与3-互为相反数,b 与-【变式训练1】(2020秋•南京期末)有理数( )变式训练典例精讲变式训练题型4:绝对值基础达标一.选择题1.(2021•雅安)2021-的绝对值是( )能力提升。
2021年小升初数学总复习课件-第三章第二课时 比、比例和比例尺|人教新课标 (共41张PPT)
②比值通常用分数表示,也可以用小数表示,有时也 可能是整数。
注意:比的后项不能是零。 (2)比的性质 比的前项和后项同时乘上或者除以相同的数(0除外),
比值不变,这叫做比的基本性质。
(3)求比值和化简比 ①求比值的方法:用比的前项除以后项,它的结果是
一个数值,这个数值可以是整数,也可以是小数或分 数。 ②根据比的基本性质可以把比化成最简单的整数比。 它的结果必须是一个最简比,即前、后项是互质的数。
第二课时 比、比例和比例尺
知识要点梳理
1. 比的意义和性质 (1)比的意义:两个数相除又叫做两个数的比。 ①“ ∶”是比号,读作“比”。比号前面的数叫做比
的前项,比号后面的数叫做比的后项。比的前项除以 后项所得的商,叫做比值。同除法比较,比的前项相 当于被除数,后项相当于除数,比值相当于商。根据 分数与除法的关系,可知比的前项相当于分子,后项 相当于分母,比值相当于分数值。
得第二个括号里应填2。2÷16写成分数形式是 2 ,约
分得 1 。
16
8
(3)根据比例的基本性质,0.5×(
)= 1 1 ,所以括
号里应填 2 。
53
15
(4)8.8折化成小数是0.88,0.88=88%,利用比例的基本
性质可得( 22 )÷25=0.88,11÷( 12.5 )=0.88。
解:(1)2.25∶5=( 1.35 )∶3
求出总数的几分之几是多少。
2. 比例的意义和性质 (1)比例的意义 表示两个比相等的式子叫做比例。组成比例的四个数,
叫做比例的项。两端的两项叫做外项,中间的两项叫 做内项。 (2)比例的基本性质 在比例里,两个外项的积等于两个内项的积。这叫做 比例的基本性质。 (3)解比例 根据比例的基本性质,如果已知比例中的任何三项, 就可以求出这个比例中的另外一个未知项。求比例中 的未知项,叫做解比例。
小升初数学总复习PPT(人教版)
2×a 最简形式是什么? 2a
2a表示什么意思? 两个a相加/2乘a
3.连一连
比 a 多 2的数
a2
比a 少 2 的数
2a
2个a相加的和
a+2
2个a相乘的积
a-2
a的2倍
4.填空。
(1) a与b的和的一半是( (a+b)÷2 )。 (2) 有三个连续自然数,如果中间一个是a ,那么另外两 个分别是( a-1 )和( a+1 )。 (3) 食堂买来x 千克大米,吃了y 千克,还剩( x- y )千克 。如果 x =45,y =28,上面的式子的值是( 17 )。 (4)一辆客车每小时行驶50km,行驶 x 小时,共行驶了 150km,请用含有字母的式子表示三个数量之间的关系 ( 50 x =150 )。
运算方法:方程两边同时乘除数,变换 为乘法方程,然后按照乘法方程的方 法去解
91÷x=1.3 2.4÷x=6 35÷x=0.7
8(x-6.2)=41.6 (x-3)÷2=7.5
运算方法:把小括号内的内容看成一个整体的未知 数进行运算
2(x-2.6)=8 5(x+1.5)=17.5 8(x-6.2)=41.6
①割补、平移 ②旋转、平移 ③割补、旋转
把两个完全一样的三角形重 叠放置,通过( ② )才能 拼成一个平行四边形。
①割补、平移 ②旋转、平移 ③割补、旋转
把两个完全一样的梯形重 叠放置,通过( ② )才 能拼成一个平行四边形。
①割补、平移 ②旋转、平移 ③割补、旋转
100
10000
平方千米 公顷 平方米
x (3) 东方小学绿化校园五年级同学栽3行杨树,
每行 棵,又栽了15棵柳树,一共栽树39棵
人教版小升初数学总复习知识点归纳上课讲义
小升初数学总复习资料一、基本概念第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
2 自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5数的整除整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b 就叫做a的因数(或a的约数)。
倍数和因数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的因数。
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
六年级下册数学2021小升初暑期精品课程讲义第1讲——四则运算 人教版
2021小升初暑期精品课程讲义第1讲——四则运算一、知识讲解四则运算的意义加法:把两个数合成一个数的运算。
减法:已知两个数的和与其中的一个加数,求另一个加数的运算。
乘法: 除法:已知两个因数的积与其中的一个因数,求另一个因数的运算。
四则运算中各部分之间的关系加法: 和=加数+加数 一个加数=和-另一个加数减法: 差=被减数-减数 减数=被减数-差 被减数=减数+差乘法: 积=因数×因数 一个因数=积÷另一个因数除法: 商=被除数÷除数 除数=被除数÷商 被除数=除数×商四则运算的特殊情况0a a += 0a a += 0a a -= 0a a -=00a ⨯= 00a ⨯=000⨯= 00(0)a a ÷=≠ 1a a ⨯= 1a a ⨯= 11(0)a a a ÷=≠ 1a a ÷= 1(0)a a a ÷=≠四则混合运算的运算顺序①没有括号的算式:只含同一级运算,从左往右依次计算;含有两级运算,先做第二级运算,再做第一级运算。
(先乘除,后加减) ②有括号的算式:先算小括号里面的,再算中括号里面的,最后算括号外面的。
整数乘法、小数×整数、分数×整数:求几个相同加数的和的简便运算。
一个数×小数:求这个数的十分之几、百分之几……是多少。
一个数×分数:求这个数的几分之几是多少。
有余数的除法 (余数<除数)四则混合运算定律和运算性质 加法交换律:a b b a +=+ 加法结合律:()()a b c a b c ++=++ 乘法交换律:a b b a ⨯=⨯ 乘法结合律:()()a b c a b c ⨯⨯=⨯⨯ 乘法分配律:()a b c a c b c +⨯=⨯+⨯; ()a b c a b a c ⨯+=⨯+⨯减法的性质:()a b c a b c -+=--; ()a b c a b c --=-+ 除法的性质(除数不为0):()a b c a b c ÷⨯=÷÷; ()a b c a b c ÷÷=÷⨯; ()a b c a c b c +÷=÷+÷; ()a b c a c b c -÷=÷-÷估算作用:计算前估算,可以对计算结果有一个大致的判断;计算后估算,可以对计算结果进行检验。
人教版小升初数学《总复习知识点归纳总结》精品教学课件PPT优秀课件
• 2. 近似数:根据实际需要,我们还可以把一个 较大的数,省略某一位后面的尾数,用一个近 似数来表示。 例如: 1302490015 省略亿后 面的尾数是 13 亿。
• 3. 四舍五入法:要省略的尾数的最高位上的数 是4 或者比4小,就把尾数去掉;如果尾数的 最高位上的数是5或者比5大,就把尾数舍去, 并向它的前一位进1。
• 把一个合数用质因数相乘的形式表示出来,叫 做分解质因数。几个数公有的约数,叫做这几 个数的公约数。其中最大的一个,叫做这几个 数的最大公约数。
• 公约数只有1的两个数,叫做互质数,成互质 关系的两个数,有下列几种情况:
• 1和任何自然数互质。 • 相邻的两个自然数互质。 • 两个不同的质数互质。 • 当合数不是质数的倍数时,这个合数和这个质
人教版六年级数学下册小升初
常用的数量关系式常用的数量关系式
• 1、每份数×份数=总数 总数÷每份数= 份数 总数÷份数=每份数
• 2、1倍数×倍数=几倍数 几倍数÷1倍数 =倍数 几倍数÷倍数=1倍数
• 3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
• 4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
• 无限小数:小数部分的数位是无限的小数, 叫做无限小数。
• 无限不循环小数:一个数的小数部分,数字排 列无规律且位数无限,这样的小数叫做无限不 循环小数。 例如:∏
• 循环小数:一个数的小数部分,有一个数字或 者几个数字依次不断重复出现,这个数叫做循 环小数。一个循环小数的小数部分,依次不断 重复出现的数字叫做这个循环小数的循环节。
2021-2022学年人教版小升初数学讲义第3讲《绝对值及其应用》
第三讲 绝对值及其应用知识1.掌握绝对值的含义;2.掌握正数、负数、0的绝对值的算法. 方法1.灵活应用绝对值比较大小;2.灵活掌握绝对值在解题中的应用; 2.掌握非负数的应用.1.一般地,数轴上表示数a 的点与 的距离叫做数a 的绝对值,记作 .2.正数的绝对值是 ,负数的绝对值是 ,0的绝对值是 . 即当a >0时,a = ;当a <0时,a = ;当a =0时,a = .【注意】:绝对值等于它本身的数是__________.所以若a a =,那么a 就是非负数;若a a -=,那么a 就是非正数.下列说法:①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①① ①①①①①①① ①A .0个B .1个C .2个D .3个下列说法中正确的是( )A .若|a |=|b |,则a =bB .若|a |=|b |,则a ,b 互为相反数C .-|b |的绝对值一定是负数D .若一个数小于它的绝对值,则这个数一定是负数01课堂目标02知识梳理03例题精析绝对值的定义题型一例1 例2在数轴上,下面说法中不正确的是( )A .两个有理数,绝对值小的离原点近B .大数对应的数在右边C .两个负数,较大的数对应的点离原点近D .两个有理数,大数离原点近 下列说法中,正确的有( )①负数没有绝对值;①绝对值最小的有理数是0;① 任何数的绝对值都是非负数;①互为相反数的两个数的绝对值相等.A .1个B .2个C .3个D .4个计算:=-+7.3______;=0______;=--3.3______;=+-75.0______;=+-75.0______.写出下列各数的绝对值:6,-3.5,0,25,112-,-4,1.2,π. 若|x |=5,|y |=2且x <0,y >0,则x +y =( )A .7B .-7C .3D .-3如果|a |=4,|b |=2,且|a +b |=a +b ,则a -b 的值是_________.若3=x ,1=y ,则=+y x _________.若4=x ,y 是5的相反数,则=+y x _________. 若m 满足32=+m ,则m 的取值是_________. 如果a a 33-=,则a 一定是( )A .非正数B .负数C .非负数D .正数若|a |=-a ,则a 的值不可以是( )A .2B .-5C .0D .-0.5变式1 变式2 绝对值的计算题型二例1变式1 例2例3变式2 变式3 变式4 例4变式5在有理数21-,-1,0,2中,最小的数是()A.0B.21-C.-1D.2下列比较有理数的大小,正确的是()A.0105>-B.1010001.0-<-C.2020120191->-D.2019202020182019-<-下列各数中,比-2021小的是()A.-2022B.2021C.0D.-0.1已知a>0,b<0,且|a|<|b|,则下列关系正确的是()A.b<﹣a<a<﹣b B.﹣a<b<a<﹣b C.﹣a<b<﹣b<a D.b<a<﹣b<﹣a有理数a,b在数轴上的对应点的位置如图所示,把a、b、-a、-b、0按照从小到大的顺序排列,正确的是()A.-a<a<0<-b<b B.a<-a<0<-b<b C.-b<a<0<-a<b D.a<0<-a<b<-b 若0<m<1,m、m2、1m的大小关系是()A.mmm12<<B.mmm12<<C.21mmm<<D.mmm<<21已知-1≤x≤2,则化简代数式3|x-2|-|x+1|的结果是()A.-4x+5B.4x+5C.4x-5D.-4x-5当1<x<5时,化简|x-1|+|x-6|=_______.比较大小题型三例1例2变式1例3【方法总结】比较大小我们可以使用代值的方法.变式2变式3绝对值的化简题型四例1【方法总结】绝对值的化简主要是看绝对值内的正负性,若为正则直接去绝对值,若为负则加上负号.变式1①①①①①①①①|b-a|-|a-1|+|b+2|①①①①_______.有理数a,b,c在数轴上的位置如图所示:化简:|a+b|-|b-1|-|a-c|-|1-c|=_______.已知a、b、c的大致位置如图所示:化简|a+c|-|a-b|结果是_______.数轴上,有理数a、b、-a、c的位置如图,则化简|a+c|+|a+b|+|c-b|的结果为()A.ca22+B.ba22+C.bc22-D.0已知a、b、c的位置如图所示,化简|a+b|-|c-a|+|b+2c|=_______.代数式|x+2|+|-2|的最小值等于_______.若a为有理数,则|a-3|+|a+4|的最小值是_______,|a+2|-|a-1|的最大值是_______.|x-6|+|x-1|①①①①①_______.求|x-2|+|x-7|的最小值是_______;|x-2|-|x-7|的最大值是_______.求|x-1|+|x+4|的最小值是_______.例2【方法总结】在数轴上,左-右<0,右-左>0.例3变式2变式3变式4绝对值的应用题型五例1例2【方法总结】1.|x-a|+|x-b|有最小值,可以看做是数轴上的点到a、b的距离之和,那么当介于a、b之间时,就有最小值|a|+|b|.2.|x-a|-|x-b|有最大值,可以看做是数轴上的点到a、b的距离之差,那么当位于a、b之外时,就有最小大值|a-b|.变式1变式2变式3若ab ≠0,那么bb aa +的取值不可能是( ) A .-2 B .0C .1D .2已知a ,b ,c 为有理数且abc ≠0,则=++ccb b a a _______. 已知a ,b 为非零有理数,则bb a a +的值为( )A .±2B .0C .±2或0D .2已知1=abcabc ,那么=++cc b b a a _______.已知02)1(2=++-y x ,则=x ______,=y ______.已知0332)3(2=--+-y x x ,则=x ______,=y ______. 已知3-+y x 与2)2(-x 互为相反数,则=-+yx yx 2______. 已知03)22(2=-++-y x x ,则=x ______,=y ______. 已知2)1(-y 与4-+y x 互为相反数,则=-y x 3______.第三讲 绝对值及其应用作业1.下列说法正确的是( )A .最小的正整数是1B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .一个数的绝对值一定比0大2.下列说法不正确的是( )A .0既不是正数,也不是负数B .0的绝对值是0C .一个有理数不是整数就是分数D .1是绝对值最小的正数3.一个负数在增大时,它的绝对值在______(填“增大”或“减小”);一个正数在增大时,它的绝对值在______(填“增大”或“减小”).例3 例4变式4 变式5 绝对值非负性的应用题型六例5【方法总结】非负数+非负数=0,那么它们应该都等于0. 例6 例7变式6 变式7 作业一 绝对值的定义1.5-的绝对值是()A.5-B.5C.51D.51-2.2-等于()A.2B.2-C.2±D.213.21-的相反数等于()A.2-B.21-C.2D.214.若|x|=1,|y|=5,且x>0,y<0,则x+y=_______.5.若|x|=1,|y|=5,则x+y=_______.6.若|x|=2,|y|=3,且xy>0,则x+y=_______.7.如果xx22-=,则x一定是()A.非正数B.负数C.非负数D.正数8.如果11+=+aa,则a+1一定是()A.非正数B.负数C.非负数D.正数1.下列四个数中,最小的数是()A.3-B.0C.1-D.72.下列各数,依照从大到小顺序排列的是()A.20,-6,-2.13B.13,-2.6,-20C.-2.6,-13,20D.20,-13.6,-2 3.如果a、b都是实数,且a<b,那么下列结论中,正确的是()A.1<baB.ba->+-1C.ba11>D.ba<4.如图,数a在原点的左边,则a、-a、0的大小关系正确的是()A.-a<0<a B.-a<a<0C.a<0<-a D.a<-a<05.a,b在数轴上位置如图所示,则a,b,-a,-b的大小顺序是()A.-a<b<a<-b B.b<-a<-b<a C.-a<-b<b<a D.b<-a<a<-b 作业二绝对值的计算作业三比较大小1.数a的位置如图,化简|a|+|a+4|=______.2.实数a,b在数轴上的位置如图所示,则化简代数式|a+b|-a的结果是______.3.已知a、b、c的大致位置如图所示:化简|a+c|-|a-b|结果是______.1.代数式|x+1|+|x-2|的最小值等于_______.2.代数式|a+2|+|a-3|的最小值是_______,|a+2|-|a-3|的最大值是_______.3.已知a,b,c为非零有理数,则ccbbaa++的值为_______.1.已知02)1(2=-++ba,则=a______,=b______.2.已知2)1(-x与7-+yx互为相反数,则=x______,=y______.3.已知03)1(2=-+-yx,则=-yx2______.作业四绝对值的化简作业五绝对值的应用作业六绝对值非负性的应用。
专题01《正数与负数》精编讲义)(解析版)-【暑期精品课】2021年小升初数学衔接精编讲义(人教版)
专题011.掌握用正负数表示实际问题中具有相反意义的量;2.理解正数、负数、有理数的概念;3. 掌握有理数的分类方法,初步建立分类讨论的思想.像+3、+1.5、12+、+584等大于0的数,叫做“-”号的数,叫做负数.知识互联网学习目标知识要点【典型例题1】(2021•盘龙区二模)2020年季度,较上年同期下降6.3%.2021年一季度,云南省外贸进出口总值达【变式训练1】(2021春•天心区月考)25+° .典例精讲变式训练题型:正负数的概念及应用基础达标一.选择题1.(2020秋•诸暨市期中)下列各对量中,不具有相反意义的是【完整解答】A 、胜3局与负3局,具有相反意义,故本选项不合题意;B 、转盘逆时针转3圈与顺时针转5圈,具有相反意义,故本选项不合题意;C 、收入3000元与增加3000元,不具有相反意义,故本选项符合题意;D 、气温升高4C °与气温降低10C °,具有相反意义,故本选项不合题意;故选:C .2.(2020秋•莱州市期中)某种药品的说明书上表明该药品保存温度是(302)C °±,则保存该药品的合适温度范围是( )A .28C ~30C°°B .30C ~32C°°C .28C ~31C°°D .28C ~32C°°【完整解答】30232(C)°+=,32228(C)°-=,所以保存该药品的合适温度范围是28C ~32C °°.故选:D .3.(2020秋•新郑市校级期中)体育课上全班女生进行百米测验达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“-”表示成绩小于18秒.这个小组女生的达标率是( )2-0.3+001.2-1-0.5+0.4-A .25%B .37.5%C .50%D .75%【完整解答】Q “正”和“负”相对,从表格中我们会发现,这8人中有6人是达标的,\这个小组女生的达标率是675%8=.故选:D .4.(2020秋•永定区期中)如果把支出80元记作80-元,那么收入100元记作( )A .100-元B .100+元C .20+元D .80-元【完整解答】根据题意,支出80元记作80-元,则收入100元记作100+元.故选:B .5.(2020秋•叙州区校级月考)下列不是具有相反意义的量的是( )A .前进5米和后退5米B .进球4个和失球2个C .身高增加2cm 和体重减少2kgD .节余50元和超支80元【完整解答】A 、前进5米和后退5米,是具有相反意义的量,故本选项不符合题意;故答案为:10;0.10.(2020秋•晋安区校级月考)墨西哥素有“仙人掌之国”之称,每食100g 仙人掌可以产生3227+-千焦的热量,3227+-千焦的含义是产生的热量在 25 千焦至 千焦之间.【完整解答】3227+-千焦的含义是产生的热量在25千焦至30千焦之间.故答案为:25;30.11.(2019秋•龙岗区期末)小明和小聪坐公交从学校去体育馆参加运动会,他们从学校门口的公交车站上车,上车后发现连同他们俩共13人,经过2个站点小明观察到上下车情况如下(记上车为正,下车为负):(4,2)A +-,(6,5)B +-.经过A ,B 这两站点后,车上还有 16 人.【完整解答】13426516+-+-=人,故答案为:16.12.(2019秋•中山市期末)小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:)kg ,每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为 1.5- .【完整解答】每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为1.5-.故答案为: 1.5-.13.(2018秋•临河区期中)小明把零用钱10元存入银行记为10+元,那么从银行取出20元记为 20-元 .【完整解答】Q 向银行存入人民币10元记作10+元,\从银行取出人民币20元记作20-元,故答案为20-元.14.(2018秋•镇江期中)跳绳比赛中以跳160个为标准,多跳或少跳的个数分别用正数与负数表示,如多跳了20个记作“20+”,那么“8-”表示 少跳了8个 .【完整解答】跳绳比赛中以跳160个为标准,多跳或少跳的个数分别用正数与负数表示,如多跳了20个记作“20+”,那么“8-”表示少跳了8个,故答案为:少跳了8个.三.解答题15.(2020秋•赫山区期末)一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):6+,2-,10+,8-,7-,11+,10-.(1)守门员是否回到了原来的位置?(2)守门员离开球门的位置最远是多少?(3)守门员一共走了多少路程?【完整解答】(1)根据题意得:62108711100-+--+-=.答:回到了原来的位置.(2)第一次离开6米,第二次离开4米,第三次离开14米,第四次离开6米,第五次离开1米,第六次离开10米,第七次离开0米,则守门员离开守门的位置最远是14米;(3)总路程|6||2||10||8||7||11||10|54=++-+++-+-+++-=米.16.(2020秋•金牛区校级月考)某个体商人小王购进一批货物进行销售,卖出货物时的价格(售价)与购进货物价格(进价)有一定的差距(高于进价用正数表示,低于进价用负数表示),情况如下表:售价与进价之差(元) 5.5+ 3.5+0 1.5-3-1-货物件数6851029(1)如果不考虑其它的因素,问小王卖出这批货物是盈还是亏了?(2)如果考虑每件货物的其它成本为0.8元,小王是盈还是亏了?盈、亏的数目是多少?【完整解答】(1)5.56 3.5805( 1.5)10(3)2(1)9´+´+´+-´+-´+-´33280(15)(6)(9)=+++-+-+-31=(元),所以小王盈了;(2)31(6851029)0.8-+++++´31400.8=-´3132=-1=-(元),所以,小王亏了,亏了1元钱.17.(2020秋•诸暨市期中)一名足球守门员练习折返跑,从球门线出发,向前跑记作正数,向后跑记作负数,他的练习记录如下(单位:):5m+,3+,10-,13--,10+,8-,6(1)守门员最后是否回到了球门线的位置?(2)守门员在这次练习中共跑了多少米?m的次数是多少次?(3)在练习过程中,守门员离开球门线距离达10m以上(包括10)++-+++-+-+++-,【完整解答】(1)(5)(3)(10)(8)(6)(13)(10)(51013)(38610)=++-+++,=-,2827=,1答:守门员最后没有回到球门线的位置;(2)|5||3||10||8||6||13||10|++-+++-+-+++-,=++++++,5310861310=;55答:守门员全部练习结束后,他共跑了55米.(3)5+,+-=,532+=,21012-=,1284-=-,462-+=,21311-=,11101\离开球门线距离达10m以上(包括10)m的次数是2次.18.(2020秋•卧龙区期中)为了把疫情耽误的任务补回来,某公司赶制完成一批产品,计划一周生产该产品1400件(周六、周日加班不休息),平均每天生产200件,但实际每天生产量与计划相比有出入.下表是该周的实际生产情况(超产记为正、减产记为负):星期一二三四五六日增减(单位:件)5+2-5-15+10-16+9-(1)星期一生产该产品的数量是 205 件;(2)本周产量最多的一天比最少的一天多生产该产品 件;(3)求该公司本周实际生产该产品的数量;(4)已知该公司实行按天计件工资制,每生产一件产品可得60元,若超额完成任务,则超过部分每件另奖50元,少生产一件扣80元.求该公司在这一周应付的工资总额.【完整解答】(1)200(5)205++=(件),故星期一生产该产品的数量是205件;故答案为:205;(2)16(10)161026--=+=(件),即本周产量最多的一天比最少的一天多生产该产品26件,故答案为:26;(3)5(2)(5)(15)(10)(16)(9)2007++-+-+++-+++-+´52515101691400=--+-+-+1410=(件),所以该公司本周实际生产该产品的数量是1410件;(4)14106050[(5)(15)(16)]80[(2)(5)(10)(9)]´+´++++++´-+-+-+-84600503680(26)=+´+´-8460018002080=+-84320=(元),所以该公司在这一周应付的工资总额是84320元.19.(2020秋•南平月考)某班6名同学的身高(单位:)cm情况如下表:同学A B C D E F身高 165 168 166 171 身高与班级平均身高的差值1-2+ 3-3+ (1)完成表中空白的部分;(2)他们的最高身高与最矮身高相差多少?(3)他们6人的平均身高是多少?【完整解答】(1)补全表格如下:同学A B C D E F 身高165168166163169171身高与班级平均身高的差值1-2+03-3+5+(2)最高身高与最矮身高的差为:1711638cm -=;(3)他们6人的平均身高是1(165168163169171)1676cm ++++=.故答案为:168 0 163 169,5+.20.(2020秋•仙游县期中)某一出租车一天下午以鼓楼为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:千米)依先后次序记录如下:9+,3-,5-,4+,10-,6+,3-,6-,4-,10+(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若出租车每千米的耗油量为0.08升,这天下午出租车共耗油量多少升?【完整解答】(1)根据题意得:9354106364102+--+-+---+=-千米,出租车离鼓楼出发点2千米,在鼓楼的西方;(2)根据题意得:|9||3||5||4||10||6||3||6||4||10|60++-+-+++-+++-+-+-++=(千米),600.08 4.8´=(升),这天下午出租车共耗油量4.8升一.选择题(共5小题)1.(2018秋•玄武区期中)某速冻水饺的储藏温度是182C °-±,下列四个冷藏室的温度中不适合储藏此种水饺的是( )A .22C°-B .19C°-C .18C°-D .17C°-【完整解答】Q 速冻水饺的储藏温度是182C °-±,\速冻水饺的储藏温度是20~16C °--,故选项A 符合题意,选项B ,C ,D 不符合题意,故选:A .2.(2018秋•中原区校级期中)选出下列不具有相反意义的量( )A .气温升高4C °与气温12C °B .胜3局与负4局C .转盘逆时针转4圈与顺时针转6圈D .支出5万元与收入3万元【完整解答】A 、气温升高4C °与气温12C °,不是具有相反意义的量,故本选项正确;B 、胜3局与负4局,是具有相反意义的量,故本选项错误;C 、身转盘逆时针转4圈与顺时针转6圈,是具有相反意义的量,故本选项错误;D 、支出5万元与收入3万元,是具有相反意义的量,故本选项错误.故选:A .3.(2018秋•靖江市校级月考)超市出售的三种品牌的大米袋上,分别标有质量为(500.3)kg ±,(500.4)kg ±,(500.25)kg ±的字样,从超市中任意拿出两袋大米,它们的质量最多相差( )A .0.5kgB .0.6kgC .0.8kgD .0.95kg【完整解答】根据题意可得:它们的质量相差最多的是标有(500.4)kg ±的;其质量最多相差(500.4)(500.4)0.8kg +--=.能力提升故选:C .4.(2013秋•龙口市期末)某粮店出售的三种品牌的面粉袋上,分别标有“(500.1)kg ±、(500.2)kg ±、(500.3)kg ±”的字样,从中任意拿出两袋,它们的质量最多相差( )A .0.8kgB .0.6kgC .0.5kgD .0.4kg【解答】解0.3(0.3)0.30.30.6()kg --=+=.故选:B .5.(2018秋•麻城市期中)下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数,用负数记下降数).那么本周星期几水位最低( )星期一二三四五六日水位变化/米0.120.02-0.13-0.20-0.08-0.02-0.32A .星期二B .星期四C .星期六D .星期五【完整解答】由于用正数记水位比前一日上升数,用负数记下降数,由图表可知,周一水位比上周末上升0.12米,从周二开始水位下降,一直降到周六,所以星期六水位最低.故选:C .二.填空题(共7小题)6.(2018秋•越秀区校级期中)执信中学运动场跑道离底面的高度为3米,记为3+米,新建体育馆地下篮球馆木地板离地面的高度为12米,可记为 12- 米.【完整解答】执信中学运动场跑道离底面的高度为3米,记为3+米,新建体育馆地下篮球馆木地板离地面的高度为12米,可记为12-米.故答案为:12-.7.(2017秋•大邑县期末)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数,若其意义相反,则分别叫做正数与负数,若气温为零上8C °记为8C °,则2C °-表示气温为 零下2C ° .【完整解答】若气温为零上8C °记作8C °,则2C °-表示气温为零下2C °.故答案为:零下2C °.8.(2018秋•杏花岭区校级期中)某次数学考试成绩以85分为标准,把超过标准分数的用正数表示,不足的用负数表示,干老师将本班其中五位同学的成续简单记作(单位:分)15+,4-,11+,7-,0,则这五位同学本次考试的平均成绩为 88 分.【完整解答】185(1541170) 5+´-+-+185155=+´853=+88=.故答案为:88.9.(2017秋•开平区校级月考)一个水池上个星期日的水深为150厘米,这个星期从星期一到星期日水位的变化情况如表所示(上升为正,单位为厘米):星期一二三四五六日水位记录/厘米3+5-1-4+3-1+2-那么这个星期中最高水位是 153 厘米,最低水位是 厘米.【完整解答】(1)正号表示水位比前一天上升,负号表示水位比前一天下降:周一:1503153+=,周二:1535148-=,周三:1481147-=,周四:1474151+=,周五:1513148-=,周六:1481149+=,周日:1492147-=,所以这个星期中最高水位是153厘米,最低水位是147厘米.故答案为153,147.10.(2017秋•山西月考)李白出生于公元701 年,我们记作701+,那么秦始皇出生于公元前256 年,可记作 256- .【完整解答】李白出生于公元701 年,我们记作701+,那么秦始皇出生于公元前256年,可记作256-.故答案为256-.11.(2017秋•杜尔伯特县校级期中)如果一袋水泥的标准重量是50千克,如果比标准重量少2千克记作2-千克,则比标准重量多1千克应记为 1+千克 .【完整解答】比标准重量少2千克记作2-千克,则比标准重量多1千克应记为1+千克.故答案为1+千克;12.在一条东西向的跑道上.小亮先向东走6m .记作6m +.又向西走10m .此时他的位置可记作 4- m .【完整解答】根据题意得:6104+-=-,则此时他的位置可记作4m -.故答案为:4-.三.解答题(共7小题)13.(2020秋•三元区期中)疫情期间,某工厂一周计划生产2100套防护服,平均每天计划生产300套.由于各种原因,实际上每天的生产量与计划量相比有出入.下表是某周的生产情况(增产为正,减产为负):星期一二三四五六日增减5+2-4-13+10-16+9-(1)根据记录可知,前三天共生产了 899 套防护服;(2)产量最少的一天比产量最多的一天少生产了 套防护服;(3)该厂实行计件工资制,每生产一套防护服得20元,超额完成部分则每套防护服奖50元,少生产一套则扣50元,那么该工厂工人这一周的工资总额是多少?【完整解答】(1)根据题意得:3003(524)´++--9001=-899=(套),则前三天共生产了899套防护服;故答案为:899;(2)由表格可知:星期六产量最多(16)+,星期五产量最少(10)-,16(10)--1610=+26=(套),则产量最少的一天比产量最多的一天少生产了26套防护服;故答案为:26;(3)根据表格得:2100(5241310169)++--+-+-21009=+=,2109´+´210020950=+42000450=(套),42450则那么该工厂工人这一周的工资总额是42450.14.(2020秋•江阴市期中)某中学附近某水果超市最近新进了一批百香果,每斤8元,为了合理定价,在第一周试行机动价格,卖出时每斤以10元为标准,超出10元的部分记为正,不足10元的部分记为负,超市记录第一周百香果的售价情况和售出情况:星期一二三四五六日每斤价格相对于标准价格(元)1+2-3+1-2+4+3-售出斤数2035103015550(1)这一周超市售出的百香果单价最高的是星期 六 ,最高单价是 元.(2)这一周超市出售此种百香果的收益如何?(盈利或亏损的钱数)(3)超市为了促销这种百香果,决定从下周一起推出两种促销方式:方式一:购买不超过5斤百香果,每斤13元,超出5斤的部分,每斤打8折;方式二:每斤售价12元.高老师决定买30斤百香果,通过计算说明用哪种方式购买更省钱.【完整解答】(1)这一周超市售出的百香果单价最高的是星期六,最高单价是:10414+=(元).故答案为:六,14;(2)12023531013021545350150´-´+´-´+´+´-´=-(元),-´++++++=´=(元),(108)(2035103015550)2165330-+=(元);150330180所以这一周超市出售此种百香果盈利180元;-´´+´=(元),(3)方式一:(355)130.8135325方式二:3012360´=(元),Q,325360<\选择方式一购买更省钱.15.(2019秋•息县期末)某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:):km第1批第2批第3批第4批第5批5km2km4km-3km-10km(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费10元,超过3km的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元?【完整解答】(1)52(4)(3)1010()km++-+-+=答:接送完第五批客人后,该驾驶员在公司的南边10千米处.(2)(52|4||3|10)0.2240.2 4.8++-+-+´=´=(升)答:在这个过程中共耗油4.8升.(3)[10(53) 1.8]10[10(43) 1.8]10[10(103) 1.8]68+-´+++-´+++-´=(元)答:在这个过程中该驾驶员共收到车费68元.16.(2018秋•南岸区期末)某矿泉水厂从所生产的瓶装矿泉水中,抽取了40瓶检查质量,质量超出标准质量的用正数表示,质量低于标准质量的用负数表示,结果记录如下表:与标准质量的偏差(单位:克)8-6-04+5+10+瓶数23131462(1)这40瓶矿泉水中,最重的一瓶比最轻的一瓶重多少克?(2)这40瓶矿泉水的平均质量比标准质量多多少?【完整解答】(1)10(8)18--=,答:这40瓶矿泉水中,最重的一瓶比最轻的一瓶重18克(2)82(6)301341456102-´+-´+´+´+´+´,16180563020=--++++,34106=-+,72=克,7240 1.8¸=克所以,这批样品的平均质量比标准质量多,相差1.8克.17.(2019秋•大名县期中)某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况(增产为正,减产为负,单位:个) 星 一 二 三 四 五 六 日 增6+3-5-11+8-14+9-(1)根据记录可知前三天共生产 298 个;(2)产量最多的一天比产量最少的一天多生产 个;(3)该厂实行计件工资制,每生产一个玩具50元,若按周计算,超额完成任务,超出部分每个65元;若未完成任务,生产出的玩具每个只能按45元发工资.那么该厂工人这一周的工资总额是多少?【完整解答】(1)前三天生产的个数是1003(635)298´+--=(个).答案是:298;(2)14(9)23--=(个),故答案是23;(3)这一周多生产的总个数是6351181496--+-+-=(个).5070065635390´+´=(元).答:该厂工人这一周的工资是35390元.18.(2020秋•青羊区校级月考)股市一周内周六、周日两天不开市,股民小王上周五以每股25.20元的价格买进某公司股票10000股,买进或卖出时都得支付交易额的0.5%作为手续费,下表为本周内每天该股票的涨跌情况:星期一二三四五每股涨跌0.1-0.4+0.2-0.4-0.5+注:正号表示股价比前一天上涨,负号表示股价比前一天下跌.(1)星期四收盘时,每股多少元?(2)本周内哪一天股价最高,是多少元?若股民小王本周末将该股票全部售出,小王在本次交易中是赚了还是亏了?请你算算,如果是赚了,赚了多少钱?如果亏了,亏了多少钱?【完整解答】(1)(0.1)(0.4)(0.2)(0.4)(0.1)(0.2)(0.4)(0.4)0.3-+++-+-=-+-+++-=-(元)25.20(0.3)24.90+-=(元)答:星期四收盘时,每股24.90元.(2)周一的股价:25.20(0.1)25.10+-=(元),周二的股价:25.10(0.5)25.50++=(元),周三的股价:25.50(0.2)25.30+-=(元),周四的股价:25.30(0.4)24.90+-=(元),周五的股价:24.90(0.5)25.40++=(元),24.9025.1025.3025.4025.50<<<<Q ,\本周内周二股价最高,是 25.50元,25.20100000.5%1260´´=(元),25.40100000.5%1270´´=(元),126012702530+=(元),(25.4025.20)100002000-´=(元),20002530530-=-(元),\小王在本次交易中是亏了,亏了530元.19.(2020秋•荔湾区校级月考)为体现社会对教师的尊重,2010年9月10日“教师节”这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):15+,4-,13+,10-,12-,3+,13-,17-.①最后一名老师送到目的地时,小王距出车地点的什么方向?距离是多少?②若汽车耗油量为0.4升/千米,这天上午汽车共耗油多少升?【完整解答】①由题意得:1541310123131725+-+--+--=-千米,答:小王距出车地点的西方,距离是25千米;②由题意得:(154|13|10||12|3|13||17|)0.4++-++-+-++-+-´。
数学人教版小升初总复习讲课课件
( ×)
3、一个平角减去一个锐角,得到一个钝角。( √ )
4、射线比直线短。
( ×)
5、直线是一个周角。 6.两点间线段最短。
( ×) ( √)
7、长方体、正方体、圆柱体的体积都可以用底面积 乘以高来计算。( √)
1 8、圆锥的体积是圆柱体积的 3 。( )×
9、一个圆柱形杯子的体积等于它的容积。( ×) 10、一个圆柱的高缩小2倍,底面半径扩大2 倍,它的
三角形的分类之按角分类 锐角三角形 直角三角形 钝角三角形
三个角都锐角 有一个角是直角 有一个角是钝角
三角形的分类之按边分类 不等边三角形 等腰三角形 等边三角形
三条边都不相等 两条边相等 三条边都相等
等边三角形是特殊的等腰的三角形
四边形
四边形
平形四边形 长方形 正方形
梯形
四边形
平行四边形,长方形和正方形有什么联系和区别?
A
A′
C
C′
A′’
B
B′
C′’
B′’
随堂训练
要求: 作△ABC以点O为旋转中心逆时针旋转 90°后所形成的图形。
0 A
C′ A′ B
B′
C
∴△A′B′C′就是所求作的三角形。
要求: 作出△ABC沿直线L翻折后所得的图形
( = 作出与△ABL C关于直线L轴对称的图形)
A
A′
B
B′
C
C′
∴△A′B′C′就是所求作的三
平行四边形是两组对边分别平行且相等; 长方形和正方形都是特殊的平行四边形; 正方形是特殊的长方形。
平行四边形和梯形有什么联系和区别?
平行四边形是两组对边分别平行且相等; 梯形只有一组对边平行.
2021-2022学年人教版小升初数学讲义第6讲《有理数的应用》
第六讲 有理数的应用知识1.掌握有理数的乘除乘方运算;2.掌握有理数的混合运算.方法1.能够正确计算有理数的乘除运算;2.能够正确计算有理数的混合运算.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,求223ba cdx x +-+的值. 若a 与b 互为相反数,c 与d 互为倒数,|m |=2,求代数式3223m cd ba +-+的值.若a 、b 互为相反数,b 、c 互为倒数,并且m 是绝对值等于它本身的数.求bc m ba +++222值.01课堂目标02例题精析利用有理数的性质求值题型一例1 例2 变式1已知a 、b 互为相反数且a ≠0,c 、d 互为倒数,|m |是最小的正整数,求cdb a m -++2020)(20192的值.对于有理数a 、b ,定义一种新运算“⊗”如下:a b ab b a 2-=⊗,则=-⊗-)43()3(____ . 定义一种新运算“☆”,规则为:m ☆n =mn +mn -n ,例如:2☆3=23+2×3-3=8+6-3=11,解答下列问题:(1)(-2)☆4;(2)(-1)☆[(-5)☆2].已知a ,b 为有理数,如果规定一种新的运算“☆”,规定:a ☆b =2b -3a ,例如:1☆2=2×2-3×1=4-3=1,计算:(2☆3)☆5=__________.规定一种新运算a *b =a -b 2,则4*[5*(-2)]=__________.变式2 定义新运算题型二例1例2变式1 变式2某天早上,一辆交通巡逻车从A 地出发,在东西向的马路上巡视,中午到达B 地,如果规定向东行驶为正,向西行驶为负,行驶纪录如下.(单位:km )第一次 第二次 第三次 第四次 第五次 第六次 第七次 +15﹣8+6+12﹣4+5﹣10(1)巡逻车在巡逻过程中,第 次离A 地最远. (2)B 地在A 地哪个方向,与A 地相距多少千米?(3)若每千米耗油0.2升,每升汽油需7元,问这一天交通巡逻车所需汽油费多少元?在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A 地出发,晚上 到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+15,-8,+9,-6,+14,-5, +13,-4.(1)B 地位于A 地的什么方向?距离A 地多少千米?(2)若冲锋舟每千米耗油0.6升,油箱容量为30升,求冲锋舟当天救灾过程中至少还需补充多少升油?有理数中的实际应用题型三例1变式1(3)救灾过程中,冲锋舟离出发点A最远时,距A地多少千米?汽油价格的毎一次调整影响着有车一族的汽车用油的费用.王旭驾驶的汽车毎一次都加92号汽油,例2他时刻关注92号汽油的价格变化.2018年12月20日92号汽油的价格为6.74元/升,下表是92号汽油价格在6.74元/升基础上连续七次调整的变化情况,其中在上一次价格的基础上涨价记为正数,降价记为负数,如表中的﹣0.12表示第四次调整是在第三次调整后的92号汽油价格基础上毎升降0.12元.调整次数第一次第二次第三次第四次第五次第六次第七次价格变化-0.30+0.27+0.27-0.12+0.18-0.05-0.10(1)在这七次调整中,哪次调整后92号汽油的价格最高,每升多少元?哪次调整后92号汽油的价格最低,每升多少元?(2)王旭一家在五一期间自驾游玩,他驾驶的汽车毎行驶100km耗油8升,如果在这次游玩中他驾驶的汽车一共行驶600km,92号汽油价格按第六次调整的价格计算,那么在这次游玩中王旭驾驶汽车的用油费用是多少元?2020年的“新冠肺炎”疫情的蔓延,市场上医用口罩销量大幅增加,某口罩加工厂为满足市场需求,计划每天生产6000个,由于各种原因与实际每天生产量相比有出入,下表是三月份某一周的生产情况(超产为正,减产为负,单位:个).星期 一 二 三 四 五 六 日 增减+150-200+300-100-50+250+150(1)产量最多的一天比产量最少的一天多生产多少个; (2)与原计划产量比较,这周产量超产或减产多少个?(3)若口罩加工厂实行计件工资制,每生产一个口罩0.2元,则本周口罩加工厂应支付工人 的工资总额是多少元?第六讲 有理数的应用作业1.若a 与b 互为相反数,b 与c 互为倒数,并且m 的绝对值等于它本身,试求m bc m ba 3222-+++的值. 变式2 作业一 利用有理数的性质求值2.已知:a 与b 互为相反数,c 与d 互为倒数,m 的绝对值是2,求代数式222m mcdb a --+的值.1.对于有理数a ,b ,定义一种新运算“⊗”,规定a ⊗b =|a +b |-|a -b |.计算(-3)⊗2的值.2.定义一种新运算“⊗”,即m ⊗n =(m +2)×3-n ,例如2⊗3=(2+2)×3-3=9.根据规定解答下列问题: (1)求6⊗(-3)的值;(2)通过计算说明6⊗(-3)与(-3)⊗6的值相等吗?作业二 定义新运算作业三有理数中的实际应用1.有10袋小麦,每袋以90kg为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如表:袋号12345678910重量(kg)+1+1+1.5-1+1.2+1.3-1.3-1.2+1.8+1.1(1)请通过计算说明这10袋小麦总计超过多少kg或不足多少kg?(2)若每千克小麦2.5元,求10袋小麦一共可以卖多少元?2.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,-9,+8,-7,+13,-6,+12,-5.(1)请你帮忙确定B地相对于A地的方位?(2)救灾过程中,冲锋舟离出发点A最远处有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?。
2021年新课标人教版小升初数学总复习(数的认识)课件
=
9 54
4 9
=
4×6 9×6
=
24 54
4.分数的分类
真分数---- 分子比分母小的分数. 真分数<1 假分数---- 分子比分母大或者分子和分母
相等的分数. 假分数≥1
5.分数的基本性质
分数的分子和分母同时乘以或者除以相同的数 (零除外),分数的大小不变.
一个分数的分母不变,分子乘以3,则这个分数( 扩大)3倍 如果分子不变,分母除以5,则这个分数( 扩)大5倍
),
9
3.分数大小的比较
★分母相同的两个分数,分子大的分数比较大.
9 11
<
10 11
8 15
>
7 15
★分子相同的两个分数,分母小的分数比较大.
4 9
<
4 7
11 12
>
5 12
★通分:先求出原来几个分母的最小公倍数,然后把各个 分数分别化成用这个最小公倍数作分母的分数.
1 6
<
4 9
1 6
=
1×9 6×9
3.整数的读法和写法
读数时,从高位起,一级一级地往下读,属于亿级和万 级的要读出级名. 684528563读作六: 亿八千四百五十二万八千五百六十三.
读数时,每级末尾的“0”都不读,其他数位有一个0 或连续几个0都只读一个0. 8000406000读作八: 十亿零四十万六千.
写数时,从高位起,一级一级地往下写,哪一位上一个单 位也没有,就在哪个数位上写0
把76450000改写成用“万”作单位的数是(7645)万 把235800改写成用“万”作单位的数是2( 3.58)万 235800省略万位后面的尾数约为( 24万) 把34562800000改写成用“亿”作单位的数后,保留两位 小数是( 345.6)3亿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021最新人教版小升初数学专题复习讲义专题一数论考点扫描数论知识包括数的奇偶性、质数、合数、数的整除、余数的性质、数位的含义、平均数、分解因数、平方数、倍数与因数。
1.数的奇偶性奇数+奇数=偶数奇数+偶数=奇数偶数+偶数=偶数奇数×奇数=奇数偶数×偶数=偶数奇数×偶数=偶数奇数个奇数相加=奇数偶数个奇数相加=偶数(只要式子中含有偶数,那么相乘结果就是偶数)2.数的整除,常见的数的整除特征(1)2:个位是偶数;(2)3:各个数位之和是3的倍数;(3)5:个位是 0或5;(4)4、25:后两位可以被4(25)整除;(5)8、125:后三位可以被8(125)整除;(6)9:各个数位之和是9的倍数;(7)7:一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,差是7的倍数。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数;(8)11:奇数位上的数字之和与偶数位上的数字之和的差(以大减小)是11的倍数;(9)13:一个多位数的末三位数与末三位以前的数字所组成的数之差,可以被13整除即可被13整除;(10)17:若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。
3.余数的性质(1)余数的可加性:和的余数等于余数的和;(2)余数的可减性:差的余数等于余数的差;(3)余数的可乘性:积得余数等于余数的积;(4)同余的性质:对于同一个余数,如果有两个整数余数相同,那么它们的差就一定能被这个除数整除;对于同一个除数,如果有两个整数余数相同,那么它们的乘方就一定能被这个除数整数。
抛砖引玉【例1】下列各数中,()同时是3和5的倍数.A.18 B.102 C.45【解析】同时是3和5的倍数必须满足:末尾是0或5,并且各个数位上的和能被3整除;进而得出结论.18个位上是8,不是5的倍数,102个位上是2,不是5的倍数,45是5的倍数,4+5=9,是3的倍数。
答案:C.【例2】能同时被2、3、5整除的最小两位数是,能同时被2、3整除的最小三位数是,最大三位数是.【解析】(1)根据2、3、5的倍数的倍数特征可知;同时是2、3、5的倍数的倍数,只要是个位是0,十位满足是3的倍数即可,十位满足是3的倍数的有3、6、9,其中3是最小的,解答即可;(2)根据是2、3的倍数的数的特征:是2的倍数的数的个位都是偶数,是3的倍数的数各个位上的数相加所得的和能被3整除,所以能同时被2、3整除的最小三位数,百位应是1,十位是0、个位是2;然后要使能同时被2、3整除的三位数最大,则百位和十位上是9,个位上的数是偶数,而且能被3整除,只能是6,所以最大的三位数是996,解答即可答案:30;102;996.【例3】2309至少加上是3的倍数,至少减去才是5的倍数。
【解析】根据能被2整除的特征:个位上是0、2、4、6、8的数,能被5整除的数的特征:个位上的数字是0或者5的数,解答即可.由分析可知:2+3+9=14;因为15能被3整除,所以至少应加上1;因为2309的个位是9,只有个位数是0或5时,才能被5整除,所以至少减去4。
答案:1;4.【例4】三个连续偶数的和是90,这三个数分别是、、.【解析】自然数中,相邻的两个偶数相差2,由此可设和为90的三个连续偶数中的最小的一个为x,则另两个分别为x+2,x+4,由此可得等量关系式:x+x+2+x+4=90.解此方程即可。
答案:28;30;32.【例5】养鸡场一天收160千克鸡蛋,每18千克鸡蛋装一箱,可以装多少箱?还剩多少千克?【解析】要求160千克鸡蛋可以装几箱,还剩多少千克,也就是求160里面有几个18,用除法计算,得到的商是箱数,余数就是剩下的千克数.答案:解:160÷18=8(箱)…16(千克);答:可以装8箱,还剩16千克。
沙场点兵1.从0、1、5、7四个数中任选三个数组成一个三位数,这个数既是2的倍数,又是3的倍数,还是5的倍数,这样的三位数有()个。
A.2 B.3 C.42.一列队伍,从第一个人向后按1至6顺序循环报数,最后一个人报的是3,这支队伍的人数一定是()的倍数。
A.2 B.3 C.5 D.63.三个连续偶数的和是120,其中最大的一个数是.4.同学们献爱心捐款,有五名同学共捐了410元,他们的捐款数恰好是5个连续的偶数,这五名同学各捐了多少钱?5.一根绳子长21米,剪8米做一根长跳绳,剩下的每2米做一根短跳绳.可以做多少根短跳绳?还剩下多少米?实战演练1.(2016•广州)一个两位数除以5余3,除以7余5,这个两位数最大是()A.72 B.37 C.33 D.682.(2016•长沙)某同学在计算一道除法时,误将除数35写成53,所得的商是35余12,正确的商与余数的和是.3.(2016•东莞)三个连续奇数的和是645.这三个奇数中,最小的奇数是.4.(2017•漳州)既能被2整除,又能被3整除的最大两位数是,既能被3整除,又能被5整除的最小三位数是.5.(2017•枞阳县)列式计算:一个数除以99,商是10,余数是整数,这个数最大是多少?6.(2017•德化县)学校进行团体操表演,每行站20人,正好站24排.如果要站成16排,那么每行需要站多少人?专题二数的运算考点扫描1.四则运算的意义(1)整数加法、小数加法、分数加法的意义:把两个数合成一个数的运算;(2)整数减法、小数减法、分数减法的意义:已知两个数的和与其中的一个加数,求另一个加数的运算;(3)整数乘法的意义:求几个相同加数的和的简便运算;(4)小数乘法的意义:小数乘整数与整数乘法的意义相同;一个数乘小数,就是求这个数的十分之几、百分之几……是多少;(5)整数乘分数的意义:一个数乘分数,就是求这个数的几分之几是多少;(6)分数乘整数的意义:分数乘整数,就是求几个相同分数的和的简便运算;(7)整数除法、小数除法、分数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
2.四则运算的计算方法(1)加减法的计算方法①整数的加法:相同数位对齐,从低位加起,哪一位上的数相加满十,就要向前一位进一;②整数的减法:相同数位对齐,从低位减起,哪一位上的数不够减要从前一位上退一,在本位上加上10再减;③小数的加减法:计算小数加减法时,先把小数点对齐(也就是相同的数位对齐),再按照整数加减法的法则进行计算,最后在得数里对齐横线上的小数点,点上小数点;④分数的加减法:同分母的分数相加减,分母不变,只把分子相加减;异分母的分数相加减,先通分,然后按照同分母分数加减法的法则进行计算。
(2)乘法的计算方法①整数的乘法:从低位到高位分别用因数的每一位去乘另一个因数;用一个因数的哪一位去乘,求得的数的末位就要和那一位对齐;然后把几次求得的积加起来;②小数乘法:先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位点上小数点;③分数乘法:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
(3)除法的计算方法①整数的除法:从被除数的高位除起,除数有几位就先看被除数的前几位,如果前几位比除数小,就多取一位再除,除到哪一位,商就写在那一位的上面;每次除得的余数必须比除数小;在求出商的最高位以后,如果被除数的哪一位上不够商1,就在那一位上写0;②小数除法:除数是整数时,按照整数除法进行计算,商的小数点要与被除数的小数点对齐。
除数是小数时,要先把除数转化成整数,同时把被除数扩大相同的倍数,然后按照除数是整数的除法进行计算;③分数的除法:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
3.整数四则运算中各部分间的关系(1)加法:和=加数+加数;加数=和-另一个加数(2)减法:差=被减数-减数;减数=被减数-差;被减数=减数+差(3)乘法:积=因数×因数;一个因数=积÷另一个因数(4)除法:商=被除数÷除数;除数=被除数÷商;被除数=除数×商4.四则运算定律、运算性质(1)运算定律加法结合律:两个数相加,交换加数的位置,它们的和不变。
即:a+b=b+a加法结合律:三个数相加,先把前两个数相加,再加上第三个数,或者先把后面两个数相加,再和第一个相加,它们的和不变。
即:a+b+c=(a+b)+c=a+(b+c)乘法交换律:两个数相乘,交换因数的位置,它们的积不变。
即:a×b=b×a乘法结合律:三个数相乘,先把前两个数相乘,再乘第三个数,或者先把后面两个数相乘,再和第一个数相乘,它们的积不变。
即:a×b×c=(a×b)×c=a×(b×c) 乘法分配律:两个数的和与一个数相乘,等于把这两个数分别与这个数相乘,再把两个积加起来。
即:(a+b)×c=a×c+b×c;a×(b+c)=a×b+a×c(2)运算性质减法的运算性质:a-(b+c)=a-b-c a-(b-c)=a-b+c除法的运算性质(除数不为0):a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c(a+b)÷c=a÷c+b÷c (a-b)÷c=a÷c-b÷c5.四则混合运算的顺序四则运算分为两级:加法和减法叫做第一级运算;乘法和除法叫做第二级运算。
(1)在没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,再做第一级运算;(2)在有括号的算式里,要先算小括号里面的,再算中括号里面的,最后算括号外面的。
抛砖引玉【例1】求几个加数的和的简便运算叫做乘法。
(判断对错)【解析】本题考察整数的乘法及应用。
由乘法的意义可得:求几个相同加数和的简便运算叫乘法。
答案:错误【例2】在一道减法算式中,被减数、减数与差的和是48,被减数是()A.24 B.12 C.16 D.18【解析】本题考察整数的加法和减法。
根据被减数=减数+差,可得被减数、减数与差的和是被减数的2倍,用48除以2,求出被减数是24,48÷2=24。
答案:A.【例3】750÷90等于()A.商是8余3 B.商是80余2 C.商是8余30【解析】本题考察有余数的除法。