备战中考数学专题题库∶一元二次方程的综合题附详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、一元二次方程 真题与模拟题分类汇编(难题易错题)

1.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点.

己知函数2

22(3)y x mx m =--+(m m 为常数). (1)当m =0时,求该函数的零点;

(2)证明:无论m 取何值,该函数总有两个零点;

(3)设函数的两个零点分别为1x 和2x ,且121114x

x +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式. 【答案】(1)当m =0时,该函数的零点为6和6-.

(2)见解析,

(3)AM 的解析式为112

y x =-

-. 【解析】

【分析】

(1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;

(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析式

【详解】

(1)当m =0时,该函数的零点为6和6-.

(2)令y=0,得△=

∴无论m 取何值,方程

总有两个不相等的实数根. 即无论m 取何值,该函数总有两个零点.

(3)依题意有

由解得.

∴函数的解析式为

. 令y=0,解得

∴A(),B(4,0) 作点B 关于直线10y x =-的对称点B’,连结AB’,

则AB’与直线10y x =-的交点就是满足条件的M 点.

易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10).

连结CB’,则∠BCD=45°

∴BC=CB’=6,∠B’CD=∠BCD=45°

∴∠BCB’=90°

即B’(106-,)

设直线AB’的解析式为y kx b =+,则

20{106k b k b -+=+=-,解得112

k b =-=-, ∴直线AB’的解析式为112y x =-

-, 即AM 的解析式为112

y x =--.

2.已知关于x 的方程x 2﹣(2k +1)x +k 2+1=0.

(1)若方程有两个不相等的实数根,求k 的取值范围;

(2)若方程的两根恰好是一个矩形两邻边的长,且k =2,求该矩形的对角线L 的长.

【答案】(1)k >

34;(215 【解析】

【分析】

(1)根据关于x 的方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,得出△>0,再解不等式即可;

(2)当k=2时,原方程x 2-5x+5=0,设方程的两根是m 、n ,则矩形两邻边的长是m 、n ,利用根与系数的关系得出m+n=5,mn=522m n +,利用完全平方公式进行变形即可求得答案.

【详解】

(1)∵方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,

∴Δ=[-(2k +1)]2-4×1×(k 2+1)=4k -3>0,

∴k >34

; (2)当k =2时,原方程为x 2-5x +5=0,

设方程的两个根为m ,n ,

∴m +n =5,mn =5,

=

=.

【点睛】 本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.

3.已知两条线段长分别是一元二次方程28120x x -+=的两根,

(1)解方程求两条线段的长。

(2)若把较长的线段剪成两段,使其与另一段围成等腰三角形,求等腰三角形的面积。 (3)若把较长的线段剪成两段,使其与另一段围成直角三角形,求直角三角形的面积。

【答案】(1)2和6;(2)3)83

【解析】

【分析】

(1)求解该一元二次方程即可;

(2)先确定等腰三角形的边,然后求面积即可;

(3)设分为两段分别是x 和6x -,然后用勾股定理求出x ,最后求面积即可.

【详解】

解:(1)由题意得()()260x x --=,

即:2x =或6x =,

∴两条线段长为2和6;

(2)由题意,可知分两段为分别为3、3,则等腰三角形三边长为2,3,3,

∴此等腰三角形面积为12

2

⨯⨯= (3)设分为x 及6x -两段

()22226x x +=-

∴83x =, ∴2823

x S ∆==, ∴面积为83

. 【点睛】

本题考查了一元二次方程、等腰三角形、直角三角形等知识,考查知识点较多,灵活应用所学知识是解答本题的关键.

4.如图,在Rt ABC 中,90B =∠,10AC cm =,6BC cm =,现有两点P 、Q 的分别从点A 和点B 同时出发,沿边AB ,BC 向终点C 移动.已知点P ,Q 的速度分别为2/cm s ,1/cm s ,且当其中一点到达终点时,另一点也随之停止移动,设P ,Q 两点移动时间为xs .问是否存在这样的x ,使得四边形APQC 的面积等于216cm ?若存在,请求出此时x 的值;若不存在,请说明理由.

【答案】假设不成立,四边形APQC 面积的面积不能等于216cm ,理由见解析

【解析】

【分析】

根据题意,列出BQ 、PB 的表达式,再列出方程,判断根的情况.

【详解】

解:∵90B ∠=,10AC =,6BC =,

∴8AB =.

∴BQ x =,82PB x =-;

假设存在x 的值,使得四边形APQC 的面积等于216cm , 则()1168821622

x x ⨯⨯--=, 整理得:2480x x -+=,

∵1632160=-=-<,

∴假设不成立,四边形APQC 面积的面积不能等于216cm .

【点睛】

本题考查了一元二次方程的应用,熟练掌握方程根的判别方法、理解方程的意义是本题的解题关键.

5.关于x 的一元二次方程x 2﹣2x ﹣(n ﹣1)=0有两个不相等的实数根.

(1)求n 的取值范围;

(2)若n 为取值范围内的最小整数,求此方程的根.

【答案】(1)n >0;(2)x 1=0,x 2=2.

【解析】

【分析】

(1)根据方程有两个不相等的实数根可知240b ac ∆=-> ,即可求出n 的取值范围; (2)根据题意得出n 的值,将其代入方程,即可求得答案.

【详解】

相关文档
最新文档