人教版高中化学选修三-物质结构与性质-金属晶体的堆积方式-PPT课件
合集下载
人教版高中化学选修3 物质结构与性质 第三章 第三节 金属晶体(第1课时)
2014年7月29日星期二
金属阳离子和自由电子 金属键
5
金属键
4、电子气理论对金属的物理性质的解释
⑴金属导电性的解释
在金属晶体中,充满着带负电的“电子气” (自由电子),这些电子气的运动是没有一定方 向的,但在外加电场的条件下,自由电子定向运 动形成电流,所以金属容易导电。不同的金属导 电能力不同,导电性最强的三中金属是:Ag、Cu、 Al
金属键
⑵金属导热性的解释 “电子气”(自由电子)在运动时经常与金 属离子碰撞,引起两者能量的交换。当金属某部 分受热时,那个区域里的“电子气”(自由电子) 能量增加,运动速度加快,通过碰撞,把能量传 给金属离子。“电子气”(自由电子)在热的作 用下与金属原子频繁碰撞从而把能量从温度高的 部分传到温度低的部分,从而使整块金属达到相 同的温度。
+ + + + + + + + + + + + + + + + + + + + + 自由电子
2014年7月29日星期二
错位
+ + + + + + + + + + + + + + + + + + + + + +
+
金属离子
金属原子
9
金属键
【总结】金属晶体的结构与性质的关系
导电性 导热性 延展性
金属离子 自由电子在外加 和自由电 电场的作用下发 子 生定向移动
2014年7月29日星期二
金属阳离子和自由电子 金属键
5
金属键
4、电子气理论对金属的物理性质的解释
⑴金属导电性的解释
在金属晶体中,充满着带负电的“电子气” (自由电子),这些电子气的运动是没有一定方 向的,但在外加电场的条件下,自由电子定向运 动形成电流,所以金属容易导电。不同的金属导 电能力不同,导电性最强的三中金属是:Ag、Cu、 Al
金属键
⑵金属导热性的解释 “电子气”(自由电子)在运动时经常与金 属离子碰撞,引起两者能量的交换。当金属某部 分受热时,那个区域里的“电子气”(自由电子) 能量增加,运动速度加快,通过碰撞,把能量传 给金属离子。“电子气”(自由电子)在热的作 用下与金属原子频繁碰撞从而把能量从温度高的 部分传到温度低的部分,从而使整块金属达到相 同的温度。
+ + + + + + + + + + + + + + + + + + + + + 自由电子
2014年7月29日星期二
错位
+ + + + + + + + + + + + + + + + + + + + + +
+
金属离子
金属原子
9
金属键
【总结】金属晶体的结构与性质的关系
导电性 导热性 延展性
金属离子 自由电子在外加 和自由电 电场的作用下发 子 生定向移动
2014年7月29日星期二
人教版化学选修3结构与性质第三章晶体与性质金属晶体课件 .ppt
金属晶体的原子空间堆积模型1
• 简单立方堆积( Po) 晶胞的形状是什么?
含几个原子?
1、简单立方堆积
钋型
金属晶体的原子空间堆积模型2
• 体心立方堆积( IA,VB,VIB)
金属晶体的堆积方式──钾型
2、体心立方堆积 钾型
配位数:8 空间占有率: 68.02%
思考:密置层的堆积方式有哪些?
三、金属晶体的结构与金属性质的内在联系
1、金属晶体结构与金属导电性的关系
【讨论1】 金属为什么易导电? 在金属晶体中,存在着许多自由电子,这些自由 电子的运动是没有一定方向的,但在外加电场的条件 下自由电子就会发生定向运动,因而形成电流,所以 金属容易导电。
比较离子晶体、金属晶体导电的区别:
晶体类型 导电时的状态 导电粒子 离子晶体 金属晶体
修高 3二 )化 第学 三( 章选
第四节
金属晶体
Ti
固原二中 高二年级组
zhf 09· 03· 04
金属样品
Ti
一、金属共同的物理性质
容易导电、导热、有延展性、有金属光泽等。
金属为什么具有这些共同性质呢?
二、金属的结构
金属晶体:通过金属键作用形成的单质晶体 组成粒子:金属阳离子和自由电子 作用力:金属离子和自由电子之间的较强作 用—— 金属键(电子气理论) 金属键强弱判断: 阳离子所带电荷多、 半径小-金属键强, 熔沸点高。
两种排列方式的配位数分 金属晶体的原子堆积模型
别是多少?哪种排列方式 金属原子在平面上有几种排列方式? 使一定体积内含有的原子 数目最多?
(a)非密置层 (b)密置层
思考:金属原子在形成晶体时有几种堆积方式? 活动·探究:
将乒乓球在三维空间堆积起来,有几种不同的堆积方式? 比较不同方式堆积时金属晶体的配位数、原子的空间利 用率、晶胞的区别。
人教版高中化学选修三 金属晶体课件PPT
10 、年轻是我们唯一拥有权利去编织梦想的时光。 7 、面对短暂的人生,我们知道不得不努力抓住眼前的每一刻、每一瞬,坦诚而认真的生活,以渺小的生命、有限的时间,多看看这美好的世 界,把生命的足迹留在每一天自己的生活里。
2 、于千万人之中,遇见你所遇见的人;于千万年之中,时间的无涯荒野里,没有早一步,也没有晚一步,刚巧赶上了。 10 、年轻是我们唯一拥有权利去编织梦想的时光。 1、世界青睐有雄心壮志的人。成功所依靠的惟一条件就是思考。当你的思维以最高速度运转时,乐观欢快的情绪就会充斥全身。没有人能在 消极的思维火光中做好一件事。一个人最完美的作品都是在充满愉快、乐观、深情的状态下完成的。
B、金属离子与自由电子之间的强烈作用, 在一定外力作用下,不因形变而消失
C、钙的熔、沸点低于钾
D、温度越高,金属的导电性越好
一、金属晶体的原子堆积模型
1、理论基础:
由于金属键没有方向性,每个金属 原子中的电子分布基本是球对称的,所 以可以把金属晶体看成是由直径相等的 圆球的三维空间堆积而成的。
1、金属原子在二维平面上有二种排列方式
非密置层 配位数=4
密置层 配位数=6
配位数:在晶体中一个原子或离子周围最邻近 的原子或离子 (一般指相切) 数目。
2、 金属晶体的原子在三维空间堆积方式
思考与交流 金属晶体可以看成金属原子
在三维空间中堆积而成.那么,非密置层和密置 层在三维空间里堆积有几种方式?请比较不 同方式堆积时金属晶体的配位数、空间利用 率、晶胞的区别。
3
Vcell
a3
(
4r 3
)3
64r 3 33
Po
Vatoms Vcell
3 68.02%
8
配位数 空间利用率
2 、于千万人之中,遇见你所遇见的人;于千万年之中,时间的无涯荒野里,没有早一步,也没有晚一步,刚巧赶上了。 10 、年轻是我们唯一拥有权利去编织梦想的时光。 1、世界青睐有雄心壮志的人。成功所依靠的惟一条件就是思考。当你的思维以最高速度运转时,乐观欢快的情绪就会充斥全身。没有人能在 消极的思维火光中做好一件事。一个人最完美的作品都是在充满愉快、乐观、深情的状态下完成的。
B、金属离子与自由电子之间的强烈作用, 在一定外力作用下,不因形变而消失
C、钙的熔、沸点低于钾
D、温度越高,金属的导电性越好
一、金属晶体的原子堆积模型
1、理论基础:
由于金属键没有方向性,每个金属 原子中的电子分布基本是球对称的,所 以可以把金属晶体看成是由直径相等的 圆球的三维空间堆积而成的。
1、金属原子在二维平面上有二种排列方式
非密置层 配位数=4
密置层 配位数=6
配位数:在晶体中一个原子或离子周围最邻近 的原子或离子 (一般指相切) 数目。
2、 金属晶体的原子在三维空间堆积方式
思考与交流 金属晶体可以看成金属原子
在三维空间中堆积而成.那么,非密置层和密置 层在三维空间里堆积有几种方式?请比较不 同方式堆积时金属晶体的配位数、空间利用 率、晶胞的区别。
3
Vcell
a3
(
4r 3
)3
64r 3 33
Po
Vatoms Vcell
3 68.02%
8
配位数 空间利用率
高中化学选修3课件-3.3 金属晶体3-人教版
A
12
6
3
B
54
A
B A
(三) 六方最密堆积
如:镁、锌、钛
120°
配位数: 12 空间占有率: 74% 每个晶胞含原子数:2
第三层的另一种排列方式,是将球对 准第一层的2、4、6位,不同于 AB 两 层的位置,这是C 层。
12
6
3
54
12
6
3
54
第四层再排 A,于是
形成ABC ABC 三层一
密置层堆积
六方最密堆积(74%)
面心立方最密堆积(74%)
原子个数
1
配位数
6
原子个数
2
配位数
8
原子个数
2
配位数
12
原子个数
4
配位数
12
.当堂反馈
1. 金属原子在二维空间里的放置有下图所示的两种方式, 下列说法中正确的是 ( )
A.图(a)为非密置层,配位数为6 B.图(b)为密置层,配位数为4
C.图(a)在三维空间里堆积可得镁型和铜型 D.图(b)在三维空间里堆积仅得简单立方
配位数:
6
空间占有率: 52%
如果是非密置层上层金属原子填入下层的 金属原子形成的凹穴中,每层均照此堆积 ,结果将会如何呢?
(二)体心立方堆积
如:Na、K、Cr
配位数: 8 空间占有率: 68%
每个晶胞含原子数: 2
金属晶体的密堆积结构
思考:密置层在三维空间的堆积方式 有哪些?
1263源自54第第三一种层是可将以球怎对准样第呢一?层的球。
第三节 金属晶体
教学目标:
了解金属晶体的原子堆积模型
重难点:
能正确判断金属的堆积方式和配位数
高中化学选修三-物质结构与性质-全套课件
nd能级的电子云轮廓图:多纺锤形
b.电子云扩展程度
同类电子云能层序数n越大,电子能量越 大,活动范围越大电子云越向外扩张
2、原子轨道
①定义
电子在原子核外的一个空间运动状态
②原子轨道与能级
ns能级 ns轨道
npx轨道 简
np能级 npy轨道 npz轨道
并 轨 道
nd能级
ndz2轨道
ndx2—y2轨道
从K至Q ,能层离核越远,能层能量越大 每层最多容纳电子的数量:2n2
2、能级
同一个能层中电子的能量相同的电子亚层
能级名称:s、p、d、f、g、h…… 能级符号:ns、np、nd、nf…… n代表能层 最多容纳电子的数量 s:2 p:6 d:10 f:14
能层: 一 二
三
KL
M
四…… N ……
能级: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f
全满规则 半满规则
四、电子云与原子轨道
1、电子云 以量子力学为基础
①电子云 处于一定空间运动状态的电子在原子核外空间 的概率密度分布的形象化描述
小黑点:概率密度 单位体积内出现的概率 小黑点越密概率密度越大
小黑点不是电子!
②电子云轮廓图 电子出现的概率约为90%的空间 即精简版电子云
③电子云轮廓图特点 a.形状 ns能级的电子云轮廓图:球形 np能级的电子云轮廓图:双纺锤形
2s
2p
F ↑↓ ↑ ↓ ↑ ↓ ↑
原子结构的表示方法 原子结构示意图
电子排布式 O原子:1s2 2s2 2p4
电子排布图
1s2 2s2
2p4
O原子
六、能量最低原理、基态与激发态、光谱
1、能量最低原理
b.电子云扩展程度
同类电子云能层序数n越大,电子能量越 大,活动范围越大电子云越向外扩张
2、原子轨道
①定义
电子在原子核外的一个空间运动状态
②原子轨道与能级
ns能级 ns轨道
npx轨道 简
np能级 npy轨道 npz轨道
并 轨 道
nd能级
ndz2轨道
ndx2—y2轨道
从K至Q ,能层离核越远,能层能量越大 每层最多容纳电子的数量:2n2
2、能级
同一个能层中电子的能量相同的电子亚层
能级名称:s、p、d、f、g、h…… 能级符号:ns、np、nd、nf…… n代表能层 最多容纳电子的数量 s:2 p:6 d:10 f:14
能层: 一 二
三
KL
M
四…… N ……
能级: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f
全满规则 半满规则
四、电子云与原子轨道
1、电子云 以量子力学为基础
①电子云 处于一定空间运动状态的电子在原子核外空间 的概率密度分布的形象化描述
小黑点:概率密度 单位体积内出现的概率 小黑点越密概率密度越大
小黑点不是电子!
②电子云轮廓图 电子出现的概率约为90%的空间 即精简版电子云
③电子云轮廓图特点 a.形状 ns能级的电子云轮廓图:球形 np能级的电子云轮廓图:双纺锤形
2s
2p
F ↑↓ ↑ ↓ ↑ ↓ ↑
原子结构的表示方法 原子结构示意图
电子排布式 O原子:1s2 2s2 2p4
电子排布图
1s2 2s2
2p4
O原子
六、能量最低原理、基态与激发态、光谱
1、能量最低原理
人教版高中化学选修3 物质结构与性质 第三章 第三节 金属晶体(第2课时)
2014年7月30日星期三
11
金属晶体的原子堆积模型
三维空间里非密置层的 金属原子的堆积方式
(1) 第二层小球的球心 正对着 第一层小球的球心
2014年7月30日星期三
(2) 第二层小球的球心 正对着 第一层小球形成的空穴
12
金属晶体的原子堆积模型
(1)简单立方堆积
Po
简 单 立 方 晶 胞
2014年7月30日星期三 13
金属晶体的原子堆积模型
石墨是层状结构的混合型晶体
2014年7月30日星期三
41
金属晶体的原子堆积模型
思考题
(1)六方紧密堆积的晶胞中: 金属原子的半径r与六棱柱的边长a、高h有什么 关系? (2)面心立方紧密堆积的晶胞中: 金属原子的半径r与正方体的边长a有什么关系?
2014年7月30日星期三
42
( 1) ABAB… 堆积方式
2014年7月30日星期三
( 2) ABCABC… 堆积方式
25
金属晶体的原子堆积模型
俯视图
1 6 2 3 4
1 6
2
3 4
5
5
A
B
第二层小球的球心对准第一层的 1、3、5 位 (▽)或对准 2、4、6 位(△)。 关键是第三层,对第一、二层来说,第三层可 以有两种最紧密的堆积方式。
上下层各4
6 7 2 3
2014年7月30日星期三
19
金属晶体的原子堆积模型
②金属原子半径 r 与正方体边长 a 的关系:
b a
a a
2a
a
2a
b = 3a b = 4 r 3a=4r
2014年7月30日星期三 20
金属晶体的原子堆积模型
高中化学选修三__金属晶体.ppt
③六方最密堆积(ABA型、镁型)Mg、Zn、Ti
12
6
3
A
54BA源自B A六方最密堆积的配位数 =12
六方最密堆积的晶胞 Zn
密置层
六方最密 堆积的晶胞
六方最密堆积的空间占有率 =74% 上下面为菱形 边长为半径的2倍 2r
高为2倍 正四面体的高
2 6 2r 3
④面心立方最密堆积(ABC型、铜型)
非密置层
简单立方堆积的配位数 =6
简单立方堆积的空间占有率 =52%
正方体边长为a 球半径为a/2
②体心立方堆积(钾型)碱金属、Fe 非密置层
体心立方堆积的配位数 =8
体心立方堆积的空间占有率 =68%
体对角线长为c 面对角线长为b 棱线长为a 球半径为r
c2=b2+a2 b2=a2+a2 c=4r (4r)2=3a2
Cu、Ag、Au
A
C B
A
C
B
密置层
A
12
6
3
54
立方面心最密堆积的配位数 =12
立方面心最密堆积的空间占有率 =74%
第三章
晶体的结构与性质
第三节 金属晶体
第二课时
二、金属晶体的原子堆积模型
1、几个概念
配位数:在晶体中与每个微粒紧密相邻 且距离相等的微粒个数
空间利用率: 晶体的空间被微粒占满的体积百分数 用来表示紧密堆积程度
金属的二维堆积方式
非密置层 配位数为4
密置层 配位数为6
2、金属的三维堆积方式
①简单立方堆积 唯一金属——钋
人教化学选修3第三章第3节 金属晶体(共25张PPT)
=
2
②配位数:8
③空间利用率:
(二)三维空间密置层的堆积方式
第二层 对第一层来讲最紧密的堆积方式 是将球对准1,3,5 位。( 或对准 2,4,6 位,其情形是一样的 )
12
6
3
54
12
6
3
54
关键是第三层,对第一、二层来说,第三层 可以有两种最紧密的堆积方式。
配位数 空间利用率
12 74%
(2) 第二层小球的球心
正对着 第一层小球形成的空穴
1、简单立方堆积 Po
晶 胞
①平均占有的原子数目:
1 8
×8
=
1
② 配位数:6
③空间利用率:
a = 2r 金属原子体积=4/3πr3
%
2、体心立方堆积
碱金属(K、Na 等)Fe
体 心 立 方 晶 胞
①晶胞平均占有的原子数目:
1 8
×8
+
1
金属晶体
金属晶体的原子堆积模型
二、金属晶体的原子堆积模型
紧密堆积原理:
因为金属键没有方向性和饱和性,且晶体中 的原子可看成是直径相等的球体。金属晶体可 看成金属原子在三维空间中堆积而成。因此都 趋向于使金属原子吸引更多的其他原子分布于 周围,并以紧密堆积方式降低体系的能量,使 晶体变得比较稳定。
配位数:
②空间利用率 2a=4r
小结:
堆积模型 采纳这种堆 积的典型代 表
简单堆积 Po (钋)
空间 利用
率
52%
配位数 6
晶胞
体心立方 K、Na、Fe 68% 8 堆积
六方最密 Mg、Zn、Ti 74% 12 堆积
面心立方 Cu, Ag, 原子数目。
人教版化学选修3第三章复习-课件 -
离子键
(离子键 可能有共价键)
共价键 ----
金属键 ---良导体 良导体
克服力 溶
晶体不导电 熔融导电
不导电(硅、晶体不导电 锗是半导体) 熔融不导电
导电情况
能溶于水的其水 溶液能导电
溶于水能电离的 其水溶液能导电
-----
延展性
无
无
无
良好
2.晶体熔沸点高低的判断
1)若晶体类型不同,一般情况下:原子晶体>离子晶 体>分子晶体(金属晶体熔点差别很大)。 2)若晶体类型相同,则有: ⑴离子晶体 离子半径越小,离子电荷数越高,晶格能 越大,离子键越强,熔点越高。 ⑵原子晶体 结构相似,原子半径越小,共价键键长越 短,键能越大,熔点越高。 ⑶分子晶体 分子间作用力(包括范德华力和氢键)越 强,熔点越高。 ⑷金属晶体 离子半径越小,离子电荷数越高,金属键 就越强,熔点就越高。(合金的熔点比它的各成分金属 的熔点低。)
3 4
P4 、S8 、C60 分子晶体 _______ 金属晶体 • 汞( Hg水银 )_______ 离子晶体 • 碘化钠、醋酸钠_______ •
2、分析下列物质的物理性质,判断其晶体类型:
A、碳化铝,黄色晶体,熔点2200℃,熔融态 原子晶体 不导电;________________ B、溴化铝,无色晶体,熔点98 ℃,熔融态不 分子晶体 导电;________________ C、五氟化钒,无色晶体,熔点19.5℃,易溶 分子晶体 于乙醇、氯仿、丙酮中;_______________ D、物质A,无色晶体,熔融时或溶于水中都能 导电_____________ 离子晶体
晶体 类型 晶胞 类型 晶胞结构 示意图 配位数 C.N. 距离最近 且相等的 相同离子 每个晶 胞含有 离子数
3-3金属晶体
人 教 版 化 学
属阳离子是固定不动的,而自由电子可自由移动,在外加 电场作用下可发生定向移动,因而金属晶体可以导电。 [答案] B
第三章 晶体结构与性质
[点评]
解答该题的关键是要明确金电子气”理论的实质,会用“电子气”理论来解释金 属的导电、导热及延展性等性质。
人 教 版 化 学
第三章 晶体结构与性质
人 教 版 化 学
第三章 晶体结构与性质
一、金属键
1.构成粒子:在金属单质的晶体中,原子之间以 ________ 相 互 结 合 , 构 成 金 属 晶 体 的 粒 子 是 ________ 和 ________。 2.描述金属键本质的最简单理论是________理论。该 理论把金属键描述为金属原子脱落下来的________形成遍 布整块晶体的________,被所有原子所共用,从而把所有 金属原子维系在一起。
第三章 晶体结构与性质
第三节
金属晶体(共1课时)
人 教 版 化 学
第三章 晶体结构与性质
人 教 版 化 学
第三章 晶体结构与性质
1.了解金属键概念,能用“电子气”理论解释金属材
料的有关物理性质。 2.了解简单立方堆积、钾型、镁型、铜型等金属晶体 的原子堆积模型和晶胞,并比较它们的配位数、原子的空 间利用率、堆积方式和晶胞的区别。 3.了解金属晶体的有关晶胞的简单计算。 4.掌握金属晶体的性质。 5.了解混合晶体石墨的结构与性质。
“密置层”或“非密置层”)的堆积方式堆积而成,配位数
均为________,空间利用率均为________。 六方最密堆积:按________方式堆积;面心立方最密 堆积:按________方式堆积。
第三章 晶体结构与性质
答案:
属阳离子是固定不动的,而自由电子可自由移动,在外加 电场作用下可发生定向移动,因而金属晶体可以导电。 [答案] B
第三章 晶体结构与性质
[点评]
解答该题的关键是要明确金电子气”理论的实质,会用“电子气”理论来解释金 属的导电、导热及延展性等性质。
人 教 版 化 学
第三章 晶体结构与性质
人 教 版 化 学
第三章 晶体结构与性质
一、金属键
1.构成粒子:在金属单质的晶体中,原子之间以 ________ 相 互 结 合 , 构 成 金 属 晶 体 的 粒 子 是 ________ 和 ________。 2.描述金属键本质的最简单理论是________理论。该 理论把金属键描述为金属原子脱落下来的________形成遍 布整块晶体的________,被所有原子所共用,从而把所有 金属原子维系在一起。
第三章 晶体结构与性质
第三节
金属晶体(共1课时)
人 教 版 化 学
第三章 晶体结构与性质
人 教 版 化 学
第三章 晶体结构与性质
1.了解金属键概念,能用“电子气”理论解释金属材
料的有关物理性质。 2.了解简单立方堆积、钾型、镁型、铜型等金属晶体 的原子堆积模型和晶胞,并比较它们的配位数、原子的空 间利用率、堆积方式和晶胞的区别。 3.了解金属晶体的有关晶胞的简单计算。 4.掌握金属晶体的性质。 5.了解混合晶体石墨的结构与性质。
“密置层”或“非密置层”)的堆积方式堆积而成,配位数
均为________,空间利用率均为________。 六方最密堆积:按________方式堆积;面心立方最密 堆积:按________方式堆积。
第三章 晶体结构与性质
答案:
金属晶体堆积方式
人教版高中化学必修三 物质结构与性质
第三章第三节 金属晶体
金属晶体的原子堆积方式
学习目标
熟知金属晶体的原子堆积模型的分类 及结构特点
金属原子在二维空间的放置方式
金属晶体中的原子可看成直径相等的球体,金属原子 排列在平面上有两种放置方式。
非密置层
密置层
金属原子在三维空间的放置方式
金属晶体可看成金属原子在三维空间中堆积而成。金 属原子堆积有如下4种基本模式。 1.简单立方堆积 2.体心立方堆积 3.六方最密堆积 4.面心立方最密堆积
归纳总结
1.堆积原理
组成晶体的金属原子在没有其他因素影响时,在空间的排列大都服从
紧密堆积原理。这是因为在金属晶体中,金属键没有方向性和饱和性,
因此都趋向于使金属原子吸引更多的其他原子分布于周围,并以密堆
积方式降低体系的能量,使晶体变得比较稳定。
2.常见的堆积模型
堆积模型
简单 立方
采纳这种堆积 的典型代表
置层记作A,第二层记作B,B层的球对准A层中的三角形
空隙位置,第三层记作C,C层的球对准B层的空隙,同时
应对准A层中的三角形空隙(即C层球不对准A层球)。这种 排列方式三层为一周期,记为ABC„由于在这种排列中可
以划出面心立方晶胞,故称这种堆积方式为面心立方最密
堆积。 Cu 、 Ag 、 Au 等均采用此类堆积方式。
两层中各 3 个球相接触,故每个球与周围 12 个球相
接触,所以其配位数是 12 。原子的空间利用率最大。 Mg、Zn、Ti都是采用这种堆积方式。
面心立方堆积(ABCABC…)
B
C
A
A C B A C B A
面心立方堆积(ABCABC…)
A C B A C B A
第三章第三节 金属晶体
金属晶体的原子堆积方式
学习目标
熟知金属晶体的原子堆积模型的分类 及结构特点
金属原子在二维空间的放置方式
金属晶体中的原子可看成直径相等的球体,金属原子 排列在平面上有两种放置方式。
非密置层
密置层
金属原子在三维空间的放置方式
金属晶体可看成金属原子在三维空间中堆积而成。金 属原子堆积有如下4种基本模式。 1.简单立方堆积 2.体心立方堆积 3.六方最密堆积 4.面心立方最密堆积
归纳总结
1.堆积原理
组成晶体的金属原子在没有其他因素影响时,在空间的排列大都服从
紧密堆积原理。这是因为在金属晶体中,金属键没有方向性和饱和性,
因此都趋向于使金属原子吸引更多的其他原子分布于周围,并以密堆
积方式降低体系的能量,使晶体变得比较稳定。
2.常见的堆积模型
堆积模型
简单 立方
采纳这种堆积 的典型代表
置层记作A,第二层记作B,B层的球对准A层中的三角形
空隙位置,第三层记作C,C层的球对准B层的空隙,同时
应对准A层中的三角形空隙(即C层球不对准A层球)。这种 排列方式三层为一周期,记为ABC„由于在这种排列中可
以划出面心立方晶胞,故称这种堆积方式为面心立方最密
堆积。 Cu 、 Ag 、 Au 等均采用此类堆积方式。
两层中各 3 个球相接触,故每个球与周围 12 个球相
接触,所以其配位数是 12 。原子的空间利用率最大。 Mg、Zn、Ti都是采用这种堆积方式。
面心立方堆积(ABCABC…)
B
C
A
A C B A C B A
面心立方堆积(ABCABC…)
A C B A C B A
人教版高中化学选修三 金属晶体实用课件PPT
6
Po
8
Na、K、Fe
12 Mg、Zn、Ti
12 Cu、Ag、Au
33
金属晶体的原子堆积模型
2021/5/9
4
金属晶体的原子堆积模型
平面上金属原子紧密排列的两种方式
2
1
3
4
配位数为4
2021/5/9
23
1
4
65
配位数为6
5
金属晶体的原子堆积模型
4个小球形成一个四边形空隙,一种空隙。
2021/5/9
6
金属晶体的原子堆积模型
3个小球形成一个三角形空隙,两种空隙。 一种: △ 见“ ” 另一种: ▽ 见“ ”
上下层各4
6 7 2 3
2021/5/9
17
金属晶体的原子堆积模型
③体心立方晶胞平均占有的原子数目:
1 8
×8
+
1
=
2
2021/5/9
18
金属晶体的原子堆积模型
活动与探究3 三维空间里密置层金属原子的堆积方式
将密置层的小球在一个平面上黏合在一起,再 一层一层地堆积起来(至少堆4层),使相邻 层上的小球紧密接触,有哪些堆积方式?
第三层小球对准第一层小球空穴的2、4、6位。
第四层同第一层。
前视图
每三层形成一个周期地紧密堆积。
A
2 13 64
5
2 13 64
5
C
B
2
13 A
64 5
C
B
A
2021/5/9
23
金属晶体的原子堆积模型
俯视图:
ABAB…堆积方式
2021/5/9
ABCABC…堆积方式
人教版化学选修三3.3金属晶体---原子堆积模型品质课件PPT
74 .05 % 32
这是等径圆球密堆积所能达到的最 高利用率,所以A1堆积是最密堆积.
六方最密堆积的空间占有率 =74%
上下面为菱形 边长为半径的2倍 2r
高为2倍 正四面体的高
h=
26 3
a
2 6 2r 3
六方最密堆积空间利用率的计算
V atoms
金属的延展性
++ + +++ + + ++ +
+++ ++ + + + ++
位错
+++ + ++ + + ++ ++++ +++ + +++ +
自由电子
+ 金属离子
金属原子
资料
金属之最
熔点最低的金属是-------- 汞 熔点最高的金属是--------钨 密度最小的金属是--------锂 密度最大的金属是--------锇 硬度最小的金属是--------铯 硬度最大的金属是--------铬 延性最好的金属是-------- 铂 展性最好的金属是-------- 金 最活泼的金属是----------铯 最稳定的金属是----------金
第三章 晶体结构与性质
第三节 《金属晶体》
一、金属共同的物理性质
容易导电、导热、有延展性、有金属光泽等。
金属为什么具有这些共同性质呢?
二、金属的结构
问题:构成金属晶体的粒 子有哪些?
2021_2022学年高中化学第三章晶体结构与性质第三节金属晶体课件新人教版选修3
电性、导热性和延展性等。
答案:C
重点难点探究
重要考向探究
随堂检测
考向二 金属晶体的堆积模型及熔点的比较
【例题2】 下列说法正确的是(
)
A.金属钙的熔点低于金属钾的熔点
B.如果金属晶体失去自由电子,金属晶体将不复存在
C.金属晶体中Fe、Ag等为面心立方最密堆积
D.金属晶体中W、Ti等为体心立方堆积
解析:Ca原子的半径小于K原子,且Ca的价电子数大于K原子,所
积,Mg、Zn、Ti等属于六方最密堆积。
重点难点探究
重要考向探究
随堂检测
成功体验2下列有关金属的说法正确的是(
)
A.金属原子的核外电子在金属晶体中都是自由电子
B.钠型和铜型的原子堆积方式空间利用率最高
C.金属晶体中大量自由电子的高速运动使金属具有良好的导热
性
D.金属具有光泽,是因为金属阳离子堆积精密对光的反射
自主检测
3.用电子气理论解释为什么金属具有优良的延展性、导电性和
导热性?
提示:(1)当金属受到外力作用时,晶体中的各原子层就会发生相
对滑动,但排列方式不变,金属离子与自由电子形成的金属键没有
被破坏,所以金属具有良好的延展性。(2)在外加电场的作用下,金
属晶体中的自由电子做定向移动形成”?
提示:“电子气理论”的内容为金属原子脱落下来的价电子形成遍
布整块晶体的“电子气”,被所有原子所共用,从而把所有的金属原子
维系在一起。
2.金属原子是通过何种键型形成的晶体?有哪些优良性质?
提示:金属原子通过金属键形成的晶体叫金属晶体。其具有优良
的导电性、导热性和延展性。
阅读思考
重点难点探究
重要考向探究
答案:C
重点难点探究
重要考向探究
随堂检测
考向二 金属晶体的堆积模型及熔点的比较
【例题2】 下列说法正确的是(
)
A.金属钙的熔点低于金属钾的熔点
B.如果金属晶体失去自由电子,金属晶体将不复存在
C.金属晶体中Fe、Ag等为面心立方最密堆积
D.金属晶体中W、Ti等为体心立方堆积
解析:Ca原子的半径小于K原子,且Ca的价电子数大于K原子,所
积,Mg、Zn、Ti等属于六方最密堆积。
重点难点探究
重要考向探究
随堂检测
成功体验2下列有关金属的说法正确的是(
)
A.金属原子的核外电子在金属晶体中都是自由电子
B.钠型和铜型的原子堆积方式空间利用率最高
C.金属晶体中大量自由电子的高速运动使金属具有良好的导热
性
D.金属具有光泽,是因为金属阳离子堆积精密对光的反射
自主检测
3.用电子气理论解释为什么金属具有优良的延展性、导电性和
导热性?
提示:(1)当金属受到外力作用时,晶体中的各原子层就会发生相
对滑动,但排列方式不变,金属离子与自由电子形成的金属键没有
被破坏,所以金属具有良好的延展性。(2)在外加电场的作用下,金
属晶体中的自由电子做定向移动形成”?
提示:“电子气理论”的内容为金属原子脱落下来的价电子形成遍
布整块晶体的“电子气”,被所有原子所共用,从而把所有的金属原子
维系在一起。
2.金属原子是通过何种键型形成的晶体?有哪些优良性质?
提示:金属原子通过金属键形成的晶体叫金属晶体。其具有优良
的导电性、导热性和延展性。
阅读思考
重点难点探究
重要考向探究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行列相错三球一 空最紧密排列
.
3
(三)三维堆积
非密置层
密置层
Hale Waihona Puke .4三、金属晶体基本构型
1.简单立方堆积:
非最紧密堆积, 空间利用率低
.
边长 = 2r
5
(2)体心立方堆积(A2):
例:金属钾 K 的体 心立方堆积
体对角线 = 4r
边长=4 3r/3
.
6
(3)六方紧密堆积(A3)
12
6
3
54
各层均为密置层
3
54
12
6
3
54
12
6
3
54
.
A B C
11
(4)面心立方紧密堆积
A
C B A
C B A
.
12
12
6
3
54
.
13
C B A
.
14
密置层
边长 = 2 2r
面对角线 = 4r
.
15
四、晶体中有关计算
1.晶胞中微粒数的计算
(1)简单立方:在立方体顶点的微 粒为8个晶胞共享,
微粒数为:8×1/8 = 1
空间利用率:
4лr3/3
= 52.36%
(2r)3
.
16
(2)体心立方:在立方体顶 点的微粒为8个晶胞共享,处 于体心的金属原子全部属于 该晶胞。
微粒数为:8×1/8 + 1 = 2
(3)六方晶胞:在六方体顶 点的微粒为6个晶胞共有,在 面心的为2个晶胞共有,在体 内的微粒全属于该晶胞。
微粒数为:12×1/6 +. 2×1/2 + 3 = 6
苏教版选修3
物质结构与性质
金属晶体的堆积方式
修远中学
周立波
.
1
一、理论基础:
由于金属键没有方向性,每个金属原 子中的电子分布基本是球对称的,所以 可以把金属晶体看成是由直径相等的圆 球的三维空间堆积而成的。
二、金属堆积方式
(一)一维堆积
.
2
(二)二维堆积
I型
II 型
非密置层
密置层
行列对齐四球一 空 非最紧密排列
于是每两层形成一个周期,即:AB、
AB 堆积方式,形成六方紧密堆积。
.
7
(3)六方紧密堆积
A
B A
B A
.
8
A
A
B
B
A
A
.
9
密 置 层
边长 = 2r
高 = 4 6r/3
整理:
10
(4)面心立方紧密堆积(A1)
12
6
.
19
17
(4)面心立方:在立方体顶点的微粒为8个 晶胞共有,在面心的为2个晶胞共有。
微粒数为: 8×1/8 + 6×1/2 = 4
空间利用率:
4×4лr3/3
= 74.05%
(2×1.414r)3 .
18
2.配位数: 每个小球周围距离最近的小球数
简单立方堆积:
6
体心立方堆积:
8
六方紧密堆积:
12
面心立方紧密堆积: 12