九年级上册数学 二次函数专题练习(解析版)
九年级上册二次函数经典精选题(含答案解析)
二次函数精选大题三.解答题(共17小题)14.已知抛物线C1的解析式是y=2x2﹣4x+5,抛物线C2与抛物线C1关于x轴对称,求抛物线C2的解析式.15.将抛物线C1:y=(x+1)2﹣2绕点P(t,2)旋转180゜得到抛物线C2,若抛物线C1的顶点在抛物线C2上,同时抛物线C2的顶点在抛物线C1上,求抛物线C2的解析式.16.如图,抛物线y1=﹣x2+2向右平移1个单位得到抛物线y2,回答下列问题:(1)抛物线y2的顶点坐标_________;(2)阴影部分的面积S=_________;(3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,求抛物线y3的解析式.17.已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是,与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.(1)请直接写出抛物线y=2x2﹣4x+1的伴随抛物线和伴随直线的解析式:伴随抛物线的解析式_________,伴随直线的解析式_________;(2)若一条抛物线的伴随抛物线和伴随直线分别是y=﹣x2﹣3和y=﹣x﹣3,则这条抛物线的解析式是_________;(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件.18.设抛物线y=x2+2ax+b与x轴有两个不同的交点(1)将抛物线沿y轴平移,使所得抛物线在x轴上截得的线段的长是原来的2倍,求平移所得抛物线的解析式;(2)通过(1)中所得抛物线与x轴的两个交点及原抛物线的顶点作一条新的抛物线,求新抛物线的表达式.19.已知抛物线C:y=ax2+bx+c(a<0)过原点,与x轴的另一个交点为B(4,0),A为抛物线C的顶点.(1)如图1,若∠AOB=60°,求抛物线C的解析式;(2)如图2,若直线OA的解析式为y=x,将抛物线C绕原点O旋转180°得到抛物线C′,求抛物线C、C′的解析式;(3)在(2)的条件下,设A′为抛物线C′的顶点,求抛物线C或C′上使得PB=PA′的点P的坐标.20.如图,已知抛物线y=ax2+bx+交x轴正半轴于A,B两点,交y轴于点C,且∠CBO=60°,∠CAO=45°,求抛物线的解析式和直线BC的解析式.21.已知:如图,抛物线y=﹣x2+bx+c经过直线y=﹣x+3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)点M为抛物线上的一个动点,求使得∠ABM的面积与∠ABD的面积相等的点M的坐标.22.已知抛物线的顶点为P,与x轴正半轴交于点B,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式.23.如图,抛物线y=x2+bx﹣c经过直线y=x﹣3与坐标轴的两个交点A,B,此抛物线与x 轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)点P为抛物线上的一个动点,求使S∠APC:S∠ACD=5:4的点P的坐标.24.已知一抛物线经过O(0,0),B(1,1)两点,且解析式的二次项系数为﹣(a>0).(∠)当a=1时,求该抛物线的解析式,并用配方法求出该抛物线的顶点坐标;(∠)已知点A(0,1),若抛物线与射线AB相交于点M,与x轴相交于点N(异于原点),当a在什么范围内取值时,ON+BM的值为常数?当a在什么范围内取值时,ON﹣BM的值为常数?(∠)若点P(t,t)在抛物线上,则称点P为抛物线的不动点.将这条抛物线进行平移,使其只有一个不动点,此时抛物线的顶点是否在直线y=x﹣上,请说明理由.25.如图,已知抛物线C1:y=a(x+2)2﹣5的顶点为P,与x轴相交于A、B两点(点A 在点B的左侧),点B的横坐标是1;(1)求a的值;(2)如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,抛物线C3的顶点为M,当点P、M关于点O成中心对称时,求抛物线C3的解析式.26.如图,抛物线y=ax2+bx+3经过A(﹣3,0),B(﹣1,0)两点.(1)求抛物线的解析式;(2)设抛物线的顶点为M,直线y=﹣2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围.27.如图,抛物线y=a(x+1)2的顶点为A,与y轴的负半轴交于点B,且OB=OA.(1)求抛物线的解析式;(2)若点C(﹣3,b)在该抛物线上,求S∠ABC的值.28.如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标及c的值;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断∠ABD 的形状.29.如果抛物线m的顶点在抛物线n上,同时抛物线n的顶点在抛物线m上,那么我们就称抛物线m与n为交融抛物线.(1)已知抛物线a:y=x2﹣2x+1.判断下列抛物线b:y=x2﹣2x+2,c:y=﹣x2+4x﹣3与已知抛物线a是否为交融抛物线?并说明理由;(2)在直线y=2上有一动点P(t,2),将抛物线a:y=x2﹣2x+1绕点P(t,2)旋转180°得到抛物线l,若抛物线a与l为交融抛物线,求抛物线l的解析式;(3)M为抛物线a;y=x2﹣2x+1的顶点,Q为抛物线a的交融抛物线的顶点,是否存在以MQ为斜边的等腰直角三角形MQS,使其直角顶点S在y轴上?若存在,求出点S的坐标;若不存在,请说明理由;(4)通过以上问题的探究解决,相信你对交融抛物线的概念及性质有了一定的认识,请你提出一个有关交融抛物线的问题.30.如图1所示,已知直线y=kx+m与x轴、y轴分别交于点A、C两点,抛物线y=﹣x2+bx+c经过A、C两点,点B是抛物线与x轴的另一个交点,当x=﹣时,y取最大值.(1)求抛物线和直线的解析式;(2)设点P是直线AC上一点,且S∠ABP:S∠BPC=1:3,求点P的坐标;(3)直线y=x+a与(1)中所求的抛物线交于点M、N,两点,问:①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由.②猜想当∠MON>90°时,a的取值范围.(不写过程,直接写结论)(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M、N两点之间的距离为|MN|=)二次函数精选大题答案解析三.解答题(共17小题)14.已知抛物线C1的解析式是y=2x2﹣4x+5,抛物线C2与抛物线C1关于x轴对称,求抛物线C2的解析式.考点:二次函数图象与几何变换.分析:利用关于x轴对称的点的坐标为横坐标不变,纵坐标互为相反数解答即可.解答:解:抛物线C2与抛物线C1关于x轴对称,横坐标不变,纵坐标互为相反数,即﹣y=2x2﹣4x+5,因此所求抛物线C2的解析式是y=﹣2x2+4x﹣5.点评:利用轴对称变换的特点可以解答.15.将抛物线C1:y=(x+1)2﹣2绕点P(t,2)旋转180゜得到抛物线C2,若抛物线C1的顶点在抛物线C2上,同时抛物线C2的顶点在抛物线C1上,求抛物线C2的解析式.考点:二次函数图象与几何变换.分析:先求出抛物线C1的顶点坐标,再根据对称性求出抛物线C2的顶点坐标,然后根据旋转的性质写出抛物线C2的顶点式形式解析式,再把抛物线C1的顶点坐标代入进行即可得解.解答:解:∠y=(x+1)2﹣2的顶点坐标为(﹣1,﹣2),∠绕点P(t,2)旋转180゜得到抛物线C2的顶点坐标为(2t+1,6),∠抛物线C2的解析式为y=﹣(x﹣2t﹣1)2+6,∠抛物线C1的顶点在抛物线C2上,∠﹣(﹣1﹣2t﹣1)2+6=﹣2,解得t1=3,t2=﹣5,∠抛物线C2的解析式为y=﹣(x﹣7)2+6或y=﹣(x+9)2+6.点评:本题考查了二次函数图象与几何变换,难度较大,求出旋转后的抛物线C2的顶点坐标是解题的关键,也是本题的难点.16.如图,抛物线y1=﹣x2+2向右平移1个单位得到抛物线y2,回答下列问题:(1)抛物线y2的顶点坐标(1,2);(2)阴影部分的面积S=2;(3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,求抛物线y3的解析式.考点:二次函数图象与几何变换.分析:直接应用二次函数的知识解决问题.解答:解:(1)读图找到最高点的坐标即可.故抛物线y2的顶点坐标为(1,2);(2分)(2)把阴影部分进行平移,可得到阴影部分的面积即为图中两个方格的面积=1×2=2;(6分)(3)由题意可得:抛物线y3的顶点与抛物线y2的顶点关于原点O成中心对称.所以抛物线y3的顶点坐标为(﹣1,﹣2),于是可设抛物线y3的解析式为:y=a(x+1)2﹣2.由对称性得a=1,所以y3=(x+1)2﹣2.(10分)点评:考查二次函数的相关知识,考查学生基础知识的同时还考查了识图能力.17.已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是,与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.(1)请直接写出抛物线y=2x2﹣4x+1的伴随抛物线和伴随直线的解析式:伴随抛物线的解析式y=﹣2x2+1,伴随直线的解析式y=﹣2x+1;(2)若一条抛物线的伴随抛物线和伴随直线分别是y=﹣x2﹣3和y=﹣x﹣3,则这条抛物线的解析式是y=x2﹣2x﹣3;(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件.考点:二次函数综合题.专题:压轴题;新定义.分析:(1)先根据抛物线的解析式求出其顶点P和抛物线与y轴的交点M的坐标.然后根据M的坐标用顶点式二次函数通式设伴随抛物线的解析式然后将P点的坐标代入抛物线的解析式中即可求出伴随抛物线的解析式.根据M,P两点的坐标即可求出直线PM的解析式;(2)由题意可知:伴随抛物线的顶点坐标是抛物线与y轴交点坐标,伴随抛物线与伴随直线的交点(与y轴交点除外)是抛物线的顶点,据此可求出抛物线的解析式;(3)方法同(1);(4)本题要考虑的a、b、c满足的条件有:抛物线和伴随抛物线都与x轴有两个交点,因此∠>0,①由于抛物线L中,x2>x1>0,因此抛物线的对称轴x>0,两根的积大于0.②根据两抛物线的解析式分别求出AB、CD的长,根据AB=CD可得出另一个需满足的条件…③综合这三种情况即可得出所求的a、b、c需满足的条件.解答:解:(1)y=﹣2x2+1,y=﹣2x+1;(2)将y=﹣x2﹣3和y=﹣x﹣3组成方程组得,,解得,或.则原抛物线的顶点坐标为(1,﹣4),与y轴的交点坐标为(0,﹣3).设原函数解析式为y=n(x﹣1)2﹣4,将(0,﹣3)代入y=n(x﹣1)2﹣4得,﹣3=n (0﹣1)2﹣4,解得,n=1,则原函数解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3.(3)∠伴随抛物线的顶点是(0,c),∠设它的解析式为y=m(x﹣0)2+c(m≠0),∠此抛物线过P(﹣,),∠=m•(﹣)2+c,解得m=﹣a,∠伴随抛物线解析式为y=﹣ax2+c;设伴随直线解析式为y=kx+c(k≠0),P(﹣,)在此直线上,∠,∠k=,∠伴随直线解析式为y=x+c;(4)∠抛物线L与x轴有两交点,∠∠1=b2﹣4ac>0,∠b2>4ac;∠x2>x1>0,∠x2+x1=﹣>0,x1•x2=>0,∠ab<0,ac>0.对于伴随抛物线有y=﹣ax2+c,有∠2=0﹣(﹣4ac)=4ac>0,由﹣ax2+c=0,得x=±.∠C(﹣,0),D(,0),CD=2,又AB=x2﹣x1====,∠AB=CD,则有:2=,即b2=8ac,综合b2=8ac,b2﹣4ac>0,ab<0,ac>0可得a、b、c需满足的条件为:b2=8ac且ab<0(或b2=8ac且bc<0).本题主要考查了二次函数与一元二次方程的关系以及一元二次方程根与系数的关系.点评:18.设抛物线y=x2+2ax+b与x轴有两个不同的交点(1)将抛物线沿y轴平移,使所得抛物线在x轴上截得的线段的长是原来的2倍,求平移所得抛物线的解析式;(2)通过(1)中所得抛物线与x轴的两个交点及原抛物线的顶点作一条新的抛物线,求新抛物线的表达式.考点:抛物线与x轴的交点;二次函数图象与几何变换.专题:计算题.分析:(1)设平移所得抛物线的解析式为y=x2+2ax+b+m,根据抛物线与x轴的交点的距离公式得到=2,解得m=3b﹣3a2,则平移所得抛物线的解析式为y=x2+2ax+4b﹣3a2;(2)先确定y=x2+2ax+b的顶点坐标为(﹣a,b﹣a2),由于通过(1)中所得抛物线与x轴的两个交点,则可设新抛物线解析式为y=t(x2+2ax+4b﹣3a2),然后把(﹣a,b﹣a2)代入可求出t=.解答:解:(1)设平移所得抛物线的解析式为y=x2+2ax+b+m,根据题意得=2,解得m=3b﹣3a2,所以平移所得抛物线的解析式为y=x2+2ax+b+3b﹣3a2=x2+2ax+4b﹣3a2;(2)y=x2+2ax+b=(x+a)2+b﹣a2,其顶点坐标为(﹣a,b﹣a2),∠新抛物线的表达式过抛物线y=x2+2ax+4b﹣3a2与x轴两交点,∠可设新抛物线解析式为y=t(x2+2ax+4b﹣3a2),把(﹣a,b﹣a2)代入得b﹣a2=t(a2﹣2a2+4b﹣3a2),解得t=,所以新抛物线的表达式过抛物线y=x2+ax+b﹣a2.点评:本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:∠=b2﹣4ac决定抛物线与x轴的交点个数;∠=b2﹣4ac>0时,抛物线与x轴有2个交点;∠=b2﹣4ac=0时,抛物线与x轴有1个交点;∠=b2﹣4ac<0时,抛物线与x轴没有交点.19.已知抛物线C:y=ax2+bx+c(a<0)过原点,与x轴的另一个交点为B(4,0),A为抛物线C的顶点.(1)如图1,若∠AOB=60°,求抛物线C的解析式;(2)如图2,若直线OA的解析式为y=x,将抛物线C绕原点O旋转180°得到抛物线C′,求抛物线C、C′的解析式;(3)在(2)的条件下,设A′为抛物线C′的顶点,求抛物线C或C′上使得PB=PA′的点P的坐标.考点:二次函数综合题;点的坐标;待定系数法求二次函数解析式;旋转的性质;相似三角形的判定与性质.专题:压轴题.分析:(1)先连接AB,根据A点是抛物线C的顶点,且C交x轴于O、B,得出AO=AB,再根据∠AOB=60°,得出∠ABO是等边三角形,再过A作AE∠x轴于E,在Rt∠OAE 中,求出OD、AE的值,即可求出顶点A的坐标,最后设抛物线C的解析式,求出a的值,从而得出抛物线C的解析式;(2)先过A作AE∠OB于E,根据题意得出OE=OB=2,再根据直线OA的解析式为y=x,得出AE=OE=2,求出点A的坐标,再将A、B、O的坐标代入y=ax2+bx+c (a<0)中,求出a的值,得出抛物线C的解析式,再根据抛物线C、C′关于原点对称,从而得出抛物线C′的解析式;(3)先作A′B的垂直平分线l,分别交A′B、x轴于M、N(n,0),由(2)知,抛物线C′的顶点为A′(﹣2,﹣2),得出A′B的中点M的坐标,再作MH∠x轴于H,得出∠MHN∠∠BHM,则MH2=HN•HB,求出N点的坐标,再根据直线l过点M(1,﹣1)、N(,0),得出直线l的解析式,求出x的值,再根据抛物线C上存在两点使得PB=PA',从而得出P1,P2坐标,再根据抛物线C′上也存在两点使得PB=PA',得出P3,P4的坐标,即可求出答案.解答:解:(1)连接AB.∠A点是抛物线C的顶点,且抛物线C交x轴于O、B,∠AO=AB,又∠∠AOB=60°,∠∠ABO是等边三角形,过A作AD∠x轴于D,在Rt∠OAD中,∠OD=2,AD=,∠顶点A的坐标为(2,)设抛物线C的解析式为(a≠0),将O(0,0)的坐标代入,求得:a=,∠抛物线C的解析式为.(2)过A作AE∠OB于E,∠抛物线C:y=ax2+bx+c(a<0)过原点和B(4,0),顶点为A,∠OE=OB=2,又∠直线OA的解析式为y=x,∠AE=OE=2,∠点A的坐标为(2,2),将A、B、O的坐标代入y=ax2+bx+c(a<0)中,∠a=,∠抛物线C的解析式为,又∠抛物线C、C′关于原点对称,∠抛物线C′的解析式为;(3)作A′B的垂直平分线l,分别交A′B、x轴于M、N(n,0),由前可知,抛物线C′的顶点为A′(﹣2,﹣2),故A′B的中点M的坐标为(1,﹣1).作MH∠x轴于H,∠∠MHN∠∠BHM,则MH2=HN•HB,即12=(1﹣n)(4﹣1),∠,即N点的坐标为(,0).∠直线l过点M(1,﹣1)、N(,0),∠直线l的解析式为y=﹣3x+2,,解得.∠在抛物线C上存在两点使得PB=PA',其坐标分别为P1(,),P2(,);解得,.∠在抛物线C′上也存在两点使得PB=PA',其坐标分别为P3(﹣5+,17﹣3),P4(﹣5﹣,17+3).∠点P的坐标是:P1(,),P2(,),P3(﹣5+,17﹣3),P4(﹣5﹣,17+3).点评:本题是二次函数的综合,其中涉及到的知识点有旋转的性质,点的坐标,待定系数法求二次函数等知识点,难度较大,综合性较强.20.(1999•烟台)如图,已知抛物线y=ax2+bx+交x轴正半轴于A,B两点,交y轴于点C,且∠CBO=60°,∠CAO=45°,求抛物线的解析式和直线BC的解析式.考点:待定系数法求二次函数解析式;待定系数法求一次函数解析式.分析:根据抛物线的解析式,易求得C点的坐标,即可得到OC的长;可分别在Rt∠OBC和Rt∠OAC中,通过解直角三角形求出OB、OA的长,即可得到A、B的坐标,进而可运用待定系数法求得抛物线和直线的解析式.解答:解:由题意得C(0,)在Rt∠COB中,∠∠CBO=60°,∠OB=OC•cot60°=1∠B点的坐标是(1,0);(1分)在Rt∠COA中,∠∠CAO=45°,∠OA=OC=∠A点坐标(,0)由抛物线过A、B两点,得解得∠抛物线解析式为y=x2﹣()x+(4分)设直线BC的解析式为y=mx+n,得n=,m=﹣∠直线BC解析式为y=﹣x+.(6分)点评:此题主要考查的是用待定系数法求一次函数及二次函数解析式的方法.21.已知:如图,抛物线y=﹣x2+bx+c经过直线y=﹣x+3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)点M为抛物线上的一个动点,求使得∠ABM的面积与∠ABD的面积相等的点M的坐标.考点:二次函数综合题.分析:(1)先根据直线y=﹣x+3求出A、B两点的坐标,然后将它们代入抛物线中即可求出待定系数的值.(2)根据(1)中抛物线的解析式可求出C,D两点的坐标,由于∠ABM和∠ABD同底,因此面积比等于高的比,即M点纵坐标的绝对值:D点纵坐标的绝对值=5:4.据此可求出P点的纵坐标,然后将其代入抛物线的解析式中,即可求出M点的坐标.解答:解:(1)直线y=﹣x+3与坐标轴的两个交点坐标分别是A(3,0),B(0,3),抛物线y=﹣x2+bx+c经过A、B两点,c=3﹣9+3b+c=0,得到b=2,c=3,∠抛物线的解析式y=﹣x2+2x+3.(2)①作经过点D与直线y=﹣x+3平行的直线交抛物线于点M.则S∠ABM=S∠ABD,直线DM的解析式为y=﹣x+t.由抛物线解析式y=﹣x2+2x+3=﹣(x﹣1)2+4,得D(1,4),∠t=5.设M(m,﹣m+5),则有﹣m+5=﹣m2+2m+3,解得m=1(舍去),m=2.∠M(2,3).②易求直线DM关于直线y=﹣x+3对称的直线l的解析式为y=﹣x+1,l交抛物线于M.设M(m,﹣m+1).由于点M在抛物线y=﹣x2+2x+3上,∠﹣m+1=﹣m2+2m+3.解得m=,m=∠M(,﹣)或M(,)∠使∠ABM的面积与∠ABD的面积相等的点M的坐标分别是(2,3),(,﹣),(,).点评:本题主要考查了二次函数解析式的确定、函数图象交点的求法、图形面积的求法等知识点.考查了学生数形结合的数学思想方法.22.已知抛物线的顶点为P,与x轴正半轴交于点B,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式.考点:二次函数图象与几何变换.分析:先求出点P的坐标,再令y=0,解方程求出点B的坐标,然后根据中心对称求出点M 的坐标,然后根据对称性利用顶点式形式写出C3的解析式即可.解答:解:点P的坐标为(﹣2,﹣5),令y=0,则(x+2)2﹣5=0,解得x1=1,x2=﹣5,所以,点B的坐标为(1,0),∠点P、M关于点B对称,∠点M的坐标为(4,5),∠抛物线C2与抛物线C1关于x轴对称,抛物线C2向右平移得到C3,∠抛物线C3的解析式为y=﹣(x﹣4)2+5.点评:本题考查了二次函数图象与几何变换,此类题目利用定点的变换确定解析式的变化更简便,难点在于确定出平移后的抛物线的顶点坐标.23.如图,抛物线y=x2+bx﹣c经过直线y=x﹣3与坐标轴的两个交点A,B,此抛物线与x 轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)点P为抛物线上的一个动点,求使S∠APC:S∠ACD=5:4的点P的坐标.考点:二次函数综合题.专题:压轴题;动点型.分析:(1)先根据直线y=x﹣3求出A、B两点的坐标,然后将它们代入抛物线中即可求出待定系数的值.(2)根据(1)中抛物线的解析式可求出C,D两点的坐标,由于∠APC和∠ACD同底,因此面积比等于高的比,即P点纵坐标的绝对值:D点纵坐标的绝对值=5:4.据此可求出P点的纵坐标,然后将其代入抛物线的解析式中,即可求出P点的坐标.解答:解:(1)直线y=x﹣3与坐标轴的交点A(3,0),B(0,﹣3).则,解得,∠此抛物线的解析式y=x2﹣2x﹣3.(2)抛物线的顶点D(1,﹣4),与x轴的另一个交点C(﹣1,0).设P(a,a2﹣2a﹣3),则(×4×|a2﹣2a﹣3|):(×4×4)=5:4.化简得|a2﹣2a﹣3|=5.当a2﹣2a﹣3=5,得a=4或a=﹣2.∠P(4,5)或P(﹣2,5),当a2﹣2a﹣3<0时,即a2﹣2a+2=0,此方程无解.综上所述,满足条件的点的坐标为(4,5)或(﹣2,5).点评:本题主要考查了二次函数解析式的确定、函数图象交点的求法、图形面积的求法等知识点.考查了学生数形结合的数学思想方法.24.已知一抛物线经过O(0,0),B(1,1)两点,且解析式的二次项系数为﹣(a>0).(∠)当a=1时,求该抛物线的解析式,并用配方法求出该抛物线的顶点坐标;(∠)已知点A(0,1),若抛物线与射线AB相交于点M,与x轴相交于点N(异于原点),当a在什么范围内取值时,ON+BM的值为常数?当a在什么范围内取值时,ON﹣BM的值为常数?(∠)若点P(t,t)在抛物线上,则称点P为抛物线的不动点.将这条抛物线进行平移,使其只有一个不动点,此时抛物线的顶点是否在直线y=x﹣上,请说明理由.考点:二次函数综合题.专题:压轴题.分析:(∠)首先利用抛物线经过O(0,0),B(1,1)两点,且解析式的二次项系数为﹣求出抛物线解析式,再利用a=1求出抛物线的顶点坐标即可;(∠)利用当y=0时,有,求出x的值,进而得出点N的坐标,再利用若点M在点B右侧,此时a>1,BM=a﹣1;若点M在点B左侧,此时0<a <1,BM=1﹣a得出答案即可;(∠)利用平移后的抛物线只有一个不动点,故此方程有两个相等的实数根,得出判别式∠=(a﹣2h)2﹣4(h2﹣ak)=0,进而求出k与h,a的关系即可得出顶点(h,k)在直线上.解答:解:设该抛物线的解析式为,∠抛物线经过(0,0)、(1,1)两点,∠,解得.∠该抛物线的解析式为(∠)当a=1时,该抛物线的解析式为y=﹣x2+2x,y=﹣x2+2x=﹣(x2﹣2x+1)+1=﹣(x﹣1)2+1.该抛物线的顶点坐标为(1,1);(∠)∠点N在x轴上,∠点N的纵坐标为0.当y=0时,有,解得x1=0,x2=a+1.∠点N异于原点,∠点N的坐标为(a+1,0).∠ON=a+1,∠点M在射线AB上,∠点M的纵坐标为1.当y=1时,有,整理得出,解得x1=1,x2=a.点M的坐标为(1,1)或(a,1).当点M的坐标为(1,1)时,M与B重合,此时a=1,BM=0,ON=2.ON+BM与ON﹣BM的值都是常数2.当点M的坐标为(a,1)时,若点M在点B右侧,此时a>1,BM=a﹣1.∠ON+BM=(a+1)+(a﹣1)=2a,ON﹣BM=(a+1)﹣(a﹣1)=2.若点M在点B左侧,此时0<a<1,BM=1﹣a.∠ON+BM=(a+1)+(1﹣a)=2,ON﹣BM=(a+1)﹣(1﹣a)=2a.∠当0<a≤1时,ON+BM的值是常数2,当a≥1时,ON﹣BM的值是常数2.(∠)设平移后的抛物线的解析式为,由不动点的定义,得方程:,即t2+(a﹣2h)t+h2﹣ak=0.∠平移后的抛物线只有一个不动点,∠此方程有两个相等的实数根.∠判别式∠=(a﹣2h)2﹣4(h2﹣ak)=0,有a﹣4h+4k=0,即.∠顶点(h,k)在直线上.点评:此题主要考查了二次函数的综合应用以及根的判别式的性质等知识,利用分类讨论的思想得出M与B的不同位置关系得出答案是解题关键.25.如图,已知抛物线C1:y=a(x+2)2﹣5的顶点为P,与x轴相交于A、B两点(点A 在点B的左侧),点B的横坐标是1;(1)求a的值;(2)如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,抛物线C3的顶点为M,当点P、M关于点O成中心对称时,求抛物线C3的解析式.考点:二次函数综合题.专题:综合题.分析:(1)将B点坐标代入抛物线C1的解析式中,即可求得待定系数a的值.(2)在抛物线平移过程中,抛物线的开口大小没有发现变化,变化的只是抛物线的位置和开口方向,所以C3的二次项系数与C1的互为相反数,而C3的顶点M与C1的顶点P关于原点对称,P点坐标易求得,即可得到M点坐标,从而求出抛物线C3的解析式.解答:解:(1)∠点B是抛物线与x轴的交点,横坐标是1,∠点B的坐标为(1,0),∠当x=1时,0=a(1+2)2﹣5,∠.(2)设抛物线C3解析式为y=a′(x﹣h)2+k,∠抛物线C2与C1关于x轴对称,且C3为C2向右平移得到,∠,∠点P、M关于点O对称,且点P的坐标为(﹣2,﹣5),∠点M的坐标为(2,5),∠抛物线C3的解析式为y=﹣(x﹣2)2+5=﹣x2+x+.点评:此题主要考查的是二次函数解析式的确定、二次函数图象的几何变化以及系数与函数图象的关系,需要熟练掌握.26.如图,抛物线y=ax2+bx+3经过A(﹣3,0),B(﹣1,0)两点.(1)求抛物线的解析式;(2)设抛物线的顶点为M,直线y=﹣2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围.考点:二次函数综合题.分析:(1)直接用待定系数法就可以求出抛物线的解析式;(2)由(1)的解析式求出抛物线的顶点坐标,根据抛物线的顶点坐标求出直线OD 的解析式,设平移后的抛物线的顶点坐标为(h,h),就可以表示出平移后的解析式,当抛物线经过点C时就可以求出h值,抛物线与直线CD只有一个公共点时可以得出,得x2+(﹣2h+2)x+h2+h﹣9=0,从而得出∠=(﹣2h+2)2﹣4(h2+h﹣9)=0求出h=4,从而得出结论.解答:解:(1)抛物线解析式y=ax2+bx+3经过A(﹣3,0),B(﹣1,0)两点,∠,解得,∠抛物线的解析式为y=x2+4x+3.(2)由(1)配方得y=(x+2)2﹣1,∠抛物线的顶点坐标为M(﹣2,﹣1),∠直线OD的解析式为y=x,于是可设平移后的抛物线的顶点坐标为(h,h),∠平移后的抛物线的解析式为y=(x﹣h)2+h,当抛物线经过点C时,∠C(0,9),∠h2+h=9.解得h=,∠当≤h<时,平移后的抛物线与射线CD只有一个公共点;当抛物线与直线CD只有一个公共点时,由方程组,得x2+(﹣2h+2)x+h2+h﹣9=0,∠∠=(﹣2h+2)2﹣4(h2+h﹣9)=0,解得h=4,此时抛物线y=(x﹣4)2+2与直线CD唯一的公共点为(3,3),点(3,3)在射线CD上,符合题意.故平移后抛物线与射线CD只有一个公共点时,顶点横坐标的取值范围是≤h<或h=4.点评:本题考查了待定系数法求抛物线的解析式,二次函数图象与几何变换及方程组与交点坐标的运用,利用根的判别式判断得出是解题关键.27.如图,抛物线y=a(x+1)2的顶点为A,与y轴的负半轴交于点B,且OB=OA.(1)求抛物线的解析式;(2)若点C(﹣3,b)在该抛物线上,求S∠ABC的值.考点:待定系数法求二次函数解析式;二次函数图象上点的坐标特征.专题:计算题.分析:(1)由抛物线解析式确定出顶点A坐标,根据OA=OB确定出B坐标,将B坐标代入解析式求出a的值,即可确定出解析式;(2)将C坐标代入抛物线解析式求出b的值,确定出C坐标,过C作CD垂直于x 轴,三角形ABC面积=梯形OBCD面积﹣三角形ACD面积﹣三角形AOB面积,求出即可.解答:解:(1)由投影仪得:A(﹣1,0),B(0,﹣1),将x=0,y=﹣1代入抛物线解析式得:a=﹣1,则抛物线解析式为y=﹣(x+1)2=﹣x2﹣2x﹣1;(2)过C作CD∠x轴,将C(﹣3,b)代入抛物线解析式得:b=﹣4,即C(﹣3,﹣4),则S∠ABC=S梯形OBCD﹣S∠ACD﹣S∠AOB=×3×(4+1)﹣×4×2﹣×1×1=3.点评:此题考查了待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键.28.如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标及c的值;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断∠ABD 的形状.考点:二次函数综合题.分析:(1)先根据抛物线的解析式得出其对称轴,由此得到顶点A的横坐标,然后代入直线l的解析式中求出点A的坐标,再将点A的坐标代入抛物线的解析式y=x2﹣2x+c 中,运用待定系数法即可求出c的值;(2)先由抛物线的解析式得到点B的坐标,再求出AB、AD、BD三边的长,然后根据勾股定理的逆定理即可确定∠ABD是直角三角形.解答:解:(1)∠y=x2﹣2x+c,∠顶点A的横坐标为x=﹣=1,又∠顶点A在直线y=x﹣5上,∠当x=1时,y=1﹣5=﹣4,∠点A的坐标为(1,﹣4).将A(1,﹣4)代入y=x2﹣2x+c,得﹣4=12﹣2×1+c,解得c=﹣3.故抛物线顶点A的坐标为(1,﹣4),c的值为﹣3;(2)∠ABD是直角三角形.理由如下:∠抛物线y=x2﹣2x﹣3与y轴交于点B,∠B(0,﹣3).当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∠C(﹣1,0),D(3,0).∠BD2=OB2+OD2=18,AB2=(4﹣3)2+12=2,AD2=(3﹣1)2+42=20,∠BD2+AB2=AD2,∠∠ABD=90°,即∠ABD是直角三角形.。
数学九年级上册-二次函数中的新定义问题专项训练30道人教版解析版
专题22.7 二次函数中的新定义问题专项训练(30道)【人教版】考卷信息:本套训练卷共30题,选择10题,填空10题,解答10题,题型针对性较高,覆盖面广,选题有深度,可加强学生对新定义函数的理解!一.选择题(共10小题)1.(2022•市中区校级模拟)定义:在平面直角坐标系中,点P (x ,y )的横、纵坐标的绝对值之和叫做点P (x ,y )的勾股值,记[P ]=|x |+|y |.若抛物线y =ax 2+bx +1与直线y =x 只有一个交点C ,已知点C 在第一象限,且2≤[C ]≤4,令t =2b 2﹣4a +2020,则t 的取值范围为( )A .2017≤t ≤2018B .2018≤t ≤2019C .2019≤t ≤2020D .2020≤t ≤20212.(2022•市中区二模)定义:对于已知的两个函数,任取自变量x 的一个值,当x ≥0时,它们对应的函数值相等;当x <0时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y =x ,它的相关函数为.已知点M ,N 的坐标分别为,,连结y ={x(x ≥0)−x(x <0)(−12,1)(92,1)MN ,若线段MN 与二次函数y =﹣x 2+4x +n 的相关函数的图象有两个公共点,则n 的取值范围为( )A .﹣3≤n ≤﹣1或B .﹣3<n <﹣1或1<n ≤541<n ≤54C .﹣3<n ≤﹣1或D .﹣3≤n ≤﹣1或1≤n ≤541≤n ≤543.(2022•青秀区校级一模)新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数y =x 2﹣x +c (c 为常数)在﹣2<x <4的图象上存在两个二倍点,则c 的取值范围是( )A .﹣2<cB .﹣4<cC .﹣4<cD .﹣10<c <14<94<14<944.(2022秋•汉阳区期中)我们定义:若点A 在某一个函数的图象上,且点A 的横纵坐标相等,我们称点A 为这个函数的“好点”.若关于x 的二次函数y =ax 2+tx ﹣2t 对于任意的常数t 恒有两个“好点”,则a 的取值范围为( )A .0<a <1B .0C .D .<a <1213<a <1212<a <15.(2022秋•和平区校级月考)对于实数a ,b ,定义运算“*”:a *b ,例如:4*2,因={a 2−ab(a ≥b)b 2−ab(a <b)为4>2,所以4*2=42﹣4×2=8.若函数y =(2x )*(x +1),则下列结论:①方程(2x )*(x +1)=0的解为﹣1和1;②关于x 的方程(2x )*(x +1)=m 有三个解,则0<m ≤1;③当x >1时,y 随x 的增大而增大;④直线y =kx ﹣k 与函数y =(2x )*(x +1)图象只有一个交点,则k =﹣2;⑤当x <1时,函数y =(2x )*(x +1)的最大值为1.其中正确结论的序号有( )A .②④⑤B .①②⑤C .②③④D .①③⑤6.(2022•莱芜区二模)定义:平面直角坐标系中,点P (x ,y )的横坐标x 的绝对值表示为|x |,纵坐标y 的绝对值表示为|y |,我们把点P (x ,y )的横坐标与纵坐标的绝对值之和叫做点P (x ,y )的折线距离,记为|M |=|x |+|y |(其中的“+”是四则运算中的加法),若抛物线y =ax 2+bx +1与直线y =x 只有一个交点M ,已知点M 在第一象限,且2≤|M |≤4,令t =2b 2﹣4a +2022,则t 的取值范围为( )A .2018≤t ≤2019B .2019≤t ≤2020C .2020≤t ≤2021D .2021≤t ≤20227.(2022•岳阳模拟)在平面直角坐标系中,对于点P (m ,n )和点P ′(m ,n ′),给出如下新定义,若n ',则称点P ′(m ,n ′)是点P (m ,n )的限变点,例如:点P 1(1,4)的限={|n|(当m <0时)n−2(当m ≥0时)变点是P ′1(1,2),点P 2(﹣2,﹣1)的限变点是P ′2(﹣2,1),若点P (m ,n )在二次函数y =﹣x 2+4x +1的图象上,则当﹣1≤m ≤3时,其限变点P ′的纵坐标n '的取值范围是( )A .﹣1≤n '<3B .1≤n '<4C .1≤n '≤3D .﹣1≤n '≤48.(2022•自贡模拟)定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.如图,直线l :y x +b 经过点M (0,),一组抛物线的顶点=1314B 1(1,y 1),B 2(2,y 2),B 3(3,y 3),…B n (n ,y n ) (n 为正整数),依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:A 1(x 1,0),A 2(x 2,0),A 3(x 3,0),…A n +1(x n +1,0)(n 为正整数).若x 1=d (0<d <1),当d 为( )时,这组抛物线中存在美丽抛物线.A .或B .或C .或D .512712512111271211127129.(2022秋•诸暨市期中)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点A (0,2),点C (2,0),则互异二次函数y =(x ﹣m )2﹣m 与正方形OABC 有交点时m 的最大值和最小值之差为( )A .5B .C .4D .7+1727−17210.(2022秋•亳州月考)定义:在平面直角坐标系中,过一点P 分别作坐标轴的垂线,这两条垂线与坐标轴围成一个矩形,若矩形的周长值与面积值相等,则点P 叫做和谐点,所围成的矩形叫做和谐矩形.已知点P 是抛物线y =x 2+k 上的和谐点,所围成的和谐矩形的面积为16,则k 的值可以是( )A .16B .4C .﹣12D .﹣18二.填空题(共10小题)11.(2022•芦淞区模拟)定义[a ,b ,c ]为函数y =ax 2+bx +c 的特征数,下面给出特征数位[2m ,1﹣m ,﹣1﹣m ]的函数的一些结论:①当m =﹣3时,函数图象的顶点坐标是(,);1383②当m =1时,函数图象截x 轴所得的线段长度等于2;③当m =﹣1时,函数在x 时,y 随x 的增大而减小;>14④当m ≠0时,函数图象经过同一个点.上述结论中所有正确的结论有 .(填写所有正确答案的序号)12.(2022秋•浦东新区期末)定义:直线与抛物线两个交点之间的距离称作抛物线关于直线的“割距”,如图,线段MN 长就是抛物线关于直线的“割距”.已知直线y =﹣x +3与x 轴交于点A ,与y 轴交于点B ,点B 恰好是抛物线y =﹣(x ﹣m )2+n 的顶点,则此时抛物线关于直线y 的割距是 .13.(2022•宣州区校级自主招生)对某一个函数给出如下定义:若存在实数m >0,对于任意的函数值y ,都满足﹣m ≤y ≤m ,则称这个函数是有界函数,在所有满足条件的m 中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.将函数y =﹣x 2+1(﹣2≤x ≤t ,t ≥0)的图象向上平移t 个单位,得到的函数的边界值n 满足n 时,则t 的取值范围是 .94≤≤5214.(2022秋•德清县期末)定义:在平面直角坐标系中,我们将横、纵坐标都是整数的点称为“整点”.若抛物线y =ax 2﹣2ax +a +3与x 轴围成的区域内(不包括抛物线和x 轴上的点)恰好有8个“整点”,则a 的取值范围是 .15.(2022秋•鄞州区校级期末)定义:在平面直角坐标系中,若点A 满足横、纵坐标都为整数,则把点A 叫做“整点”.如:B (3,0)、C (﹣1,3)都是“整点”.当抛物线y =ax 2﹣4ax +1与其关于x 轴对称的抛物线围成的封闭区域内(包括边界)共有9个整点时,a 的取值范围 .16.(2022秋•思明区校级期中)在直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y ′),给出如下定义:若y ′,则称点Q 为点P 的“可控变点”.={y(x ≥0)−y(x <0)请问:若点P 在函数y =﹣x 2+16(﹣5≤x ≤a )的图象上,其“可控变点”Q 的纵坐标y ′的取值范围是﹣16<y ′≤16,则实数a 的取值范围是 .17.(2022•徐汇区模拟)定义:将两个不相交的函数图象在竖直方向上的最短距离称为这两个函数的“和谐值”.如果抛物线y =ax 2+bx +c (a ≠0)与抛物线y =(x ﹣1)2+1的“和谐值”为2,试写出一个符合条件的函数解析式: .18.(2022•二道区校级模拟)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点A (0,2),点C (2,0),则互异二次函数y =(x ﹣m )2﹣m 与正方形OABC 有公共点时m 的最大值是 .19.(2022•郫都区模拟)定义:由a ,b 构造的二次函数y =ax 2+(a +b )x +b 叫做一次函数y =ax +b 的“滋生函数”,一次函数y =ax +b 叫做二次函数y =ax 2+(a +b )x +b 的“本源函数”(a ,b 为常数,且a ≠0).若一次函数y =ax +b 的“滋生函数”是y =ax 2﹣3x +a +1,那么二次函数y =ax 2﹣3x +a +1的“本源函数”是 .20.(2022•亭湖区校级开学)定义{a ,b ,c }=c (a <c <b ),即(a ,b ,c )的取值为a ,b ,c 的中位数,例如:{1,3,2}=2,{8,3,6}=6,已知函数y ={x 2+1,﹣x +2,x +3}与直线yx +b 有3个交点时,=13则b 的值为 .三.解答题(共10小题)21.(2022•工业园区模拟)定义:若一个函数的图象上存在横、纵坐标之和为零的点,则称该点为这个函数图象的“好点”.例如,点(﹣1,1)是函数y =x +2的图象的“好点”.(1)在函数①y =﹣x +3,②y ③y =x 2+2x +1的图象上,存在“好点”的函数是 ;(填序号)=3x (2)设函数y (x <0)与y =kx +3的图象的“好点”分别为点A 、B ,过点A 作AC ⊥y 轴,垂足=−4x 为C .当△ABC 为等腰三角形时,求k 的值;(3)若将函数y =x 2+2x 的图象在直线y =m 下方的部分沿直线y =m 翻折,翻折后的部分与图象的其余部分组成了一个新的图象.当该图象上恰有3个“好点”时,求m 的值.22.(2022春•荷塘区校级期中)如图1,若关于x的二次函数y=ax2+bx+c(a,b,c为常数且a<0)与x轴交于两个不同的点A(x1,0),B(x2,0)(x1<0<x2),与y轴交于点C,抛物线的顶点为M,O是坐标原点.(1)若a =﹣1,b =2,c =3.①求此二次函数图象的顶点M 的坐标;②定义:若点G 在某一个函数的图象上,且点G 的横纵坐标相等,则称点G 为这个函数的“好点”.求证:二次函数y =ax 2+bx +c 有两个不同的“好点”.(2)如图2,连接MC ,直线MC 与x 轴交于点P ,满足∠PCA =∠PBC ,且的tan∠PBC =12,△PBC 面积为,求二次函数的表达式.1323.(2022春•海门市期中)定义:在平面直角坐标系xOy 中,若某函数的图象上存在点P (x ,y ),满足y =mx +m ,m 为正整数,则称点P 为该函数的“m 倍点”.例如:当m =2时,点(﹣2,﹣2)即为函数y =3x +4的“2倍点”.(1)在点A (2,3),B (﹣2,﹣3),C (﹣3,﹣2)中, 是函数y的“1倍点”;=6x (2)若函数y =﹣x 2+bx 存在唯一的“4倍点”,求b 的值;(3)若函数y =﹣x +2m +1的“m 倍点”在以点(0,10)为圆心,半径长为2m 的圆外,求m 的所有值.24.(2022•费县一模)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”,例如,点(2,2)是函数y =2x ﹣2的图象的“等值点”.(1)分别判断函数的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;y =5x ,y =x +2如果不存在,说明理由;(2)写出函数y =﹣x 2+2的等值点坐标;(3)若函数y =﹣x 2+2(x ≤m )的图象记为W 1,将其沿直线x =m 翻折后的图象记为W 2.当W 1,W 2两部分组成的图象上恰有2个“等值点”时,请写出m 的取值范围.25.(2022春•武侯区校级月考)如图1,在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx +c 与x 轴交于点A (﹣1,0),B (5,0)两点,与y 轴交于点C (0,﹣5).(1)求抛物线解析式;(2)如图2,作出如下定义:对于矩形DEFG,其边长EF=1,DE=2k(k为常数,且k>0),其矩形长和宽所在直线平行于坐标轴,矩形可以在平面内自由的平移,且EG所在直线与抛物线无交点,则称该矩形在“游走”,每一个位置对应的矩形称为“悬浮矩形”;对与每一个“悬浮矩形”,若抛物线上有一点P,使得△PEG的面积最小,则称点P是该“悬浮矩形”的核心点.①请说明“核心点”P不随“悬浮矩形”的“游走”而变化,并求出“核心点”P的坐标(用k表示);②若k=1,DF所在直线与抛物线交于点M和N(M在N的右侧),是否存在这样的“悬浮矩形”,使得△PMN是直角三角形,若存在,并求出“悬浮矩形”中对角线DF所在直线的表达式;若不存在,说明理由.v26.(2022•武侯区模拟)【阅读理解】定义:在平面直角坐标系xOy中,点P为抛物线C的顶点,直线l与抛物线C分别相交于M,N两点(其中点M在点N的右侧),与抛物线C的对称轴相交于点Q,若记S(l,C)=PQ•MN,则称S(l,C)是直线l与抛物线C的“截积”.【迁移应用】根据以上定义,解答下列问题:如图,若直线l的函数表达式为y=x+2.(1)若抛物线C的函数表达式为y=2x2﹣1,分别求出点M,N的坐标及S(l,C)的值;(2)在(1)的基础上,过点P作直线l的平行线l',现将抛物线C进行平移,使得平移后的抛物线C'的顶点P′落在直线l'上,试探究S(l,C')是否为定值?若是,请求出该定值;若不是,请说明理由;22(3)设抛物线C的函数表达式为y=a(x﹣h)2+k,若S(l,C)=6,MN=4,且点P在点Q的下方,求a的值.27.(2022•南关区校级模拟)在平面直角坐标系xOy中,对于点P给出如下定义:若点P到两坐标轴的距离之和等于3,则称点P为三好点.(1)在点R(0,﹣3),S(1,2),T(6,﹣3)中,属于三好点的是 (填写字母即可);(2)若点A在x轴正半轴上,且点A为三好点,直线y=2x+b经过点A,求该直线与坐标轴围成的三角形的面积;(3)若直线y=a(a>0)与抛物线y=x2﹣x﹣2的交点为点M,N,其中点M为三好点,求点M的坐标;(4)若在抛物线y=﹣x2﹣nx+2n上有且仅有两个点为三好点,直接写出n的取值范围.28.(2022秋•长沙期中)定义:在平面直角坐标系中,图形G 上的点P (x ,y )的横坐标x 和纵坐标y 的和x +y 称为点P 的“横纵和”,而图形G 上所有点的“横纵和”中最小的值称为图形的“极小和”.(1)抛物线y =x 2﹣2x ﹣2的图象上点P (1,﹣3)的“横纵和”是 ;该抛物线的“极小和”是 .(2)记抛物线y =x 2﹣(2m +1)x ﹣2的“极小和”为s ,若﹣2021≤s ≤﹣2020,求m 的取值范围.(3)已知二次函数y =x 2+bx +c (c ≠0)的图象上的点A (,2c )和点C (0,c )的“横纵和”相等,m 2求该二次函数的“极小和”.这个“极小和”是否有最大值?如果有,请求出这个最大值;如果没有,请说明理由.29.(2022•泰兴市二模)定义:在平面直角坐标系xOy 中,若P 、Q 的坐标分别为(x 1,y 1)、Q (x 2,y 2),则称|x 1﹣x 2|+|y 1﹣y 2|为若P 、Q 的“绝对距离”,表示为d PQ .【概念理解】(1)一次函数y =﹣2x +6图象与x 轴、y 轴分别交于A 、B 点.①d AB 为 ;②点N 为一次函数y =﹣2x +6图象在第一象限内的一点,d AN =5,求N 的坐标;③一次函数的图象与y 轴、AB 分别交于C 、D 点,P 为线段CD 上的任意一点,试说明:y =x +32d AP =d BP .【问题解决】(2)点P (1,2)、Q (a ,b )为二次函数y =x 2﹣mx +n 图象上的点,且Q 在P 的右边,当b =2时,d PQ =4.若b <2,求d PQ 的最大值;(3)已知P 的坐标为(1,1),点Q 为反比例函数(x >0)图象上一点,且Q 在P 的右边,y =3x d PQ =2,试说明满足条件的点Q 有且只有一个.30.(2022•开福区校级一模)定义:当x 取任意实数,函数值始终不小于一个常数时,称这个函数为“恒心函数”,这个常数称为“恒心值”.(1)判断:函数y =x 2+2x +2是否为“恒心函数”,如果是,求出此时的“恒心值”,如果不是,请说明理由;(2)已知“恒心函数”y =3|ax 2+bx +c |+2.①当a >0,c <0时,此时的恒心值为 ;②若三个整数a 、b 、c 的和为12,且,求a 的最大值与最小值,并求出此时相应的b 、c 的值;b a =c b (3)恒心函数y =ax 2+bx +c (b >a )的恒心值为0,且恒成立,求m 的取值范围.a +b +c a +b >m。
部编数学九年级上册专题13二次函数中的将军饮马(解析版)含答案
专题13 二次函数中的将军饮马类型一 在对称轴上找点用将军饮马求解1.如图,已知抛物线26y ax bx =+-与x 轴的交点A (-3,0),B (1,0),与y 轴的交点是点C .(1)求抛物线的解析式;(2)点P 是抛物线对称轴上一点,当PB +PC 的值最小时,求点P 的坐标;(1)解:将A (-3,0),B (1,0)代入26y ax bx =+-,得:220(3)(3)60116a b a b ì=´-+´--í=´+´-î,解得:24a b =ìí=î,∴抛物线的解析式为2246y x x =+-;(2)解:∵点P 是抛物线对称轴上一点,∴PA PB =,∴++PB PC PA PC AC =³,∴连接AC ,AC 与对称轴的交点即为点P ,如图.∵对于2246y x x =+-,令0x =,则6y =-,∴C (0,-6),设直线AC 的解析式为(0)y kx b k =+¹,∴036k bb =-+ìí-=î,解得:26k b =-ìí=-î,∴直线AC 的解析式为26y x =--.∵抛物线对称轴为4122x =-=-´,∴对于26y x =--,令1x =-,则2(1)64y =-´--=-,∴P (-1,-4);2.如图,抛物线y =ax 2+bx +c 经过点A (﹣3,0),B (1,0),C (0,﹣3)(1)求抛物线的解析式;(2)若点P为抛物线对称轴上一点,求△PBC周长取得最小值时点P的坐标;(1)由于抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),可设抛物线的解析式为:y=a(x+3)(x﹣1),将C点坐标(0,﹣3)代入,得:a(0+3)(0﹣1)=﹣3,解得a=1,则y=(x+3)(x﹣1)=x2+2x﹣3,所以抛物线的解析式为:y=x2+2x﹣3;(2)如图1中,连接AC交对称轴于P,∵PB=PA,∴PB+PC=PB+PA,∴此时PB+PC最短,△PBC的周长最短,设直线AC解析式为y=kx+b,则330bk b=-ìí-+=î.解得13kb=-ìí=-î,∴直线AC解析式为y=﹣x﹣3,∵对称轴为直线x=﹣1,∴当x=﹣1时,y=−2,∴点P坐标(﹣1,﹣2).3.如图,已知抛物线y=x2+bx+c与y轴交于点C,与x轴交于点A、B,且AB=2,抛物线的对称轴为直线x=2;(1)求抛物线的函数表达式;(2)如果抛物线的对称轴上存在一点P,使得△APC周长的值最小,求此时P点坐标及△APC周长;试题解析:(1)∵AB=2,对称轴为直线x=2,∴点A的坐标为(1,0),点B的坐标为(3,0),∵抛物线y=x2+bx+c与x轴交于点A,B,∴1,3是方程x2+bx+c=0的两个根,由根与系数的关系,得1+3=﹣b,1×3=c,∴b=﹣4,c=3,∴抛物线的函数表达式为y=x2﹣4x+3.(2)连接AC,BC,BC交对称轴于点P,连接PA,如图1,由(1)知抛物线的函数表达式为y=x2﹣4x+3,点A,B的坐标分别为(1,0),(3,0),∴点C的坐标为(0,3),∴,.∵点A,B关于对称轴直线x=2对称,∴PA=PB,∴PA+PC=PB+PC,此时,PB+PC=BC,∴当点P在对称轴上运动时,PA+PC的最小值等于BC,∴△APC周长的最小值.4.如图,抛物线y=ax2+bx+c与x轴相交于点A(-3,0),B(1,0),与y轴交于点C(0,3),点D为抛物线的顶点.(1)直接写出抛物线的函数表达式;(2)如图,抛物线的对称轴上是否存在点F,使得△BCF周长最小,若存在求点F坐标,并求周长的最小值;若不存在,请说明理由;解:(1)将A(-3,0),B(1,0),C(0,3)代入y=ax2+bx+c得:0=933a b ca b cc-+ìï=++íï=î,解得: 123a b c =-ìï=-íï=î所以抛物线的函数表达式: y =-x 2-2x +3(2)存在;∵抛物线的解析式为:y =-x 2-2x +3,∴抛物线的对称轴x =-1,C (0,3),∴ C 1 (-2,3),设直线BC 1的解析式为:y=kx+b ,∵B (1,0),∴320k b k b =-+ìí=+î 解得11k b =-ìí=î,∴ 直线BC 1的解析式为:y=-x+1 ,把x =-1代入直线BC 1的解析式y=-x+1,得y=2,∴F (-1,2);∴CF ==CB ==FB ==∴CBF C CF CB FB D =++=类型二 在x 轴上找点用将军饮马求解5.已知抛物线2(1)3(0)y a x a =--¹的图象与x 轴交于点A 、B (A 在B 的左侧),与y 轴交于点(0,2)C -,顶点为D .(1)试确定a 的值,并直接写出D 点的坐标.(2)试在x 轴上求一点P ,使得PCD V 的周长取最小值.试题解析:(1)∵图像过C 点(0,2)-,∴32a -=-,∴1a =,∴2(1)3y x =--,∴:(1,3)D -.(2)如图,∵PCD C PC CD PD =++V ,∵min ()PC PD PC PD C D ¢¢+=+==,CD =,∴min PCD C =V 6.如图,直线y =﹣x+3与x 轴、y 轴分别交于B 、C 两点,抛物线y =﹣x 2+bx+c 经过B 、C 两点,与x 轴另一交点为A ,顶点为D .(1)求抛物线的解析式;(2)在x 轴上找一点E ,使△EDC 的周长最小,求符合条件的E 点坐标;【详解】(1)直线y=﹣x+3与x 轴、y 轴分别交于B 、C 两点,令x=0,则y=3,令y=0,则x=3,∴点B 、C 的坐标分别为(3,0)、(0,3),将点B 、C 的坐标代入二次函数表达式得:9303b c c -++=ìí=î,解得:23b c =ìí=î,故函数的表达式为:y=﹣x 2+2x+3;(2)如图1,作点C 关于x 轴的对称点C′,连接CD′交x 轴于点E ,此时EC+ED 为最小,则△EDC 的周长最小,令x=0,则﹣x 2+2x+3=0,解得:1213x x =-=,,∴点A 的坐标为(-1,0),∵y=﹣x 2+2x+3()214x =--+,∴抛物线的顶点D 的坐标为(1,4),则点C′的坐标为(0,﹣3),设直线C′D 的表达式为y kx b =+,将C′、D 的坐标代入得43k b b +=ìí=-î,解得:73k b =ìí=-î,∴直线C′D 的表达式为:y=7x ﹣3,当y=0时,x=37,故点E 的坐标为(37,0);7.已知二次函数图象的顶点坐标为M (1,0),直线y =x +m 与该二次函数的图象交于A ,B 两点,其中A 点的坐标为(3,4),B 点在y 轴上.(1)求m 的值及这个二次函数的解析式;(2)在x 轴上找一点Q ,使△QAB 的周长最小,并求出此时Q 点坐标;解:(1)设抛物线的解析式为y=a(x-1)2,∵点A(3,4)在抛物线上,则4=a(3-1)2,解得a=1,∴抛物线的解析式为y=(x-1)2,∵点A(3,4)也在直线y=x+m ,即4=3+m ,解得m=1;(2)直线y=x+1与y 轴的交点B 的坐标为B(0,1),B 点关于x 轴的对称点B′点的坐标为B′(0,-1),设直线AB′的解析式为y=kx+b ,将A 、B′两点坐标代入y=kx+b ,得341k b b +=ìí=-î,解得k=53,b=-1,∴直线AB′的解析式为y=53x-1,当A 、Q 、B′三点在一条直线上时,AQ+BQ 的值最小,即△QAB 的周长最小,Q 点即为直线AB′与x 轴的交点,当y=0时,0=53x-1,解得x=35,Q 点坐标为Q(35,0);类型三 在y 轴上找点用将军饮马求解8.在平面直角坐标系中,抛物线212y x bx c =++经过点(4,0)A -,点M 为抛物线的顶点,点B 在y 轴上,且OA OB =,直线AB 与抛物线在第一象限交于点(2,6)C ,如图.(1)求抛物线的解析式;(2)直线AB 的函数解析式为______,点M 的坐标为______,sin ACO Ð=______.(3)在y 轴上找一点Q ,使得AMQ △的周长最小.请求出点Q 的坐标;【详解】解:(1)将点A 、C 的坐标代入抛物线表达式得:11640214262b c b c ì´-+=ïïíï´++=ïî,解得20b c =ìí=î故抛物线的表达式为:2122y x x =+;(2)点(4,0)A -,4OB OA ==,故点(0,4)B ,设直线AB 的解析式为:(),0y kx b k =+¹,044k b b =-+ì\í=î ,解得,14k b =ìí=î∴直线AB 的表达式为:4y x =+;对于2122y x x =+,函数的对称轴为221222b x a =-=-=-´,把x=2代入2122y x x =+,()()2122222y =´-+´-=-∴顶点(2,2)M --;如图,设抛物线的对称轴交AB 于点E ,连接OE ,把x=-2代入4y x =+,得y=2,(2,2)E \-,E \为线段AB 的中点,OE =,在Rt AOB V 中,OA=OB ,OE AB \^,(2,6)CQ,OC \==在Rt OCE V中,sin OE ACO OC Ð===故答案为:4y x =+;(-2,-2)9.如图,在平面直角坐标系中,抛物线y 12=x 2+bx +c 经过点A (﹣4,0),点M 为抛物线的顶点,点B 在y 轴上,且OA =OB ,直线AB 与抛物线在第一象限交于点C (2,6).(1)求抛物线的解析式;(2)直线AB 的函数解析式为 ,点M 的坐标为 ,连接OC ,若过点O 的直线交线段AC 于点P ,将△AOC 的面积分成1:2的两部分,则点P 的坐标为 ;(3)在y 轴上找一点Q ,使得△AMQ 的周长最小,则点Q 的坐标为 ;解:(1)将点A 、C 的坐标代入抛物线表达式11640214262b c b c ì´-+=ïïíï´++=ïî,解得20b c =ìí=î,故直线AB 的表达式为:y 12=x 2+2x ;(2)点A (﹣4,0),OB =OA =4,故点B (0,4),由点A 、B 的坐标得,直线AB 的表达式为:y =x +4;对于y 12=x 2+2x ,函数的对称轴为x =﹣2,故点M (﹣2,﹣2);OP 将△AOC 的面积分成1:2的两部分,则AP 13=AC 或23AC ,则1233P C y y =或,即12633P y =或,解得:yP =2或4,故点P (﹣2,2)或(0,4);(3)如图所示,作点A 关于y 轴的对称点'A ,连接'A M 与y 轴交于点Q ,连接AQ 、MQ 、AM△AMQ 的周长=AM +AQ +MQ =AM +A ′M 最小,点A ′(4,0),设直线A ′M 的表达式为:y =kx +b ,则4022k b k b +=ìí-+=-î,解得1343k b ì=ïïíï=-ïî,故直线A ′M 的表达式为:y 13=x 43-,令x =0,则y 43=-,故点Q (0,43-);10.如图,已知二次函数y =-12x 2+4x -6.(1)直接写出抛物线与坐标轴的交点坐标;(2)若抛物线的顶点为D ,在y 轴上是否存在一点P ,使得△PAD 的周长最小?若存在,求出△PAD 的周长;若不存在,请说明理由.【详解】当0x =时,与,与y 轴交于点B,140662y ´´=-=-0+-,即(0,6)B -当0y =时, 与x 轴交于点A 、E,有21462x x +0=--解得122,6x x ==,即(2,0)A 、(6,0)E 综上:(2,0)A 、(6,0)E 、(0,6)B -(2)存在.(AD 长度固定,只需找到点P 使PA PD +最小即可,找到点A 关于y 轴的对称点A ¢,连接A D ¢,则A D ¢与y 轴的交点即是点P 的位置.)∴(2,0)A ¢-,(4,2)D ,∴AD =,A D ¢=,∴PAD △周长最小值=【点睛】本题考查二次函数的运用,掌握二次函数的性质,拿出交点坐标和对称轴,结合题意,通过分析可解.类型四 在已知直线上找点用将军饮马求解11.如图,抛物线26y ax bx =+-交x 轴于(2,0),(6,0)A B -两点,交y 轴于点C (0,6)-,点Q 为线段BC 上的动点.(1)求抛物线的解析式;(2)求QA QO+的最小值;解:(1)∵抛物线交x轴于A(−2,0),B(6,0)两点,∴设y=a(x+2)(x−6),将C(0,−6)代入,得:−12a=−6,解得:a=12,∴y=12(x+2)(x−6)=12x2−2x−6,∴抛物线的解析式为y=12x2−2x−6;(2)如图1,作点O关于直线BC的对称点O′,连接AO′,QO′,CO′,BO′,∵OB=OC=6,∠BOC=90°,∴∠BCO=45°,∵O、O′关于直线BC对称,∴BC垂直平分OO′,∴OO′垂直平分BC,∴四边形BOCO′是正方形,∴O′(6,−6),在Rt△ABO′中,AO′10=,∵QA+QO′≥AO′,QO′=QO,∴QO+QA=QA+QO′≥AO′=5,即点Q位于直线AO′与直线BC交点时,QO+QA有最小值10;12.如图抛物线2y=x轴于A、B两点,交y轴于点C,顶点为D.(1)求点A、B、C、D的坐标;V绕AB的中点M旋转180°,得到四边形AEBC;(2)把ABC①求E 的坐标;②试判断四边形AEBC 的形状,并说明理由;(3)试探求:在直线BC 上是否存在一点P ,使得PAD △的周长最小,若存在,求出点P 的坐标,若不存在,请说明理由.【答案】(1)(3,0)A -,(1,0)B ,C ,(D -;(2)①(2,E -;②四边形AEBC 是矩形,理由见解析;(3)存在,3(7P -.【解析】【分析】(1)分别令x=0以及y=0求出A 、B 、C 三点的坐标,再根据二次函数表达式求出顶点D 的坐标;(2)①依题意得出BC ∥AE ,又已知A 、B 、C 的坐标易求出点E 的坐标,②根据旋转的性质证明四边形AEBC 是平行四边形,再利用勾股定理的逆定理得到∠ACB=90°,可得四边形AEBC 是矩形;(3)作点A 关于BC 的对称点A′,连接A′D 与直线BC 交于点P .则可得点P 是使△PAD 周长最小的点,然后求出直线A′D ,直线BC 的函数解析式联立方程求出点P 的坐标.【详解】解:(1)2y x =令0x =,得y =令0y =,即20=,即2230x x +-=,11x \=,23x =-,∴(-3+1)÷2=-1,将x=-1代入2y =,得A \,B ,C ,D 点的坐标分别为(3,0)A -,(1,0)B ,C ,(D -;(2)①过点E 作EF AB ^于F ,Q ,EF \=,(1,0)B Q ,1AF \=,312OF OA AF \=-=-=,(2,E \-;②四边形AEBC 是矩形.理由:∵△ABE 是由△ABC 旋转得到,∴AC=BE ,AE=BC ,∴四边形ACBE 是平行四边形,由(3,0)A -,(1,0)B ,C ,(2,E -,可知:=AB=4,2=,∴222AB AC BC =+,∴∠ACB=90°,四边形AEBC 是矩形;(3)存在.作出点A 关于BC 的对称点A ¢,连接A D ¢与直线BC 交于点P ,则点P 是使PAD D 周长最小的点,3AO =Q ,3FO \=,CO =A F \¢=,\求得(3A ¢,,过A ¢、D 的直线y +过B 、C 的直线y =两直线的交点3(7P -.【点睛】本题综合考查了二次函数的有关知识以及利用待定系数法求出函数解析式,难度中上.13.已知,如图,二次函数()2230y ax ax a a =+-¹图象的顶点为H ,与x 轴交于A 、B 两点(B 点在A 点右侧),点H 、B 关于直线l :y =对称.(1)求A 、B 两点的坐标,并证明点A 在直线l 上;(2)求二次函数解析式;(3)过点B 作直线//BK AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连结HN 、NM 、MK ,求HN+NM+MK 的最小值.【答案】【小题1】A 点坐标为(3,0)-,B 点坐标为(1,0)【小题2】2y x =【小题3】8【解析】【分析】(1)根据一元二次方程求得A点坐标,代入直线求证,(2)通过点H、B关于直线L对称,求得H的坐标,从而解出二次函数的解析式,(3)先求出HN+MN的最小值是MB, 再求出BM+MK的最小值是BQ,即++和的最小值HN NM MK【详解】(1)依题意,得ax2+2ax−3a=0(a≠0),两边都除以a得:即x2+2x−3=0,解得x1=−3,x2=1,∵B点在A点右侧,∴A点坐标为(−3,0),B点坐标为(1,0),答:A. B两点坐标分别是(−3,0),(1,0).证明:∵直线l:y x,当x=−3时,y(3)0-=,∴点A在直线l上.(2)∵点H、B关于过A点的直线l:y x对称,∴AH=AB=4,过顶点H作HC⊥AB交AB于C点,则AC=12,2AB HC==,∴顶点H(1,-,代入二次函数解析式,解得a=,∴二次函数解析式为y=答:二次函数解析式为2y(3)直线AH的解析式为y=+,直线BK的解析式为y=由yyì=ïíï=î解得xy=ìïí=ïî即K,则BK=4,∵点H、B关于直线AK对称,K,∴HN+MN的最小值是MB,过K作KD⊥x轴于D,作点K关于直线AH的对称点Q,连接QK,交直线AH于E,则QM=MK,QE=EKAE⊥QK,∴根据两点之间线段最短得出BM+MK的最小值是BQ,即BQ的长是HN+NM+MK的最小值,∵BK∥AH,∴∠BKQ=∠HEQ=90∘,由勾股定理得QB8 ==∴HN+NM+MK的最小值为8,答:HN+NM+MK和的最小值是8.【点睛】考核知识点:二次函数综合运用.14y=x轴交于点A,与y轴交于点C,抛物线y=ax2﹣+c(a≠0)经过A,B,C三点.(1)求过A,B,C三点抛物线的解析式并求出顶点F的坐标;(2)试探究在直线AC上是否存在一点M,使得△MBF的周长最小?若存在,求出M点的坐标;若不存在,请说明理由.(1)∵直线y=x轴交于点A,与y轴交于点C∴点A(﹣1,0),C(0,∵点A,∴ccìïíïî∴a c ìïíïî∴抛物线的解析式为2x y =∴顶点F (1,).(2)存在理由:延长BC 到点B ′,使B 'C =BC ,连接B 'F 交直线AC 于点M ,则点M 就是所求的点,∵过点B ′作B 'H ⊥∵B点在抛物线2y =∴B (3,0),在Rt △BOC 中,tan ∠OBC∴∠OBC =30°,BC =在Rt △B ′BH 中,B ′H =12BB ′=BH ′H =6,∴OH =3,∴B ′(﹣3,﹣.B ′F 的解析式为y =kx +b ,∴3k b k b ì-+ïí+ïî ,,∴y.y y ìïíïî,解得x y ìïïíïïî,∴M (37∴在直线AC 上存在点M ,使得△MBF 的周长最小,此时M (37.【点睛】考查代数几何的综合运用能力,体现数学知识的内在联系和不可分割的特点.15.如图,抛物线24y ax bx =++与x 轴交于A ,B 两点,与y 轴交于点C .直线2y =经过抛物线上两点D ,E .已知点D ,E 的横坐标分别为1x ,2x 且满足123x x +=,直线BC 的表达式为y x n =-+.(1)求n 的值及抛物线的表达式;(2)设点Q 是直线DE 上一动点,问:点Q 在什么位置上时,QOB △的周长最小?求出点Q 的坐标及QOB △周长的最小值;解:(1)当0x =时,抛物线244y ax bx =++=,∴C (0,4),∵点C 在直线BC 上:y x n =-+上,∴4n =,∵直线BC 与x 轴交点为B ,40x -+=,解得:4x =,∴B (4,0),∵点B 在抛物线上,∴216440a b ++= ①,∵2D E y y ==,∴//DE x 轴,点D 、E 关于抛物线对称轴对称,∵123x x +=,∴抛物线对称轴为:直线12322x x x +==,∴322b a -=②,联立方程①②,216440322a b b a ì++=ïí-=ïî,解得:13a b =-ìí=î,∴抛物线的表达式为234y x x =-++.(2)连接CQ ,如图1,∵C (0,4),点Q 是直线2y =上一动点,∴O 、C 关于直线2y =对称,∴CQ OQ =,∴当点C 、Q 、B 在同一直线上时,OQ BQ CQ BQ BC +=+=最短,当42x -+=时,解得:2x =,∴此时,Q (2,2),∵4OB OC ==,∴==BC∴QOB △周长最小值为:4QOB C OQ BQ OB BC OB =++=+=△.16.如图,抛物线2y ax bx c =++与x 轴交于()1,0A 、()4,0B ,与y 轴交于点()0,3C ,点D 为OC 的中点,点E 、F 分别为x 轴正半轴和抛物线对称轴上的动点,连接DE 、EF 、CF ,求四边形CDEF 周长最小时点E 、F 的坐标.【答案】当四边形CDEF 周长最小时,点E 的坐标5,03æöç÷èø,点F 的坐标为53,24æöç÷èø.【解析】【分析】作点D 关于x 轴的对称点D ¢,作点C 关于抛物线对称轴的对称点C ¢,连接C D ¢¢,交对称轴于点F ,交x 轴于点E .求出直线C D ¢¢的解析为93102y x =-,进一步可得出结论.【详解】如图,作点D 关于x 轴的对称点D ¢,作点C 关于抛物线对称轴的对称点C ¢,连接C D ¢¢,交对称轴于点F ,交x 轴于点E .由对称知C F CF ¢=,D E DE ¢=,\此时四边形CDEF 的周长为CD DE EF CF CD D E EF C F CD C D ¢¢¢¢+++=+++=+.\此时四边形CDEF 的周长最小,最小值为CD C D +¢¢.()1,0A Q ,()4,0B ,\抛物线对称轴为直线52x =.()5,3C ¢\.D Q 为OC 的中点,30,2D æö\ç÷èø.30,2D æö¢\-ç÷èø.设直线C D ¢¢的解析式为y kx b =+.将点C ¢、D ¢的坐标代入可得53,3,2k b b +=ìïí=-ïî解得9,103.2k b ì=ïïíï=-ïî\直线C D ¢¢的解析为93102y x =-.令0y =,则53x =,\点E 的坐标为5,03æöç÷èø.令52x =,则34y =,\点F 的坐标为53,24æöç÷èø.\当四边形CDEF 周长最小时,点E 的坐标5,03æöç÷èø,点F 的坐标为53,24æöç÷èø.【点睛】此题考查了待定系数法求函数解析式,四边形与二次函数的结合,线段的和差最值与二次函数的结合,将不共线的线段转化为共线为解题关键.。
部编数学九年级上册专题22.4二次函数与一元二次方程【六大题型】(人教版)(解析版)含答案
专题22.4 二次函数与一元二次方程【六大题型】【人教版】【题型1 抛物线与x 轴的交点情况】....................................................................................................................1【题型2 抛物线与x 轴交点上的四点问题】........................................................................................................3【题型3 由二次函数解一元二次方程】................................................................................................................6【题型4 由二次函数的图象求一元二次方程的近似解】....................................................................................9【题型5 由二次函数的图象解不等式】..............................................................................................................11【题型6 由二次函数与一次函数交点个数求范围】 (13)【题型1 抛物线与x 轴的交点情况】【例1】(2022春•西湖区校级期末)抛物线y =(x ﹣x 1)(x ﹣x 2)+mx +n 与x 轴只有一个交点(x 1,0).下列式子中正确的是( )A.x1﹣x2=m B.x2﹣x1=m C.m(x1﹣x2)=n D.m(x1+x2)=n【分析】由抛物线与x轴只有一个交点(x1,0)可得抛物线顶点式,从而可得x1,x2与m的关系.【解答】解:∵抛物线经过(x1,0),且抛物线与x轴只有一个交点,∴抛物线顶点坐标为(x1,0),y=(x﹣x1)2,∴x2﹣2x1x+x21=(x﹣x1)(x﹣x2)+mx+n=x2﹣(x1+x2﹣m)x+x1x2+n,∴x1+x2﹣m=2x1,即x2﹣x1=m,故选:B.【变式1-1】(2022春•澧县校级月考)抛物线y=x2+2x﹣3与坐标轴的交点个数有( )A.0个B.1个C.2个D.3个【分析】由b2﹣4ac的大小可判断抛物线与x轴交点个数,由c的大小可判断抛物线与y轴的交点,进而求解.【解答】解:∵y=x2+2x﹣3,∴a=1,b=2,c=﹣3,∴b2﹣4ac=22+12=16>0,∴抛物线与x轴有2个交点,∵c=﹣3,∴抛物线与y轴交点为(0.﹣3),∴抛物线与坐标轴有3个交点,故选:D.【变式1-2】(2022•广阳区一模)已知抛物线y=﹣3x2+bx+c与x轴只有一个交点,且过点A(m﹣2,n),B(m+4,n),则n的值为( )A.﹣9B.﹣16C.﹣18D.﹣27【分析】根据点A、B的坐标易求该抛物线的对称轴是直线x=m+1.故设抛物线解析式为y=﹣3(x﹣m ﹣1)2,直接将A(m﹣2,n)代入,通过解方程来求n的值.【解答】解:∵抛物线y=﹣3x2+bx+c过点A(m﹣2,n)、B(m+4,n),∴对称轴是直线x=m+1,又∵抛物线y=x2+bx+c与x轴只有一个交点,∴顶点为(m+1,0),∴设抛物线解析式为y=﹣3(x﹣m﹣1)2,把A(m﹣2,n)代入,得:n=﹣3(m﹣2﹣m﹣1)2=﹣27,即n=﹣27.故选:D.【变式1-3】(2022春•汉滨区期中)已知抛物线y=x2+bx+c与x轴的两个交点之间的距离为6,对称轴为x =3,则抛物线的顶点P关于x轴对称的点P'的坐标是( )A.(3,9)B.(3,﹣9)C.(﹣3,9)D.(﹣3,﹣9)【分析】根据抛物线y=x2+bx+c与x轴两个交点间的距离为6.对称轴为直线x=3,可以得到b、c的值,然后即可得到该抛物线的解析式,再将函数解析式化为顶点式,即可得到点P的坐标,然后根据关于x 轴对称的点的特点横坐标不变,纵坐标互为相反数,即可得到点P关于x轴的对称点的坐标.【解答】解:设抛物线y=x2+bx+c与x轴两个交点坐标为(x1,0),(x2,0),∵抛物线y=x2+bx+c与x轴两个交点间的距离为6,对称轴为直线x=3,=3,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=36,−b2×1∴(﹣b)2﹣4×c=36,b=﹣6,解得:c=0,∴抛物线的解析式为y=x2﹣6x=(x﹣3)2﹣9,∴顶点P的坐标为(3,﹣9),∴点P关于x轴的对称点的坐标是(3,9),故选:A.【题型2 抛物线与x轴交点上的四点问题】【例2】(2022•武汉模拟)二次函数与一元二次方程有着紧密的联系,一元二次方程问题有时可以转化为二次函数问题.请你根据这句话所提供的思想方法解决如下问题:若s,t(s<t)是关于x的方程1+(x﹣m)(x﹣n)=0的两根,且m<n,则m,n,s,t的大小关系是( )A.s<m<n<t B.m<s<n<t C.m<s<t<n D.s<m<t<n【分析】由y=(x﹣m)(x﹣n)可得抛物线与x轴交点坐标为(m,0),(n,0),开口向上,则抛物线y=(x﹣m)(x﹣n)与直线y=﹣1的交点坐标为(s,﹣1),(t,﹣1),从而可得m,n,s,t 的大小关系.【解答】解:由1+(x﹣m)(x﹣n)=0可得(x﹣m)(x﹣n)=﹣1,由y=(x﹣m)(x﹣n)可得抛物线y=(x﹣m)(x﹣n)与x轴交点坐标为(m,0),(n,0),抛物线开口向上,则抛物线y=(x﹣m)(x﹣n)与直线y=﹣1的交点在x轴下方,坐标为(s,﹣1),(t,﹣1),∴m<s<t<n.故选:C.【变式2-1】(2022•定远县模拟)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则下列结论正确的是( )A.x1<﹣1<5<x2B.x1<﹣1<x2<5C.﹣1<x1<5<x2D.﹣1<x1<x2<5【分析】方程a(x+1)(x﹣5)=﹣3的两根即为抛物线y=a(x+1)(x﹣5)与直线y=﹣3交点的横坐标,据此可判断选项.【解答】解:令y=a(x+1)(x﹣5),则抛物线y=a(x+1)(x﹣5)与y=ax2+bx+c形状相同、开口方向相同,且与x轴的交点为(﹣1,0)、(5,0),函数图象如图所示,由函数图象可知方程a(x+1)(x﹣5)=﹣3的两根即为抛物线y=a(x+1)(x﹣5)与直线y=﹣3交点的横坐标,∴x1<﹣1<5<x2,故选:A.【变式2-2】(2022•张店区期末)已知二次函数y=(x﹣1)2﹣t2(t是常数,且t≠0),方程(x﹣1)2﹣t2﹣1=0的两根分别为m,n(m<n),方程(x﹣1)2﹣t2﹣3=0的两根分别为p,q(p<q),判断m,n,p,q的大小关系是( )A.p<q<m<n B.p<m<n<q C.m<p<q<n D.m<n<p<q【分析】在平面直角坐标系中画出二次函数y=(x﹣1)2﹣t2(t是常数,且t≠0)的图象,再作出直线y =1,y=3,它们与抛物线交于A,B和C,D,分别过交点作x轴的垂线,则垂足对应的数值为题干中方程的根,利用数形结合的方法即可得出结论.【解答】解:在平面直角坐标系中画出二次函数y=(x﹣1)2﹣t2(t是常数,且t≠0)的图象如下图:作直线y=1与抛物线y=(x﹣1)2﹣t2(t是常数,且t≠0)交于A,B,分别经过A,B作x轴的垂线,垂足对应的数值分别为m,n,∴m,n是方程(x﹣1)2﹣t2﹣1=0的两根;作直线y=3与抛物线y=(x﹣1)2﹣t2(t是常数,且t≠0)交于C,D,分别经过AC,D作x轴的垂线,垂足对应的数值分别为p,q,∴p,q是方程(x﹣1)2﹣t2﹣3=0的两根.由图象可知m,n,p,q的大小关系是:p<m<n<q.故选:B.【变式2-3】(2022•河东区期末)已知抛物线y=x2+bx+c的图象与x轴的两交点的横坐标分别α,β(α<β),而x2+bx+c﹣2=0的两根为M、N(M<N),则α、β、M、N的大小顺序为( )A.α<β<M<N B.M<α<β<N C.α<M<β<N D.M<α<N<β【分析】依题意画出函数y=(x﹣α)(x﹣β)和y=2的图象草图,根据二次函数的图象可直接求解.【解答】解:依题意,画出函y=(x﹣α)(x﹣β)的图象,如图所示.函数图象为抛物线,开口向上,与x轴两个交点的横坐标分别为α,β(α<β),方程x2+bx+c﹣2=0的两根是抛物线y=(x﹣α)(x﹣β)与直线y=2的两个交点.由M<N,可知对称轴左侧交点横坐标为M,右侧为N.由图象可知,M<α<β<N,故选:B.【题型3 由二次函数解一元二次方程】【例3】(2022•娄底一模)已知二次函数y=ax2+bx+c的图象经过(﹣1,0)与(3,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是5.则关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是( )A.﹣2或4B.﹣2或0C.0或4D.﹣2或5【分析】根据二次函数y=ax2+bx+c的图象经过(﹣1,0)与(3,0)两点求对称轴,后面两个方程二次项、一次项系数没变,所以两根的和也不变还是2.【解答】解:∵二次函数y=ax2+bx+c的图象经过(3,0)与(﹣1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为3和﹣1,函数y=ax2+bx+c的对称轴是直线x=1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是5.∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣3,函数y=ax2+bx+c的图象开口向下,如图,∵0<n<m,∴﹣m>﹣m,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴直线y=﹣n与y=ax2+bx+c的交点的横坐标为﹣2,4,∴这关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,是﹣2或4,故选:A.【变式3-1】(2022•潮南区模拟)已知二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),则关于x的一元二次方程ax2﹣2ax+c=0的根是 x1=﹣1,x2=3 .【分析】利用二次函数y=ax2﹣2ax+c的解析式求得抛物线的顶点坐标,利用抛物线的对称性求得抛物线与x轴的另一个交点,再利用抛物线与x轴的交点的横坐标与一元二次方程的根的关系得出结论.【解答】解:∵y=ax2﹣2ax+c,=1.∴抛物线的对称轴为直线x=−−2a2a∵二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),∴该抛物线与x轴的另一个交点为(3,0).∴关于x的一元二次方程ax2﹣2ax+c=0的根是:x1=﹣1,x2=3.故答案为:x1=﹣1,x2=3.【变式3-2】(2022•咸宁一模)已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的y与x的部分对应值如下表:x﹣5﹣4﹣202y60﹣6﹣46则关于x的一元二次方程ax2+bx+c=0的根是 x1=﹣4,x2=1 .【分析】由抛物线经过点(﹣5,6),(2,6)可得抛物线对称轴,根据抛物线对称性及抛物线经过(﹣4,0)求解.【解答】解:由抛物线经过点(﹣5,6),(2,6)可得抛物线抛物线对称轴为直线x=−522=−32,∵抛物线经过(﹣4,0),对称轴为直线x=−32,∴抛物线经过(1,0),∴一元二次方程ax2+bx+c=0的根是x1=﹣4,x2=1.故答案为:x1=﹣4,x2=1.【变式3-3】(2022•永嘉县校级模拟)已知二次函数y=﹣x2+bx+c的图象经过(﹣1,0)与(5,0)两点,且关于x的方程﹣x2+bx+c+d=0有两个根,其中一个根是6,则d的值为( )A.5B.7C.12D.﹣7【分析】先由二次函数y=﹣x2+bx+c的图象经过(﹣1,0)与(5,0)两点,求出b、c,再把b、c代入方程﹣x2+bx+c+d=0后,由方程的根是6求出d.【解答】解:∵二次函数y=﹣x2+bx+c的图象经过(﹣1,0)与(5,0)两点,∴−1−b+c=0−25+5b+c=0,解得:b=4 c=5,将b=4,c=5代入方程﹣x2+bx+c+d=0,可得:﹣x2+4x+5+d=0,又∵关于x的方程﹣x2+4x+5+d=0有两个根,其中一个根是6,∴把x=6代入方程﹣x2+4x+5+d=0,得:﹣36+4×6+5+d=0,解得:d=7,经验证d=7时,Δ>0,符合题意,∴d=7.故选:B.【题型4 由二次函数的图象求一元二次方程的近似解】【例4】(2022•平度市期末)如表给出了二次函数y=x2+2x﹣10中x,y的一些对应值,则可以估计一元二次方程x2+2x﹣10=0的一个近似解为( )x… 2.1 2.2 2.3 2.4 2.5…y…﹣1.39﹣0.76﹣0.110.56 1.25…A.2.2B.2.3C.2.4D.2.5【分析】根据函数值,可得一元二次方程的近似根.【解答】解:如图:x=2.3,y=﹣0.11,x=2.4,y=0.56,x2+2x﹣10=0的一个近似根是2.3.故选:B.【变式4-1】(2022•灌云县期末)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c=0的一个解的范围是 6.18<x<6.19 .x 6.17 6.18 6.19 6.20y﹣0.03﹣0.010.020.04【分析】根据表格中自变量、函数的值的变化情况,得出当y=0时,相应的自变量的取值范围即可.【解答】解:由表格数据可得,当x=6.18时,y=﹣0.01,当x=6.19时,y=0.02,于是可得,当y=0时,相应的自变量x的取值范围为6.18<x<6.19,故答案为:6.18<x<6.19.【变式4-2】(2022•渠县一模)如图,是二次函数y=ax2+bx﹣c的部分图象,由图象可知关于x的一元二次方程ax2+bx=c的两个根可能是 x1=0.8,x2=3.2合理即可 .(精确到0.1)【分析】直接利用抛物线与x 轴交点的位置估算出两根的大小.【解答】解:由图象可知关于x 的一元二次方程ax 2+bx =c 的两个根可能是:x 1=0.8,x 2=3.2合理即可.故答案为:x 1=0.8,x 2=3.2合理即可.【变式4-3】(2022秋•萍乡期末)代数式ax 2+bx +c (a ≠0,a ,b ,c 是常数)中,x 与ax 2+bx +c 的对应值如下表: x ﹣1−12 0121 322 523ax 2+bx +c﹣2−141742741−14 ﹣2请判断一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 是常数)的两个根x 1,x 2的取值范围是下列选项中的( )A .−12<x 1<0,32<x 2<2B .﹣1<x 1<−12,2<x 2<52C .−12<x 1<0,2<x 2<52D .﹣1<x 1<−12,32<x 2<2【分析】观察表格可知,在x <1时,随x 值的增大,代数式ax 2+bx +c 的值逐渐增大,x 的值在−12~0之间,代数式ax 2+bx +c 的值由负到正,故可判断ax 2+bx +c =0时,对应的x 的值在−12~0之间,在x >1时,随x 的值增大,代数式ax 2+bx +c 逐渐减小,x 的值在2~52之间,代数式ax 2+bx +c 的值由正到负,故可判断ax 2+bx +c =0时,对应的x 的值在2~52之间,【解答】解:根据表格可知,代数式ax 2+bx +c =0时,对应的x 的值在−12~0和2~52之间,即:一元二次方程ax2+bx+c=0(a≠0,a,b,c是常数)的两个根x1,x2的取值范围是−12<x1<0,2<x2<52故选:C.【题型5 由二次函数的图象解不等式】【例5】(2022秋•垦利区期末)如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,则不等式ax2﹣mx+c<n的解集为( )A.x>﹣1B.x<3C.﹣1<x<3D.x<﹣3或x>1【分析】由抛物线与直线交点横坐标确定直线在抛物线上方时x的取值范围.【解答】解:∵A(﹣1,p),B(3,q),∴﹣1<x<3时,直线在抛物线上方,即﹣1<x<3时,ax2+c<mx+n,∴不等式ax2﹣mx+c<n的解集为﹣1<x<3.故选:C.【变式5-1】(2022•定远县二模)抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x,纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…请求出当y<0时x的取值范围 x<﹣2或x>3 .【分析】把点(0,6)代入求出c,把点(﹣1,4)和(1,6)代入抛物线的解析式列方程组,解出可得a、b,即可得抛物线的解析式,进而可列不等式求出y<0时x的取值范围.【解答】解:由表得,抛物线y=ax2+bx+c(a≠0)过点(0,6),∴c=6,∵抛物线y=ax2+bx+6过点(﹣1,4)和(1,6),∴a−b+6=4a+b+6=6,解得:a=−1 b=1,∴二次函数的表达式为:y=﹣x2+x+6,所以令﹣x2+x+6<0,解得:x<﹣2或x>3.故答案为:x<﹣2或x>3.【变式5-2】(2022•工业园区校级模拟)若二次函数y=ax2+bx+c(a、b、c为常数)的图象如图所示,则关于x的不等式a(x+2)2+b(x+2)+c<0的解集为 x<﹣1或x>1 .【分析】根据图象可得x<1或x>3时ax2+bx+c<0,则a(x+2)2+b(x+2)+c<0时x+2<1或x+2>3,进而求解.【解答】解:由图象可得x<1或x>3时ax2+bx+c<0,∴当a(x+2)2+b(x+2)+c<0时,x+2<1或x+2>3,解得x<﹣1或x>1,故答案为:x<﹣1或x>1.【变式5-3】(2022•驿城区校级期末)如图,二次函数y=x2﹣4x+m的图象与y轴交于点C,点B是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.则满足kx+b≥x2﹣4x+m的x的取值范围是( )A.x≤1或x≥4B.1≤x≤4C.x≤1或x≥5D.1≤x≤5【分析】由二次函数解析式可得抛物线对称轴为直线x=2,从而可得点B横坐标,进而求解.【解答】解:∵y=x2﹣4x+m,∴抛物线对称轴为直线x=2,∵点B和点C关于直线x=2对称,∴点B横坐标为4,∵点A横坐标为1,∴1≤x≤4时,kx+b≥x2﹣4x+m,故选:B.【题型6 由二次函数与一次函数交点个数求范围】【例6】(2022•虞城县三模)已知抛物线y=a(x﹣2)2+c(a>0).(1)若抛物线与直线y=mx+n交于(1,0),(5,8)两点.①求抛物线和直线的函数解析式;②直接写出当a(x﹣2)2+c>mx+n时自变量x的取值范围.(2)若a=c,线段AB的两个端点坐标分别为A(0,3),B(3,3),当抛物线与线段AB有唯一公共点时,直接写出a的取值范围.【分析】(1)①利用待定系数法求解析式即可,②抛物线开口向上,数形结合直接写出答案;(2)结合抛物线和线段AB,分情况讨论求a的取值范围.【解答】解:(1)①∵抛物线y=a(x﹣2)2+c与直线y=mx+n交于(1,0),(5,8)两点,∴a+c=09a+c=8,m+n=05m+n=8,解得a=1c=−1,m=2n=−2,∴抛物线和直线的函数解析式分别为y=(x﹣2)2﹣1,y=2x﹣2.②∵a>0,抛物线开口向上,抛物线与直线y=mx+n交于(1,0),(5,8)两点,∴当a(x﹣2)2+c>mx+n时自变量x的取值范围为x<1或x>5.(2)若a=c,则抛物线y=a(x﹣2)2+a(a>0),∴开口向上,对称轴为x=2,顶点坐标为(2,a),当抛物线顶点在线段AB上时有唯一公共点,此时a=3,当抛物线顶点在线段AB下方时,当经过B(3,3)时,a+a=3,解得a=32,当经过A(0,3)时,4a+a=3,解得a=35,∴当抛物线与线段AB有唯一公共点时,a的取值范围为35≤a<32或a=3.【变式6-1】(2022•余姚市一模)已知:一次函数y1=2x﹣2,二次函数y2=﹣x2+bx+c(b,c为常数),(1)如图,两函数图象交于点(3,m),(n,﹣6).求二次函数的表达式,并写出当y1<y2时x的取值范围.(2)请写出一组b,c的值,使两函数图象只有一个公共点,并说明理由.【分析】(1)将(3,m),(n,﹣6)代入直线解析式求出点坐标,然后通过待定系数法求解,根据图象可得y1<y2时x的取值范围.(2)﹣x2+bx+c=2x﹣2,由Δ=0求解.【解答】解:(1)将(3,m)代入y1=2x﹣2得m=6﹣2=4,将(n,﹣6)代入y1=2x﹣2得﹣6=2n﹣2,解得n=﹣2,∴抛物线经过点(3,4),(﹣2,﹣6),将(3,4),(﹣2,﹣6)代入y2=﹣x2+bx+c得4=−9+3b+c−6=−4−2b+c,解得b=3 c=4,∴y=﹣x2+3x+4,由图象可得﹣2<x<3时,抛物线在直线上方,∴y1<y2时x的取值范围是﹣2<x<3.(2)令﹣x2+bx+c=2x﹣2,整理得x2+(2﹣b)x﹣(2+c)=0,当Δ=(2﹣b)2+4(2+c)=0时,两函数图象只有一个公共点,∴b=2,c=﹣2,满足题意.【变式6-2】(2022•河南模拟)小新对函数y=a|x2+bx|+c(a≠0)的图象和性质进行了探究.已知当自变量x的值为0或4时,函数值都为﹣3;当自变量x的值为1或3时,函数值都为0.探究过程如下,请补充完整.(1)这个函数的表达式为 y=|x2﹣4x|﹣3 ;(2)在给出的平面直角坐标系中,画出这个函数的图象并写出这个函数的一条性质: 函数关于直线x=2对称 ;(3)进一步探究函数图象并解决问题:①直线y=k与函数y=a|x2+bx|+c有三个交点,则k= 1 ;②已知函数y=x﹣3的图象如图所示,结合你所画的函数图象,写出不等式a|x2+bx|+c≤x﹣3的解集: x=0或3≤x≤5 .【分析】(1)将x=0,y=﹣3;x=4,y=﹣3;x=1,y=0代入y=a|x2+bx|+c(a≠0),得到:c=﹣3,b=﹣4,a=1,即可求解析式为y=|x2﹣4x|﹣3;(2)描点法画出函数图象,函数关于x=2对称;(3)①从图象可知:当x=2时,y=1,k=1时直线y=k与函数y=|x2﹣4x|﹣3有三个交点;②y=x﹣3与y=x2﹣4x﹣3的交点为x=0或x=5,结合图象,y=|x2﹣4x|﹣3≤x﹣3的解集为3≤x≤5.【解答】解:(1)将x=0,y=﹣3;x=4,y=﹣3;x=1,y=0代入y=a|x2+bx|+c(a≠0),得到:c=﹣3,b=﹣4,a=1,∴y=|x2﹣4x|﹣3,故答案为:y=|x2﹣4x|﹣3;(2)如图:函数关于直线x=2对称,故答案为:函数关于直线x=2对称;(3)①当x=2时,y=1,∴k=1时直线y=k与函数y=|x2﹣4x|﹣3有三个交点,故答案为1;②y=x﹣3与y=|x2﹣4x|﹣3的交点为x=0或x=3,结合图象,y=|x2﹣4x|﹣3≤x﹣3的解集为x=0或3≤x≤5,故答案为:x=0或3≤x≤5.x+t与函数y=【变式6-3】(2022•海珠区一模)令a、b、c三个数中最大数记作max{a,b,c},直线y=12 max{﹣x2+4,x﹣2,﹣x﹣2}的图象有且只有3个公共点,则t的值为 1或65 .16【分析】只需画出函数y=max{﹣x2+4,x﹣2,﹣x﹣2}的图象,然后结合图象并运用分类讨论的思想,就可解决问题.【解答】解:在直角坐标系中画出函数y=max{﹣x2+4,x﹣2,﹣x﹣2}的图象,如图所示.当直线y =12x +t 经过(﹣2,0)或与抛物线y =﹣x 2+4相切时,直线y =12x +t 与函数y =max {﹣x 2+4,x ﹣2,﹣x ﹣2}的图象有且只有3个公共点.①若直线y =12x +t 经过(﹣2,0),则有0=12×(﹣2)+t ,解得t =1;②若直线y =12x +t 与抛物线y =﹣x 2+4相切,则关于x 的方程12x +t =﹣x 2+4即x 2+12x +t ﹣4=0有两个相等的实数根,则△=(12)2﹣4×1×(t ﹣4)=0,解得t =6516.综上所述:t =1或6516.故答案为1或6516.。
九年级数学上册初三:二次函数专题训练(含答案)
1.如图,抛物线y =ax 2-4ax +b 交x 轴于A (1,0)、B 两点,交y 轴于C (0,3)(1) 求抛物线的解析式(2) 直线y =kx +4交y 轴与E ,交抛物线于P 、Q .若EQ =PE ,求k(3) 将直线AC 向右平移,平移后的直线交y 轴于点M ,交抛物线于点N .若AN =CM ,求点N 的坐标解:(1) y =x 2-4x +3(2) E (0,4)设P (x 1,y 1)、Q (x 2,y 2)∵EQ =PE∴x 1+x 2=0 联立⎪⎩⎪⎨⎧+=+-=4342kx y x x y ,整理得x 2-(k +4)x -1=0,∴x 1+x 2=k +4=0,k =-4 (3) 过点C 作CG ⊥MN 于G ,AH ⊥MN 于H∵MN ∥AC∴CG =AH∵AN =CM∴Rt △CMG ≌Rt △ANH (HL )∴∠CMG =∠ANH延长NA 交y 轴于点P∴∠P AC =∠ANH ,∠PCA =∠CMG∴∠P AC =∠PCA∴PC =P A设P (0,m ),则PC =3-m =P A ,在Rt △AOP 中,12+m 2=(3-m )2,m =34 ∴P (0,34) ∴直线P A 的解析式为3434+-=x y ,联立⎪⎩⎪⎨⎧+-=+-=3434342x x y x y ,解得x 1=35,x 2=1 由图可知,点N 在点A 的右侧∴x =35,∴N (9835-,)2.已知抛物线y =ax 2+2x +c 与x 轴交于A (-1,0)、B (3,0)两点,一次函数y =kx +b 的图象l 经过抛物线上的点C (m ,n )(1) 求抛物线的解析式(2) 若m =3,直线l 与抛物线只有一个公共点,求k 的值(3) 若k =-2m +2,直线l 与抛物线的对称轴相交于点D ,点P 在对称轴上.当PD =PC 时,求点P 的坐标解:(1)y =x 2+2x +3(2)l :y =kx -3k联立⎪⎩⎪⎨⎧-=++-=kkx y x x y 3322∴△=(k -2)2+4(3k +3)=0解得k =-4 (3)过点C 作CH ⊥DP 于点H∵k =-2m +2直线l 过点C (m ,n )∴n =-m 2+2m +3∴b =m 2+3∴l :y =(-2m +2)x +m 2+3点D 时直线l 与抛物线对称轴的交点当x =1时,y =-2m +2+m 2+3=8-n∴D (1,8-n )设点P (1,p ),则PD =8-n -p ,H =m -1,PH =p -n在Rt △PCH 中,PC =PD =8-n -p∴(8-n -p )2=(p -n )2+(m -1)2即(8-2n )(8-2p )=m 2-2m +1 ∵n =-m 2+2m +3∴2(4-n )(8-2p )=4-n∴2(8-2p )=1∴P =415 ∴P (1,415)3.已知二次函数y =x 2+bx -3(b 为常数)的图象经过点A (-1,0)(1) 若直线y =3x +n 与该抛物线交于点A 和点B ,求点B 的坐标(2) P (m ,t )为抛物线上的一个动点,P 关于原点的对称点为Q① 当点Q 落在该抛物线上时,求m 的值② 当点Q 落在第二象限内,QA 的平方取得最小值时,求m 的值解:(1) B (6,21)(2) 将P (m ,t )、Q (-m ,-t )代入y =x 2-2x -3中,得⎪⎩⎪⎨⎧-+=---=323222m m t m m t ,解得3±=m (2) ∵Q (-m ,-t )在第二象限∴-m <0,-t >0,得m >0,t <0∵抛物线的顶点为(1,-4)∴-4<t <0将P (m ,t )代入中,得t =m 2-2m -3∵Q (-m ,-t )、A (-1,0)∴QA 2=(-m +1)2+(-t )2=t 2+t +4=415)21(2++t 当21-=t 时,QA 2最小此时m 2-2m -3=21-,解得2142±=m ∴2142+=m 4.已知直线y =x +m 与抛物线y =x 2-2mx +m 2+2m 相交于A 、B 两点(A 在B 的左边) (1) 若m =-1① 求A 、B 两点的坐标② 点M 是抛物线上A 、B 之间的动点(不与A 、B 重合),MN ⊥x 轴,交直线y =x +m 于N .求当线段MN 取最大值时,点M 的坐标)解:(1)A (-1,-2)、B (0,-1)(2)设M (t ,t 2+2t -1)则N (t ,t -1)∴MN =-t 2-t =-(t +21)2+41 当t =-21时,MN =MNmax ∴P (-21,47)5.已知二次函数y =ax 2+bx -4a +2b(1) 二次函数图象过定点P ,则点P 的坐标为___________(2) 已知点A 的坐标为(0,1),连接AP ,将线段AP 绕点P 旋转90°得到线段BP .若点B 二次函数的图象上,求a 与b 的数量关系(3) 已知二次函数图象与一次函数y =bx -3b 的图象交于点)22(--b ab a ,,求二次函数的解析式解:(1)(-2,0)(2) ①若逆时针旋转时,B 1 (-3,2)代入解析式中2=a (-3)2+b (-3)-4a +2b∴9a -3b -4a +2b =2∴5a -b =2 (a ≠0)②若顺时针旋转时,B 2 (-1,-2)代入解析式中-2=a (-1)2+b (-1)-4a +2b∴-3a +b =2(a ≠0)(3)将2,2a b b a -⎛⎫-⎪⎝⎭分别代入y =bx -3b 和y =ax 2+bx -4a +2b 中 分别得到①2ab =2a -b 2②ab =2a ∵ab =2a ,a ≠0∴b =2 ③③代入①中∴a =-2∴ y =-2x 2+2x +126.已知抛物线l 1:y =-x 2+bx +3交x 轴于点A 、B (A 在B 的左侧),交y 轴于点C ,其对称轴为x =1,抛物线l 2经过点A ,与x 轴的另一个交点为E (5,0),与y 轴交于点D (0,-2)(1) 求抛物线l 2的函数表达式(2) P 为直线x =1上一点,连接P A 、PC .当P A =PC 时,求点P 的坐标(3) M 位抛物线l 2上一动点,过M 作直线MN ∥y 轴,交抛物线l 1于点N .求点M 从点A 运动至点E 的过程中,线段MN 长度的最大值解:(1)y =21x 2﹣2x ﹣25(2)设P 点坐标为(1,y ),由(1)可得C 点坐标为(0,3) ∴PC 2=12+(y ﹣3)2=y 2﹣6y +10,P A 2=[1﹣(﹣1)]2+y 2=y 2+4∵PC =P A∴y 2﹣6y +10=y 2+4,解得y =1∴P 点坐标为(1,1)(3)由题意可设M (x ,21x 2﹣2x ﹣25) ∵MN ∥y 轴,则N (x ,﹣x 2+2x +3),21x 2﹣2x ﹣25 令﹣x 2+2x +3=21x 2﹣2x ﹣25,可解得x =﹣1或x =311 ①当﹣1<x ≤311时 MN =(﹣x 2+2x +3)﹣(21x 2﹣2x ﹣25)=﹣23x 2+4x +211=﹣23(x ﹣34)2+649 显然﹣1<34≤311∴当x =34时,MN 有最大值649 ②当311<x ≤5时 MN =(21x 2﹣2x ﹣25)﹣(﹣x 2+2x +3)=23x 2﹣4x ﹣211=23(x ﹣34)2﹣649 显然当x >34时,MN 随x 的增大而增大 ∴当x =5时,MN 有最大值,23×(5﹣34)2﹣649=127.如图,抛物线y =ax 2+2ax +c 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),AB =4,与y 轴交于点C ,OC =OA ,点D 为抛物线的顶点(1) 求抛物线的解析式(2) 点M (m ,0)为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N ,可得矩形PQNM .如图,点P 在点Q 左边,当矩形PQNM 的周长最大时,求m 的值,并求出此时的△AEM 的面积(3) 已知H (0,-1),点G 在抛物线上,连HG ,直线HG ⊥CF ,垂足为F .若BF =BC ,求点G 的坐标解:(1) ∴y =-x 2-2x +3 (2) 直线AC 的解析式为y =x +3∵M (m ,0)∴N (-m -2,0)∴MN =-m -2-m =-2m -2∵P (m ,-m 2-2m +3)∴PM =-m 2-2m +3∴C 矩形PQNM =2(PM +MN )=-2m 2-8m +2=-2(m +2)2+10当m =-2时,C 矩形PQNM 有最大值为10此时,E (-2,1)∴S △AEM =21×1×1=21 (3) 延长FH 、CB 交于点P∵BF =BC∴B 为CP 的中点(实质为斜边中线的逆用)∴P (2,-3)直线HP 的解析式为y =-x -1联立⎪⎩⎪⎨⎧+--=--=3212x x y x y ,解得)(2171217121舍去,+-=--=x x ∴G (21172171---,)1.已知,抛物线C 1:y =x 2-mx +m 2+1的顶点为P(1) ① 抛物线C 1的顶点坐标为_____________(用含m 的式子表示)② 抛物线C 1的顶点始终在某条抛物线上运动,这条抛物线的解析式为_____________(2) 直线y =x +m 与抛物线C 1交于点M ,求点M 的坐标(3) ① 将m =2时,抛物线C 1的解析式为_____________② 将该抛物线向下平移5个单位,再向右平移1个单位,得到抛物线C 2,抛物线C 2与x 轴交于A 、B 两点(点A 在点B 的左侧) ,直线y =kx -3k +4与抛物线C 2交于E 、F 两点,求△BEF 的面积的最小值解:(1) ①P (143212+m m ,) ② y =3x 2+1(2) 联立⎪⎩⎪⎨⎧+=++-=mx y m mx x y 122,整理得x 2-(1+m )x +m 2+1-m =0 ∵△=(1+m )2-4(m 2+1-m )=-3(m -1)2≥0∴m =1方程可化为x 2-2x +1=0,解得x =1∴M (1,2)(3) ① y =x 2-2x +5② C 2的解析式为y =(x -2)2-1直线y =kx -3k +4过定点Q (3,4)∴BQ ∥y 轴∴S △BEF =21×BQ ×|x E -x F |=2|x E -x F | 联立⎪⎩⎪⎨⎧+-=+-=34432x x y k kx y ,整理得x 2-(4+k )x +3k -1=0 ∴x E +x F =k +4,x E x F =3k -1∴|x E -x F |=16)2()13(4)4(4)(222+-=--+=-+k k k x x x x F E F E当k =2时,有最小值为4,S △BEF 有最小值为8说明:最后一问还是m =22.如图,地物线y =ax 2-2ax -3与x 轴交于点A (﹣1,0)与点B ,顶点为P ,直线l :y =kx +6经过抛物线上一点C (m ,n )(1) 求抛物线的解析式(2) 若k =2m ,直线l 与抛物线交于另一点M ,过点M 作抛物线的对称轴的垂线,垂足为点G ,连接CG ,CG =MG ,求m 的值(3) 若k =m -4,直线与抛物线交于另一点D ,△PCD 的面积为6,求m 的值解:(1)y =x 2-2x -3(2)由(1)得n =m 2-2m -3,n =2m 2+b∴b =-m 2-2m -3∴l :y =2mx -m 2-2m -3联立⎪⎩⎪⎨⎧---=--=3223222m m mx y x x y 得x M =m +2,y M =m 2+2m -3 ∵CG =MG 抛物线对称轴为x =1∴(m +2-1)2=(1-m )2+(m 2+2m -3-m 2+2m +3)2解得m =0或41 (3)同(2)可得直线l 的解析式为y =(m -4)x +2m -3联立⎪⎩⎪⎨⎧-+-=--=32)4(322m x m y x x y 得x D =-2 设抛物线的对称轴与CD 交于点Q∴Q (1,3m -7)∵P (1,-4) ∴21|3m -7+4|·|m +2|=6 ∴m =-3或23.如图1,抛物线y =ax 2-2x -3与x 轴交于点A 、B (3,0),交y 轴于点C(1) 求a 的值(2) 过点B 的直线l 与(1)中的抛物线有且只有一个公共点,则直线l 的解析式为(3) 如图2,已知F (0,-7),过点F 的直线m :y =kx -7与抛物线y =x 2-2x -3交于M 、N 两点,当S △CMN =4时,求k 的值解:(1)a =1(2)x =3或y =4x -12(3)联立⎪⎩⎪⎨⎧-=--=7322kx y x x y 化简得:x 2-(2+k )x +4=0 ∴x M +x N =k +2,x M ·x N =4∵S △CMN =|S △CFN -S △CFM |=21CF |x M -x N |=4 ∴21×4×N M N M x x x x 42)(-+=4 ∴(k +2)2=20∴k =-2+25或-2-254.如图1,抛物线y =ax 2-4ax +3a (a >0)与x 轴交于A 、B 两点,与y 轴交于点C(1) 填空:A 点坐标是__________B 点坐标是__________(2) 当a =1时,如图1,将直线BC 沿y 轴向上平移交抛物线于M 、N ,交y 轴于点P ,求证:PM -PN 是定值(3) 当41=a 时,如图2,直线y =kx -3k +4与抛物线交E 、F 两点,求△BEF 的面积的最小值解:(1)A(1,0),B(3,0)(2)证明:作NF ⊥y 轴由F ,ME ⊥y 轴于Ea =1时,抛物线的解析式为y =x 2﹣4x +3 ∴BC :y =﹣x +3,设直线BC 平移后的解析式为y =﹣x +k易知△NPF ,△MEP 是等腰Rt △∴PN =2NF ,PM =2EM ,设N (x 1,y 1),M (x 2,y 2)联立⎪⎩⎪⎨⎧+-=+-=kx y x x y 342,化简得x 2﹣3x +3﹣k =0∴x 1+x 2=3 ∵PM ﹣PN =2(EM ﹣FN)=2[x 2﹣(﹣x 1)]=2(x 1+x 2)=32为定值(3)过点B 作BM ⊥AB 交EF 于M当a =41,抛物线的解析式为y =41x 2﹣x +43 ∵B (3,0)∴M (3,4),设E (x 1,y 1),F (x 2,y 2), 联立⎪⎩⎪⎨⎧+-=+-=4343412k kx y x x y 化简得x 2﹣(4+4k )x +12k ﹣13=0∴x 1+x 2=4+4k ,x 1x 2=12k ﹣13∵S △EFB =21•BM •[(x 2﹣3)+(3﹣x 1)]=2(x 2﹣x 1) =264)21(16268161624x 2221221+-=+-=-+k k k x x x )( ∴当k =21时,S △EFB min =161.如图,抛物线y =-41x 2+3x 与x 轴相交于点D ,直线y =(3-m ) x +m 2与y 轴相交于点B ,与抛物线有公共点A(1) 求证:直线AB 与抛物线只有唯一的公共点(2) 过点A 作AF ⊥x 轴于点F ,当∠ADF =60°时,求AF 的长(3) 如图2,E 为抛物线的顶点,BE 交抛物线于点H .当H 为BE 的中点时,求m 的值解:(1)﹣14x 2+3x =(3﹣m ) x +m 2 化简得x 2﹣4m x +4m 2=0 ∴△=0∴直线与抛物线只有唯一的公共点(2)由(1)知,点A 的横坐标为2m 当x =2m 时,y =﹣14 (2m )2+6m =6m -m 2∴AF =6m -m 2,OF =2m ∵D (12,0),∴FD =12-2m ∵∠ADF =60°,∴AF =3FD 即,3(12-2m )=6m -m 2 m 2-6m -23m +123=0 (m -6)(m -23)=0 m 1=6,m 2=2 3当m =6时,A (12,0)(舍)∴m =2 3 (3)点E (6,9),B (0,m 2) ∴BE :y =9-m 26x +m 2联立⎪⎪⎩⎪⎪⎨⎧+-=+-=22269341m x m y x x y 化简得﹣14 x 2+3x =692m -x +m 2 即41x 2+692m -x +m 2=0 ∵x =6是方程的一个根,设另一根为n ,则6n =4 m 2 ∴n =32m 2,即点H 的横坐标为32m 2 当H 为BE 的中点时,点E 的横坐标是H 的横坐标的2倍 ∴32m 2=9∴ m =±2232.如图,将函数y =x 2-2x (x ≥0)的图象沿y 轴翻折得到一个新的图象,前后两个图象其实就是函数y =x 2-2|x |的图象 (1) 观察思考:函数图象与x 轴有_____个交点,所以对应的方程x 2-2|x |=0有_____个实数根;方程x 2-2|x |=2有_____个实数根;关于x 的方程x 2-2|x |=a 有4个实数根时,a 的取值范围是_____ 拓展探究:① 如图2,将直线y =x +1向下平移b 个单位,与y =x 2-2|x |的图象有三个交点,求b 的值 ② 如图3,将直线y =kx (k >0)绕着原点旋转,与y =x 2-2|x |的图象交于A 、B 两点(A 左B 右),直线x =1上有一点P ,在直线y =kx (k >0)旋转的过程中,是否存在某一时刻,△P AB 是一个以AB 为斜边的等腰直角三角形(点P 、A 、B 按顺时针方向排列).若存在,请求出k 值;若不存在,请说明理由解:(1)3,3,2,﹣1<a <0(2)①设平移后的直线的解析式为y =x +1-b当直线y =x +1﹣b 经过原点或与抛物线y =x 2+2x 只有一个交点时,与y =x 2﹣2|x |的图象有三个交点∴1﹣b =0,b =1由⎪⎩⎪⎨⎧+=-+=x x y b x y 212∴x 2+x ﹣1+b =0,由题意△=0∴1﹣4(﹣1+b)=0∴b =45∴b =1或45 (3)中,作BE ⊥直线x =1于E ,AF ⊥直线x =1于F ∵∠AFP =∠PEB =∠APB =90°∴∠APF +∠P AF =90°,∠APF +∠BPE =90° ∴∠P AF =∠BPE ∵P A =PB ∴△P AF ≌△BPE ∴AF =PE ,PF =BE由⎪⎩⎪⎨⎧+==x x y kxy 22解得⎩⎨⎧==0011y x 或⎩⎨⎧-=-=)2(222k k y k x ∴A [k ﹣2,k (k ﹣2)] 由⎪⎩⎪⎨⎧-==x x y kxy 22解得⎩⎨⎧==0011y x 或⎩⎨⎧+=+=)2(222k k y k x ∴B [k +2,k(k +2)]∴BE =PF =k +1,AF =PE =3﹣k ∴P(1,k 2﹣3k ﹣1)∴k 2+2k ﹣(k 2﹣3k ﹣1)=3﹣k ∴k =313.如图,抛物线y =ax 2+bx +c (a ≠0)与直线y =x +1相交于A (-1,0)、B (4,m )两点,且抛物线经过点C (5,0) (1) 求抛物线的解析式(2) 点P 是抛物线上的一个动点(不与点A 、点B 重合),过点P 作直线PD ⊥x 轴于点D ,交直线AB 于点E① 当PE =2ED 时,求P 点坐标② 是否存在点P 使△BEC 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由解:(1)y =﹣x 2+4x +5(2)①设P (x ,﹣x 2+4x +5),则E (x ,x +1),D (x ,0) 则PE =|﹣x 2+4x +5﹣(x +1)|=|﹣x 2+3x +4|,DE =|x +1| ∵PE =2ED∴|﹣x 2+3x +4|=2|x +1|当﹣x 2+3x +4=2(x +1)时,解得x =﹣1(舍)或x =2 ∴P (2,9)当﹣x 2+3x +4=﹣2(x +1)时,解得x =﹣1(舍)或x =6 ∴P (6,﹣7) ∴P (2,9)或(6,﹣7)②设P (x ,﹣x 2+4x +5),则E (x ,x +1),且B (4,5),C (5,0)BE =2)51()4(22=-++-x x |x -4|,CE =2682)1()5(222+-=++-x x x x BC =26)05()54(22=++-当△BEC 为等腰三角形时,则有BE =CE 、BE =BC 或CE =BC 三种情况: 当BE =CE 时,则2|x -4|=26822+-x x ,解得x =43,此时P 点坐标为(43,16119) 当BE =BC 时,则2|x ﹣4|=26,解得x =4+13或x =4﹣13 此时P 点坐标为(4+13,﹣413﹣8)或(4﹣13,413﹣8) 当CE =BC 时,则26822+-x x =26,解得x =0或x =4(舍) 此时P 点坐标为(0,5)综上可知存在满足条件的点P ,其坐标为(43,16119)或(4+13,﹣413﹣8)或(4﹣13,413﹣8)或(0,5)4.如图,抛物线与x 轴交于点A 、B (3,0),与y 轴交于点C ,其顶点D 的坐标为(1,-4),P 为抛物线上x 轴下方一点 (1) 求抛物线的解析式(2) 若∠PCB =∠ACB ,求点P 的坐标(3) 过点P 的直线交抛物线于点E ,F 为抛物线上点E 的对称点,直线EP 、FP 分别交对称轴于点M 、N ,试探究DM 与DN 的数量关系,并说明理由解:(1) y =(x -1)2-4=x 2-2x -3(2)过点B 作BM ⊥AB 交CP 延长线于点M则△ABC ≌△MBC (SAS ) ∴BM =AB =4 ∴M (3,-4)∴y CM =-31x -3由⎪⎩⎪⎨⎧--=--=323312x x y x y 得⎪⎪⎩⎪⎪⎨⎧-==9323511y x 或⎩⎨⎧-==3022y x (舍)∴P (35,-932)(3) 设y EP =kx +b ,则M (1,k +b )由⎪⎩⎪⎨⎧--=+=322x x y bkx y 得x 2-(2+k )x -3-b =0∴x E +x p =2+k ① x E ·x P =-3-b ② 设y FP =mx +n , 则N (1, m +n )同理得x F +x P =2+m ③,x F ·x P =-3-n ④ ∵点E 、F 关于x =1对称 ∴x E +x F =2 ①+③得x P =22mk ++ ②+④得x P =26nb --- ∴2+k +m =-6-b -n 即k +m +4=-4-m -n又DM =k +m +4,DN =-4-m -n ∴DM =DN1.如图,抛物线与x 轴交于点A ,B (3,0),与y 轴交于点C ,其顶点D 的坐标为(1,-4),P 为抛物线上x 轴下方一点 (1) 求抛物线的解析式(2) 若∠PCB =∠ACB ,求点P 的坐标 (3) 若直线y =21x +a 与抛物线交于M ,N 两点,问:是否存在a 的值,使得∠MON =90°,若存在,求出a 的值;若不存在,请说明理由解:(1)y =x 2-2x -3(2)过点B 作BM ⊥AB 交CP 延长线于点M易证△ABC ≌△MBC (SAS ) ∴BM =AB =4M (3,-4)∴y CM =331--x联立⎪⎩⎪⎨⎧--=--=323312x x y x y 解得⎪⎪⎩⎪⎪⎨⎧-==9323511y x 或⎩⎨⎧-==3022y x (舍)∴P (35,932-) (3)假设a 存在,联立⎪⎩⎪⎨⎧--=+=32212x x y a x y 整理得2x 2-5x -6-2a =0 ∴x 1+x 2=25,x 1x 2=-a -3 又∵y 1=21x 1+a ,y 2=21x 2+a ∴y 1y 2=a 2+a -43 ∵∠MON =90°∴OM 2+ON 2=MN 2∴x 1x 2+y 1y 2=0 ∴-a -3+a 2+a -43=0解得a =215或-215∴存在a =215或-215使得∠MON =90°2.抛物线y =x 2+bx +c 过点A (4,5)、C (0,-3),其顶点为B (1) 求抛物线的解析式(2) P 在抛物线上,若∠BAP =45°,求P 点坐标(3) 过A 作x 轴的垂线,垂足为H ,过D (0,3)作直线,交抛物线于E 、F .若E 、F 到AH 的距离之和为7,求直线EF 的解析式解:(1)y =x 2-2x -3(2)作BH ⊥AP 于H 点∵y =x 2-2x ﹣3=(x ﹣1)2﹣4∴点B 的坐标为(1,﹣4)设H (m ,n ) AH 2=(m ﹣4)2+(n ﹣5)2,BH 2=(m ﹣1)2+(n +4)2,AB 2=(1﹣4)2+(﹣4﹣5)2=90 ∵∠BAP =45°∴△ABH 为等腰直角三角形 ∴(m ﹣4)2+(n ﹣5)2=(m ﹣1)2+(n +4)2∴m =4﹣3n∵(m ﹣4)2+(n ﹣5)2+(m ﹣1)2+(n +4)2=90∴n 2﹣n ﹣2=0,解得n 1=﹣1,n 2=2 当n =﹣1时,m =7,此时H (7,﹣1)∴AH :y =﹣2x +13 联立⎪⎩⎪⎨⎧--=+-=321322x x y x y 得⎩⎨⎧==54y x 或⎩⎨⎧=-=214y x ,此时P (﹣4,21)当n =2,m =﹣2,此时H (﹣2,2)∴AH :y =21x +3 联立⎪⎩⎪⎨⎧--=+=323212x x y x y 得⎩⎨⎧==5411y x 或⎪⎪⎩⎪⎪⎨⎧=-=492322y x ,此时P (﹣23,49)∴P (﹣23,49),(﹣4,21)(3)设EF :y =kx +3设E 、F 点的横坐标分别为x 1、x 2 ∵x 1、x 2为方程x 2﹣2x ﹣3=kx +3的两根方程整理得x 2﹣(k +2)x ﹣6=0∴x 1+x 2=k +2,x 1•x 2=﹣6 作EM ⊥MH 于M ,FN ⊥MH 于N当E 、F 点分别在直线MH 的左侧,则EM =4﹣x 1,FN =4﹣x 2 ∴4﹣x 1+4﹣x 2=7,即x 1+x 2=1 ∴k +2=1,解得k =﹣1 ∴EF :y =﹣x +3当E 、F 点分别在直线MH 的两侧(E 点在右侧),则EM =x 1﹣4,FN =4﹣x 2 ∴x 1﹣4+4﹣x 2=7,即x 1﹣x 2=7 ∴(x 1﹣x 2)2=49,即(x 1+x 2)2﹣4x 1x 2=49 ∴(k +2)2+24=49,解得k 1=﹣7(舍),k 2=3 ∴EF :y =3x +3∴EF :y =﹣x +3或y =3x +33.如图,在平面直角坐标系xOy 中,抛物线c bx x y ++-=221与x 轴交于A ,B 两点(A 左B 右),与y 轴交于点C (0,2),已知此抛物线的对称轴为直线23-=x (1) 求此抛物线的解析式(2) 如图1:已知P 为抛物线第二象限上的一点,是否存在这样的点P 使S △ACP =4,若存在,请求出点P 的坐标,若不存在,请说明理由(3) 如图2:连AB ,BC ,点Q 为抛物线第四象限上的一点,若∠QAB =∠BCO ,求点Q 的坐标3.已知抛物线y =x 2-2x -3与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C (1) 求A 、B 、C 三点的坐标(2) 经过A 、B 两点作⊙M ,交抛物线于点D (点D 在对称轴右侧).若∠DMB =90°,求点M 的坐标(3) 如图1,点Q 是抛物线对称轴上,纵坐标为415的点,点E 是对称轴上抛物线下方的动点,以点Q 为圆心,QE 为半径作圆交抛物线于点F (点F 在对称轴的右侧),求证:直线EF 抛物线有唯一公共点解:(1)A (-1,0)、B (3,0)、C (0,-3)(2)设抛物线的对称轴直线x =1与x 轴交于点N ,过点D 作DH ⊥直线x =1于点H ∴∠DHM =∠DMB =∠BNM =90°∴∠DMH =∠MBN 又∵BM =DM ∴△BNM ≌△MHD ∴BN =HM =2,设MN =DH =x ∴点D 的坐标为D (1+x ,2+x )又∵点D 在抛物线上 ∴(1+x )2-2(1+x )-3=2+x 整理得:x 2-x -6=0解得:x 1=3,x 2=-2(舍)∴x =3∴M (1,3)(3)过点F 作FH ⊥QE 于点H ,连接FQ 设F (a ,a 2-2a -3),E (1,n )则QE =QF =-415-n HQ =a 2-2a -3-(-415)=(a -1)2-41,HF =a -1在Rt △HQF 中,由勾股定理得[(a -1)2-41]2+(a -1)2=(-415-n )2 ∵QE =-415-n ,QE >0∴(a -1)2+41=-415-n ∴n =-(a -1)2-4∴E [1,-(a -1)2-4] 设EF :y =kx +b ,把点E [1,-(a -1)2-4],F (a ,a 2-2a -3)分别代入y =kx +b得:⎪⎩⎪⎨⎧--=+---=+4)1(4)1(22a b ak a b k 解得:⎪⎩⎪⎨⎧--=-=3)1(22a b a k 则直线EF 与抛物线的交点坐标即为上述方程组的解 消y 得:x 2-2ax +a 2=0 △=4a 2-4a 2=0∴直线EF 与抛物线只有唯一一个公共点4.已知抛物线C 1:y =x 2+(2m +1)x +m 2与y 轴交于点C ,顶点为点D(1) 若不论m 为何值,抛物线C 1的顶点D 均在某一函数的图形上,直接写出此函数的解析式 (2) 若抛物线C 1与x 轴的交点分别为M 、N (点M 在点N 的左边),设△MNC 的外接圆与y 轴的另一个交点为点Q ,求点Q 的坐标(3) 当m =1时,将抛物线C 1向下平移n (n >0)个单位,得到抛物线C 2,直线DC 与抛物线C 2交于A 、B 两点.若AD +CB =DC ,求n 的值解:(1) 41+=x y (2) 设△MNC 的圆心E (t m ,21--),则EF =t ,∵EN =2M N x x - ∴EN 2=41(x N -x M )2=m +41∴FN 2=EF 2+EN 2=t 2+m +41=r 2 又r 2=FC 2=(m +21)2+(t -m 2)2∴t 2+m +41=(m +21)2+(t -m 2)2,解得212+=m t∴OQ =2t -OC =m 2+1-m 2∴Q (0,1)(3) 当m =1时,抛物线的解析式为y =x 2+3x +1∴D (4523--,),C (0,1) ∴直线CD 的解析式为123+=x y ,抛物线C 2的解析式为y =x 2+3x +1-n 联立⎪⎩⎪⎨⎧+=-++=123132x y nx x y ,整理得0232=-+n x x ∴x A +x B =23,x A x B =-n ∵AD +BC =DC ∴AB =2CD =2133∴(x B -x A )2=4(x C -x D )2得9449=+n ,解得1627=n5.抛物线2812++-=bx x y (b >0)与x 轴交于A 、B 两点,交y 轴于C ,直线y =kx 与抛物线交于M 、N 两点(M 在y 轴右边,k >0),点C (0,2),点AO =2CO (1) 求此抛物线的解析式(2) 若△AMN 的面积为216时,求k 的值(3) 己知直线l :y =t (t >2),是否存在这样的t 的值,无论k 取何值,以MN 为直径的圆总与直线l 相切?若存在,求t 的值;若不存在,说明理由解:(1) y =-81x 2+2 (2)连AM 、AN ,则 S △AMN =S △AOM +S △AON=2k (x M -x N )联立⎪⎩⎪⎨⎧+-==2812x y kx y 得x 2+8kx -16=0 ∴x M +x N =-8k ,x M x N =-16 x M -x N =812+k∴16k 12+k =162解得k =1(3)∵MO =2222)281(MM N M x x y y ++-=+=2221)(--M x =81x M +2=4-y M 同理NO =4-y N ∴MN =8-(y M +y N )即r =4-2NM y y + 设圆心为G ,则y G =2N M y y +∴G 到l 的距离为d =t -2N M yy + 要使直线l 与⊙相切,则d =r ,∴t =4。
(必考题)初中九年级数学上册第二十二章《二次函数》经典练习题(含答案解析)
一、选择题1.已知函数221y x x =--,下列结论正确的是( )A .函数图象过点()1,1-B .函数图象与x 轴无交点C .当1≥x 时, y 随x 的增大而减小D .当1x ≤时, y 随x 的增大而减小D解析:D 【分析】根据二次函数的性质进行判断即可. 【详解】解:A 、当x=-1时,221y x x =--=1+2﹣1=2,函数图象过点(-1,2),此选项错误;B 、∵△=(﹣2)2﹣4×1×(﹣1)=8>0, ∴函数图象与x 轴有两个交点, 故此选项错误;C 、∵221y x x =--=(x ﹣1)2﹣2,且1>0,∴当x≥1时,y 随x 的增大而增大, 故此选项错误;D 、当x≤1,时,y 随x 的增大而减小,此选项正确, 故选:D . 【点睛】本题考查二次函数的性质、抛物线与x 轴的交点问题,熟练掌握二次函数的性质是解答的关键.2.将抛物线22y x =平移,得到抛物线22(4)1y x =-+,下列平移方法正确的是( ) A .先向左平移4个单位,在向上平移1个单位 B .先向左平移4个单位,在向下平移1个单位 C .先向右平移4个单位,在向上平移1个单位 D .先向右平移4个单位,在向下平移1个单位C 解析:C 【分析】先利用顶点式得到两抛物线的顶点式,然后通过点平移的规律得到抛物线平移的情况. 【详解】解:抛物线y=2x 2的顶点坐标为(0,0),抛物线y=2(x-4)2+1的顶点坐标为(4,1),而点(0,0)先向右平移4个单位,再向上平移1个单位可得到点(4,1),所以抛物线y=2x 2先向右平移4个单位,再向上平移1个单位得到抛物线y=2(x+4)2+1. 故选:C . 【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.3.如图,在ABC 中,∠B =90°,AB =3cm ,BC =6cm ,动点P 从点A 开始沿AB 向点B 以1cm /s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ △的面积S 随出发时间t 的函数图象大致是( )A .B .C .D .D解析:D 【分析】先根据运动速度和AB 、BC 的长可得t 的取值范围,再根据运动速度可得,2AP tcm BQ tcm ==,然后利用直角三角形的面积公式可得S 与t 之间的函数关系式,最后根据二次函数的图象特点即可得. 【详解】 设运动时间为ts ,点P 到达点B 所需时间为31AB s =,点Q 到达点C 所需时间为32BCs =, ∴点P 、Q 同时停止运动,且t 的取值范围为03t ≤≤,由题意,,2AP tcm BQ tcm ==,3AB cm =,()3BP AB AP t cm ∴=-=-,()21132322S BP BQ t t t t ∴=⋅=-⋅=-+, 则S 与t 之间的函数图象是抛物线在03t ≤≤的部分,且开口向下,观察四个选项可知,只有选项D 符合, 故选:D . 【点睛】本题考查了二次函数的图象,正确求出S 与t 之间的函数关系式是解题关键.4.若()14,A y -,()21,B y -,()30,C y 为二次函数2(2)3y x =-++的图象上的三点,则1y ,2y ,3y 的大小关系是( ) A .123y y y <= B .312y y y =<C .312 y y y <<D .123y y y =<B解析:B【分析】根据二次函数的解析式可得图象开口向下,对称轴为2x =-,故点()14,A y -与点()30,C y 关于对称轴对称,即13y y =,再根据点()21,B y -与点()30,C y 在对称轴右侧,y 随x 增大而减小即可得出结论. 【详解】解:二次函数2(2)3y x =-++的图象开口向下,对称轴为2x =-, ∴点()14,A y -与点()30,C y 关于对称轴对称, ∴13y y =,∵点()21,B y -与点()30,C y 在对称轴右侧,y 随x 增大而减小, ∴23y y >, ∴312y y y =<, 故选:B . 【点睛】本题考查二次函数的性质,根据二次函数解析式得到对称轴是解题的关键.5.已知二次函数22236y x ax a a =-+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( ) A .2a < B .1a >- C .12a -<≤ D .12a -≤<D解析:D 【分析】根据判别式的意义得到△=(-2a )2-4(a 2-3a+6)<0,解得a <2,再求出抛物线的对称轴为直线x=a ,根据二次函数的性质得到a≥-1,从而得到实数a 的取值范围是-1≤a <2. 【详解】解∵抛物线22236y x ax a a =-+-+与x 轴没有公共点,∴△=(-2a )2-4(a 2-3a+6)<0,解得a <2,∵抛物线的对称轴为直线x=-22a-=a ,抛物线开口向上, 而当x <-1时,y 随x 的增大而减小, ∴a≥-1,∴实数a 的取值范围是-1≤a <2. 故选:D . 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质. 6.下列各图象中有可能是函数()20y ax a a =+≠的图象( )A .B .C .D .B解析:B 【分析】从0a >和0a <两种情况进行分析图象的开口方向和顶点坐标,选出正确的答案. 【详解】解:当0a >时,开口向上,顶点在y 轴的正半轴; 当0a <时,开口向下,顶点在y 轴的负半轴, 故选:B . 【点睛】本题考查的是二次函数系数与图象的关系,熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标与系数的关系是解题的关键.7.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x =-+上的三点,1y ,2y ,3y 的大小关系为( ) A .123y y y >> B .132y y y >> C .321y y y >> D .312y y y >>A解析:A 【分析】根据二次函数的对称性、增减性即可得. 【详解】由二次函数的性质可知,当1x ≥-时,y 随x 的增大而减小, 抛物线2(1)y x =-+的对称轴为1x =-,∴0x =时的函数值与2x =-时的函数值相等,即为1y , ∴点()10y ,在此抛物线上,又点()21,B y ,()32,C y 在此抛物线上,且1012-<<<,123y y y ∴>>,故选:A . 【点睛】本题考查了二次函数的对称性、增减性,熟练掌握二次函数的性质是解题关键. 8.若二次的数2y ax bx c =++的x 与y 的部分对应值如下表: x 7-6- 5- 4-3-2-y27- 13-3-353A .5B .3-C .13-D .27-D解析:D 【分析】首先观察表格可得二次函数2y ax bx c =++过点(4,3)-与(2,3)-,则可求得此抛物线的对称轴,然后由对称性求得答案. 【详解】 解:二次函数2y ax bx c =++过点(4,3)-与(2,3)-,∴此抛物线的对称轴为:直线4(2)32x -+-==-, ∴横坐标为1x =的点的对称点的横坐标为7x =-, ∴当1x =时,27y =-.故选:D . 【点睛】此题考查了二次函数的对称性,根据表格中的数据找到对称轴是解题的关键. 9.已知一次函数y ax c =+与2y ax bx c =++,它们在同一坐标系内的大致图象是( )A .B .C .D .D解析:D 【分析】先根据各项中一次函数与二次函数的图象判断a 、c 的正负,二者一致的即为正确答案. 【详解】解:A 、由一次函数图象可得:a >0,c <0,由二次函数图象可得a <0,c >0,矛盾,故本选项不符合题意;B 、由一次函数图象可得:a >0,c >0,由二次函数图象可得a >0,c <0,矛盾,故本选项不符合题意;C 、由一次函数图象可得:a <0,c >0,由二次函数图象可得a >0,c >0,矛盾,故本选项不符合题意;D 、由一次函数图象可得:a <0,c >0,由二次函数图象可得a <0,c >0,故本选项符合题意; 故选:D . 【点睛】本题考查了一次函数与二次函数的图象与性质,属于常考题型,熟练掌握二者的图象是解题的关键.10.若关于x 的不等式组232x a x a ≥+⎧⎨<-⎩有解,则函数21(3)4y x x a =--+-图象与x 轴的交点个数为( )A .0个B .1个C .2个D .1或2个C解析:C 【分析】根据解不等式组的一般步骤得到a 的取值范围,然后求出函数21(3)4y x x a =--+-的判别式,根据根的判别式的正负即可得到图象与x 轴的交点个数. 【详解】解:∵关于x 的不等式组232x a x a ≥+⎧⎨<-⎩有解,∴3a-2>a+2, 即a >2, 令y=0,21(3)4x x a --+-=0, △=(-1)2-4×(a-3)×(-14)=a-2, ∵a >2, ∴a-2>0,∴函数图象与x 轴的交点个数为2. 故选:C . 【点睛】解答此题要熟知以下概念:(1)解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.(2)一元二次方程ax 2+bx+c=0(a≠0)的解与二次函数y=ax 2+bx+c 的关系.二、填空题11.抛物线y =﹣12(x +1)2+3的顶点坐标是_____.(﹣13)【分析】根据y =a (x ﹣h )2+k 的顶点是(hk )可得答案【详解】y =﹣(x+1)2+3的顶点坐标是(﹣13)故答案为:(﹣13)【点睛】本题考查了二次函数的性质熟记抛物线解析式的顶点式:解析:(﹣1,3) 【分析】根据y =a (x ﹣h )2+k 的顶点是(h ,k ),可得答案. 【详解】 y =﹣12(x+1)2+3的顶点坐标是(﹣1,3), 故答案为:(﹣1,3). 【点睛】本题考查了二次函数的性质.熟记抛物线解析式的顶点式:y =a (x−h )2+k ,顶点坐标为(h ,k )是解答此题的关键.12.已知二次函数2y ax bx c =++的图象过点(1,2)A ,(3,2)B ,(5,7)C .若点1(2,)M y ,2(1,)N y -,3(8,)K y 也在二次函数2y ax bx c =++的图象上,则1y ,2y ,2y 的从小到大的关系是___.【分析】根据点ABC 的坐标可得二次函数的对称轴和增减性由此即可得【详解】点在二次函数的图象上此二次函数的对称轴为点BC 的横坐标大小关系为纵坐标大小关系为当时y 随x 的增大而增大;当时y 随x 的增大而减小 解析:123y y y <<【分析】根据点A 、B 、C 的坐标可得二次函数的对称轴和增减性,由此即可得. 【详解】点(1,2)A ,(3,2)B ,(5,7)C 在二次函数2y ax bx c =++的图象上,∴此二次函数的对称轴为1322+=, 点B 、C 的横坐标大小关系为532>>,纵坐标大小关系为72,∴当2x ≥时,y 随x 的增大而增大;当2x <时,y 随x 的增大而减小,由二次函数的对称性得:1x =-时的函数值与5x =时的函数值相等,即为27y =, 又点1(2,)M y ,3(8,)K y 在二次函数2y ax bx c =++的图象上,且258,137y y ,即123y y y <<,故答案为:123y y y <<. 【点睛】本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.13.二次函数2y ax bx c =++的部分对应值如下表:利用二次函数的图象可知,当函数值时,的取值范围是______.表格给出的信息可看出对称轴为直线x =1a >0开口向上与x 轴交于(−10)(30)两点则y>0时x 的取值范围即可求出【详解】根据表格中给出的二次函数图象的信息对称轴为直线x =1a >0开口向解析:1x <-或3x > 【分析】由表格给出的信息可看出,对称轴为直线x =1,a >0,开口向上,与x 轴交于(−1,0)、(3,0)两点,则y>0时,x 的取值范围即可求出. 【详解】根据表格中给出的二次函数图象的信息,对称轴为直线x =1,a >0,开口向上,与x 轴交于(−1,0)、(3,0)两点,则当函数值y>0时,x 的取值范围是x<-1或x>3. 故答案为:x<-1或x>3. 【点睛】本题考查了二次函数的图象及其性质,正确掌握才能灵活运用.14.已知函数223y x x =--,当函数值y 随x 的增大而减小时,x 的取值范围是______.【分析】先求出函数图像的对称轴然后根据二次函数的增减性即可解答【详解】解:∵函数图像的对称轴为x=1∴当数值随的增大而减小故答案为【点睛】本题考查了二次函数的增减性确定二次函数的对称轴是解答本题的关键解析:1x <【分析】先求出函数图像的对称轴,然后根据二次函数的增减性即可解答. 【详解】解:∵函数223y x x =--图像的对称轴为x=1∴当1x <,数值y 随x 的增大而减小. 故答案为1x <. 【点睛】本题考查了二次函数的增减性,确定二次函数的对称轴是解答本题的关键.15.写出一个开口向下的二次函数的表达式______.(答案不唯一)【分析】根据二次函数开口向下二次项系数为负可据此写出满足条件的函数解析式【详解】解:二次函数的图象开口向下则二次项系数为负即a <0满足条件的二次函数的表达式为y=-x2故答案为:y=-解析:2y x =-(答案不唯一) 【分析】根据二次函数开口向下,二次项系数为负,可据此写出满足条件的函数解析式. 【详解】解:二次函数的图象开口向下, 则二次项系数为负,即a <0, 满足条件的二次函数的表达式为y=-x 2. 故答案为:y=-x 2(答案不唯一). 【点睛】本题主要考查二次函数的性质,二次函数的图象开口向下,二次项系数为负,此题比较简单.16.已知二次函数()210y ax bx a =++≠的图象与x 轴只有一个交点.请写出 一组满足条件的,a b 的值:a =__________,b =_________________【分析】根据判别式的意义得到△=b2-4a=0然后a 取一个不为0的实数再确定对应的b 的值【详解】解:∵二次函数y=ax2+bx+1(a≠0)的图象与x 轴只有一个交点∴△=b2-4a=0若a=1则b 可 解析:12【分析】根据判别式的意义得到△=b 2-4a=0,然后a 取一个不为0的实数,再确定对应的b 的值. 【详解】解:∵二次函数y=ax 2+bx+1(a≠0)的图象与x 轴只有一个交点, ∴△=b 2-4a=0, 若a=1,则b 可取2.故答案为1,2(答案不唯一). 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.17.二次函数2y ax bx c =++(a 、b 、c 为常数,0a ≠)中的x 与y 的部分对应值如下表:_______.(填序号即可)①0abc <;②若点()12,C y -,()2,D y π在该拋物线上,则12y y <;③4n a < ;④对于任意实数t ,总有()2496at bt a b +≤+.①②④【分析】根据表格数据求出二次函数的对称轴为直线x=然后根据二次函数的性质对各小题分析判断即可得解【详解】解:由图表知当x=0时y=3当x=3时y=3∴对称轴为且∴①∵∴异号故①正确;②对称轴为解析:①②④ 【分析】根据表格数据求出二次函数的对称轴为直线x=32,然后根据二次函数的性质对各小题分析判断即可得解. 【详解】解:由图表知,当x=0时,y=3,当x=3时,y=3 ∴对称轴为0+33=222b x a =-=,且3c =,3b a =- ∴23y ax bx =++ ①∵3b a =-,3c =∴a b ,异号,0abc <,故①正确;②对称轴为32x =,且当1x =-时,.y n = 将(1)n -,代入23y ax bx =++中得3a b n -+=, ∴3a b n -=- 又∵0n < ∴-0a b < 又∵a b ,异号, ∴0a <,0.b >∴23y ax bx =++的图象开口向下, ∵33|2|||22π-->- ∴12y y <,故②正确; ③∵3b a =-, 3.a b n -=- ∴(3)3a a n --=- ∴4 3.a n =-∴4.a n <,故③错误; ④当32x =时,y 有最大值, ∴最大值为3492a b c ++ ∴对任意实数t ,总有29342at bt c a b c ++≤++, ∴24()96at bt a b +≤+,故④正确, 故答案为:①②④. 【点睛】本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.18.抛物线y =x 2+2x-3与x 轴的交点坐标为____________________.【分析】要求抛物线与x 轴的交点即令y =0解方程即可【详解】令y =0则x2+2x ﹣3=0解得x1=﹣3x2=1则抛物线y =x2+2x ﹣3与x 轴的交点坐标是(﹣30)(10)故答案为:(﹣30)(10) 解析:()()3.0,1,0-【分析】要求抛物线与x 轴的交点,即令y =0,解方程即可. 【详解】令y =0,则x 2+2x ﹣3=0,解得x 1=﹣3,x 2=1.则抛物线y =x 2+2x ﹣3与x 轴的交点坐标是(﹣3,0),(1,0).故答案为:(﹣3,0),(1,0).【点睛】此题考察二次函数与一元二次方程的关系,一元二次方程的解即为二次函数图像与x 轴交点的横坐标.19.二次函数2y x bx c =++的图象如图所示,则一元二次方程28x bx c ++=-的根是____________.【分析】根据题目中的函数解析式可知当时从而可得到一元二次方程的根本题得以解决【详解】由图象可知当时即时∴一元二次方程的根是故答案为:【点睛】本题考查了二次函数与一元二次方程的关系解答本题的关键是明确解析:122x x ==-【分析】根据题目中的函数解析式可知,当8y =-时,2x =-,从而可得到一元二次方程28x bx c ++=-的根,本题得以解决.【详解】由图象可知,当8y =-时,2x =-,即2x =-时,28x bx c ++=-,∴一元二次方程28x bx c ++=-的根是122x x ==-,故答案为:122x x ==-.【点睛】本题考查了二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用数形结合的思想解答.20.如图,在平面直角坐标系中抛物线y =x 2﹣3x +2与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是对称轴右侧抛物线上一点,且tan ∠DCB =3,则点D 的坐标为_____.()【分析】根据抛物线y=x2﹣3x+2与x轴交于AB两点与y轴交于点C得A(10)B(20)C(02)过点B作BM⊥BC 交CD延长线于点M过点M作MG⊥x轴于点G易证等腰直角三角形OCB∽等腰直角解析:(715 ,24)【分析】根据抛物线y=x2﹣3x+2与x轴交于A、B两点,与y轴交于点C,得A(1,0),B(2,0),C(0,2),过点B作BM⊥BC交CD延长线于点M,过点M作MG⊥x轴于点G,易证等腰直角三角形OCB∽等腰直角三角形GBM,可得M(8,6),再求得直线CM的解析式为y=12x+2,联立直线和抛物线,解方程组即可得点D的坐标.【详解】解:∵抛物线y=x2﹣3x+2与x轴交于A、B两点,与y轴交于点C,∴解得A(1,0),B(2,0),C(0,2),∴OB=OC∴∠OBC=45°,如图,过点B作BM⊥BC交CD延长线于点M,过点M作MG⊥x轴于点G,∴∠COB=∠MGB=90°∴∠CBO+∠MBG=90°∴∠MBG=45°∴MG=BG∴等腰直角三角形OCB∽等腰直角三角形GBM∴BC BM =OC BG ∵tan ∠DCB =MB BC =3 ∴123BG= ∴BG =6∴MG =6 ∴M (8,6)设直线CM 解析式为y =kx +b ,把C (0,2),M (8,6)代入,解得k =12,b =2 所以直线CM 的解析式为y =12x +2 联立212232y x y x x ⎧=+⎪⎨⎪=-+⎩ 解得1102x y =⎧⎨=⎩,2272154x y ⎧=⎪⎪⎨⎪=⎪⎩∴D (715,24) 故答案为(715,24). 【点睛】本题考查了抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征、解直角三角形,解决本题的关键是掌握二次函数的性质.三、解答题21.某超市销售一种牛奶,进价为每箱36元,规定售价不低于进价.现在的售价为每箱60元,每月可销售100箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x 元(x 为正整数),每月的销量为y 箱.(1)写出y 与x 之间的函数关系式和自变量x 的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?解析:(1)10010y x =+,1≤x ≤24,且x 为整数;(2)超市定价为53元时,才能使每月销售牛奶的利润最大,最大利润是2890元.【分析】(1)根据价格每降低1元,平均每月多销售10箱,由每箱降价x 元,多卖10x ,据此可以列出函数关系式;(2)由利润=(售价-成本)×销售量列出函数关系式,求出最大值.【详解】解:(1)根据题意,得:y =100+10x ,由60﹣x ≥36得x ≤24,∴1≤x ≤24,且x 为整数;(2)设所获利润为W ,则W =(60﹣x ﹣36)(10x +100)=﹣10x 2+140x +2400=﹣10(x ﹣7)2+2890,∵此二次函数的二次项系数小于0,∴函数开口向下,有最大值,∴当x =7时,W 取得最大值,最大值为2890,此时售价为60-7=53(元),答:超市定价为53元时,才能使每月销售牛奶的利润最大,最大利润是2890元.【点睛】本题主要考查二次函数应用,由利润=(售价-成本)×销售量列出函数关系式求最值,用二次函数解决实际问题是解题的关键.22.如图,二次函数2y x bx c =++的图象与x 轴交于A 、B 两点,与y 轴交于点C ,OB OC =.点D 在函数图象上,//CD x 轴,且2CD =,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值.(2)如图①,连接BE ,线段OC 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标.(3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与BC 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得PQN 与APM △的面积相等,且线段NQ 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.解析:(1)2b =-,3c =-;(2)点F 坐标为(0,2)-;(3)存在,Q 的坐标为115,24⎛⎫- ⎪⎝⎭和315,24⎛⎫- ⎪⎝⎭ 【分析】(1)由条件可求得抛物线对称轴,则可求得b 的值;由OB=OC ,可用c 表示出B 点坐标,代入抛物线解析式可求得c 的值;(2)可设F (0,m ),则可表示出F′的坐标,由B 、E 的坐标可求得直线BE 的解析式,把F′坐标代入直线BE 解析式可得到关于m 的方程,可求得F 点的坐标;(3)设点P 坐标为(n ,0),可表示出PA 、PB 、PN 的长,作QR ⊥PN ,垂足为R ,则可求得QR 的长,用n 可表示出Q 、R 、N 的坐标,在Rt △QRN 中,由勾股定理可得到关于n 的二次函数,利用二次函数的性质可知其取得最小值时n 的值,则可求得Q 点的坐标,【详解】解:(1)∵CD//x 轴,2CD =,∴抛物线对称轴为直线:1l x =, ∴12b -=,即2b =-, ∵OB OC =,(0,)C c ,∴B 点坐标为(,0)c -, ∴202c c c =++,解得3c =-或0c(舍去); ∴3c =-.(2)设点F 坐标为(0,)m ,∵对称轴是直线:1l x =,∴点F 关于直线l 的对称点F '的坐标为(2,)m ,由(1)可知抛物线解析式为y=x 2-2x-3=(x-1)2-4,∴E (1,-4),∵直线BE 经过点(3,0)B ,(1,4)E -,∴直线BE 的表达式为26y x =-,∵点F '在BE 上,∴2262m =⨯-=-,即点F 坐标为(0,2)-.(3)存在点Q 满足题意.设点P 坐标为(,0)n ,则1PA n =+,3PB PM n ==-,223PN n n =-++, 如解图,连接QN ,过点Q 作QR PN ⊥,垂足为R ,∵PQN APM SS =, ∴1(1)(3)2n n +- ()21232n n QR =-++⋅, ∴1QR =,①点Q 在直线PN 的左侧时,Q 点坐标为()21,4n n n --,R 点坐标为()2,4n n n -,N 点坐标为()2,23n n n --,∴()2242323RN n n n n n =----=-+∴在Rt QRN 中,221(23)NQ n =+-,∴当3n 2=时,NQ 取得最小值1, 此时Q 点坐标为115,24⎛⎫-⎪⎝⎭; ②点Q 在直线PN 的右侧时,Q 点坐标为()21,4n n +-,同理21RNn =-,221(21)NQ n =+-, ∴当12n =时,NQ 取得最小值1, 此时Q 点坐标为315,24⎛⎫-⎪⎝⎭, 综上所述:满足题意的点Q 的坐标为115,24⎛⎫- ⎪⎝⎭和315,24⎛⎫- ⎪⎝⎭.【点睛】本题为二次函数的综合应用,涉及待定系数法、轴对称、三角形的面积、勾股定理、二次函数的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的对称轴是解题的关键,在(2)中用F 点的坐标表示出F′的坐标是解题的关键,在(3)中求得QR 的长,用勾股定理得到关于n 的二次函数是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.23.已知二次函数2(2)1y x =--,(1)确定抛物线开口方向、对称轴、顶点坐标;(2)如图,观察图象确定,x 取什么值时,①y >0,②y <0,③y =0.解析:(1)开口方向:向上,对称轴:直线x=2,顶点坐标:(2,-1);(2)①1x <或3x >时y>0,②13x <<时,y<0;③x=1或x=3时,y=0.【分析】(1)根据顶点式可直接推出抛物线开口方向、对称轴、顶点坐标;(2)令y=0,求出关于x 的方程的解,结合图象即可解答.【详解】解:(1)由于二次项系数为正数,则抛物线开口向上;根据顶点式可知,对称轴为x=2,顶点坐标为(2,-1).(2)令y=0,则原式可化为(x-2)2-1=0,移项得,(x-2)2=1,开方得,x-2=±1,解得x 1=1,x 2=3.则与x 轴的交点坐标为(1,0),(3,0).如图:①当x <1或x >3时,y >0;②当x=1或x=3时,y=0;③当1<x <3时,y <0.【点睛】本题考查了二次函数的性质,熟悉顶点式及正确画出图象,利用数形结合是解题的关键. 24.在“万众创业、大众创新”的新时代下,大学毕业生小张响应国家号召,开办了家饰品店,该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:售价每下降1元每月要多卖20件,为了获得更大的利润且让利给顾客,现将饰品售价降价x (元/件)(且x 为整数),每月饰品销量为y (件),月利润为w (元).(1)写出y 与x 之间的函数解析式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润等于6000元时,应如何确定销售价格.解析:(1)y =300+20x ;(2)当售价为57元时,利润最大,最大利润为6120元;(3)将销售价格为55元,才能使每月利润等于6000元.【分析】(1)由售价每下降1元每月要多卖20件,可得y 与x 之间的函数解析式;(2)由月利润=单件利润×数量,可得w 与x 的函数解析式,由二次函数的性质可求解; (3)将w=6000代入解析式,解方程可求解.【详解】(1)由题意可得:30020y x =+;(2)由题意可得:()()2203002020( 2.5)6125w x x x =-+=--+, 由题意可知x 应取整数,当2x =或3元时,w 有最大值,∵让利给顾客,∴3x =,即当售价为57元时,利润最大,∴最大利润为6120元;(3)由题意,令w=6000,即25600020()61252x =--+,解得10x =(舍去),25x =,故将销售价格为55元,才能使每月利润等于6000元.【点睛】本题考查了二次函数的应用,一元二次方程的应用,二次函数的性质,找出正确的函数关系式是本题的关键.25.若二次函数2y ax bx c =++的x 与y 的部份对应值如下表:(2)画出此函数图象(不用列表);(3)结合函数图象,当41x -≤<时,直接写出y 的取值范围.解析:(1)y =−x 2−2x +3;(2)见详解;(3)−5≤y≤4.【分析】(1)利用表中数据和抛物线的对称性可得到抛物线的顶点坐标为(−1,4),则可设顶点式y =a (x +1)2+4,然后把(0,3)代入求出a 的值即;(2)利用描点法画二次函数图象;(3)观察函数函数图象,当41x -≤<时,函数的最大值为4,于是可得到y 的取值范围为−5≤y≤4.【详解】解:(1)由表知,抛物线的顶点坐标为(−1,4),设y =a (x +1)2+4,把(0,3)代入得a (0+1)2+4=3,解得a =−1,∴抛物线的解析式为y =−(x +1)2+4,即y =−x 2−2x +3;(2)如图,(3)如图:当−4≤x <1时,−5≤y≤4.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.26.在平面直角坐标系xOy 中,抛物线2223y x nx n n =-++-与y 轴交于点C ,与x 轴交于点,A B ,点A 在B 的左边,x 轴正半轴上一点D ,满足.OD OA OB =+(1)①当2n =时,求点D 的坐标和抛物线的顶点坐标;②当2AB BD =时,求n 的值;(2)过点D 作x 轴的垂线交抛物线于P ,作射线CP ,若射线CP 与x 轴没有公共点,直接写出n 的取值范围.解析:(1)①()4,0D ,顶点为()2,1-;②2n =或0n =;(2)11322n n <<<-或 【分析】(1)①把n=2代入2223y x nx n n =-++-求得243y x x =-+经过配方即可求得顶点坐标;再令y=0,求出x 的值,可得A ,B 的坐标,根据OD OA OB =+可求出点D 的坐标;②设点A 的坐标为(x 1,0),点B 的坐标为(x 2,0),根据2AB BD =列式求解即可; (2)首先求出点P 的坐标,再根据抛物线与x 轴有两个交点以及点P 的纵坐标大于0求出n 的取值范围即可.【详解】(1)①把2n =代入2223y x nx n n =-++-,得243y x x =-+配方得,()221y x =--∴顶点为()2,1-令0y =,则()221=0x --解得,1x =或3,即点()()1,0,3,0,A B∴OA=1,OB=3∵.OD OA OB =+∴OD=4∴()4,0D②设点A 的坐标为(x 1,0),点B 的坐标为(x 2,0),则有, 12=2bx x n α+=,2123b x n n ax ==+-, 2222121212()24x x x x x x n +=++=,2222224226226x x n n n n n +=--+=-+22222121212()2226226124x x x x x x n n n n n -=+-=-+--+=-∴21AB x x =-=122OA OB x x n +=+=222BD OD OB n x n n n =-=-=-=∵2AB BD = ∴2(n =解得,n=2,n=-6当n=-6时,点D 在点B 的左侧,不合题意,舍去,∴n=2;当点A 在x 轴负半轴,B 在x 轴正半轴上时,2AB OA =即OB OA =所以,抛物线对称轴为y 轴,此时0n =综上所述,2n =或0n =(3)∵CP 与x 轴没有公共点,∴CP//x 轴或CP 斜向上,当x=0时,23y n n =+-∴点P 的纵坐标为23n n +-,代入2223y x nx n n =-++-得 220-=x nx ,解得,0x =(舍去),2x n =,∴2(2,3)P n n n +-∴23n n +->0, ∴2113()24n +>解得,122n +>或122n +<-,即,12n >或12n <- ∵抛物线2223y x nx n n =-++-与x 轴交于点,A B ,∴△=22(2)4(3)0n n n --+->,解得,3n <,∴n 3n n <<<或 【点睛】本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用函数图象,从而求出相关字母的取值. 27.地摊经济开放以来,小王以每个40元的价格购进一种玩具,计划以每个60元的价格销售,后来为了尽快回本决定降价销售.已知这种玩具销售量y (个)与每个降价x (元)(020x <<)之间满足一次函数关系,其图象如图所示.(1)求y 与x 之间的函数解析式.(2)该玩具每个降价多少元时,小王获利最大?最大利润是多少元?解析:(1)()10100020y x x =+<<;(2)每个降价5元时,获利最大,最大利润是2250元【分析】(1)由待定系数法可以得到解答;(2)由题意可以得到获利与降价之间的函数关系,根据所得函数的性质即可得到答案.【详解】解:(1)设y 与x 之间的函数解析式为y kx b =+,当1x =时,110y =;当4x =时,140y =,∴110,4140,k b k b +=⎧⎨+=⎩解得10,100,k b =⎧⎨=⎩ ∴y 与x 之间的函数解析式为()10100020y x x =+<<.(2)设该玩具每个降价x 元时,小王获利最大,最大利润是w 元.根据题意得()()2604010100101002000w x x x x =--+=-++, ∴()21052250w x =--+, 故该玩具每个降价5元时,小王获利最大,最大利润是2250元.【点睛】本题考查一次函数与二次函数的综合运用,由题意得到有关变量的函数解析式是解题关键.28.如图,已知二次函数21y ax bx =+-的图象经过点D (-1,0)和C (4,5). (1)求二次函数的解析式;(2)在同一坐标系中画出直线1y x =+,并写出当x 在什么范围内时,一次函数的值大于二次函数的值.。
九年级数学二次函数专题训练含答案解析-精选5份
九年级数学上册《二次函数》专题测试题(附答案)一.选择题(共8小题,满分32分)1.若y=(a+1)x|a+3|﹣x+3是关于x的二次函数,则a的值是()A.1B.﹣5C.﹣1D.﹣5或﹣12.下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论错误的是()A.当x>0时,y随x的增大而减小B.该函数的图象一定经过点(0,1)C.该函数图象的顶点在函数y=x2+1的图象上D.该函数图象与函数y=﹣x2的图象形状相同3.已知:抛物线的解析式为y=﹣3(x﹣2)2+1,则抛物线的对称轴是直线()A.x=﹣1B.x=1C.x=2D.x=﹣24.将二次函数y=2x2向左平移5个单位,再向上平移3个单位,所得新抛物线表达式为()A.y=2(x+5)2﹣3B.y=2(x+5)2+3C.y=2(x﹣5)2﹣3D.y=2(x﹣5)2+35.二次函数y=ax2+bx+c的图象如图所示,下列结论:(1)4ac<b2;(2)abc<0;(3)2a+b<0;(4)(a+c)2<b2其中正确的个数是()A.1B.2C.3D.46.已知抛物线y=ax2+4ax﹣8与直线y=n相交于A,B两点(点A在点B左侧),AB=4,且抛物线与x轴只有一个交点,则n的值为()A.﹣8B.﹣4C.4D.87.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个整数根,其中一个根是3,则另一个根是()A.﹣5B.﹣3C.﹣1D.38.物理课上我们学习了竖直上抛运动,若从地面竖直向上抛一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示,下列结论:①小球在空中经过的路程是40m②小球抛出3s后,速度越来越快③小球抛出3s时速度为0④小球的高度h=30m时,t=1.5s其中正确的是()A.①②③B.①②C.②③④D.②③二.填空题(共8小题,满分32分)9.已知抛物线y=x2+bx+c关于直线x=2对称,设x=1,2,4时对应的函数值依次为y1,y2,y4,那么y1,y2,y4的大小关系是.(用“<”连接)10.已知抛物线y=ax2﹣2ax﹣1(a<0)(I)抛物线的对称轴为;(2)若当﹣2≤x≤2时,y的最大值是1,求当﹣2≤x≤2时,y的最小值是.11.已知二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),则关于x 的一元二次方程ax2﹣2ax+c=0的两根之积是.12.已知二次函数y=﹣x2+4x+5及一次函数y=﹣x+b,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线y=﹣x+b与新图象有4个交点时,b的取值范围是.13.将抛物线y=﹣(x﹣3)2﹣1向右平移5个单位,再向上平移2个单位,所得的抛物线的解析式为.14.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),则方程ax2﹣bx﹣c=0的解是.15.抛物线y=ax2+bx+tc(a<0)交x轴于点A、B,交y轴于点C(0,3),其中点B坐标为(1,0),同时抛物线还经过点(2,﹣5).(1)抛物线的解析式为;(2)设抛物线的对称轴与抛物线交于点E,与x轴交于点H,连接EC、EO,将抛物线向下平移n(n>0)个单位,当EO平分∠CEH时,则n的值为.16.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y (个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为元(利润=总销售额﹣总成本).三.解答题(共6小题,满分56分)17.已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.18.对于向上抛的物体,如果空气阻力忽略不计,有下面的关系式:h=v0t﹣gt2(h是物体离起点的高度,v0是初速度,g是重力系数,取10m/s2,t是抛出后经过的时间).杂技演员抛球表演时,以10m/s的初速度把球向上抛出.(1)球抛出后经多少秒回到起点?(2)几秒后球离起点的高度达到1.8m?(3)球离起点的高度能达到6m吗?请说明理由.19.在平面直角坐标系中,已知二次函数y=ax2+(a﹣1)x﹣1.(1)若该函数的图象经过点(1,2),求该二次函数图象的顶点坐标.(2)若(x1,y1),(x1,y2)为此函数图象上两个不同点,当x1+x2=﹣2时,恒有y1=y2,试求此函数的最值.(3)当a<0且a≠﹣1时,判断该二次函数图象的顶点所在象限,并说明理由.20.某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?21.如图,抛物线y=﹣x2+bx+c过点A(4,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点D、N.(1)求直线AB的表达式和抛物线的表达式;(2)若DN=3DM,求此时点N的坐标;(3)若点P为直线AB上方的抛物线上一个动点,当∠ABP=2∠BAC时,求点P的坐标.22.如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,﹣2),点C(0,﹣5),顶点为点M,过点A作AB∥x轴,交y轴于点D,交二次函数y=x2+bx+c的图象于点B,连接BC.(1)求该二次函数的表达式及点M的坐标;(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)若E为线段AB上一点,且BE:EA=3:1,P为直线AC上一点,在抛物线上是否存在一点Q,使以B、P、E、Q为顶点的四边形是平行四边形?若存在,请直接写出点Q的横坐标;若不存在,请说明理由.参考答案一.选择题(共8小题,满分32分)1.解:∵函数y=(a+1)x|a+3|﹣x+3是关于x的二次函数,∴|a+3|=2且a+1≠0,解得a=﹣5,故选:B.2.解:A.∵y=﹣(x﹣m)2+m2+1(m为常数),∴抛物线开口向下,对称轴为直线x=m,∴x>m时,y随x增大而减小,故A错误,符合题意;∵当x=0时,y=1,∴该函数的图象一定经过点(0,1),故B正确,不合题意;∵y=﹣(x﹣m)2+m2+1,∴抛物线顶点坐标为(m,m2+1),∴抛物线顶点在抛物线y=x2+1上,故C正确,不合题意;∵y=﹣(x﹣m)2+m2+1与y=﹣x2的二次项系数都为﹣1,∴两函数图象形状相同,故D正确,不合题意.故选:A.3.解:∵y=﹣3(x﹣2)2+1,∴抛物线对称轴为直线x=2.故选:C.4.解:将二次函数y=2x2向左平移5个单位,再向上平移3个单位,所得新抛物线表达式为y=2(x+5)2+3,故选:B.5.解:根据图象知道抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac<b2,故(1)正确.∵抛物线开口朝下,∴a<0,∵对称轴在y轴右侧,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,故(2)正确;∵对称轴x=﹣>1,∴2a+b>0,故(3)错误;根据图象知道当x=1时,y=a+b+c>0,根据图象知道当x=﹣1时,y=a﹣b+c<0,∴(a+c)2﹣b2=(a+c+b)(a+c﹣b)<0,故(4)正确;故选:C.6.解:∵抛物线与x轴只有一个交点,∴a≠0且Δ=16a2﹣4a×(﹣8)=0,∴a=﹣2,∴抛物线解析式为y=﹣2x2﹣8x﹣8,∵抛物线的对称轴为直线x=﹣=﹣2,而AB平行x轴,AB=4,∴A点的横坐标为﹣4,B点的横坐标为0,当x=0时,y=﹣8,∴n的值为﹣8.故选:A.7.解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴二次函数y=ax2+bx+c的图象与直线y=﹣m的一个交点的横坐标为3,∵对称轴是直线x=﹣1,∴二次函数y=ax2+bx+c的图象与直线y=﹣m的另一个交点的横坐标为﹣5,∴关于x的方程ax2+bx+c+m=0(m>0)的另一个根是﹣5,故选:A.8.解:①由图象知小球在空中达到的最大高度是40m;故①错误;②小球抛出3秒后,速度越来越快;故②正确;③小球抛出3秒时达到最高点即速度为0;故③正确;④设函数解析式为:h=a(t﹣3)2+40,把O(0,0)代入得0=a(0﹣3)2+40,解得,∴函数解析式为,把h=30代入解析式得,,解得:t=4.5或t=1.5,∴小球的高度h=30m时,t=1.5s或4.5s,故④错误;故选D.二.填空题(共8小题,满分32分)9.解:∵抛物线y=x2+bx+c的开口向上,对称轴是直线x=2,∴当x=2时取最小值,又|1﹣2|<|4﹣2|,∴y1<y4,故答案为:y2<y1<y4.10.解:(1)抛物线的对称轴为:直线x=﹣=1,故答案为:直线x=1;(2)∵抛物线y=ax2﹣2ax﹣1=a(x﹣1)2﹣a﹣1(a<0),∴该函数图象的开口向下,对称轴是直线x=1,当x=1时,取得最大值﹣a﹣1,∵当﹣2≤x≤2时,y的最大值是1,∴x=1时,y=﹣a﹣1=1,得a=﹣2,∴y=﹣2(x﹣1)2+1,∵﹣2≤x≤2,∴x=﹣2时,取得最小值,此时y=﹣2(﹣2﹣1)2+1=﹣17,故答案为:﹣17.11.解:∵二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),∴该函数的对称轴是直线x=﹣=1,∴该函数图象与x轴的另一个交点坐标为(3,0),∴关于x的一元二次方程ax2﹣2ax+c=0的两实数根是x1=﹣1,x2=3,∴两根之积为﹣3,故答案为:﹣3.12.解:如图,当y=0时,﹣x2+4x+5=0,解得x1=﹣1,x2=5,则A(﹣1,0),B(5,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+1)(x﹣5),即y=x2﹣4x﹣5(﹣1≤x≤5),当直线y=﹣x+b经过点A(﹣1,0)时,1+b=0,解得b=﹣1;当直线y=﹣x+b与抛物线y=x2﹣4x﹣5(﹣1≤x≤5)有唯一公共点时,方程x2﹣4x﹣5=﹣x+b有相等的实数解,解得b=﹣,所以当直线y=﹣x+b与新图象有4个交点时,b的取值范围为﹣<b<﹣1.故答案为:﹣<b<﹣1.13.解:将抛物线y=﹣(x﹣3)2﹣1向右平移5个单位,再向上平移2个单位,所得的抛物线的解析式为y=﹣(x﹣3﹣5)2﹣1+2,即y=﹣(x﹣8)2+1,故答案为:y=﹣(x﹣8)2+1.14.解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),∴方程ax2=bx+c的解为x1=﹣3,x2=1,∴ax2﹣bx﹣c=0的解是x1=﹣3,x2=1,故答案为:x1=﹣3,x2=1.15.解:(1)将点C(0,3)、B(1,0)、(2,﹣5)代入抛物线y=ax2+bx+tc中,得:a+b+c=0,c=3,4a+2b+c=﹣5;解得:a=﹣1,b=﹣2,c=3,∴抛物线的解析式为y=﹣x2﹣2x+3.(2)抛物线向下平移n个单位后,E为(﹣1,4﹣n),C为(0,3﹣n),∴EC=,∵CO∥EH,∴当CO=CE=时,∠CEO=∠COE=∠OCH,∴3﹣n=或n﹣3=,即n=3﹣或3+.16.解:当10≤x≤20时,设y=kx+b,把(10,20),(20,10)代入可得:,解得,∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=﹣x+30,设该食品零售店每天销售这款冷饮产品的利润为w元,w=(x﹣8)y=(x﹣8)(﹣x+30)=﹣x2+38x﹣240=﹣(x﹣19)2+121,∵﹣1<0,∴当x=19时,w有最大值为121,故答案为:121.三.解答题(共6小题,满分56分)17.解:(1)将(2,4)代入y=x2+mx+m2﹣3得4=4+2m+m2﹣3,解得m1=1,m2=﹣3,又∵m>0,∴m=1.(2)∵m=1,∴y=x2+x﹣2,∵Δ=b2﹣4ac=12+8=9>0,∴二次函数图象与x轴有2个交点.18.解:∵初速度为10m/s,g取10m/s2,∴h=10t﹣×10t2=10t﹣5t2,(1)当h=0时,10t﹣5t2=0,解得t=0或t=2,∴球抛出后经2秒回到起点;(2)当h=1.8时,10t﹣5t2=1.8,解得t=0.2或t=1.8,∴0.2秒或1.8秒后球离起点的高度达到1.8m;(3)球离起点的高度不能达到6m,理由如下:若h=6,则10t﹣5t2=6,整理得5t2﹣10t+6=0,Δ=(﹣10)2﹣4×5×6=﹣20<0,∴原方程无实数解,∴球离起点的高度不能达到6m.19.解:(1)∵函数图象过点(1,2),∴将点代入y=ax2+(a﹣1)x﹣1,解得a=2,∴二次函数的解析式为y=2x2+x﹣1,∴x=﹣=﹣,∴y=2×﹣﹣1=﹣,∴该二次函数的顶点坐标为(﹣,﹣);(2)函数y=ax2+(a﹣1)x﹣1的对称轴是直线x=﹣,∵(x1,y1),(x2,y2)为此二次函数图象上的两个不同点,且x1+x2=﹣2,则y1=y2,∴﹣===﹣1,∴a=﹣1,∴y=﹣x2﹣2x﹣1=﹣(x+1)2≤0,∴当x=﹣1时,函数有最大值0;(3)∵y=ax2+(a﹣1)x﹣1,∴由顶点公式得:x=﹣=﹣+,y==﹣,∵a<0且a≠﹣1,∴x<0,y>0,∴该二次函数图象的顶点在第二象限.20.解:(1)设一次函数的关系式为y=kx+b,由题图可知,函数图象过点(25,50)和点(35,30).把这两点的坐标代入一次函数y=kx+b,得,解得,∴一次函数的关系式为y=﹣2x+100;(2)根据题意,设当天玩具的销售单价是x元,由题意得,(x﹣10)×(﹣2x+100)=600,解得:x1=40,x2=20,∴当天玩具的销售单价是40元或20元;(3)根据题意,则w=(x﹣10)×(﹣2x+100),整理得:w=﹣2(x﹣30)2+800;∵﹣2<0,∴当x=30时,w有最大值,最大值为800;∴当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元.21.解:(1)设直线AB的解析式为y=px+q,把A(4,0),B(0,2)代入得,,解得,∴直线AB的解析式为y=﹣x+2;把A(4,0),B(0,2)代入y=﹣x2+bx+c得,,解得;∴抛物线解析式为y=﹣x2+x+2;(2)∵MN⊥x轴,M(m,0),点D在直线AB上,点N在抛物线上,∴N(m,﹣m2+m+2),D(m,﹣m+2),∴DN=﹣m2+2m,DM=﹣m+2,∵DN=3DM,∴﹣m2+2m=3(﹣m+2),解得m=3或m=4(舍),∴N(3,2).(3)如图,作点B关于x轴的对称点B′,∴OB=OB′,B′(0,﹣2),∵∠AOB=∠AOB′=90°,OA=OA,∴△AOB≌△AOB′,∴∠OAB′=∠OAB,∴∠BAB′=2∠BAC,∵A(4,0),B′(0,﹣2),∴直线AB′的解析式为:y=x﹣2,过点B作BP∥AB′交抛物线于点P,则∠ABP=∠BAB′=2∠BAC,即点P即为所求,∴直线BP的解析式为:y=x+2,令x+2=﹣x2+x+2,解得x=2或x=0(舍),∴P(2,3).22.解:(1)将点A(3,﹣2),点C(0,﹣5)代入y=x2+bx+c,∴,解得,∴y=x2﹣2x﹣5,∴M(1,﹣6);(2)平移后的函数解析式为y=(x﹣1)2﹣6+m,∴平移后的顶点坐标为(1,m﹣6),∴抛物线的顶点在x=1的直线上,设直线CA的解析式为y=kx+b,∴,∴,∴y=x﹣5,当x=1时,y=﹣4,∴﹣4<m﹣6<﹣2,解得2<m<4;(3)存在一点Q,使以B、P、E、Q为顶点的四边形是平行四边形,理由如下:当y=﹣2时,x2﹣2x﹣5=﹣2,解得x=﹣1或x=3,∴B(﹣1,﹣2),∴AB=4,∵BE:EA=3:1,∴AE=1,∴E(2,﹣2),设P(t,t﹣5),Q(x,x2﹣2x﹣5),①当BE为平行四边形的对角线时,,解得或,∴Q(,)或(,);②当BP为平行四边形的对角线时,,解得或,∴Q(,)或(,);③当BQ为平行四边形的对角线时,,此时无解;综上所述:Q点坐标为(,)或(,)或(,)或(,).九年级数学上册二次函数的图象与性质练习题(附答案)一.选择题1.如果在二次函数的表达式y=ax2+bx+c中,a>0,b<0,c<0,那么这个二次函数的图象可能是()A.B.C.D.2.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.﹣2B.2C.±2D.03.已知A(,y1),B(2,y2),C(﹣,y3)是二次函数y=3(x﹣1)2+k图象上三点,则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y2>y1D.y2>y3>y1 4.二次函数的部分图象如图所示,对称轴是直线x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+35.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.6.关于抛物线y=﹣x2+2x﹣3的判断,下列说法正确的是()A.抛物线的开口方向向上B.抛物线的对称轴是直线x=﹣1C.抛物线对称轴左侧部分是下降的D.抛物线顶点到x轴的距离是27.已知二次函数y=x2﹣4x+5(0≤x≤3),则它的最大值是()A.1B.2C.3D.58.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x<1时,y随x值的增大而增大;⑤当y>0时,x<﹣1或x>3.其中,正确的说法有()A.①②④B.①②⑤C.①③⑤D.②④⑤9.已知函数y=2(x+1)2+1,则()A.当x<1 时,y随x的增大而增大B.当x<1 时,y随x的增大而减小C.当x<﹣1 时,y随x的增大而增大D.当x<﹣1 时,y随x的增大而减小10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的有()个.①abc>0;②2a+b=0;③9a+3b+c<0;④4ac﹣b2<0;⑤a+b≥m(am+b)(m为任意实数).A.3B.2C.1D.0二.填空题11.已知四个二次函数的图象如图所示,那么a1,a2,a3,a4的大小关系是.(请用“>”连接排序)12.抛物线y=3x2+6x+11的顶点坐标为.13.二次函数y=3(x﹣1)2+5的最小值为.14.已知二次函数y=2x2+bx+4顶点在x轴上,则b=.15.二次函数y=x2﹣2x+1在2≤x≤5范围内的最小值为.16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是(填写序号).三.解答题17.已知二次函数的顶点坐标为A(1,﹣4),且经过点B(3,0).(1)求该二次函数的解析式;(2)判断点C(2,﹣3)是否在该函数图象上,并说明理由.18.如图,已知直线l过点A(4,0),B(0,4)两点,它与二次函数y=ax2的图象在第一象限内交于点P,若S△AOP=4,试求二次函数的表达式.19.如图,直线L1:y=bx+c与抛物线L2:y=ax2的两个交点坐标分别为A(m,4),B (1,1).(1)求m的值;(2)过动点P(n,0)且垂直于x轴的直线与L1,L2的交点分别为C,D,当点C 位于点D上方时,请直接写出n的取值范围.20.已知二次函数y=a(x+a)(x+a﹣1).(1)当a=2时,求该二次函数图象的对称轴.(2)当a<0时,判断该二次函数图象的顶点所在的象限,并说明理由.(3)当0<x<3时,y随着x增大而增大,求a的取值范围.21.已知二次函数y=ax2(a≠0)与一次函数y=kx﹣2的图象相交于A、B两点,如图所示,其中A(﹣1,﹣1),求△OAB的面积.22.抛物线y=﹣x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.23.如图,在平面直角坐标系中,直线AB与抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点,抛物线与y轴交于点C.(1)求一次函数和二次函数的解析式;(2)求△ABC的面积.参考答案一.选择题1.解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.2.解:∵y=(m+2)x|m|+2是y关于x的二次函数,∴|m|=2且m+2≠0.解得m=2.故选:B.3.解:∵二次函数y=3(x﹣1)2+k图象的对称轴为直线x=1,而A(,y1)到直线x=1的距离最近,C(﹣,y3)到直线x=1的距离最远,∴y3>y2>y1.故选:C.4.解:由图象知抛物线的对称轴为直线x=﹣1,设抛物线解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入,得:,解得:,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,故选:D.5.解:A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;B、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a>0,由直线可知,a<0,故本选项错误.故选:A.6.解:∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线开口向下,对称轴为x=1,顶点坐标为(1,﹣2),在对称轴左侧,y随x的增大而增大,∴A、B、C不正确;∵抛物线顶点到x轴的距离是|﹣2|=2,∴D正确,故选:D.7.解:y=x2﹣4x+5=(x﹣2)2+1,由于0≤x≤3,所以当x=2时,y有最小值1,当x=0时,y有最大值5.故选:D.8.解:根据图象可知:①对称轴﹣>0,故ab<0,正确;②方程ax2+bx+c=0的根为x1=﹣1,x2=3,正确;③x=1时,y=a+b+c<0,错误;④当x<1时,y随x值的增大而减小,错误;⑤当y>0时,x<﹣1或x>3,正确.正确的有①②⑤.故选:B.9.解:∵y=2(x+1)2+1,∴当x>﹣1时,y随x的增大而增大,故选项A错误,当x<﹣1时,y随x的增大而减小,故选项B错误、选项C错误、选项D正确;故选:D.10.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点坐标在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵x=3时,y<0,∴9a+3b+c<0,所以③正确.∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,即4ac﹣b2<0,所以④正确;∵抛物线的对称轴为直线x=1,∴函数的最大值为a+b+c,∴a+b+c≥am2+bm+c(m为任意实数),即a+b≥m(am+b),所以⑤正确.故选:C.二.填空题11.解:如图所示:①y=a1x2的开口小于②y=a2x2的开口,则a1>a2>0,③y=a3x2的开口大于④y=a4x2的开口,开口向下,则a4<a3<0,故a1>a2>a3>a4.故答案为:a1>a2>a3>a412.解:∵y=3x2+6x+11=3(x+1)2+8,∴抛物线y=3x2+6x+11的顶点坐标为(﹣1,8),故答案为(﹣1,8).13.解:由于二次函数y=3(x﹣1)2+5中,a=3>0,所以当x=1时,函数取得最小值为5,故答案为5.14.解:∵二次函数y=2x2+bx+4顶点在x轴上,∴=0,解得b=,故答案为:±4.15.解:∵二次函数y=x2﹣2x+1=(x﹣1)2,∴当x>1时,y随x的增大而增大,∴在2≤x≤5范围内,当x=2时,y取得最小值,此时y=(2﹣1)2=1,故答案为:1.16.解:∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵x=﹣1时,y<0,∴a﹣b+c<0,即a+c<b,所以②错误;∵抛物线与x轴的一个交点为(﹣2,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(4,0),所以③错误;∵抛物线开口向上,∴a>0,∴b=﹣2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以④正确.故答案为①④.三.解答题17.解:(1)设二次函数的解析式是y=a(x﹣h)2+k,∵二次函数的顶点坐标为A(1,﹣4),∴y=a(x﹣1)2﹣4,∵经过点B(3,0),∴代入得:0=a(3﹣1)2﹣4,解得:a=1,∴y=(x﹣1)2﹣4,即二次函数的解析式为y=x2﹣2x﹣3;(2)点C(2,﹣3)在该函数图象上,理由是:把C(2,﹣3)代入y=x2﹣2x﹣3得:左边=﹣3,右边=4﹣4﹣3=﹣3,即左边=右边,所以点C在该函数的图象上.18.解:设直线l的解析式为y=kx+b,把A(4,0),B(0,4)分别代入得,解得,∴直线l的关系式为y=﹣x+4,设P(t,﹣t+4),∵S△AOP=4,∴×4×(﹣t+4)=4,解得t=2,∴P(2,2),把P(2,2)代入y=ax2得4a=2,解得a=,∴二次函数的表达式为y=x2.19.解:(1)把B(1,1)代入y=ax2得:a=1,∴抛物线解析式为y=x2.把A(m,4)代入y=x2得:4=m2,∴m=±2.∵点A在二象限,∴m=﹣2.(2)观察函数图象可知:当﹣2<x<1时,直线在抛物线的上方,∴n的取值范围为:﹣2<n<1.20.解:(1)当a=2时,y=2(x+2)(x+1),∴二次函数的对称轴为x=.(2)由题知二次函数与x轴的交点坐标为(﹣a,0),(1﹣a,0);∵a<0,∴二次函数的开口方向向下;又﹣a>0,1﹣a>0,所以对称轴所在直线为x==>0,当x=时,y=﹣>0,所以顶点坐标(,﹣)在第一象限.(3)由(2)知,二次函数的对称轴为直线x=,∵当0<x<3时,y随着x增大而增大,∴当a>0时,≤0,解得a≥;当a<0,≥3,解得a≤﹣.∴a的取值范围为a≥或a≤﹣.21.解:∵一次函数y=kx﹣2的图象相过点A(﹣1,﹣1),∴﹣1=﹣k﹣2,解得k=﹣1,∴一次函数表达式为y=﹣x﹣2,∴令x=0,得y=﹣2,∴G(0,﹣2),∵y=ax2过点A(﹣1,﹣1),∴﹣1=a×1,解得a=﹣1,∴二次函数表达式为y=﹣x2,由一次函数与二次函数联立可得,解得,,∴S△OAB=OG•|A的横坐标|+OG•点B的横坐标=×2×1+×2×2=1+2=3.22.解:(1)∵抛物线经过A、B(0,3)∴由上两式解得∴抛物线的解析式为:;(2)由(1)抛物线对称轴为直线x=把x=代入,得y=4则点C坐标为(,4)设线段AB所在直线为:y=kx+b,则有,解得∴AB解析式为:∵线段AB所在直线经过点A、B(0,3)抛物线的对称轴l于直线AB交于点D∴设点D的坐标为D将点D代入,解得m=2∴点D坐标为,∴CD=CE﹣DE=2过点B 作BF ⊥l 于点F ∴BF =OE =∵BF +AE =OE +AE =OA =∴S △ABC =S △BCD +S △ACD =CD •BF +CD •AE ∴S △ABC =CD (BF +AE )=×2×=23.解:(1)∵抛物线y =﹣x 2+bx +c 交于A (﹣1,0)和B (2,3)两点 ∴,解得:, ∴抛物线解析式为y =﹣x 2+2x +3,设直线AB 的解析式为y =mx +n (m ≠0),则,解得,∴直线AB 的解析式为y =x +1; (2)令x =0,则y =﹣x 2+2x +3=3, ∴C (0,3),则OC =3,BC =2,BC ∥x 轴, ∴S △ABC =×BC ×OC ==3.九年级数学二次函数专题精练含答案一、单选题1.关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是( ) A .有最大值4B .有最小值4C .有最大值6D .有最小值62.已知抛物线24y x x c =-++经过点(4,3),那么下列各点中,该抛物线必经过的点是( ) A .(0,2)B .(0,3)C .(0,4)D .(0,5)3.在平面直角坐标系中,已知抛物线245y x x =-+,将该抛物线沿y 轴翻折所得的抛物线的表达式为( ) A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =---4.正方形的边长为4,若边长增加x ,那么面积增加y ,则y 关于x 的函数表达式为( ) A .216y x =+B .2(4)y x =+C .28y x x =+D .2164y x =-5.把抛物线22y x =向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是( ) A .22(2)1y x =-+- B .22(2)1y x =--+ C .22(2)1y x =++D .22(2)1y x =--6.如图,二次函数2y ax bx c =++的图象关于直线1x =对称,与x 轴交于1(,0)A x ,2(,0)B x 两点,若121x -<<-,则下列四个结论:①234x <<,②320a b +>,③24b a c ac >++,④a c b >>.正确结论的个数为( ) A .1个B .2个C .3个D .4个7.对于抛物线23(1)2y x =-+-,下列说法正确的是( ) A .抛物线开口向上B .当1x >-时,y 随x 增大而减小C .函数最小值为﹣2D .顶点坐标为(1,﹣2)8.关于二次函数()215y x =-+,下列说法正确的是( )A .函数图象的开口向下B .函数图象的顶点坐标是()1,5-C .该函数有最大值,是大值是5D .当1x >时,y 随x 的增大而增大9.已知A (−3,−2) ,B (1,−2),抛物线y =ax 2+bx +c (a >0)顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论: ①c ≥−2 ;②当x >0时,一定有y 随x 的增大而增大;③若点D 横坐标的最小值为−5,点C 横坐标的最大值为3; ④当四边形ABCD 为平行四边形时,a =12.其中正确的是( ) A .①③B .②③C .①④D .①③④10.已知二次函数2243y mx m x =--(m 为常数,0m ≠),点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,则m 的取值范围是( ) A .m 1≥或0m < B .m 1≥ C .1m ≤-或0m >D .1m ≤-11.已知函数()211y ax a x =-++,则下列说法不正确的个数是( )①若该函数图像与x 轴只有一个交点,则1a =②方程()2110ax a x -++=至少有一个整数根③若11x a<<,则()211y ax a x =-++的函数值都是负数 ④不存在实数a ,使得()2110ax a x -++≤对任意实数x 都成立A .0B .1C .2D .312.如图,在正方形ABCD 中,4AB =,点P 从点A 出发沿路径A B C →→向终点C 运动,连接DP ,作DP 的垂直平分线MN 与正方形ABCD 的边交于M ,N 两点,设点P 的运动路程为x ,PMN 的面积为y ,则下列图象能大致反映y 与x 函数关系的是( )A .B .C .D .二、填空题13.已知点(3,a )在抛物线y =-2x 2+2x 上,则=a ______.14.如图是二次函数21y ax bx c =++ 和一次函数y 2=kx +t 的图象,当y 1≥y 2时,x 的取值范围是_____.15.小亮同学在探究一元二次方程2ax bx c 0++=的近似解时,填好了下面的表格:根据以上信息请你确定方程2ax bx c 0++=的一个解的范围是________. 16.已知二次函数223y x x =--+,当12a x 时,函数值y 的最小值为1,则a 的值为_______. 17.已知抛物线2122y x bx =+-与x 轴交于A ,B 两点,与y 轴交于C 点. (1)若(1,0)A -,则b =______. (2)若(1,0)M -,(1,0)N ,抛物线2122y x bx =+-与线段MN 没有交点,则b 的取值范围为______. 三、解答题18.已知抛物线经过点()1,0A -,()5,0B ,()0,5C ,求该抛物线的函数关系式19.如图,抛物线212y x bx c =++与直线132y x =+分别相交于A 、B 两点,其中点A 在y 轴上,且此抛物线与x 轴的一个交点为()3,0C -.(1)求抛物线的解析式(2)在抛物线对称轴l 上找一点M ,使MBC ∆的周长最小,请求出这个周长的最小值.20.如图,一次函数y =A 、B ,二次函数2y bx c ++图象过A 、B 两点.(1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.21.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A (﹣2,0)和点B (8,0),与y 轴交于点C (0,﹣8),连接AC ,D 是抛物线对称轴上一动点,连接AD ,CD ,得到△ACD .(1)求该抛物线的函数解析式.(2)△ACD 周长能否取得最小值,如果能,请求出D 点的坐标;如果不能,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点E ,使得△ACE 与△ACD 面积相等,如果存在,请求出点的坐标;如果不存在,请说明理由.参考答案1--10DBCCD BBDDA 11--12CA13.-1214.﹣1≤x ≤215.3.24x 3.25<<16.1-17. 32- 3322b -<< 18.解:△抛物线经过点()1,0A -,()5,0B ,()0,5C ,△设抛物线的表达式为()()15y a x x =+-,将点()0,5C 代入得:55a =-,解得:1a =-,△()()21545y x x x x =-+-=-++.△该抛物线的函数关系式为245y x x =-++.19..解:(1)抛物线212y x bx c =++与直线132y x =+交于y 轴上一点A , 令0,x = 则3,y =∴ 点()0,3A把()0,3A ,()3,0C -代入212y x bx c =++得: 39302c b c =⎧⎪⎨-+=⎪⎩, 解得:523b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式是215322y x x =++; (2)将直线132y x =+与二次函数215322y x x =++联立得方程组: 213215322y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩ 215133,222x x x ∴++=+ 240,x x ∴-=解得:0x =或4x =-,04,,31x x y y ==-⎧⎧∴⎨⎨==⎩⎩()0,3A ,()4,1B ∴-BC ∴==如图,要使MBC △的周长最小,则MB MC +最小,设二次函数215322y x x=++与x 轴的另一交点为D , 抛物线的对称轴为:552,1222x =-=-⨯ ()3,0C -∴ 点()2,0D -,连接,BD 交对称轴于,MMD MC ∴=,此时,MB MC MB MD BD +=+=最小,此时:BD =MBC ∴20.解:(1)对于y =x =0时,y =当y =0时,03x -=,妥得,x =3 △A (3,0),B (0,把A (3,0),B (0,2y bx c++得:+=0b c c ⎧⎪⎨=⎪⎩解得,b c ⎧=⎪⎨⎪=⎩△抛物线的解析式为:2y =(2)抛物线的对称轴为直线12b x a =-== 故设P (1,p ),Q (m ,n )①当BC 为菱形对角线时,如图,△B ,C 关于对称没对称,且对称轴与x 轴垂直,△△BC 与对称轴垂直,且BC //x 轴△在菱形BQCP 中,BC △PQ△PQ △x 轴△点P 在x =1上,△点Q 也在x =1上,当x =1时,211y△Q (1,); ②当BC 为菱形一边时,若点Q 在点P 右侧时,如图,△BC //PQ ,且BC =PQ△BC //x 轴,△令y =2y 解得,120,2x x ==△(2,C△PQ=BC=22=△PB=BC=2△迠P在x轴上,△P(1,0)△Q(3,0);若点Q在点P的左侧,如图,同理可得,Q(-1,0)综上所述,Q点坐标为(1,)或(3,0)或(-1,0)21.解:(1)由题意可得:0=4206488a b ca b cc-+⎧⎪=++⎨⎪=-⎩,解得:1238abc⎧=⎪⎪=-⎨⎪=-⎪⎩,△抛物线的解析式为:y=12x2﹣3x﹣8;(2)△ACD周长能取得最小值,△点A(﹣2,0),点B(8,0),△对称轴为直线x=3,△△ACD周长=AD+AC+CD,AC是定值,△当AD+CD取最小值时,△ACD周长能取得最小值,△点A,点B关于对称轴直线x=3对称,△连接BC交对称轴直线x=3于点D,此时AD+CD有最小值,设直线BC 解析式为:y =kx ﹣8,△0=8k ﹣8,△k =1,△直线BC 解析式为:y =x ﹣8,当x =3,y =﹣5,△点D (3,﹣5);(3)存在,△点A (﹣2,0),点C (0,﹣8),△直线AC 解析式为y =﹣4x ﹣8,如图,△△ACE 与△ACD 面积相等,△DE △AC ,△设DE 解析式为:y =﹣4x +n ,△﹣5=﹣4×3+n ,△n =7,△DE 解析式为:y =﹣4x +7, 联立方程组可得:2471382y x y x x =-+⎧⎪⎨=--⎪⎩,解得:12111x y ⎧=⎪⎨=-⎪⎩,22111x y ⎧=⎪⎨=⎪⎩, △点E1,﹣1,).九年级上册数学二次函数同步练习一、单选题1.下列函数中,是二次函数的是( )A .y =(2x ﹣1)2B .y =(x +1)2﹣x 2C .y =ax 2D .y =2x +3 2.若抛物线258(3)23mm y m x x -+=-+-是关于x 的二次函数,那么m 的值是( ) A .3 B .2-C .2D .2或3 3.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( )A .2B .4C .6D .84.已知二次函数2135y x x =-+,则其二次项系数a ,一次项系数b ,常数项c 分别是( )A .1,3,5a b c ==-=B .1,3,5a b c ===C .5,3,1a b c ===D .5,3,1a b c ==-= 5.如果函数2(2)25y a x x =-+-是二次函数,则a 的取值范围是( )A .2a ≠B .a≥0C .a=2D .a>0 6.下列函数中①31y x ;②243y x x =-;③1y x =;④225=-+y x ,是二次函数的有()A .①②B .②④C .②③D .①④ 7.若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( )A .6B .7C .8D .208.函数y=ax2+bx+c(a ,b ,c 是常数)是二次函数的条件是( )A .a≠0,b≠0,c≠0B .a<0,b≠0,c≠0C .a>0,b≠0,c≠0D .a≠0 二、填空题9.若()2321mm y m x --=+是二次函数,则m 的值为______. 10.若22a y x -=是二次函数,则=a ________.11.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为_____. 12.下列函数一定是二次函数的是__________.①2y ax bx c =++;②3y x=-;③2431y x x =-+;④2(1)y m x bx c =-++;⑤y =(x -3)2-x 213.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数.14.已知函数2135m y x -=-① 当m = _________时,y 是关于x 的一次函数;② 当m =_________时,y 是关于x 的二次函数 .15.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.16.已知二次函数2y x bx 3=-++,当x 2=时,y 3=.则这个二次函数的表达式是________.三、解答题17.下列函数中(x ,t 是自变量),哪些是二次函数?22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.18.已知函数y =(m 2-2)x 2+(m )x +8.(1)若这个函数是一次函数,求m 的值;(2)若这个函数是二次函数,求m 的取值范围.19.若函数y=(a -1)x b+1+x 2+1是二次函数,试讨论a 、b 的取值范围.20.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2)与长x 之间的函数关系式,并指出自变量的取值范围.参考答案:1.A2.C3.B4.D5.A6.B7.B8.D9.410.2±11.012.③13. 4,-2 414. 13215.316.2y x 2x 3=-++17.2132y x =-+和215s t t =++是二次函数 18.(1)m =(2)m ≠m ≠19.①a≠0;②b=0或-1,a 取全体实数③当a=1,b 为全体实数时,y=x 2+1是二次函数 20.y= 21152x x -+, x 的取值范围为0<x<30.九年级数学上册二次函数单元综合测试卷一.选择题(共10小题)1.下列各式中,是y 关于x 的二次函数的是( )A .y =4xB .y =3x ﹣5C .y =D .y =2x 2+12.已知:a >b >c ,且a +b +c =0,则二次函数y =ax 2+bx +c 的图象可能是下列图象中的( )A.B.C.D.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2 5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣66.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+17.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.49.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°二.填空题(共6小题)11.函数是二次函数,则m的值为.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,。
九年级数学二次函数专项训练含答案-精选5篇
九年级数学二次函数专题精练含答案一、单选题1.关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是( ) A .有最大值4 B .有最小值4 C .有最大值6 D .有最小值6 2.已知抛物线24y x x c =-++经过点(4,3),那么下列各点中,该抛物线必经过的点是( )A .(0,2)B .(0,3)C .(0,4)D .(0,5) 3.在平面直角坐标系中,已知抛物线245y x x =-+,将该抛物线沿y 轴翻折所得的抛物线的表达式为( )A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =--- 4.正方形的边长为4,若边长增加x ,那么面积增加y ,则y 关于x 的函数表达式为( ) A .216y x =+ B .2(4)y x =+ C .28y x x =+ D .2164y x =- 5.把抛物线22y x =向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是( )A .22(2)1y x =-+-B .22(2)1y x =--+C .22(2)1y x =++D .22(2)1y x =--6.如图,二次函数2y ax bx c =++的图象关于直线1x =对称,与x 轴交于1(,0)A x ,2(,0)B x 两点,若121x -<<-,则下列四个结论:①234x <<,①320a b +>,①24b a c ac >++,①a c b >>.正确结论的个数为( )A .1个B .2个C .3个D .4个7.对于抛物线23(1)2y x =-+-,下列说法正确的是( )A .抛物线开口向上B .当1x >-时,y 随x 增大而减小C .函数最小值为﹣2D .顶点坐标为(1,﹣2)8.关于二次函数()215y x =-+,下列说法正确的是( )A .函数图象的开口向下B .函数图象的顶点坐标是()1,5-C .该函数有最大值,是大值是5D .当1x >时,y 随x 的增大而增大 9.已知A (−3,−2) ,B (1,−2),抛物线y =ax 2+bx +c (a >0)顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①c ≥−2 ;①当x >0时,一定有y 随x 的增大而增大;①若点D 横坐标的最小值为−5,点C 横坐标的最大值为3;①当四边形ABCD 为平行四边形时,a =12. 其中正确的是( )A .①①B .①①C .①①D .①①① 10.已知二次函数2243y mx m x =--(m 为常数,0m ≠),点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,则m 的取值范围是( )A .m 1≥或0m <B .m 1≥C .1m ≤-或0m >D .1m ≤-11.已知函数()211y ax a x =-++,则下列说法不正确的个数是( )①若该函数图像与x 轴只有一个交点,则1a =①方程()2110ax a x -++=至少有一个整数根①若11x a<<,则()211y ax a x =-++的函数值都是负数 ①不存在实数a ,使得()2110ax a x -++≤对任意实数x 都成立A .0B .1C .2D .312.如图,在正方形ABCD 中,4AB =,点P 从点A 出发沿路径A B C →→向终点C 运动,连接DP ,作DP 的垂直平分线MN 与正方形ABCD 的边交于M ,N 两点,设点P 的运动路程为x ,PMN 的面积为y ,则下列图象能大致反映y 与x 函数关系的是( )A .B .C .D .二、填空题13.已知点(3,a )在抛物线y =-2x 2+2x 上,则=a ______.14.如图是二次函数21y ax bx c =++ 和一次函数y 2=kx +t 的图象,当y 1≥y 2时,x 的取值范围是_____.15.小亮同学在探究一元二次方程2ax bx c 0++=的近似解时,填好了下面的表格:根据以上信息请你确定方程2ax bx c 0++=的一个解的范围是________.16.已知二次函数223y x x =--+,当12a x时,函数值y 的最小值为1,则a 的值为_______.17.已知抛物线2122y x bx =+-与x 轴交于A ,B 两点,与y 轴交于C 点.(1)若(1,0)A -,则b =______.(2)若(1,0)M -,(1,0)N ,抛物线2122y x bx =+-与线段MN 没有交点,则b 的取值范围为______.三、解答题18.已知抛物线经过点()1,0A -,()5,0B ,()0,5C ,求该抛物线的函数关系式 19.如图,抛物线212y x bx c =++与直线132y x =+分别相交于A 、B 两点,其中点A 在y 轴上,且此抛物线与x 轴的一个交点为()3,0C -.(1)求抛物线的解析式(2)在抛物线对称轴l 上找一点M ,使MBC ∆的周长最小,请求出这个周长的最小值.20.如图,一次函数y A 、B ,二次函数2y bx c ++图象过A 、B 两点.(1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.21.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A (﹣2,0)和点B (8,0),与y 轴交于点C (0,﹣8),连接AC ,D 是抛物线对称轴上一动点,连接AD ,CD ,得到①ACD .(1)求该抛物线的函数解析式.(2)①ACD 周长能否取得最小值,如果能,请求出D 点的坐标;如果不能,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点E ,使得①ACE 与①ACD 面积相等,如果存在,请求出点的坐标;如果不存在,请说明理由.参考答案1--10DBCCD BBDDA 11--12CA13.-1214.﹣1≤x ≤215.3.24x 3.25<<16.1-17. 32- 3322b -<< 18.解:①抛物线经过点()1,0A -,()5,0B ,()0,5C ,①设抛物线的表达式为()()15y a x x =+-,将点()0,5C 代入得:55a =-,解得:1a =-,①()()21545y x x x x =-+-=-++.①该抛物线的函数关系式为245y x x =-++.19..解:(1)抛物线212y x bx c =++与直线132y x =+交于y 轴上一点A , 令0,x = 则3,y = ∴ 点()0,3A把()0,3A ,()3,0C -代入212y x bx c =++得: 39302c b c =⎧⎪⎨-+=⎪⎩, 解得:523b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式是215322y x x =++; (2)将直线132y x =+与二次函数215322y x x =++联立得方程组: 213215322y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩ 215133,222x x x ∴++=+ 240,x x ∴-=解得:0x =或4x =-,04,,31x x y y ==-⎧⎧∴⎨⎨==⎩⎩()0,3A ,()4,1B ∴-BC ∴==如图,要使MBC △的周长最小,则MB MC +最小,设二次函数215322y x x =++与x 轴的另一交点为D ,抛物线的对称轴为:552,1222x=-=-⨯()3,0C-∴点()2,0D-,连接,BD交对称轴于,MMD MC∴=,此时,MB MC MB MD BD+=+=最小,此时:BD=MBC∴20.解:(1)对于y x=x=0时,y=当y=0时,03x-=,妥得,x=3①A(3,0),B(0,把A(3,0),B(0,2y bx c++得:+=0b cc⎧⎪⎨=⎪⎩解得,bc⎧=⎪⎨⎪=⎩①抛物线的解析式为:2y x x=-(2)抛物线的对称轴为直线12bxa=-==故设P(1,p),Q(m,n)①当BC为菱形对角线时,如图,①B ,C 关于对称没对称,且对称轴与x 轴垂直,①①BC 与对称轴垂直,且BC //x 轴①在菱形BQCP 中,BC ①PQ①PQ ①x 轴①点P 在x =1上,①点Q 也在x =1上,当x =1时,211y①Q (1,); ①当BC 为菱形一边时,若点Q 在点P 右侧时,如图,①BC //PQ ,且BC =PQ①BC //x 轴,①令y =2y 解得,120,2x x ==①(2,C①PQ=BC=22①PB=BC=2①迠P在x轴上,①P(1,0)①Q(3,0);若点Q在点P的左侧,如图,同理可得,Q(-1,0)综上所述,Q点坐标为(1,)或(3,0)或(-1,0)21.解:(1)由题意可得:0=4206488a b ca b cc-+⎧⎪=++⎨⎪=-⎩,解得:1238abc⎧=⎪⎪=-⎨⎪=-⎪⎩,①抛物线的解析式为:y=12x2﹣3x﹣8;(2)△ACD周长能取得最小值,①点A(﹣2,0),点B(8,0),①对称轴为直线x=3,①①ACD周长=AD+AC+CD,AC是定值,①当AD+CD取最小值时,△ACD周长能取得最小值,①点A,点B关于对称轴直线x=3对称,①连接BC交对称轴直线x=3于点D,此时AD+CD有最小值,设直线BC 解析式为:y =kx ﹣8,①0=8k ﹣8,①k =1,①直线BC 解析式为:y =x ﹣8,当x =3,y =﹣5,①点D (3,﹣5);(3)存在,①点A (﹣2,0),点C (0,﹣8),①直线AC 解析式为y =﹣4x ﹣8,如图,①①ACE 与①ACD 面积相等,①DE ①AC ,①设DE 解析式为:y =﹣4x +n ,①﹣5=﹣4×3+n ,①n =7,①DE 解析式为:y =﹣4x +7, 联立方程组可得:2471382y x y x x =-+⎧⎪⎨=--⎪⎩,解得:12111x y ⎧=⎪⎨=-⎪⎩,22111x y ⎧=⎪⎨=⎪⎩, ①点E1,﹣1,).九年级上册数学二次函数同步练习一、单选题1.下列函数中,是二次函数的是( ) A .y =(2x ﹣1)2 B .y =(x +1)2﹣x 2 C .y =ax 2D .y =2x +32.若抛物线258(3)23m m y m x x -+=-+-是关于x 的二次函数,那么m 的值是( )A .3B .2-C .2D .2或33.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( ) A .2B .4C .6D .84.已知二次函数2135y x x =-+,则其二次项系数a ,一次项系数b ,常数项c 分别是( ) A .1,3,5a b c ==-= B .1,3,5a b c ===C .5,3,1a b c ===D .5,3,1a b c ==-=5.如果函数2(2)25y a x x =-+-是二次函数,则a 的取值范围是( ) A .2a ≠ B .a≥0C .a=2D .a>06.下列函数中①31y x ;①243y x x =-;①1y x=;①225=-+y x ,是二次函数的有() A .①①B .①①C .①①D .①①7.若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( ) A .6B .7C .8D .208.函数y=ax2+bx+c(a ,b ,c 是常数)是二次函数的条件是( ) A .a≠0,b≠0,c≠0 B .a<0,b≠0,c≠0 C .a>0,b≠0,c≠0 D .a≠0二、填空题 9.若()2321m m y m x --=+是二次函数,则m 的值为______.10.若22ay x -=是二次函数,则=a ________.11.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为_____. 12.下列函数一定是二次函数的是__________.①2y ax bx c =++;①3y x =-;①2431y x x =-+;①2(1)y m x bx c =-++;①y =(x -3)2-x 213.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数. 14.已知函数2135m y x -=-① 当m = _________时,y 是关于x 的一次函数; ① 当m =_________时,y 是关于x 的二次函数 .15.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.16.已知二次函数2y x bx 3=-++,当x 2=时,y 3=.则这个二次函数的表达式是________. 三、解答题17.下列函数中(x ,t 是自变量),哪些是二次函数? 22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.18.已知函数y =(m 2-2)x 2+(m x +8. (1)若这个函数是一次函数,求m 的值; (2)若这个函数是二次函数,求m 的取值范围.19.若函数y=(a -1)x b+1+x 2+1是二次函数,试讨论a 、b 的取值范围.20.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2)与长x 之间的函数关系式,并指出自变量的取值范围.参考答案:1.A 2.C 3.B 4.D 5.A 6.B 7.B 8.D 9.4 10.2± 11.0 12.①13. 4,-2 4 14. 1 3215.316.2y x 2x 3=-++17.2132y x =-+和215s t t =++是二次函数18.(1)m (2)m ≠m ≠19.①a≠0;①b=0或-1,a 取全体实数①当a=1,b 为全体实数时,y=x 2+1是二次函数 20.y= 21152x x -+, x 的取值范围为0<x<30.九年级数学上册二次函数的图象与性质练习题(附答案)一.选择题1.如果在二次函数的表达式y =ax 2+bx +c 中,a >0,b <0,c <0,那么这个二次函数的图象可能是( )A.B.C.D.2.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.﹣2B.2C.±2D.03.已知A(,y1),B(2,y2),C(﹣,y3)是二次函数y=3(x﹣1)2+k图象上三点,则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y2>y1D.y2>y3>y14.二次函数的部分图象如图所示,对称轴是直线x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+3 5.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.6.关于抛物线y=﹣x2+2x﹣3的判断,下列说法正确的是()A.抛物线的开口方向向上B.抛物线的对称轴是直线x=﹣1C.抛物线对称轴左侧部分是下降的D.抛物线顶点到x轴的距离是27.已知二次函数y=x2﹣4x+5(0≤x≤3),则它的最大值是()A.1B.2C.3D.58.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x<1时,y随x值的增大而增大;⑤当y>0时,x<﹣1或x>3.其中,正确的说法有()A.①②④B.①②⑤C.①③⑤D.②④⑤9.已知函数y=2(x+1)2+1,则()A.当x<1 时,y随x的增大而增大B.当x<1 时,y随x的增大而减小C.当x<﹣1 时,y随x的增大而增大D.当x<﹣1 时,y随x的增大而减小10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的有()个.①abc>0;②2a+b=0;③9a+3b+c<0;④4ac﹣b2<0;⑤a+b≥m(am+b)(m为任意实数).A.3B.2C.1D.0二.填空题11.已知四个二次函数的图象如图所示,那么a1,a2,a3,a4的大小关系是.(请用“>”连接排序)12.抛物线y=3x2+6x+11的顶点坐标为.13.二次函数y=3(x﹣1)2+5的最小值为.14.已知二次函数y=2x2+bx+4顶点在x轴上,则b=.15.二次函数y=x2﹣2x+1在2≤x≤5范围内的最小值为.16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是(填写序号).三.解答题17.已知二次函数的顶点坐标为A(1,﹣4),且经过点B(3,0).(1)求该二次函数的解析式;(2)判断点C(2,﹣3)是否在该函数图象上,并说明理由.18.如图,已知直线l过点A(4,0),B(0,4)两点,它与二次函数y=ax2的图象在第一象限内交于点P,若S△AOP=4,试求二次函数的表达式.19.如图,直线L1:y=bx+c与抛物线L2:y=ax2的两个交点坐标分别为A(m,4),B(1,1).(1)求m的值;(2)过动点P(n,0)且垂直于x轴的直线与L1,L2的交点分别为C,D,当点C位于点D上方时,请直接写出n的取值范围.20.已知二次函数y=a(x+a)(x+a﹣1).(1)当a=2时,求该二次函数图象的对称轴.(2)当a<0时,判断该二次函数图象的顶点所在的象限,并说明理由.(3)当0<x<3时,y随着x增大而增大,求a的取值范围.21.已知二次函数y=ax2(a≠0)与一次函数y=kx﹣2的图象相交于A、B两点,如图所示,其中A(﹣1,﹣1),求△OAB的面积.22.抛物线y=﹣x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.23.如图,在平面直角坐标系中,直线AB与抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点,抛物线与y轴交于点C.(1)求一次函数和二次函数的解析式;(2)求△ABC的面积.参考答案一.选择题1.解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.2.解:∵y=(m+2)x|m|+2是y关于x的二次函数,∴|m|=2且m+2≠0.解得m=2.故选:B.3.解:∵二次函数y=3(x﹣1)2+k图象的对称轴为直线x=1,而A(,y1)到直线x=1的距离最近,C(﹣,y3)到直线x=1的距离最远,∴y3>y2>y1.故选:C.4.解:由图象知抛物线的对称轴为直线x=﹣1,设抛物线解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入,得:,解得:,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,故选:D.5.解:A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;B、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a>0,由直线可知,a<0,故本选项错误.故选:A.6.解:∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线开口向下,对称轴为x=1,顶点坐标为(1,﹣2),在对称轴左侧,y随x的增大而增大,∴A、B、C不正确;∵抛物线顶点到x轴的距离是|﹣2|=2,∴D正确,故选:D.7.解:y=x2﹣4x+5=(x﹣2)2+1,由于0≤x≤3,所以当x=2时,y有最小值1,当x=0时,y有最大值5.故选:D.8.解:根据图象可知:①对称轴﹣>0,故ab<0,正确;②方程ax2+bx+c=0的根为x1=﹣1,x2=3,正确;③x=1时,y=a+b+c<0,错误;④当x<1时,y随x值的增大而减小,错误;⑤当y>0时,x<﹣1或x>3,正确.正确的有①②⑤.故选:B.9.解:∵y=2(x+1)2+1,∴当x>﹣1时,y随x的增大而增大,故选项A错误,当x<﹣1时,y随x的增大而减小,故选项B错误、选项C错误、选项D正确;故选:D.10.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点坐标在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵x=3时,y<0,∴9a+3b+c<0,所以③正确.∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,即4ac﹣b2<0,所以④正确;∵抛物线的对称轴为直线x=1,∴函数的最大值为a+b+c,∴a+b+c≥am2+bm+c(m为任意实数),即a+b≥m(am+b),所以⑤正确.故选:C.二.填空题11.解:如图所示:①y=a1x2的开口小于②y=a2x2的开口,则a1>a2>0,③y=a3x2的开口大于④y=a4x2的开口,开口向下,则a4<a3<0,故a1>a2>a3>a4.故答案为:a1>a2>a3>a412.解:∵y=3x2+6x+11=3(x+1)2+8,∴抛物线y=3x2+6x+11的顶点坐标为(﹣1,8),故答案为(﹣1,8).13.解:由于二次函数y=3(x﹣1)2+5中,a=3>0,所以当x=1时,函数取得最小值为5,故答案为5.14.解:∵二次函数y=2x2+bx+4顶点在x轴上,∴=0,解得b=,故答案为:±4.15.解:∵二次函数y=x2﹣2x+1=(x﹣1)2,∴当x>1时,y随x的增大而增大,∴在2≤x≤5范围内,当x=2时,y取得最小值,此时y=(2﹣1)2=1,故答案为:1.16.解:∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵x=﹣1时,y<0,∴a﹣b+c<0,即a+c<b,所以②错误;∵抛物线与x轴的一个交点为(﹣2,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(4,0),所以③错误;∵抛物线开口向上,∴a>0,∴b=﹣2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以④正确.故答案为①④.三.解答题17.解:(1)设二次函数的解析式是y=a(x﹣h)2+k,∵二次函数的顶点坐标为A(1,﹣4),∴y=a(x﹣1)2﹣4,∵经过点B(3,0),∴代入得:0=a(3﹣1)2﹣4,解得:a=1,∴y=(x﹣1)2﹣4,即二次函数的解析式为y=x2﹣2x﹣3;(2)点C(2,﹣3)在该函数图象上,理由是:把C(2,﹣3)代入y=x2﹣2x﹣3得:左边=﹣3,右边=4﹣4﹣3=﹣3,即左边=右边,所以点C在该函数的图象上.18.解:设直线l的解析式为y=kx+b,把A(4,0),B(0,4)分别代入得,解得,∴直线l的关系式为y=﹣x+4,设P(t,﹣t+4),∵S△AOP=4,∴×4×(﹣t+4)=4,解得t=2,∴P(2,2),把P(2,2)代入y=ax2得4a=2,解得a=,∴二次函数的表达式为y=x2.19.解:(1)把B(1,1)代入y=ax2得:a=1,∴抛物线解析式为y=x2.把A(m,4)代入y=x2得:4=m2,∴m=±2.∵点A在二象限,∴m=﹣2.(2)观察函数图象可知:当﹣2<x<1时,直线在抛物线的上方,∴n的取值范围为:﹣2<n<1.20.解:(1)当a=2时,y=2(x+2)(x+1),∴二次函数的对称轴为x=.(2)由题知二次函数与x轴的交点坐标为(﹣a,0),(1﹣a,0);∵a<0,∴二次函数的开口方向向下;又﹣a>0,1﹣a>0,所以对称轴所在直线为x==>0,当x=时,y=﹣>0,所以顶点坐标(,﹣)在第一象限.(3)由(2)知,二次函数的对称轴为直线x=,∵当0<x<3时,y随着x增大而增大,∴当a>0时,≤0,解得a≥;当a<0,≥3,解得a≤﹣.∴a的取值范围为a≥或a≤﹣.21.解:∵一次函数y=kx﹣2的图象相过点A(﹣1,﹣1),∴﹣1=﹣k﹣2,解得k=﹣1,∴一次函数表达式为y=﹣x﹣2,∴令x=0,得y=﹣2,∴G(0,﹣2),∵y=ax2过点A(﹣1,﹣1),∴﹣1=a×1,解得a=﹣1,∴二次函数表达式为y=﹣x2,由一次函数与二次函数联立可得,解得,,∴S△OAB=OG•|A的横坐标|+OG•点B的横坐标=×2×1+×2×2=1+2=3.22.解:(1)∵抛物线经过A、B(0,3)∴由上两式解得∴抛物线的解析式为:;(2)由(1)抛物线对称轴为直线x=把x=代入,得y=4则点C坐标为(,4)设线段AB所在直线为:y=kx+b,则有,解得∴AB解析式为:∵线段AB所在直线经过点A、B(0,3)抛物线的对称轴l于直线AB交于点D∴设点D的坐标为D将点D代入,解得m=2∴点D坐标为,∴CD=CE﹣DE=2过点B作BF⊥l于点F∴BF=OE=∵BF+AE=OE+AE=OA=∴S△ABC=S△BCD+S△ACD=CD•BF+CD•AE∴S△ABC=CD(BF+AE)=×2×=23.解:(1)∵抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点∴,解得:,∴抛物线解析式为y=﹣x2+2x+3,设直线AB的解析式为y=mx+n(m≠0),则,解得,∴直线AB的解析式为y=x+1;(2)令x=0,则y=﹣x2+2x+3=3,∴C(0,3),则OC=3,BC=2,BC∥x轴,∴S△ABC=×BC×OC==3.九年级数学上册二次函数单元综合测试卷一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+12.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2 5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣66.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+17.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.49.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°二.填空题(共6小题)11.函数是二次函数,则m的值为.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?21.如图,抛物线与x轴交于A(﹣1,0)、B(4,0),与y轴交于C.(1)求抛物线的解析式;(2)如图1,已知线段DE与线段BC关于平面内某点成中心对称,其中DE的两端点刚好一个落在抛物线上,一个落在对称轴上,求落在对称轴上的点的坐标;(3)如图2,点M为第二象限抛物线上,作MN∥BC交抛物线于点N,直线NB、MC 交于点P,求P点的横坐标.22.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y'),给出如下定义:若y'=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为;(2)若点P在函数y=﹣x2+16的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;(3)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,求实数a的取值范围.23.在平面直角坐标系中,抛物线y=x2+bx+c经过A(﹣4,0),点M为抛物线的顶点,点B在y轴上,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线解析式;(2)直线AB的函数解析式为,点M的坐标为.(3)在y轴上找一点Q,使得△AMQ的周长最小,具体作法如图②,作点A关于y轴的对称点A',连接MA′交y轴于点Q,连接AM,AQ,此时△AMQ的周长最小,请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A,O,C,N为顶点的四边形是平行四边形?若存在请直接写出点N的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+1解:A.根据二次函数的定义,y=4x是一次函数,不是二次函数,故A不符合题意.B.根据二次函数的定义,y=3x﹣5不是二次函数,是一次函数,故B不符合题意.C.根据二次函数的定义,y=是反比例函数,不是二次函数,故C不符合题意.D.根据二次函数的定义,y=2x2+1是二次函数,故D符合题意.故选:D.2.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.解:A、由图知a>0,﹣=1,c>0,即b<0,∵已知a>b>c,故本选项错误;B、由图知a<0,而已知a>b>c,且a+b+c=0,必须a>0,故本选项错误;C、图C中条件满足a>b>c,且a+b+c=0,故本选项正确;D、∵a+b+c=0,即当x=1时a+b+c=0,与图中与x轴的交点不符,故本选项错误.故选:C.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)解:∵二次函数可化为y=(x﹣3)2+5,∴二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是(3,5),故选:D.4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2解:y=x2+2x﹣1=(x2+2x+1)﹣2=(x+1)2﹣2,即y=(x+1)2﹣2.故选:D.5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣6解:y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2,∴当x<2时,y随着x增大而增大,∴当x=时有最大值y=﹣2(﹣2)2+2=﹣2.5,故选:C.6.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+1解:设所求的抛物线解析式为y=a(x﹣3)2+1,∵所求抛物线与函数y=的图象相同且开口方向相反,∴a=﹣,∴所求的抛物线解析式为y=﹣(x﹣3)2+1.故选:D.7.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1解:当x=﹣1时,y1=(x﹣1)2=(﹣1﹣1)2=4;当x=1时,y2=(x﹣1)2=(1﹣1)2=0;当x=2时,y3=(x﹣1)2=(2﹣1)2=1,所以y2<y3<y1.故选:C.8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.4解:根据表格数据可知:抛物线的对称轴是直线x==,∴③错误;∵抛物线与x轴的一个交点为(﹣2,0),∴抛物线与x轴的另一个交点为(3,0),∴方程ax2+bx+c=0有两根为x1=﹣2,x2=3;故①正确;从表格可知当x=0时,y=6,∴抛物线与y轴的交点为(0,6);∴②正确;从表格可知:当x<时,y随x的增大而增大,当x>时,y随x的增大而减小,∴抛物线开口向下,故④错误.故选:B.9.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对解:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°,∴∠OBE=∠OCF=45°,∵BE=CF,∴△BOE≌△COF,∴OE=OF,∠BOE=∠COF,∴∠BOE+∠COE=∠COF+∠COE,即∠EOF=∠BOC=90°,且S△COE+S△COF=S△COE+S△BOE,即S四边形OECF=S△BOC=S正方形ABCD=×4×4=4,由垂线段最短可得,当OE⊥BC时,OE=BC=×4=2,△OEF面积取最小值为×2×2=2,∴结论Ⅰ和Ⅱ都对,结论Ⅲ错,故选:A.10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°解:把(25,0.725),(50,0.06),(60,0.09)代入y=ax2+bx+c得:,解得,∴y=0.0001x2﹣0.008x+0.21=0.0001(x﹣40)2+0.05,∵0.0001>0,∴x=40时,y最小为0.05,∴燃气灶烧开一壶水最节省燃气的旋钮角度约为40°,故选:B.二.填空题(共6小题)11.函数是二次函数,则m的值为3.解:∵函数是二次函数,∴m2﹣7=2且m+3≠0,解得:m=3.则m的值为3.故答案为:3.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为5.解:∵y=x2﹣4x+c,∴抛物线开口向上,对称轴为直线x=﹣=2,∴点A,B关于直线x=2对称,∵点A横坐标为﹣1,∴点B横坐标为5,故答案为:5.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=5.解:∵|2﹣a|=3,∴2﹣a=±3,解得:a=﹣1或5,又二次函数y=ax2开口向上,则a>0,故a=5.故答案为:5.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是3.解:∵点A(m,n)在抛物线y=x2﹣3x+1上,∴n=m2﹣3m+1,∴m﹣n=﹣m2+4m﹣1=﹣(m﹣2)2+3,∴当m=2时,m﹣n有最大值为3,故答案为:3.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为﹣.解:设A(x1,0),B(x2,0),令y=0,则y=﹣x2+2x+c=0,由根与系数的关系得:x1+x2=2,x1•x2=﹣c,则AB=|x1﹣x2|===2,令x=0,则y=c,∴C(0,c),∵CD∥x轴,∴点D纵坐标为c,当y=c时,则﹣x2+2x+c=c,解得:x=2,或x=0,∴D(2,c),∴CD=2,∵AB+CD=3,∴2+2=3,解得:c=﹣,故答案为:﹣.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为142.解:连接AC,过B作BH⊥AC于H,以B为圆心,BG为半径作圆,交BH于G',如图:∵四边形ABCD是矩形,∴∠EBF=90°,∵EF=10,点G是EF的中点,∴BG=EF=10=5,∴G在以B为圆心,5为半径的弧上,当G运动到G'时,S△ACG最小,此时四边形AGCD 面积的最小值,最小值即为四边形AG'CD的面积,∵AB=12=CD,BC=16=AD,∴AC=20,S△ACD=×12×16=96,∴BH==,∴G'H=BH﹣5=﹣5=,∴S△ACG'=AC•G'H=×20×=46,∴S四边形AG'CD=S△ACD+S△ACG'=46+96=142,即四边形AGCD面积的最小值是142.故答案为:142.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.解:(1)由图象可知,抛物线经过点(﹣1,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当y=0时,x的值为﹣1和3;(2)∵抛物线经过点(﹣1,0),(3,0),(0,﹣3),∴设抛物线的解析式为y=a(x+1)(x﹣3),代入(0,﹣3)得,﹣3=﹣3a,解得a=1,∴抛物线的解析式为y=(x+1)(x﹣3),令y=5得5=(x+1)(x﹣3),解得x1=4,x2=﹣2,∴当y>5时,求x的范围是x>4或x<﹣2;(3)∵y=(x+1)(x﹣3)=(x﹣1)2+4,∴抛物线开口向上,顶点为(1,4),对称轴为直线x=1,∴y随x的增大而增大时,x的范围是x>1.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.解:(1)y=x2﹣6x+8=x2﹣6x+9﹣1=(x﹣3)2﹣1;(2)开口向上,对称轴是直线x=3,顶点坐标是(3,﹣1);(3)x>3时,y随x的增大而增大;x<3时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,答:小球飞行高度达到最高时的飞行时间为2s.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?解:(1)根据题意,降价2元则销售量为60+2×10=80(斤),销售利润为:(30﹣15﹣2)×80=1040(元),。
九年级数学二次函数测试题含答案(精选5套)
九年级数学二次函数测试题含答案(精选5套)九年级数学二次函数测试题含答案(精选5套)第一套:1. 将函数 $y = 2x^2 - 3x - 2$ 化简为标准形式,并求出它的顶点坐标。
答案:将函数化简为标准形式得到 $y = 2(x-\frac{3}{4})^2 -\frac{33}{8}$,顶点坐标为 $(\frac{3}{4}, -\frac{33}{8})$。
2. 求函数 $y = -x^2 + 4x + 1$ 的零点。
答案:将函数化简为标准形式得到 $y = -(x-2)^2 + 5$,令 $y = 0$,解得 $x = 2 \pm \sqrt{5}$,即零点为 $x_1 = 2 + \sqrt{5}$ 和 $x_2 = 2 -\sqrt{5}$。
3. 给定函数 $y = x^2 - 6x + 5$,求其对称轴的方程式。
答案:对称轴的方程式为 $x = \frac{-b}{2a}$,代入 $a = 1$ 和 $b = -6$ 得到 $x = \frac{6}{2} = 3$。
4. 若函数 $y = ax^2 + bx - 9$ 与 $y = -x^2 + 7x$ 有相同的图像,求$a$ 和 $b$ 的值。
答案:由于两个函数有相同的图像,所以它们的系数相等。
比较两个函数的对应系数得到 $a = -1$ 和 $b = 7$。
5. 已知函数 $y = x^2 - 4x + 5$ 的图像上存在一点 $(h, k)$,使得 $x= h - 3$ 时,$y = 2k + 12$,求点 $(h, k)$ 的坐标。
答案:将 $x = h - 3$ 代入函数得到 $y = (h-3)^2 - 4(h-3) + 5$。
代入$y = 2k + 12$ 得到 $(h-3)^2 - 4(h-3) + 5 = 2k + 12$。
整理得到 $(h-3)^2 -4(h-3) - 2k - 7 = 0$。
由于该方程为二次方程,必然存在实数解。
人教版九年级上册数学第二十二章二次函数解答题专题训练含答案
人教版九年级上册数学第二十二章二次函数解答题专题训练1.如图,已知抛物线26y ax bx +=+经过A (-1,0),B (3,0)两点,C 是抛物线与y 轴的交点.(1)求抛物线的解析式;(2)点P (m ,n )在平面直角坐标系的第一象限内的抛物线上运动,设△PBC 的面积为S 求S 关于m 的函数解析式(指出自变量m 的取值范围)和S 的最大值.2.综合与探究:如图,在平面直角坐标系中,二次函数2y x bx c =++的图象经过点70,4A ⎛⎫- ⎪⎝⎭,点11,4B ⎛⎫ ⎪⎝⎭.(1)求此二次函数的解析式;(2)当22x -≤≤时,求二次函数2y x bx c =++的最大值和最小值;(3)点P 为此函数图象上任意一点,其横坐标为m ,过点P 作PQ x ∥轴,点Q 的横坐标为21m -+.已知点P 与点Q 不重合,且线段PQ 的长度随m 的增大而减小.求m 的取值范围;3.次函数22y ax bx =++的图象交x 轴于点A (-1,0),B (4,0),两点,交y 轴于点C ,动点M 从点A 出发,以每秒2个单位长度的速度沿AB 方向运动,过点M 作MN ⊥x 轴交直线BC 于点N ,交抛物线于点D ,连接AC ,设运动的时间为t 秒.(1)求二次函数22y ax bx =++的表达式;(2)连接BD ,当32t =时,求⊥DNB 的面积;(3)在直线MN 上存在一点P ,当⊥PBC 是以⊥BPC 为直角的等腰直角三角形时,求此时点P 的坐标.4.如图抛物线232y ax x c =++(a ≠0)与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,若点A 坐标为(﹣2,0),点C 坐标为(0,4).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,请用尺规在图1中作出这样的点P ,并直接写出P 点的坐标;如果不存在,请说明理由;(3)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标.5.如图,抛物线212y x bx c =-++与x 轴交于()1,0A -,B 两点,与y 轴交于点()0,2C ,连接BC .(1)求抛物线的解析式.(2)点P 是第三象限抛物线上一点,直线PE 与y 轴交于点D ,BCD △的面积为12,求点P 的坐标.(3)在(2)的条件下,若点E 是线段BC 上点,连接OE ,将OEB 沿直线OE 翻折得到OEB '△,当直线EB '与直线BP 相交所成锐角为45︒时,求点B '的坐标.6.如图,直线3y x =-交x 轴于点B ,交y 轴于点A ,抛物线24y ax x c =++经过点A ,B ,顶点为点C .(1)求抛物线的解析式及点C 的坐标.(2)将抛物线24y ax x c =++向下平移m 个单位长度,点C 的对应点为D ,连接AD ,BD ,若2ABD S =,求m 的值.7.如图,抛物线23y ax bx =++与x 轴交于点()3,0A ,与y 轴交于点B ,点C 在直线AB 上,过点C 作CD x ⊥轴于点()1,0D ,将ACD △沿CD 所在直线翻折,使点A 恰好落在抛物线上的点E 处.(1)求抛物线解析式;(2)连接BE ,求BCE 的面积;(3)拋物线上是否存在一点P ,使PEA BAE ∠=∠?若存在,求出P 点坐标;若不存在,请说明理由.8.如图,抛物线2412y ax ax a =--与x 轴交于A 、B 两点(点A 点B 点的左边),与y 轴交于点C .直线l 与抛物线交于A 、D 两点,与y 轴交于点E ,点D 的坐标为(4,3).(1)求抛物线的解析式与A 、B 两点坐标;(2)若点P 是抛物线上的点且在直线l 上方,连接PA 、PD ,求当PAD △面积最大时点P 的坐标及该面积的最大值;(3)若点Q 是y 轴上的点,且45ADQ ∠=︒,求点Q 的坐标.9.如图,已知抛物线 24y x =- 与 x 轴交于点 A ,B (点 A 位于点 B 的左侧),C 为顶点,直线 y x m =+ 经过点 A ,与 y 轴交于点 D .(1)求线段 AD 的长;(2)沿直线 AD 方向平移该抛物线得到一条新拋物线,设新抛物线的顶点为 C,若点 C 在反比例函数 3y x =- 的图象上.求新抛物线对应的函数表达式.10.如图,抛物线的顶点为C (1,9),与x 轴交于A ,B (4,0)两点.(1)求抛物线的解析式;(2)抛物线与y 轴交点为D ,求BCD S △.11.如图,抛物线y =-x 2+bx +c 与x 轴交于A (2,0),B (-6,0)两点.(1)求该抛物线的解析式;(2)若抛物线交y 轴于C 点,在该抛物线的对称轴上是否存在点Q ,使得QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.(3)在坐标平面内是否存在一点P ,使得Q 、B 、A 、P 围成的图形是平行四边形,若存在,直接写出点P 的坐标;若不存在,请说明理由.12.已知二次函数()20y ax bx c a =++≠的图象与x 轴相交于点A 和点()10B ,,与y 轴相交于点()0,3C ,抛物线的对称轴是直线1x =-.(1)求二次函数的表达式及A 点的坐标;(2)D 是抛物线的顶点,点E 在抛物线上,且与点C 关于抛物线的对称轴对称,直线BE 交对称轴于点F ,试判断四边形CDEF 的形状,并说明理由.13.如图,已知抛物线212y x bx c =-++与坐标轴分别交于点A (0,8)、B (8,0)和点E ,动点C 从原点O 开始沿OA 方向以每秒1个单位长度移动,动点D 从点B 开始沿BO 方向以每秒1个单位长度移动,动点C 、D 同时出发,当动点D 到达原点O 时,点C 、D 停止运动.(1)直接写出抛物线的解析式:(2)求CED 的面积S 与D 点运动时间t 的函数解析式;当t 为何值时,CED 的面积最大?最大面积是多少?14.如图,抛物线()23202y ax x a =--≠的图像与x 轴交于A 、B 两点,与y 轴交于C 点,已知点B 坐标为()4,0.(1)求该抛物线相应的函数表达式;(2)判断ABC的形状,并说明理由.15.如图,抛物线2=-++的图像过点A(3,0),对称轴为直线1y x bx cx=,交y轴于点C,点C关于抛物线对称轴的对称点为B.若点P(0,m),在y轴正半轴上运动,点Q为抛物线一动点,且在第四象限,连接PQ交x轴于点E,连接BE.(1)求抛物线的解析式(2)当m=1.5时,且满足以P、O、E三点构成三角形与BCP相似,求PBE的面积.(3)当以点B、P、E为顶点的三角形为等腰直角三角形时,写出点P的坐标,点Q坐标.16.如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在点Q,且点Q在第一象限,使⊥BDQ中BDQ的坐标;若不存在,请说明理由.17.如图,抛物线22y x x c =-+的顶点A 在直线l :5y x =-上.(1)求抛物线的解析式及顶点A ;(2)设抛物线与y 轴交于点B ,与x 轴交于点C ,D (C 点在D 点的左侧),判断⊥ABD 的形状;(3)直线l 与x 轴交于点E ,点P 在射线AE 上运动,当PDE △与PAB △的面积相差为2时,利用备用图,求出此时点P 的坐标.18.如图,在平面直角坐标系中,过点()0,4A 、()5,9B 两点的抛物线的顶点C 在x 轴正半轴上.(1)求抛物线的解析式;(2)求点C 的坐标;(3)(),P x y 为线段AB 上一点,14x ≤≤,作PM y ∥轴交抛物线于点M ,求PM 的最大值与最小值.19.如图所示,抛物线y =ax 2+bx ﹣3与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴交于点C ,点M 是抛物线的顶点.(1)求抛物线的解析式及顶点M 的坐标;(2)如图,直线BC 下方的抛物线上有一点D ,过点D 作DE ⊥BC 于点E ,作DF 平行x 轴交直线BC 于点F ,求⊥DEF 周长的最大值.20.在平面直角坐标系xOy 中,已知抛物线2212125555y x mx m m =-+-+-,点A ,B ,C 都在抛物线上,AB∥x 轴,∠ABC =135°,且AB =4.(1)抛物线的顶点坐标为 (用含m 的代数式表示);(2)求⊥ABC 的面积;(3)已知M (0,-4)、N (4,-4),若抛物线2212125555y x mx m m =-+-+-与线段MN 恰有一个公共点,求m 的取值范围.答案1.(1)2246y x x =-++ (2)2327324S m ⎛⎫=--+ ⎪⎝⎭(0<m <3),当m =32时,△PBC 的面积取得最大值,最大值为274 2.(1)274y x x =+- (2)最小值为-2,最大值为174(3)13m < 3.(1)213222y x x =-++ (2)2DNB S =△(3)P (1,-1)或(3,3)4.(1)213442y x x =-++ (2)(3,8)或(3,﹣5)或(3,5)(3)当t =4时,四边形CDBF 的最大面积为26,此时E (4,2)5.(1)213222y x x =-++; (2)P (−3,−7);(3)B '的坐标为⎝⎭或⎛ ⎝⎭.6.(1)243y x x =-+-,(2,1)C (2)23或1037.(1)2y x 2x 3=-++(2)2(3)存在,()2,3或()4,5-8.(1)抛物线的解析式为:2134y x x =-++,A 点坐标为(-2,0),B 点坐标为(6,0)(2)PAD △的面积最大值为274,P 151,4⎛⎫ ⎪⎝⎭ (3)Q 的坐标为(0,133)或(0,-9) 9.(1)AD =(2)新抛物线对应的函数表达式为:268y x x =-+或222y x x -=-. 10.(1)y =-x 2+2x +8;(2)S △BCD =6.11.(1)2412y x x =--+(2)存在,Q (-2,8)(3)存在,(6,8)或(-2,-8)或(-10,8)12.(1)223y x x =--+,()30A -,; (2)四边形CDEF 是菱形,理由见解析. 33.(1)y =-12x 2+3x +8(2)S =-12t 2+5t ,当t =5时,CED 的面积最大,最大面积是252 14.(1)213222y x x =--(2)直角三角形,理由见解析 15.(1)2y x 2x 3=-++(2)3或7532(3)(0,2),2,2-) 16.(1)y =﹣x 2+2x +3 (2)94(3)存在,(1,4)或(2,3)17.(1)223y x x =--,顶点A (1,-4),(2)⊥ABD 为直角三角形,理由见解析(3)(4,-1)或(2,-3). 18.(1)()22y x =-(2)()2,0(3)最大值是254,最小值是419.(1)y =x 2﹣2x ﹣3,(1,﹣4)(2)944+20.(1)(m ,2m -5)(2)2 (3)12m =或559215m --559215m ++。
九年级数学上册 二次函数专题练习(解析版)
九年级数学上册二次函数专题练习(解析版)一、初三数学二次函数易错题压轴题(难)1.已知,抛物线y=-12x2 +bx+c交y轴于点C(0,2),经过点Q(2,2).直线y=x+4分别交x轴、y轴于点B、A.(1)直接填写抛物线的解析式________;(2)如图1,点P为抛物线上一动点(不与点C重合),PO交抛物线于M,PC交AB于N,连MN.求证:MN∥y轴;(3)如图,2,过点A的直线交抛物线于D、E,QD、QE分别交y轴于G、H.求证:CG •CH 为定值.【答案】(1)2122y x x=-++;(2)见详解;(3)见详解.【解析】【分析】(1)把点C、D代入y=-12x2 +bx+c求解即可;(2)分别设PM、PC的解析式,由于PM、PC与抛物线的交点分别为:M、N.,分别求出M、N的代数式即可求解;(3)先设G、H的坐标,列出QG、GH的解析式,得出与抛物线的交点D、E的横坐标,再列出直线AE的解析式,算出它与抛物线横坐标的交点方程.运用韦达定理即可求证.【详解】详解:(1)∵y=-12x2 +bx+c过点C(0,2),点Q(2,2),∴2122222b cc⎧-⨯++⎪⎨⎪=⎩=,解得:12b c =⎧⎨=⎩. ∴y=-12x 2+x+2; (2) 设直线PM 的解析式为:y=mx ,直线PC 的解析式为:y=kx+2由22122y kx y x x =+⎧⎪⎨=-++⎪⎩得12x 2+(k-1)x=0, 解得:120,22x x k ==-, x p =22p x k =-由21=22y mx y x x =⎧⎪⎨-++⎪⎩得12x 2+(m-1)x-2=0, ∴124bx x a⋅=-=- 即x p•x m =-4,∴x m =4p x -=21k -.由24y kx y x =+⎧⎨=+⎩得x N =21k -=x M , ∴MN ∥y 轴.(3)设G (0,m ),H (0,n ). 设直线QG 的解析式为y kx m =+, 将点()2,2Q 代入y kx m =+ 得22k m =+22mk -∴=∴直线QG 的解析式为22my x m -=+ 同理可求直线QH 的解析式为22ny x n -=+; 由222122m y x m y x x -⎧=+⎪⎪⎨⎪=-++⎪⎩得221=222m x m x x -+-++ 解得:122,2x x m ==-2D x m ∴=-同理,2E x n =-设直线AE 的解析式为:y=kx+4,由24122y kx y x x =+⎧⎪⎨=-++⎪⎩, 得12x 2-(k-1)x+2=0 124bx x a∴⋅=-= 即x D x E =4,即(m-2)•(n-2)=4 ∴CG•CH=(2-m )•(2-n )=4.2.如图,抛物线y=﹣x 2+mx+n 与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知A (﹣1,0),C (0,2). (1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由;(3)点E 时线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标.【答案】(1)抛物线的解析式为:y=﹣x2+x+2(2)存在,P1(,4),P2(,),P3(,﹣)(3)当点E运动到(2,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.【解析】试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;(2)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P2,P3;作CH 垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.试题解析:(1)∵抛物线y=﹣x2+mx+n经过A(﹣1,0),C(0,2).解得:,∴抛物线的解析式为:y=﹣x2+x+2;(2)∵y=﹣x2+x+2,∴y=﹣(x﹣)2+,∴抛物线的对称轴是x=.∴OD=.∵C(0,2),∴OC=2.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=CP2=CP3=CD.作CH⊥x轴于H,∴HP1=HD=2,∴DP1=4.∴P1(,4),P2(,),P3(,﹣);(3)当y=0时,0=﹣x2+x+2∴x1=﹣1,x2=4,∴B(4,0).设直线BC的解析式为y=kx+b,由图象,得,解得:,∴直线BC 的解析式为:y=﹣x+2.如图2,过点C 作CM ⊥EF 于M ,设E (a ,﹣a+2),F (a ,﹣a 2+a+2),∴EF=﹣a 2+a+2﹣(﹣a+2)=﹣a 2+2a (0≤x≤4). ∵S 四边形CDBF =S △BCD +S △CEF +S △BEF =BD•OC+EF•CM+EF•BN , =+a (﹣a 2+2a )+(4﹣a )(﹣a 2+2a ),=﹣a 2+4a+(0≤x≤4).=﹣(a ﹣2)2+∴a=2时,S 四边形CDBF 的面积最大=,∴E (2,1).考点:1、勾股定理;2、等腰三角形的性质;3、四边形的面积;4、二次函数的最值3.如图1,抛物线21:C y x b =+交y 轴于()0,1A .(1)直接写出抛物线1C 的解析式______________.(2)如图1,x 轴上两动点,M N 满足:m n X X n -==.若,B C (B 在C 左侧)为线段MN 上的两个动点,且满足:B 点和C 点关于直线:1l x =对称.过B 作BB x '⊥轴交1C 于B ',过C 作CC x '⊥轴交1C 于C ',连接B C ''.求B C ''的最大值(用含n 的代数式表示).(3)如图2,将抛物线1C 向下平移78个单位长度得到抛物线2C .2C 对称轴左侧的抛物线上有一点M ,其横坐标为m .以OM 为直径作K ,记⊙K 的最高点为Q .若Q 在直线2y x =-上,求m 的值.【答案】(1)21y x =+;(2)251|n -;(3)14m =-或12m =- 【解析】 【分析】(1)将()0,1A 带入抛物线1C 解析式,求得b 的值,即可得到抛物线1C 的解析式; (2)设(),0B q ,则()2,0C q -,求()2B C ''并进行化简,由1n q -≤<且12,qn <-得21n q -<,则当()2maxB C ''⎡⎤⎢⎥⎣⎦时,取min 2q q n ==-,带入()2B C '',即可求得()maxB C '';(3)依题意将抛物线1C 向下平移78个单位长度得到抛物线2C ,求得2C 解析式,根据解析式特点设21,8M m m ⎛⎫+ ⎪⎝⎭,得到222218OM m m ⎛⎫=++ ⎪⎝⎭,由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭,设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭,化简得到22211084k m k m ⎛⎫++-= ⎪⎝⎭,由Q 点在2y x =-上,得2Q k x m =-=-,继而得到231048m m -+=,解得14m =-或12m =-. 【详解】解:(1)将()0,1A 带入抛物线21:C y x b =+,得b=1, 则21:1C y x =+,(2)设(),0B q ,则()2,0C q -, ∴()22222(2)(2)B C q q q q ''⎡⎤=--+--⎣⎦2204020q q =-+()2201q =-,∵1n q -≤<且12,q n <-21n q -<∴,∴()2maxB C''⎡⎤⎢⎥⎣⎦时,min 2q q n ==-,即()22220(21)20(1)B C n n ''=--=-,∴()max1|B C n ''=-,(3)根据题意,将抛物线1C 向下平移78个单位长度得到抛物线2C , ∴221:8C y x =+, ∴21,8M m m ⎛⎫+⎪⎝⎭, ∴222218OM m m ⎛⎫=++ ⎪⎝⎭,∴由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭, 设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭,∴222111428OM k m ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦, 化简上式得:22211084k m k m ⎛⎫++-= ⎪⎝⎭, ∵Q 点在2y x =-上,则2Q k x m =-=-, ∴k m =-为上述方程的一个解, ∴分析可知1()04k m k m ⎛⎫+-= ⎪⎝⎭, 21148m m m -=+∴,∴231048m m -+=, 解得:114m =-,212m =-(经检验114m =-,212m =-是方程231048m m -+=的解),故14m =-或12m =-. 【点睛】本题主要考查二次函数的图像及性质、图像平移的性质、及二次函数与一元二次方程的综合应用、最值求法等知识.解题关键是熟练掌握二次函数的性质,充分利用数形结合的思想.4.如图,若抛物线y =x 2+bx+c 与x 轴相交于A ,B 两点,与y 轴相交于点C ,直线y =x ﹣3经过点B ,C . (1)求抛物线的解析式;(2)点P 是直线BC 下方抛物线上一动点,过点P 作PH ⊥x 轴于点H ,交BC 于点M ,连接PC .①线段PM 是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P 运动的过程中,是否存在点M ,恰好使△PCM 是以PM 为腰的等腰三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.【答案】(1)y =x 2﹣2x ﹣3;(2)①有,94;②存在,(2,﹣3)或(3,2﹣) 【解析】 【分析】(1)由直线表达式求出点B 、C 的坐标,将点B 、C 的坐标代入抛物线表达式,即可求解;(2)①根据PM =(x ﹣3)﹣(x 2﹣2x ﹣3)=﹣(x ﹣32)2+94即可求解; ②分PM =PC 、PM =MC 两种情况,分别求解即可. 【详解】解:(1)对于y =x ﹣3,令x =0,y =﹣3,y =0,x =3, 故点B 、C 的坐标分别为(3,0)、(0,﹣3),将点B 、C 的坐标代入抛物线表达式得:9303b c c ++=⎧⎨=-⎩,解得:32c b =-⎧⎨=-⎩,故抛物线的表达式为:y =x 2﹣2x ﹣3;(2)设:点M (x ,x ﹣3),则点P (x ,x 2﹣2x ﹣3), ①有,理由:PM =(x ﹣3)﹣(x 2﹣2x ﹣3)=﹣(x ﹣32)2+94, ∵﹣1<0,故PM 有最大值,当x =32时,PM 最大值为:94; ②存在,理由:PM 2=(x ﹣3﹣x 2+2x+3)2=(﹣x 2+3x )2; PC 2=x 2+(x 2﹣2x ﹣3+3)2; MC 2=(x ﹣3+3)2+x 2;(Ⅰ)当PM =PC 时,则(﹣x 2+3x )2=x 2+(x 2﹣2x ﹣3+3)2, 解得:x =0或2(舍去0), 故x =2,故点P (2,﹣3);(Ⅱ)当PM =MC 时,则(﹣x 2+3x )2=(x ﹣3+3)2+x 2,解得:x =0或(舍去0和),故x =3,则x 2﹣2x ﹣3=2﹣,故点P (3,2﹣).综上,点P 的坐标为:(2,﹣3)或(3,2﹣). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质等,其中(2)②,要注意分类求解,避免遗漏.5.定义:函数l与l'的图象关于y轴对称,点(),0P t是x轴上一点,将函数l'的图象位于直线x t=左侧的部分,以x轴为对称轴翻折,得到新的函数w的图象,我们称函数w是函数l的对称折函数,函数w的图象记作1F,函数l的图象位于直线x t=上以及右侧的部分记作2F,图象1F和2F合起来记作图象F.例如:如图,函数l的解析式为1y x=+,当1t=时,它的对称折函数w的解析式为()11y x x=-<.(1)函数l的解析式为21y x=-,当2t=-时,它的对称折函数w的解析式为_______;(2)函数l的解析式为1²12y x x=--,当42x-≤≤且0t=时,求图象F上点的纵坐标的最大值和最小值;(3)函数l的解析式为()2230y ax ax a a=--≠.若1a=,直线1y t=-与图象F有两个公共点,求t的取值范围.【答案】(1)()212y x x=+<-;(2)F的解析式为2211(0)211(0)2y x x xy x x x⎧=--≥⎪⎪⎨⎪=--+<⎪⎩;图象F上的点的纵坐标的最大值为32y=,最小值为3y=-;(3)当3t=-,3171t-<≤,3175t+<<时,直线1y t=-与图象F有两个公共点.【解析】【分析】(1)根据对折函数的定义直接写出函数解析式即可;(2)先根据题意确定F的解析式,然后根据二次函数的性质确定函数的最大值和最小值即可;(3)先求出当a=1时图像F的解析式,然后分14t-=-、点(),1t t-落在223()y x x x t=--≥上和点(),1t t-落在()223y x x x t=--+<上三种情况解答,最后根据图像即可解答.【详解】解:(1)()212y x x =+<-(2)F 的解析式为2211(0)211(0)2y x x x y x x x ⎧=--≥⎪⎪⎨⎪=--+<⎪⎩当4x =-时,3y =-,当1x =-时,32y =, 当1x =时,32y =-,当2x =时,1y =, ∴图象F 上的点的纵坐标的最大值为32y =,最小值为3y =-. (3)当1a =时,图象F 的解析式为2223()23()y x x x t y x x x t ⎧=--≥⎨=--+<⎩∴该函数的最大值和最小值分别为4和-4; a :当14t -=-时,3t =-,∴当3t =-时直线1y t =-与图象F 有两个公共点; b :当点(),1t t -落在223()y x x x t =--≥上时,2123t t t -=--,解得132t -=,232t =c :当点(),1t t -落在()223y x x x t =--+<上时,2123t t t -=--+,解得34t =-(舍),41t =14t -=,∴55t =∴当312t <≤或352t <<时,直线1y t =-与图象F 有两个公共点; 综上所述:当3t =-1t <≤5t <<时,直线1y t =-与图象F 有两个公共点. 【点睛】本题属于二次函数综合题,考查了“称折函数”的定义、二次函数的性质、解二元一次方程等知识,弄清题意、灵活运用所学知识是解答本题的关键.6.如图,在平面直角坐标系中,抛物线y =﹣12x 2+bx +c 与x 轴交于B ,C 两点,与y 轴交于点A ,直线y =﹣12x +2经过A ,C 两点,抛物线的对称轴与x 轴交于点D ,直线MN 与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.(1)求此抛物线的解析式.(2)求点N的坐标.(3)过点A的直线与抛物线交于点F,当tan∠FAC=12时,求点F的坐标.(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC 以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t5S与t的函数关系式.【答案】(1)y=﹣12x2+32x+2;(2)点N的坐标为(5,-3);(3)点F的坐标为:(3,2)或(173,﹣509);(4)2535,0453593535,(4359355)4t tS tt⎧⎛⎫≤≤⎪ ⎪⎪⎪⎝⎭=-<≤+<≤.【解析】【分析】(1)点A、C的坐标分别为(0,2)、(4,0),将点A、C坐标代入抛物线表达式即可求解;(2)抛物线的对称轴为:x=32,点N的横坐标为:37522+=,即可求解;(3)分点F在直线AC下方、点F在直线AC的上方两种情况,分别求解即可;(4)分0≤t3535<t3535<t5【详解】解:(1)直线y=﹣12x+2经过A,C两点,则点A、C的坐标分别为(0,2)、(4,0),则c=2,抛物线表达式为:y=﹣12x2+bx+2,将点C坐标代入上式并解得:b=3 2,故抛物线的表达式为:y=﹣12x2+32x+2…①;(2)抛物线的对称轴为:x=32,点N的横坐标为:37522+=,故点N的坐标为(5,-3);(3)∵tan∠ACO=2142AOCO===tan∠FAC=12,即∠ACO=∠FAC,①当点F在直线AC下方时,设直线AF交x轴于点R,∵∠ACO=∠FAC,则AR=CR,设点R(r,0),则r2+4=(r﹣4)2,解得:r=32,即点R的坐标为:(32,0),将点R、A的坐标代入一次函数表达式:y=mx+n得:232nm n=⎧⎪⎨+=⎪⎩,解得:432mn⎧=-⎪⎨⎪=⎩,故直线AR的表达式为:y=﹣43x+2…②,联立①②并解得:x=173,故点F(173,﹣509);②当点F在直线AC的上方时,∵∠ACO=∠F′AC,∴AF′∥x轴,则点F ′(3,2);综上,点F 的坐标为:(3,2)或(173,﹣509); (4)如图2,设∠ACO =α,则tanα=12AO CO =,则sinα=5,cosα=5;①当0≤t ≤35时(左侧图), 设△AHK 移动到△A ′H ′K ′的位置时,直线H ′K ′分别交x 轴于点T 、交抛物线对称轴于点S ,则∠DST =∠ACO =α,过点T 作TL ⊥KH , 则LT =HH ′=t ,∠LTD =∠ACO =α,则DT ='52co 5c s os L HH T t αα===,DS =tan DT α, S =S △DST =12⨯DT ×DS =254t ; 35<t 35时(右侧图),同理可得:S =''DGS T S 梯形=12⨯DG ×(GS ′+DT ′)=12⨯3+(52t +52t ﹣32)=35924-; 35<t 53594+; 综上,S =2535,023593535,(245435935(5)1044t t t t t t ⎧⎛≤≤⎪ ⎪⎝⎭⎪⎪⎨-<≤⎪⎪⎪+<≤⎪⎩.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形平移、图形的面积计算等,其中(3)、(4),要注意分类求解,避免遗漏.7.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)求直线AC的函数解析式;(3)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;【答案】(1)y=﹣23x2﹣43x+2;(2)223y x=+;(3)存在,(35,22-)【解析】【分析】(1)直接用待定系数法即可解答;(2)先确定C点坐标,设直线AC的函数解析式y=kx+b,最后用待定系数法求解即可;(3)连接PO,作PM⊥x轴于M,PN⊥y轴于N,然后求出△ACP面积的表达式,最后利用二次函数的性质求最值即可.【详解】解:(1)∵抛物线y=ax2+bx+2过点A(﹣3,0),B(1,0),∴093202a ba b=-+⎧⎨=++⎩解得2343ab⎧=-⎪⎪⎨⎪=-⎪⎩,∴二次函数的关系解析式为y=﹣23x2﹣43x+2;(2)∵当x=0时,y=2,∴C(0,2)设直线AC的解析式为y kx b=+,把A、C两点代入得0=32k b b -+⎧⎨=⎩ 解得232k b ⎧=⎪⎨⎪=⎩ ∴直线AC 的函数解析式为223y x =+; (3)存在.如图: 连接PO ,作PM⊥x 轴于M ,PN⊥y 轴于N设点P 坐标为(m ,n ),则n=224233m m --+),PN=-m ,AO=3当x=0时,y=22400233-⨯-⨯+=2, ∴点C 的坐标为(0,2),OC=2 ∵PACPAOPCOACOSSSS=+-212411322()3223322m m m ⎛⎫=⨯⋅--++⨯⋅--⨯⨯ ⎪⎝⎭ =23m m -- ∵a=-1<0∴函数S △PAC =-m 2-3m 有最大值∴b 当m=()33212-=--⨯-∴当m=32-时,S △PAC 有最大值n=222423435223332322m m ⎛⎫--+=-⨯-⨯+= ⎪⎝⎭∴当△ACP 的面积最大时,P 的坐标为(35,22-). 【点睛】本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、二次函数极值等知识点,根据题意表示出△PAC 的面积是解答本题的关键.8.在平面直角坐标系xOy 中(如图),已知二次函数2y ax bx c =++(其中a 、b 、c 是常数,且a ≠0)的图像经过点A (0,-3)、B (1,0)、C (3,0),联结AB 、AC . (1)求这个二次函数的解析式;(2)点D是线段AC上的一点,联结BD,如果:3:2ABD BCDS S∆∆=,求tan∠DBC的值;(3)如果点E在该二次函数图像的对称轴上,当AC平分∠BAE时,求点E的坐标.【答案】(1)243y x x=-+-;(2)32;(3)E(2,73-)【解析】【分析】(1)直接利用待定系数法,把A、B、C三点代入解析式,即可得到答案;(2)过点D作DH⊥BC于H,在△ABC中,设AC边上的高为h,利用面积的比得到32ADDC=,然后求出DH和BH,即可得到答案;(3)延长AE至x轴,与x轴交于点F,先证明△OAB∽△OFA,求出点F的坐标,然后求出直线AF的方程,即可求出点E的坐标.【详解】解:(1)将A(0,-3)、B(1,0)、C(3,0)代入20y ax bx c a=++≠()得,03,0934,300a ba bc=+-⎧⎪=+-⎨⎪-=++⎩解得143abc=-⎧⎪=⎨⎪=-⎩,∴此抛物线的表达式是:243y x x=-+-.(2)过点D作DH⊥BC于H,在△ABC 中,设AC 边上的高为h ,则11:():():3:222ABD BCD S S AD h DC h AD DC ∆∆=⋅⋅==,又∵DH//y 轴,∴25CH DC DH OC AC OA ===. ∵OA=OC=3,则∠ACO=45°, ∴△CDH 为等腰直角三角形, ∴26355CH DH ==⨯=. ∴64255BH BC CH =-=-=. ∴tan ∠DBC=32DH BH =. (3)延长AE 至x 轴,与x 轴交于点F ,∵OA=OC=3,∴∠OAC=∠OCA=45°,∵∠OAB=∠OAC -∠BAC=45°-∠BAC ,∠OFA=∠OCA -∠FAC=45°-∠FAC , ∵∠BAC=∠FAC , ∴∠OAB=∠OFA .∴△OAB∽△OFA,∴13OB OAOA OF==.∴OF=9,即F(9,0);设直线AF的解析式为y=kx+b(k≠0),可得093k bb=+⎧⎨-=⎩,解得133kb⎧=⎪⎨⎪=-⎩,∴直线AF的解析式为:133y x=-,将x=2代入直线AF的解析式得:73y=-,∴E(2,73-).【点睛】本题考查了相似三角形的判定和性质,二次函数的性质,求二次函数的解析式,等腰直角三角形的判定和性质,求一次函数的解析式,解题的关键是掌握二次函数的图像和性质,以及正确作出辅助线构造相似三角形.9.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;【答案】(1)224233y x x=--+;(2)存在,点P35,22⎛⎫-⎪⎝⎭,使△PAC的面积最大;(3)存在点Q,使△BCQ是以BC为腰的等腰直角三角形.Q点坐标为:Q1(2,3),Q2(3,1),Q3(﹣1,﹣1),Q4(﹣2,1).【解析】【分析】(1)直接把点A(﹣3,0),B(1,0)代入二次函数y=ax2+bx+2求出a、b的值即可得出抛物线的解析式;(2)设点P坐标为(m,n),则n=﹣23m2﹣43m+2,连接PO,作PM⊥x轴于M,PN⊥y轴于N.根据三角形的面积公式得出△PAC的表达式,再根据二次函数求最大值的方法得出其顶点坐标即可;(3)以BC为边,在线段BC两侧分别作正方形,正方形的其他四个顶点均可以使得“△BCQ是以BC为腰的等腰直角三角形”,因此有四个点符合题意要求,再过Q1点作Q1D⊥y轴于点D,过点Q2作Q2E⊥x轴于点E,根据全等三角形的判定定理得出△Q1CD≌△CBO,△CBO≌△BQ2E,故可得出各点坐标.【详解】(1)∵抛物线y=ax2+bx+2过点A(﹣3,0),B(1,0),∴0932 02a ba b=-+⎧⎨=++⎩2343ab⎧=-⎪⎪⎨⎪=-⎪⎩解得∴二次函数的关系解析式为y=﹣23x2﹣43x+2;(2)存在.∵如图1所示,设点P坐标为(m,n),则n=﹣23m2﹣43m+2.连接PO,作PM⊥x轴于M,PN⊥y轴于N.则PM=﹣23m2﹣43m+2.,PN=﹣m,AO=3.∵当x=0时,y=﹣23×0﹣43×0+2=2,∴OC=2,∴S△PAC=S△PAO+S△PCO﹣S△ACO=12AO•PM+12CO•PN﹣12AO•CO=12×3×(﹣23m2﹣43m+2)+12×2×(﹣m)﹣12×3×2=﹣m2﹣3m∵a=﹣1<0∴函数S△PAC=﹣m2﹣3m有最大值∴当m =﹣2b a =﹣32时,S △PAC 有最大值. ∴n =﹣23m 2﹣43m+2=﹣23×(﹣32)2﹣43×(﹣32)+2=52, ∴存在点P (﹣32,52),使△PAC 的面积最大.(3)如图2所示,以BC 为边在两侧作正方形BCQ 1Q 2、正方形BCQ 4Q 3,则点Q 1,Q 2,Q 3,Q 4为符合题意要求的点.过Q 1点作Q 1D ⊥y 轴于点D ,过点Q 2作Q 2E ⊥x 轴于点E , ∵∠1+∠2=90°,∠2+∠3=90°,∠3+∠4=90°,∴∠1=∠3,∠2=∠4,在△Q 1CD 与△CBO 中,∵11324Q C BC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△Q 1CD ≌△CBO ,∴Q 1D =OC =2,CD =OB =1,∴OD =OC+CD =3,∴Q 1(2,3);同理可得Q 4(﹣2,1);同理可证△CBO ≌△BQ 2E ,∴BE =OC =2,Q 2E =OB =1,∴OE =OB+BE =1+2=3,∴Q 2(3,1),同理,Q 3(﹣1,﹣1),∴存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形.Q 点坐标为:Q 1(2,3),Q 2(3,1),Q 3(﹣1,﹣1),Q 4(﹣2,1).【点睛】本题考查的是二次函数综合题,涉及到用待定系数法求二次函数解析式,二次函数极值、全等三角形的判定与性质,正方形及等腰直角三角形的性质等知识,涉及面较广,难度较大.10.平面直角坐标系xOy中,对于任意的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.在点A,B,C的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A,B,C的“最佳三点矩形”.如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH是点A,B,C 的“最佳三点矩形”.如图2,已知M(4,1),N(﹣2,3),点P(m,n).(1)①若m=1,n=4,则点M,N,P的“最佳三点矩形”的周长为,面积为;②若m=1,点M,N,P的“最佳三点矩形”的面积为24,求n的值;(2)若点P在直线y=﹣2x+4上.①求点M,N,P的“最佳三点矩形”面积的最小值及此时m的取值范围;②当点M,N,P的“最佳三点矩形”为正方形时,求点P的坐标;(3)若点P(m,n)在抛物线y=ax2+bx+c上,且当点M,N,P的“最佳三点矩形”面积为12时,﹣2≤m≤﹣1或1≤m≤3,直接写出抛物线的解析式.【答案】(1)①18,18;②或5;(2)①最小值为12,;②点的坐标为或;(3),或.【解析】【分析】(1)①根据题意,易得M、N、P的“最佳三点矩形”的周长和面积②先求出和的值,再根据m=1以及M、N、P的“最佳三点矩形”的面积是24,可分析出此矩形的邻边长分别为6、4进而求出n的值(2)①结合图形,易得M、N、P的“最佳三点矩形”的面积的最小值,分别将对应的值代入y=-2x+4即可求出m的取值范围②当M、N、P的“最佳三点矩形”为正方形时,易得边长为6,将对应的值代入y=-2x+4即可求出P点坐标(3)根据题意画出图像,易得抛物线的解析式【详解】解:(1)①如图,过P做直线AB平行于x轴,过N做直线AC平行于y轴,过M做MB平行于y轴,分别交于点A(-2,4)、C(-2,1)、B(4,1)则AC=BM=3,AB=CM=6故周长=(3+6)=18,面积=3=18故M、N、P的“最佳三点矩形”的周长和面积分别为18,18;②∵M(4,1),N(-2,3)∴,又∵m=1,点M、N、P的“最佳三点矩形”的面积为24∴此矩形的邻边长分别为6,4∴n=-1或5(2)如图1,①易得点M、N、P的“最佳三点矩形”的面积的最小值为12;分别将y=3,y=1代入y=-2x+4,可得x分别为,结合图象可知:②当点M、N、P的“最佳三点矩形”为正方形,边长为6,分别将y=7,y=-3代入y=-2x+4,可得分别为,点P的坐标为(,7)或(,-3)(3)如图2,y=+或y=+【点睛】此题比较灵活,读懂题意,画出图像求解是解题关键。
人教版初中九年级数学上册第二十二章《二次函数》经典题(含答案解析)
一、选择题1.抛物线y =ax 2+bx +c (a ≠0)的图象大致如图所示,下列说法:①2a +b =0;②当﹣1<x <3时,y <0;③若(x 1,y 1)(x 2,y 2)在函数图象上,当x 1<x 2时,y 1<y 2;④9a +3b +c =0,其中正确的是( )A .①②④B .①④C .①②③D .③④ 2.在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( ) A . B . C . D . 3.已知()()()112233,,,,,x y x y x y 是抛物线245y x x =--+图像上的任意三点,在以下哪个取值范围中,分别以1y 、2y 、3y 为长的三条线段不一定能围成一个三角形的是( ) A .5122x -<< B .7122x -<<- C .30x -<< D .41x -<<- 4.当0ab >时,2y ax =与y ax b =+的图象大致是( )A .B .C .D . 5.如图,在ABC 中,∠B =90°,AB =3cm ,BC =6cm ,动点P 从点A 开始沿AB 向点B 以1cm /s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ △的面积S 随出发时间t 的函数图象大致是( )A .B .C .D . 6.抛物线2(2)3y x =-+的对称轴是( )A .直线2x =-B .直线3x =C .直线1x =D .直线2x = 7.在平面直角坐标系中抛物线2y x =的图象如图所示,已知点A 坐标为(1,1),过点A 作1//AA x 轴交抛物线于点A ,过点1A 作12//A A OA 交抛物线于点2A ,过点2A 作23//A A x 轴交抛物线于点3A 过点3A 作34//A A OA 交抛物线于点4A ,……则点2020A 的坐标为( )A .(1011, 21011)B .(-1011, 21011)C .(-1010, 21011)D .(1010, 21011)8.已知二次函数()()2y x p x q =---,若m ,n 是关于x 的方程()()20x p x q ---=的两个根,则实数m ,n ,p ,q 的大小关系可能是( ) A .m <p <q <nB .m <p <n <qC .p <m <n <qD .p <m <q <n9.抛物线2(3)y a x k =++的图象如图所示.已知点()15,A y -,()22,B y -,()36.5,C y -三点都在该图象上,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .231y y y >> 10.如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A 、B 两点.下列结论:①2a +b =0;②abc >0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x <4时,有y 2<y 1;⑥a +b ≥m (am +b )(m 实数)其中正确的是( )A .①②③⑥B .①③④C .①③⑤⑥D .②④⑤ 11.抛物线()2512y x =--+的顶点坐标为( )A .()1,2-B .()1,2C .()1,2-D .()2,1 12.关于抛物线223y x x =-+-,下列说法正确的是( )A .开口方向向上B .顶点坐标为()1,2-C .与x 轴有两个交点D .对称轴是直线1x =-13.把函数2(1)2y x =-+图象向右平移1个单位长度,平移后图象的函数解析式为( ) A .22y x =+B .2(1)1y x =-+C .2(2)2y x =-+D .2(1)3y x =-+ 14.抛物线y=2(x -1)2-3向左平移3个单位长度,此时抛物线的对称轴是直线( )A .x =-3B .x =-1C .x =-2D .x =4 15.在西宁市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间满足函数解析式y 112=-x 223+x 53+,由此可知该生此次实心球训练的成绩为( )A .6米B .8米C .10米D .12米 二、填空题16.如图,在平面直角坐标系中,抛物线2y x x 2=--分别交y 轴,x 轴于点A ,B ,动点E 在抛物线上,EF x ⊥轴,交直线AB 于点F .则EF 的长为______(用含字母x 的式子来表示).17.已知抛物线2y x bx c =++的部分图象如图所示,当0y <时,x 的取值范围是______.18.将抛物线2y x 向上平移1个单位,再向左平移2个单位后,得到的抛物线的顶点坐标是__________.19.已知抛物线243y x x =-+与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M 平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,则平移后的抛物线解析式为______.20.抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为________21.如图是二次函数2(0)y ax bx c a =++≠图象的一部分,有下列4个结论:①0abc >;②240b ac ->;③关于x 的方程20ax bx c ++=的两个根是12x =-,23x =;④关于x 的不等式20ax bx c ++>的解集是2x >-.其中正确的结论是___________.22.小明从如图所示的二次函数()20y ax bx c a =++≠图象中,观察得出了下面五条信息:①32a b =;②240b ac -=;③ 0ab >;④0a b c ++<;⑤20b c +>.你认为正.确.信息的有_______________.(请填序号)23.抛物线y =x 2+2x-3与x 轴的交点坐标为____________________.24.如图,将抛物线y=−12x 2平移得到抛物线m .抛物线m 经过点A (6,0)和原点O ,它的顶点为P ,它的对称轴与抛物线y=−12x 2交于点Q ,则图中阴影部分的面积为______.25.设A (-3,y 1),B (-2,y 2),C (12,y 3)是抛物线y =(x+1)2-m 上的三点,则y 1,y 2,y 3的大小关系为_______.(用“>”连接)26.若函数21y mx x =++的图象与x 轴只有一个公共点,则m 的值是_______.参考答案三、解答题27.如图,已知抛物线y =ax 2+bx +c (a ≠0)经过A (﹣1,0),B (3,0),C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数解析式;(2)在抛物线的对称轴上是否存在一点M ,使得△ACM 的周长最短?若存在,求点M 的坐标;若不存在,请说明理由.28.某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能卖出500件;若销售单价每涨1元,每周销量就减少10件.设每件涨价(0)x x ≥元.(1)写出一周销售量y (件)与x (元)的函数关系式.(2)设一周销售获得毛利润w 元,写出w 与x 的函数关系式,并确定当x 在什么取值范围内变化时,毛利润w 随x 的增大而增大.(3)超市扣除销售额的20%作为该商品的经营费用,为使得纯利润(纯利润=毛利润-经营费用)最大,超市对该商品售价为______元,最大纯利润为______元.29.如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB 为x 米,面积为y 平方米.(1)求y 与x 的函数关系式及自变量x 的取值范围;(2)若墙的最大可用长度为9米,求此时当AB 为多少米时长方形花圃的面积最大,最大面积是多少?30.有这样一个问题:探究函数243y x x =-+的图象与性质.小丽根据学习函数的经验,对函数243y x x =-+的图象与性质进行了探究.下面是小丽的探究过程,请补充完整:(1)函数243y x x =-+的自变量x 的取值范围是_______.(2)如图,在平面直角坐标系xOy 中,画出了函数243y x x =-+的部分图象,用描点法将这个函数的图象补充完整;(3)对于上面的函数243y x x =-+,下列四个结论:①函数图象关于y 轴对称;②函数既有最大值,也有最小值;③当2x >时,y 随x 的增大而增大,当2x <-时,y 随x 的增大而减小;④函数图象与x 轴有2个公共点.所有正确结论的序号是_____.(4)结合函数图象,解决问题:若关于x 的方程243x x k -+=有4个不相等的实数根,则k的取值范围是____.。
最新人教版九年级上册《二次函数》单元练习题(解析版)
《二次函数》单元练习题一.选择题1.关于x的函数y=(m+2)x是二次函数,则m的值是()A.2B.4C.﹣2或2D.﹣4或42.抛物线y=ax2+bx﹣3(a≠0)与x轴有两个交点,且交点位于y 轴两侧,则下列关于这个二次函数的说法中不正确的是()A.a>0B.若b>0,则当x>0时,y随x的增大而增大C.a+b<3D.一元二次方程ax2+bx﹣1=0的两根异号3.已知点(﹣9,y1),(4,y2),(﹣2,y3)都在抛物线y=ax2+m (a>0)上,则()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y1<y3 4.若抛物线M:y=x2﹣(3m﹣1)x﹣3与抛物线M′:y=x2+10x+2n+5关于直线x=﹣2对称,则m,n值为()A.m=1,n=10B.m=2,n=5C.m=1,n=8D.m=2,n =75.将抛物线y=﹣3(x+1)2+3向右平移2个单位,再向下平移1个单位,得到抛物线的解析式为()A.y=﹣3(x+3)2+4B.y=﹣3(x﹣1)2+2C.y=﹣3(x+3)2+2D.y=﹣3(x﹣1)2+46.二次函数y=ax2﹣2ax+b中,当﹣1≤x≤4时,﹣2≤y≤3,则b ﹣a的值为()A.﹣6B.﹣6或7C.3D.3或﹣27.如图,一段抛物线:y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x 轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3…如此变换进行下去,若点P(21,m)在这种连续变换的图象上,则m的值为()A.2B.﹣2C.﹣3D.38.已知抛物线y=a(x﹣h)2+k(a≠0)经过A(m﹣4,0),B (m﹣2,3),C(4﹣m,3)三点,其中m<3,则下列说法正确的是()A.a>0B.h<0C.k≥3D.当x<0时,y随x的增大而增大9.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.4米B.5米C.2米D.7米10.抛物线y=ax2+bx+c经过点(﹣2,0),且对称轴为直线x=1,其部分图象如图所示.对于此抛物线有如下四个结论:①b=2a;②4a+2b+c>0;③若n>m>0,则x=1+m时的函数值小于x=1﹣n时的函数值;④点(,0)一定在此抛物线上.其中正确结论的个数是()A.4个B.3个C.2个D.1个二.填空题11.二次函数y=x2﹣16x﹣8的最小值是.12.若二次函数y=﹣x2+2x+k的图象与x轴有两个交点,则k的取值范围是.13.如图,在平面直角坐标系中,点A的坐标为(0,2),点B的坐标为(4,2).若抛物线y=﹣(x﹣h)2+k(h、k为常数)与线段AB交于C、D两点,且CD=AB,则k的值为.14.某公司新产品上市30天全部售完,图1表示产品的市场日销售量与上市时间之间的关系,图2表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是元.15.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:x…﹣2 ﹣1 0 1 2 …y…0 4 6 6 4 …若点P(m2﹣2,y1)、Q(m2+4,y2)在抛物线上,则y1y2.(选填“>”、“<”或“=”)16.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴是x =﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③若(﹣5,y1),(3,y2)是抛物线上两点,则y1=y2;④4a+2b+c<0,其中说法正确的(填写序号).三.解答题17.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣5a与y轴交于点A,将点A向左平移4个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含A的式子表示);(2)求抛物线的对称轴;(3)已知点P(﹣1,﹣2a),Q(﹣4,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.18.某网店专售一款电动牙刷,其成本为20元/支,销售中发现,该商品每天的销售量y(支)与销售单价x(元/支)之间存在如图所示的关系.(1)求y与x之间的函数关系式.(2)由于湖北省武汉市爆发了新型冠状病毒肺炎(简称“新冠肺炎”)疫情,该网店店主决定从每天获得的利润中抽出200元捐献给武汉,为了保证捐款后每天剩余利润不低于550元,如何确定这款电动牙刷的销售单价?19.在平面直角坐标系中,记函数y=的图象为G,正方形ABCD的对称中心与原点重合,顶点A的坐标为(2,2),点B在第四象限.(1)当n=1时.①求G的最低点的纵坐标;②求图象G上所有到x轴的距离为2的横坐标之和.③若当a≤x≤b时,﹣9≤y≤2,则a、b的对应值为.(2)当图象G与正方形ABCD的边恰好有两个公共点时,直接写出n的取值范围.20.如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是抛物线的顶点.(1)求抛物线的解析式.(2)点N是y轴负半轴上的一点,且ON=,点Q在对称轴右侧的抛物线上运动,连接QO,QO与抛物线的对称轴交于点M,连接MN,当MN平分∠OMD时,求点M的坐标.(3)直线BC交对称轴于点E,P是坐标平面内一点,请直接写出△PCE与△ACD全等时点P的坐标.参考答案一.选择题1.解:∵关于x的函数y=(m+2)x是二次函数,∴m+2≠0且m2﹣2=2,解得:m=2,故选:A.2.解:设抛物线与x轴的交点为(x1,0)、(x2,0),∵两个交点在y轴两侧,∴x1•x2<0,即,<0,∴a>0,因此选项A不符合题意;当x=0时,y=﹣3,抛物线与y轴交点为(0,﹣3),当b>0时,而a>0,对称轴在y轴的左侧,在对称轴右侧,y随x的增大而增大,因此选项B不符合题意;一元二次方程ax2+bx﹣1=0的两根就是一元二次方程ax2+bx﹣3=﹣2的两根,实际上就是抛物线y=ax2+bx﹣3,与直线y=﹣2的两个交点的横坐标,根据图象可知,选项D不符合题意;故选:C.3.解:∵抛物线y=ax2+m(a>0),∴该抛物线开口向上,对称轴是y轴,∵点(﹣9,y1),(4,y2),(﹣2,y3)都在抛物线y=ax2+m (a>0)上,0﹣(﹣9)=9,4﹣0=4,0﹣(﹣2)=2,∴y3<y2<y1,故选:C.4.解:由抛物线M:y=x2﹣(3m﹣1)x﹣3可知抛物线M的对称轴为直线x=,交y轴于点(0,﹣3),抛物线M′:y=x2+10x+2n+5的对称轴为直线x=﹣=﹣5,∵抛物线M:y=x2﹣(3m﹣1)x﹣3与抛物线M′:y=x2+10x+2n+5关于直线x=﹣2对称,∴(﹣5)=﹣2,解得m=1,∴点(0,﹣3)关于直线x=﹣2对称的点(﹣4,﹣3),在抛物线M′:y=x2+10x+2n+5上,∴把点(﹣4,﹣3)代入得﹣3=16﹣40+2n+5,解得n=8,故选:C.5.解:根据“左加右减,上加下减”的法则可知,将抛物线y=﹣3(x+1)2+3向右平移2个单位,再向下平移1个单位,得到抛物线的解析式为y=﹣3(x+1﹣2)2+3﹣1,即y=﹣3(x﹣1)2+2,故选:B.6.解:∵抛物线y=ax2﹣2ax+b=a(x﹣1)2+b﹣a,∴顶点(1,b﹣a)当a>0时,当﹣1≤x≤4时,﹣2≤y≤3,函数有最小值,∴b﹣a=﹣2,当a<0时,当﹣1≤x≤4时,﹣2≤y≤3,函数有最大值,∴b﹣a=3,故选:D.7.解:∵y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1,∴点A1(4,0),∴OA1=4,∵OA1=A1A2=A2A3=A3A4,∴OA1=A1A2=A2A3=A3A4=4,∵点P(21,m)在这种连续变换的图象上,∴x=21和x=1时的函数值互为相反数,∴﹣m=﹣1×(1﹣4)=3,∴m=﹣3,故选:C.8.解:∵抛物线y=a(x﹣h)2+k(a≠0)经过A(m﹣4,0),B (m﹣2,3),C(4﹣m,3)三点,其中m<3,∴抛物线的开口向下,对称轴为直线x==1,即a<0,h =1,∴k>3,当x<1时,y随x的增大而增大,故选:D.9.解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=,设大孔所在抛物线解析式为y=ax2+,∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+,∴a=﹣,∴大孔所在抛物线解析式为y=﹣x2+,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,∵EF=14,∴点E的横坐标为﹣7,∴点E坐标为(﹣7,﹣),∴﹣=m(x﹣b)2,∴x1=+b,x2=﹣+b,∴MN=4,∴|+b﹣(﹣+b)|=4∴m=﹣,∴顶点为A的小孔所在抛物线的解析式为y=﹣(x﹣b)2,∵大孔水面宽度为20米,∴当x=﹣10时,y=﹣,∴﹣=﹣(x﹣b)2,∴x1=+b,x2=﹣+b,∴单个小孔的水面宽度=|(+b)﹣(﹣+b)|=5(米),故选:B.10.解:∵抛物线的对称轴为直线x=1,∴﹣=1,∴b=﹣2a,故①错误;∵抛物线的对称轴为直线x=1,而点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∵抛物线开口向下,∴当x=2时,y>0,∴4a+2b+c>0,故②正确;∵抛物线开口向下,对称轴为直线x=1,∴横坐标是1﹣n的点的对称点的横坐标为1+n,∵若n>m>0,∴1+n>1+m,∴x=1+m时的函数值大于x=1﹣n时的函数值,故③错误;∵b=﹣2a,∴抛物线为y=ax2﹣2ax+c,∵抛物线y=ax2+bx+c经过点(﹣2,0),∴4a+4a+c=0,即8a+c=0,∴c=﹣8a,∴﹣=4,∵点(﹣2,0)的对称点是(4,0),∴点(﹣,0)一定在此抛物线上,故④正确,故选:C.二.填空题(共6小题)11.解:y=x2﹣16x﹣8=(x﹣8)2﹣72,由于函数开口向上,因此函数有最小值,且最小值为﹣72,故答案为:﹣72.12.解:∵二次函数y=﹣x2+2x+k的图象与x轴有两个交点,∴△=4﹣4×(﹣1)•k>0,解得:k>﹣1,故答案为:k>﹣1.13.解:∵点A的坐标为(0,2),点B的坐标为(4,2),∴AB=4,∵抛物线y=﹣(x﹣h)2+k(h、k为常数)与线段AB交于C、D两点,且CD=AB=2,∴设点C的坐标为(c,2),则点D的坐标为(c+2,2),h==c+1,∴抛物线2=﹣[c﹣(c+1)]2+k,解得,k=.14.解:设日销售量y与销售天数t之间的函数关系式为y=kx,30k=60,得k=2,即日销售量y与销售天数t之间的函数关系式为y=2t,当0<t≤20时,设单件的利润w与t之间的函数关系式为w=at,20a=30,得a=1.5,即当0<t≤20时,单件的利润w与t之间的函数关系式为w=1.5t,当20<t≤30时,单件的利润w与t之间的函数关系式为w=30,设日销售利润为W元,当0<t≤20时,W=1.5t×2t=3t2,故当t=20时,W取得最大值,此时W=1200,当20<t≤30时,W=30×2t=60t,故当t=30时,W取得最大值,此时W=1800,综上所述,最大日销售利润为1800元,故答案为:1800.15.解:∵x=0时,y=6;x=1时,y=6,∴抛物线的对称轴为直线x=,且抛物线开口向下,∵点P(m2﹣2,y1)、Q(m2+4,y2)在抛物线上,且|m2﹣2﹣|<|m2+4﹣|,∴y1>y2,故答案为>.16.解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,则2a﹣b=0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确;∵点(﹣5,y1)离对称轴的距离与点(3,y2)离对称轴的距离相等,∴y1=y2,所以③正确.∵x=2时,y>0,∴4a+2b+c>0,所以④错误;故答案为:①②③.三.解答题(共4小题)17.解:(1)∵抛物线y=ax2+bx﹣5a与y轴交于点A,∴A(0,﹣5a),点A向左平移4个单位长度,得到点B(﹣4,﹣5a);(2)∵A与B关于对称轴x=﹣2对称,∴抛物线对称轴x=﹣2;(3)∵对称轴x=﹣2,∴b=4a,∴y=ax2+4ax﹣5a,①a>0时,点A(0,﹣5a)在y轴负半轴上,此时,点P,Q位于抛物线内部(如图1).所以,抛物线与线段PQ无交点;②当a<0时,点A(0,﹣5a)在y轴正半轴,当Q点在抛物线上时,则2=16a﹣16a﹣5a,解得a=﹣,即当﹣≤a<0时,(如图2),结合图象,抛物线与线段PQ有一个交点;综上,a的取值范围是﹣≤a<0.18.解:(1)设y与x之间的函数关系式为y=kx+b(k≠0).将(30,100),(35,50)代入y=kx+b中,得:,解得:,∴y与x之间的函数关系式为y=﹣10x+400.(2)设捐款后每天的剩余利润为w元,依题意,得:w=(x﹣20)(﹣10x+400)﹣200=﹣10x2+600x ﹣8200.令w=550,则﹣10x2+600x﹣8200=550,解得x1=25,x2=35.∵﹣10<0,∴抛物线开口向下,∴当该款电动牙刷的销售单价每支不低于25元且不高于35元时,可保证捐款后每天剩余利润不低于550元.19.解:(1)①y=,函数图象如图所示:函数最低点的坐标(3,﹣9),∴图象G的最低点的纵坐标为﹣9.②当y=2时,x2+2x+2=2,解得x=﹣2或0(舍弃)x2﹣6x=2时,解得x=3+或3﹣(舍弃),当y=﹣2时,x2﹣6x=﹣2,解得x=3+或3﹣,∴图象G上所有到x轴的距离为2的横坐标之和=﹣2+3++3++3﹣=7+.③观察图象可知:当﹣2≤x≤3或3≤x≤3+或﹣2≤x≤3+时,﹣9≤y≤2,∴a=﹣2,b=3或a=3,b=3+或a=﹣2,b=3+.故答案为:a=﹣2,b=3或a=3,b=3+或a=﹣2,b=3+.(2)当y=x2+2nx+2n2的顶点落在AD边上时,n2=2,解得n =或﹣(舍弃)当n=时,y=x2+2nx+2n2(x<0)与边AD有一个交点,y=x2﹣6nx与边BC有一个交点,符合题意.当2n2≤2,解得n≤1或n≥﹣1,当y=x2﹣6nx经过(2,﹣2)时,n=,观察图象可知当<n≤1时,满足条件,当y=x2﹣6nx的顶点在BC边上时,﹣9n2=﹣2,解得n=或﹣(舍弃),当n=﹣1时,y=x2+2nx+2n2(x<0)与正方形的边没有交点,观察图象可知当﹣1<n<时,满足条件,综上所述,满足条件的n的值为﹣1<n<或<n≤1或n=.20.解:(1)∵抛物线y=ax2+bx﹣3经过A(﹣1,0),B(3,0)两点,∴,解得:,∴抛物线的解析式为:y=x2﹣2x﹣3.(2)如图,设对称轴与x轴交于点H,∵MN平分∠OMD,∴∠OMN=∠DMN,又∵DM∥ON,∴∠DMN=∠MNO,∴∠MNO=∠OMN,∴OM=ON=.在Rt△OHM中,∠OHM=90°,OH=1.∴MH===1,∴M1(1,1)或M2(1,﹣1);(3)由题意可知:A(﹣1,0),C(0,﹣3),D(1,﹣4),∴AC==,AD==2,CD==,∵直线BC经过B(3,0),C(0,﹣3),∴直线BC解析式为y=x﹣3,∵抛物线对称轴为x=1,而直线BC交对称轴于点E,∴E坐标为(1,﹣2);∴CE==,设P点坐标为(x,y),则CP2=(x﹣0)2+(y+3)2,则EP2=(x﹣1)2+(y+2)2,∵CE=CD,若△PCE与△ACD全等,有两种情况,Ⅰ.PC=AC,PE=AD,即△PCE≌△ACD(SSS).∴,解得:,,即P点坐标为P1(﹣3,﹣4),P2(﹣1,﹣6).Ⅱ.PC=AD,PE=AC,即△PCE≌△ADC(SSS).∴,解得:,,即P点坐标为P3(2,1),P4(4,﹣1).故若△PCE与△ACD全等,P点有四个,坐标为(﹣3,﹣4)或(﹣1,﹣6)或(2,1)或(4,﹣1).。
二次函数(单元重点综合测试)(解析版)-2023-2024学年九年级数学上册单元速记巧练(人教版)
二次函数(单元重点综合测试)一、选择题(本大题共10小题,每小题2分,共20分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023秋·河南驻马店·九年级统考期末)关于二次函数()215y x =++,下列说法正确的是()A .函数图象的开口向下B .函数图象的顶点坐标为()1,5C .该函数有最大值,最大值为5D .当1x >时,y 随x 的增大而增大【答案】D 【分析】通过分析二次函数顶点式判断函数图象开口方向、顶点坐标、最值以及增减性即可求解.【详解】解:()215y x =++中,2x 的系数为1,10>,函数图象开口向上,A 错误;函数图象的顶点坐标是()1,5-,B 错误;函数图象开口向上,有最小值为5,C 错误;函数图象的对称轴为=1x -,1x <-时y 随x 的增大而减小;1x >-时,y 随x 的增大而增大,所以,当1x >时,y 随x 的增大而增大,故D 正确.故选:D .【点睛】本题考查了二次函数图象的基本知识和性质,熟练掌握二次函数图象是解题的关键.2.(2022秋·河北唐山·九年级校考阶段练习)若()221m y m x -=-是二次函数,最大值为0,则m 的值为()A .2m =±B .m =C .2m =D .m =【答案】C【分析】根据二次函数的定义(形如2y ax bx c =++,,,a b c 为常数,且0a ≠的函数叫做二次函数)可得222m -=,由最大值为0,可得10m -<,由此即可求解.【详解】解:由题意得:22210m m ⎧-=⎨-<⎩,解得2m =,故选:C .【点睛】本题考查了二次函数的定义和性质,熟练掌握二次函数的性质是解题关键.3.(2023·福建宁德·模拟预测)若二次函数2(0)y ax bx c a =++>图象,过不同的六点()1,A n -、()5,1B n -、()6,1C n +、()14,D y 、)2Ey 、()32,F y ,则1y 、2y 、3y 的大小关系是()A .123y y y <<B .132y y y <<C .213y y y <<D .321y y y <<【答案】D 【分析】由解析式可知抛物线开口向上,点()1,A n -,()5,1B n -,()6,1C n +求得抛物线对称轴的范围,然后根据二次函数性质判定可得.【详解】解:由二次函数2(0)y ax bx c a =++>可知,抛物线开口向上,()1,A n - 、()5,1B n -、()6,1C n +,即有11n n n -<<+,A ∴点关于对称轴的对称点在5与6之间,∴对称轴的取值范围为2 2.5x <<,13y y ∴>,点E 到对称轴的距离小于2.5D 到对称轴的距离大于4 2.5 1.5-=,321y y y ∴<<,故选:D .【点睛】本题主要考查二次函数的图象上点的坐标特征,二次函数的性质,根据题意得到抛物线的对称轴和开口方向是解题的关键.4.(2023秋·河北张家口·九年级统考期末)某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可以售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,若设每件商品涨x 元,销售利润为y 元,可列函数为:()()302040020y x x =+--.对所列函数中出现的代数式,下列说法错误的是()A .()3020x +-表示涨价后商品的单价B .20x 表示涨价后少售出商品的数量C .()40020x -表示涨价后商品的数量D .()30x +表示涨价后商品的单价【答案】A 【分析】根据题意,分析得出涨价后的单价为()30x +元,涨价后销量为()40020x -件,再根据利润等于售价减去进价得出涨价后每件利润为()3020x +-元即可.【详解】解:A 、()3020x +-表示涨价后单件商品的利润,不是商品的单价,故本选项不符合题意;B 、由销售单价每提高1元,销售量相应减少20件,得每件商品涨x 元后,20x 表示涨价后少售出商品的数量,故本选项符合题意;C 、由题可知,原销量为400件,涨价后少售出20x 件,则涨价后的商品数量为()40020x -件,故本选项符合题意;D 、由题可知,每件商品原价为30元,涨x 元后单价为()30x +元,故本选项符合题意.故选:A .【点睛】本题考查了应用题中的利润问题,根据题意准确得出涨价前后的售价和销量以及熟练掌握利润的计算公式是本题的重点.5.(2023·陕西渭南·统考二模)将抛物线22y ax bx =+-(a 、b 是常数,0a ≠)向下平移2个单位长度后,得到的新抛物线恰好和抛物线2142y x x =+-关于y 轴对称,则a 、b 的值为()A .1a =-,2b =-B .12a =-,1b =-C .12a =,1b =-D .1a =,2b =【答案】C 【分析】先求出抛物线2142y x x =+-关于y 轴对称的抛物线为()219122y x =--,再根据抛物线平移的性质得出抛物线22y ax bx =+-向下平移2个单位长度后为24y ax bx =+-,即可得出a 和b 的值.【详解】解:∵()2211941222y x x x =+-=+-,∴抛物线2142y x x =+-关于y 轴对称的抛物线为()219122y x =--,∵抛物线22y ax bx =+-向下平移2个单位长度后为24y ax bx =+-,∵24y ax bx =+-与2142y x x =+-关于y 轴对称,∴()22419122y ax bx x =-+-=-,整理得:224412y x x a bx x +-=--=,∴12a =,1b =-,故选:C .【点睛】本题主要考查了二次函数的平移规律,解题的关键是掌握将二次函数化为顶点式的方法和步骤,以及二次函数的平移规律:上加下减,左加右减.6.(2020秋·河南安阳·九年级校考期中)如图,一段抛物线:y =﹣x (x ﹣4)(0≤x ≤4)记为C 1,它与x 轴交于两点O ,A 1;将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3…如此变换进行下去,若点P (21,m )在这种连续变换的图象上,则m 的值为()A .2B .﹣2C .﹣3D .3【答案】C 【分析】根据题意和题目中的函数解析式,可以得到点A 1的坐标,从而可以求得OA 1的长度,然后根据题意,即可得到点P (21,m )中m 的值和x =1时对应的函数值互为相反数,从而可以解答本题.【详解】解:∵y =﹣x (x ﹣4)(0≤x ≤4)记为C 1,它与x 轴交于两点O ,A 1,∴点A 1(4,0),∴OA 1=4,∵OA 1=A 1A 2=A 2A 3=A 3A 4,∴OA 1=A 1A 2=A 2A 3=A 3A 4=4,∵点P (21,m )在这种连续变换的图象上,∴x =21和x =1∴﹣m =﹣1×(1﹣4)=3,∴m =﹣3,故选:C.【点睛】本题考查抛物线与x 轴的交点、二次函数的性质、二次函数与几何变换,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.7.(2023·浙江杭州·统考中考真题)设二次函数()()(0,,y a x m x m k a m k =--->是实数),则()A .当2k =时,函数y 的最小值为a-B .当2k =时,函数y 的最小值为2a -C .当4k =时,函数y 的最小值为a-D .当4k =时,函数y 的最小值为2a -【答案】A【分析】令0y =,则()()0a x m x m k =---,解得:1x m =,2x m k =+,从而求得抛物线对称轴为直线222m m k m k x +++==,再分别求出当2k =或4k =时函数y 的最小值即可求解.【详解】解:令0y =,则()()0a x m x m k =---,解得:1x m =,2x m k =+,∴抛物线对称轴为直线222m m k m k x +++==当2k =时,抛物线对称轴为直线1x m =+,把1x m =+代入()()2y a x m x m =---,得y a =-,∵0a >∴当1x m =+,2k =时,y 有最小值,最小值为a -.故A 正确,B 错误;当4k =时,抛物线对称轴为直线2x m =+,把2x m =+代入()()4y a x m x m =---,得4y a =-,∵0a >∴当2x m =+,4k =时,y 有最小值,最小值为4a -,故C 、D 错误,故选:A .【点睛】本题考查抛物线的最值,抛物线对称轴.利用抛物线的对称性求出抛物线对称轴是解题的关键.8.(2023·广东深圳·模拟预测)如图,排球运动员站在点O 处练习发球,将球从点O 正上方2m 的A 处发出,把球看成点,其运行的高度()m y 与运行的水平距离()m x 满足关系式2(6) 2.6y a x =-+.已知球网与点O 的水平距离为9m ,高度为2.43m ,球场的边界距点O 的水平距离为18m .下列判断正确的是()A .球运行的最大高度是2.43mB .150a =-C .球会过球网但不会出界D .球会过球网并会出界【答案】D 【分析】根据顶点式2(6) 2.6y a x =-+的特征即可判断A 选项;将点()0,2代入函数解析式中即可求得a 的值,即可判断B 选项;分别求出9x =和18x =的函数值,再分别和2.43、0比较大小即可判断C 、D 选项.【详解】解: 球的运行的高度()m y 与运行的水平距离()m x 满足关系式2(6) 2.6y a x =-+,∴当6x =时,y 取得最大值2.6,∴运行的最大高度时2.6m ,故A 错误;球从点O 正上方2m 的A 处发出,2(6) 2.6y a x ∴=-+的图象经过点()0,2,22(06) 2.6a ∴=-+,解得:160a =-,故B 错误;当9x =时,21(96) 2.6 2.4560y =--+=,2.45 2.43> ,∴球会过球网,当18x =时,21(186) 2.60.260y =--+=,0.20> ,∴球会出界,故C 选项错误,D 选项正确.故选:D .【点睛】本题主要考查了二次函数的应用,掌握用待定系数求二次函数解析式以及将实际问题转化为二次函数问题是解题关键.9.(2023·河南周口·周口恒大中学校考三模)如右图,直线l 的解析式为4y x =-+,它与x 轴和y 轴分别相交于A 、B 两点,点C 为线段OA 上一动点,过点C 作直线l 的平行线m ,交y 轴于点D .点C 从原点O 出发,沿OA 以每秒1个单位长度的速度向终点A 运动,运动时间为t 秒,以CD 为斜边作等腰直角三角形CDE (E ,O 两点分别在CD 两侧).若CDE 和OAB 的重合部分的面积为S ,则S 与t 之间的函数关系图象大致是()A .B.C.D.【答案】C【分析】分类讨论02,24t t ≤<≤≤时,S 与t 之间的函数关系式式即可求解.【详解】解:①当02t ≤<时,如图所示:可知:212DCE S S == ②当24t ≤≤时,如图所示:此时,DCE EFGS S S =- (),0C t ,(),4G t t -+,(),E t t ()424EG EF t t t ∴==--+=-()2221132488222DCE EFG S S S t t t t ∴=-=--=-+- 综上:()()22102238822t t S t t t ⎧≤⎪⎪=⎨⎪-+-≥⎪⎩<显然只有C 选项符合题意故选:C【点睛】本题考查二次函数的实际应用.根据题意找到S 与t 之间的函数关系式是解题关键.10.(2023秋·河北张家口·九年级统考期末)题目:“如图,抛物线2y x mx =+与直线y x b =-+相交于点()2,0A 和点B .点M 是直线AB 上的一个动点,将点M 向左平移3个单位长度得到点N ,若线段MN 与抛物线只有一个公共点,直接写出点M 的横坐标M x 的取值范围.”对于其答案,甲答:3M x =,乙答:12M x -≤<,丙答:12M x -<≤,丁答:12M x -≤≤,则正确的是()A .只有甲答的对B .甲、乙答案合在一起才完整C .甲、丙答案合在一起才完整D .甲、丁答案合在一起才完整【答案】B 【分析】当点M 在线段AB 上时,当点M 在点B 的左侧时,当点M 在点A 的右侧时,分类求解确定MN 的位置,进而求解.【详解】解:将点A 的坐标代入抛物线表达式得:420m +=,解得2m =-,将点A 的坐标代入直线表达式得:20b -+=,解得2b =,∴抛物线的解析式为22y x x =-,直线的解析式为2y x =-+,当点M 在线段AB 上时,线段MN 与抛物线只有一个公共点,M ,N 的距离为3,而A ,B 的水平距离是3,故此时只有一个交点,即12M x -≤<,当点M 在点A 的右侧时,当3M x =时,抛物线和MN 交于抛物线的顶点(1,1)-,即3M x =时,线段MN 与抛物线只有一个公共点,综上所述,12M x -≤<或3M x =,即甲、乙答案合在一起才完整,故选:B .【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、不等式的性质等,分类求解确定MN 位置是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.(2022秋·九年级单元测试)已知二次函数()224y x =--+,当2x >时,若y 随着x 的增大而(填“增大”“不变”或“减小”).【答案】减小【分析】根据二次函数顶点式的图象与性质进行解答即可.【详解】∵1a =-,对称轴2x =,∴当2x >时,若y 随着x 的增大而减小,故答案为:减小.【点睛】本题考查二次函数顶点式()2y a x h k =-+的图象与性质,分清a 、h 的符号和二次函数顶点式的增减性是解题的关键.12.(2020秋·广东广州·九年级广州市第二中学校考阶段练习)已知点()()A a m B b m ,、,、(),P a b n +为抛物线224y x x =-+上的点,则n =.【答案】4【分析】由抛物线的解析式可知抛物线的对称轴是直线1x =,根据点A 和B 的坐标知,则点A 和B 关于直线1x =对称.据此易求a b +的值,进而把P 点的坐标代入解析式即可求得n 的值.【详解】∵抛物线解析式为224y x x =-+,∴该抛物线的对称轴是直线212x -=-=,∵点()()A a m B b m ,、,为抛物线24y x x =-+上的点,∴点()()A a m B b m ,、,关于直线1x =对称,∴12a b +=,∴2a b +=,∴()2,P n 把2x =代入抛物线的解析式得,222244n =-⨯+=.故答案是:4.【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质.二次函数图象上所有点的坐标均满足该函数解析式.13.(2022秋·天津西青·九年级校考期中)行驶中的汽车刹车后,由于惯性的作用,还会继续向前滑行一段距离,这段距离我们将它称为“刹车距离”.某车的刹车距离s (m )与车速x (km/h )之间的函数关系是20.010.002s x x =+,现在该车在限速120km/h 的高速公路上出了交通事故,事后测得刹车距离为46.5m ,请推测该车刹车时是否超速(填“是”或“否”),车速为km/h .【答案】是150【分析】将46.5s =代入函数解析式,求出车速x ,与120km/h 比较即可得出答案.【详解】根据题意,当46.5s =时,得:20.010.00246.5x x +=,解得:1155x =-(舍),2150120x =>,∴刹车前,汽车超速.故答案为:是,150.【点睛】本题考查了二次函数的应用,解答本题的关键是将s 的值代入,解一元二次方程,注意将实际问题转化为数学模型.14.(2022秋·山东济宁·九年级济宁学院附属中学校考期末)若二次函数()20y ax bx c a =++≠中,函数值y与自变量x 的部分对应值如表:x…2-1-012…y …02-2-04…则当32x -≤≤时,y 的最大值为.【答案】4【分析】根据表中点的坐标得出函数的对称轴,设二次函数的表达式是21(2y a x k =++,把点的坐标代入求出该二次函数的表达式是22y x x =+-;再画出图象,即可利用图象法求解.【详解】解:根据表中可知:点(1,2)--和点(0,2)-关于对称轴对称,即对称轴是直线12x =-,设二次函数的表达式是21(2y a x k =++,把点(2,0)-和点(0,2)-代入得:221(2)021(0)22a k a k ⎧-++=⎪⎪⎨⎪++=-⎪⎩,解得:1a =,94k =-,2219(224y x x x =+-=+-,所以该二次函数的表达式是2219224y x x x ⎛⎫=+-=+- ⎪⎝⎭;函数图象如图所示,由图象可得∶当32x -≤≤时,﹣944y ≤≤,最大值为4.故答案为∶4.【点睛】本题考查了二次函数的图象和性质,用待定系数法求二次函数的解析式等知识点,能求出二次函数的解析式是解此题的关键.15.(2023·吉林长春·统考中考真题)2023年5月8日,C919商业首航完成——中国民商业运营国产大飞机正式起步.12时31分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”、是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的地物线的一部分.如图②,当两辆消防车喷水口A 、B 的水平距离为80米时,两条水柱在物线的顶点H 处相遇,此时相遇点20米,喷水口A 、B 距地面均为4米.若两辆消防车同时后退10米,两条水柱的形状及喷水口A '、B '到地面的距离均保持不变,则此时两条水柱相遇点H '距地面米.【答案】19【分析】根据题意求出原来抛物线的解析式,从而求得平移后的抛物线解析式,再令0x =求平移后的抛物线与y 轴的交点即可.【详解】解:由题意可知:()40,4A -、()40,4B 、()0,20H ,设抛物线解析式为:220y ax =+,将()40,4A -代入解析式220y ax =+,解得:1100a =-,220100x y ∴=-+,消防车同时后退10米,即抛物线220100x y =-+向左(右)平移10米,平移后的抛物线解析式为:()21020100x y +=-+,令0x =,解得:19y =,故答案为:19.【点睛】本题考查了待定系数法求抛物线解析式、函数图像的平移及坐标轴的交点;解题的关键是求得移动前后抛物线的解析式.16.(2023秋·河南驻马店·九年级统考期末)已知二次函数224y x x =--+,当1a x a ≤≤+时,函数值y 的最小值为1,则a 的值为.【答案】0或-31y =时自变量x 的值,结合1a x a ≤≤+时,函数值y 的最小值为1,可得到关于a 的一元一次方程,解即可.【详解】解:令1y =,则2241x x --+=,解得:12x =-,21x =.1a x a ≤≤+时,函数值y 的最小值为1∴12a +=-或11a +=,∴3a =-或0a =.故答案为:3-或0.【点睛】本题考查了二次函数图像上点的坐标特征以及函数的最值.利用二次函数图像上点的特征找出1y =时自变量x 的值是解题的关键.三、解答题(本大题共7小题,共62分.解答时应写出文字说明、证明过程或演算步骤)17.(2023秋·河北张家口·九年级统考期末)如图,坐标平面上有一透明片,透明片上有一抛物线L :()227y x =+-.(1)写出L 的对称轴和y 的最小值;(2)点P 为透明片上一点,P 的坐标为()9,6.平移透明片,平移后,P 的对应点为P ',抛物线L 的对应抛物线为L ',其表达式恰为267y x x =-+,求PP '移动的最短路程.【答案】(1)对称轴为直线:7x =,y 的最小值为2(2)PP '=【分析】(1)直接根据解析式进行作答即可;(2)求出平移后的抛物线的顶点坐标,PP '移动的最短路程为两个顶点间的距离,进行求解即可.【详解】(1)解:∵()()222277y x x ==--++,顶点坐标为()7,2,∴对称轴为直线7x =,y 2;(2)∵()226732y x x x =-+=--,顶点坐标为()3,2-,∵抛物线L 的顶点坐标为()7,2,∴PP '=【点睛】本题考查二次函数的图象与性质,二次函数图象的平移.熟练掌握二次函数的图象和性质,是解题的关键.18.(2023秋·河南开封·九年级开封市第十三中学校考期末)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于60元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售2箱.(1)求平均每天销售量y 箱与销售价x 元/箱之间的函数关系式.(2)求批发商平均每天的销售利润w (元)与销售价x (元/箱)之间函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?【答案】(1)()21905060y x x =-+≤≤(2)()2227076005060w x x x =-+-≤≤(3)当每箱苹果的销售价为60元时,可以获得1400元的最大利润.【分析】(1)在销售90箱的基础上,价格每提高1元,平均每天少销售2箱,再列函数关系式即可;(2)由销售量乘以每箱苹果的利润可得总利润,可得函数关系式;(3)再依据二次函数的增减性求得最大利润.【详解】(1)解:根据题意,平均每天的销售量y (箱)与销售单价x (元/箱)之间得()90250y x =--,即()21905060y x x =-+≤≤.(2)由(1)可得:()()()2402190227076005060w x x x x x =--+=-+-≤≤;(3)∵222707600w x x =-+-,∵20a =-<,∴抛物线开口向下.当()27067.522x =-=⨯-时,w 有最大值.又67.5x <,w 随x 的增大而增大.∴当60x =元时,w 的最大值为1400元.∴当每箱苹果的销售价为60元时,可以获得1400元的最大利润.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在2b x a=-时取得.19.(2020秋·广东广州·九年级广州市第十三中学校考期中)如图,矩形花圃ABCD ,它的一边AD 利用已有的围墙,可利用的围墙长度不超过30m ,另外三边所围的栅栏的总长度是60m ,设AB 长为x 米.(1)若矩形的面积为2400m ,求AB 的长度.(2)若矩形的面积是S ,求当x 为何值时,S 有最大值?【答案】(1)20米(2)15x =【分析】(1)设AB 长为x 米,则BC 长为(602)x -米,根据矩形的面积公式列出方程,解之取合适的值即可;(2)列出S 关于x 的函数关系式,再根据二次函数的最值求解即可.【详解】(1)解:设AB 长为x 米,则BC 长为(602)x -米,依题意,得()602400x x -=,解得:110x =,220x =,当10x =时,6021040BC =-⨯=,超过了围墙的长度,∴不合题意,舍去,∴20x =,即AB 的长为20米;(2)设矩形的面积是S ,则()()22602260215450S x x x x x =-=-+=--+,∵20-<,∴()2215450S x =--+开口向下,∴当15x =时,S 有最大值.【点睛】此题主要考查了二次函数的应用以及一元二次方程的应用,根据题意正确表示出BC 的长是解题关键.20.(2022秋·河北张家口·九年级张家口市实验中学校考期中)在平面直角坐标系中,已知点()1,3A ,()3,5B ,()3,7C -,直线:l y x m =+经过点A ,抛物线2:b 2L y ax x =++恰好经过A ,B ,C 三点中的两点.(1)判断点B 是否在直线l 上,并说明理由;(2)求,a b 的值;(3)平移抛物线L ,①使其顶点为B ,求此时抛物线与y 轴交点的坐标;②使其顶点仍在直线l 上,求平移后所得抛物线与y 轴交点纵坐标的最大值.【答案】(1)点B 在直线l 上,理由见解析,(2)2a =-,3b =(3)①()013-,;②178【分析】(1)先将A 代入y x m =+,求出直线解析式,然后将3x =代入解析式即可求解;(2)先根据抛物线22y ax bx =++与直线AB 都经过()02,点,且B ,C 两点的横坐标相同,判断出抛物线只能经过A ,C 两点,然后将A ,C 两点坐标代入22y ax bx =++得出关于a ,b 的二元一次方程组;(3)①根据题意,可得抛物线解析式为()2235y x =--+,令0x =,即可求解;②设平移后所得抛物线的对应表达式为22()=--+y x h k ,根据顶点在直线2y x =+上,得出1k h =+,令0x =,得到平移后抛物线与y 轴交点的纵坐标为221h h -++,再将式子配方即可求出最大值.【详解】(1)解:∵直线:l y x m =+经过点()1,3A ,∴31m =+,解得:2m =,∴直线l :2y x =+,当3x =时,325y =+=,∴()3,5B 在直线l 上,(2) 抛物线22y ax bx =++与直线AB 都经过()0,2点,且B ,C 两点的横坐标相同,∴抛物线只能经过A ,C 两点,将A ,C 两点坐标代入22y ax bx =++得239327a b a b ++=⎧⎨++=-⎩,解得:2a =-,3b =;(3)解:①依题意,点()3,5B ,则抛物线解析式为()2235y x =--+,令0x =,解得:13y =-,∴抛物线与y 轴交点的坐标为()013-,;②设平移后所得抛物线的对应表达式为22()=--+y x h k ,∵顶点在直线2y x =+上,∴2k h =+,令0x =,得到平移后抛物线与y 轴交点的纵坐标为222h h -++,∵2211722248h h h ⎛⎫-++=--+ ⎪⎝⎭,∴当14h =时,此抛物线与y 轴交点的纵坐标取得最大值178.【点睛】本题考查了求一次函数解析式,用待定系数法求二次函数解析式,二次函数的平移和求最值,求出两个函数的表达式是解题关键.21.(2023春·山东德州·九年级德州市第十中学校考阶段练习)某班“数学兴趣小组”对函数22y x x =-的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值列表如下:x...3-52--21-012523...y (35)4m 1-01-0543…其中,m =___________.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x 轴有___________个交点,所以对应的方程220x x -=有___________个实数根;②方程222x x -=有___________个实数根;③关于x 的方程22x x a -=有4个实数根时,a 的取值范围是___________.【答案】(1)0(2)见解析(3)见解析(4)①3,3;②2;③10a -<<【分析】(1)根据函数的对称性,即可求解;(2)描点即可画出函数图象;(3)任意指出函数的两条性质即可,如函数的最小值为1-;1x >时,y 随x 的增大而增大,答案不唯一;(4)①从图象上看函数与x 轴有3个交点,即可求解;②设22||y x x =-,从图象看2y =与22||y x x =-有两个交点,即可求解;③当y a =与22||y x x =-有2个交点时,a 在x 轴的下方,即可求解.【详解】(1)解:根据函数的对称性,0m =,故答案为:0;(2)描点画出如下函数图象:(3)函数的最小值为1-;1x >时,y 随x 的增大而增大(答案不唯一);(4)①从图象上看函数与x 轴有3个交点,故对应方程2|2||0x x -=有3个根,故答案为:3,3;②设22||y x x =-,从图象看2y =22||y x x =-有两个交点;故答案为:2;③当y a =与22||y x x =-有2个交点时,a 在x 轴的下方,故10a -<<,故答案为:10a -<<.【点睛】本题考查了抛物线的性质,描点法画函数图象,抛物线与x 轴的交点,数形结合是解答本题的关键.22.(2023·内蒙古赤峰·统考中考真题)乒乓球被誉为中国国球.2023年的世界乒乓球标赛中,中国队包揽了五个项目的冠军,成绩的取得与平时的刻苦训练和精准的技术分析是分不开的.如图,是乒乓球台的截面示意图,一位运动员从球台边缘正上方以击球高度OA 为28.75cm 的高度,将乒乓球向正前方击打到对面球台,乒乓球的运行路线近似是抛物线的一部分.乒乓球到球台的竖直高度记为y (单位:cm ),乒乓球运行的水平距离记为x (单位:cm ).测得如下数据:水平距离x /cm0105090130170230竖直高度y /cm 28.7533454945330(1)在平面直角坐标系xOy 中,描出表格中各组数值所对应的点(),x y ,并画出表示乒乓球运行轨迹形状的大致图象;(2)①当乒乓球到达最高点时,与球台之间的距离是__________cm ,当乒乓球落在对面球台上时,到起始点的水平距离是__________cm ;②求满足条件的抛物线解析式;(3)技术分析:如果只上下调整击球高度OA ,乒乓球的运行轨迹形状不变,那么为了确保乒乓球既能过网,又能落在对面球台上,需要计算出OA 的取值范围,以利于有针对性的训练.如图②.乒乓球台长OB 为274cm ,球网高CD 为15.25cm .现在已经计算出乒乓球恰好过网的击球离度OA 的值约为1.27cm .请你计算出乒乓球恰好落在对面球台边缘点B 处时,击球高度OA 的值(乒乓球大小忽略不计).【答案】(1)见解析(2)①49;230;②()20.00259049y x =--+(3)乒乓球恰好落在对面球台边缘点B 处时,击球高度OA 的值为64.39cm【分析】(1)根据描点法画出函数图象即可求解;(2)①根据二次函数图象的对称性求得对称轴以及顶点,根据表格数据,可得当0y =时,230=x ;②待定系数法求解析式即可求解;(3)根据题意,设平移后的抛物线的解析式为()20.0025904928.75y x h =--++-,根据题意当274x =时,0y =,代入进行计算即可求解.【详解】(1)解:如图所示,(2)①观察表格数据,可知当50x =和130x =时,函数值相等,则对称轴为直线90x =,顶点坐标为()90,49,又抛物线开口向下,可得最高点时,与球台之间的距离是49cm ,当0y =时,230=x ,∴乒乓球落在对面球台上时,到起始点的水平距离是230cm ;故答案为:49;230.②设抛物线解析式为()29049y a x =-+,将()230,0代入得,()202309049a =-+,解得:0.0025a =-,∴抛物线解析式为()20.00259049y x =--+;(3)∵当28.75OA =时,抛物线的解析式为()20.00259049y x =--+,设乒乓球恰好落在对面球台边缘点B 处时,击球高度OA 的值为h ,则平移距离为28.75h -()cm ,∴平移后的抛物线的解析式为()20.0025904928.75y x h =--++-,依题意,当274x =时,0y =,即()20.0025274904928.750h --++-=,解得:64.39h =.答:乒乓球恰好落在对面球台边缘点B 处时,击球高度OA 的值为64.39cm .【点睛】本题考查了二次函数的应用,画二次函数图象,二次函数图象的平移,熟练掌握二次函数图象的性质是解题的关键.23.(2023年湖南省娄底市中考数学真题)如图,抛物线2y x bx c =++过点()1,0A -、点()5,0B ,交y 轴于点C .(1)求b ,c 的值.(2)点()()000,05P x y x <<是抛物线上的动点①当0x 取何值时,PBC 的面积最大?并求出PBC 面积的最大值;②过点P 作PE x ⊥轴,交BC 于点E ,再过点P 作PF x ∥轴,交抛物线于点F ,连接EF ,问:是否存在点P ,使PEF !为等腰直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)4b =-,5c =-(2)①当052x =时,PBC 的面积由最大值,最大值为1258;②当点P 的坐标为72⎛ ⎝⎭或()4,5-时,PEF !为等腰直角三角形【分析】(1)将将()1,0A -、()5,0B 代入抛物线2y x bx c =++即可求解;(2)①由(1)可知:245y x x =--,得()0,5C -,可求得BC 的解析式为5y x =-,过点P 作PE x ⊥轴,交BC 于点E ,交x 轴于点Q ,易得20005E PE y y x x =-=-+,根据PBC 的面积PEC PEB S S =+△△,可得PBC的面积()()001122C B PE x x PE x x =⋅-+⋅-2055125228x ⎛⎫=--+ ⎪⎝⎭,即可求解;②由题意可知抛物线的对称轴为4221x -=-=⨯对,则04F x x =-,分两种情况:当点P 在对称轴左侧时,即002x <<时,当点P 在对称轴右侧时,即025x <<时,分别进行讨论求解即可.【详解】(1)解:将()1,0A -、()5,0B 代入抛物线2y x bx c =++中,可得:102550b c b c -+=⎧⎨++=⎩,解得:45b c =-⎧⎨=-⎩,即:4b =-,5c =-;(2)①由(1)可知:245y x x =--,当0x =时,5y =-,即()0,5C -,设BC 的解析式为:y kx b =+,将()5,0B ,()0,5C -代入y kx b =+中,可得505k b b +=⎧⎨=-⎩,解得:15k b =⎧⎨=-⎩,∴BC 的解析式为:5y x =-,过点P 作PE x ⊥轴,交BC 于点E ,交x 轴于点Q ,∵()()000,05P x y x <<,则200045y x x =--,∴点E 的横坐标也为0x ,则纵坐标为05E y x =-,∴()()220000005455E PE y y x x x x x =-=----=-+,PBC 的面积PEC PEBS S =+△△()()001122C B PE x x PE x x =⋅-+⋅-()12B C PE x x =⋅-()200552x x =-+2055125228x ⎛⎫=--+ ⎪⎝⎭,。
专题07 二次函数的最值问题-九年级数学上册(解析版)
专题07二次函数的最值问题考点1:定轴动区间;考点2:动轴定区间。
1.在二次函数y =x 2﹣2x ﹣3中,当0≤x ≤3时,y 的最大值和最小值分别是()A .0,﹣4B .0,﹣3C .﹣3,﹣4D .0,0解:抛物线的对称轴是直线x =1,则当x =1时,y =1﹣2﹣3=﹣4,是最小值;当x =3时,y =9﹣6﹣3=0是最大值.答案:A .2.(易错题)已知二次函数y =a (x ﹣1)2﹣a (a ≠0),当﹣1≤x ≤4时,y 的最小值为﹣4,则a 的值为()A .12或4B .43或−12C .−43或4D .−12或4解:y =a (x ﹣1)2﹣a 的对称轴为直线x =1,顶点坐标为(1,﹣a ),当a >0时,在﹣1≤x ≤4,函数有最小值﹣a ,∵y 的最小值为﹣4,∴﹣a =﹣4,∴a =4;当a <0时,在﹣1≤x ≤4,当x =4时,函数有最小值,∴9a ﹣a =﹣4,解得a =−12;综上所述:a 的值为4或−12,答案:D.3.(易错题)当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为1,则a 的值为()A .﹣1B .2C .0或2D .﹣1或2解:当y =1时,有x 2﹣2x +1=1,解得:x 1=0,x 2=2.题型01定轴动区间∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,答案:D.4.已知函数y=﹣3(x﹣2)2+4,当x=2时,函数取得最大值为4.解:∵y=﹣3(x﹣2)2+4,∴抛物线的顶点坐标为(2,4),又∵a=﹣3<0,∴抛物线的开口向下,顶点是它的最高点,∴x=2时,函数有最大值为4.答案:2,4.5.若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=9.解:原式可化为y=(x﹣3)2﹣4,可知函数顶点坐标为(3,﹣4),当y=0时,x2﹣6x+5=0,即(x﹣1)(x﹣5)=0,解得x1=1,x2=5.如图:m=﹣4,当x=6时,y=36﹣36+5=5,即M=5.则M﹣m=5﹣(﹣4)=9.故答案为9.6.已知二次函数y=ax2﹣4ax+3a(1)若a=1,则函数y的最小值为﹣1.(2)若当1≤x≤4时,y的最大值是4,则a的值为43或﹣4.解:(1)当a=1时,y=x2﹣4x+3=(x﹣2)2﹣1∵a=1>0∴抛物线的开口向上,当x=2时,函数y的最小值为﹣1.(2)∵二次函数y=ax2﹣4ax+3a=a(x﹣2)2﹣a∴抛物线的对称轴是直线x=2,∵1≤x≤4,∴当a>0时,抛物线开口向上,在对称轴直线x=2右侧y随x的增大而增大,当x=4时y有最大值,a×(4﹣2)2﹣a=4,解得a=43,当a<0时,抛物线开口向下,x=2时y有最大值,a×(2﹣2)2﹣a=4,解得a=﹣4.答案:(1)﹣1;(2)43或−4.7.(易错题)设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于任何一个二次函数,它在给定的闭区间上都有最小值.(1)函数y=﹣x2+4x﹣2在区间[0,5]上的最小值是﹣7(2)求函数=(+12)2+34在区间[0,32]上的最小值.(3)求函数y=x2﹣4x﹣4在区间[t﹣2,t﹣1](t为任意实数)上的最小值y min的解析式.解:(1)y=﹣x2+4x﹣2其对称轴为直线为x=2,顶点坐标为(2,2),函数图象开口向下.如图1所示:当x=5时,函数有最小值,最小值为﹣7.答案:﹣7.(2)=(+12)2+34,其对称轴为直线=−12,顶点坐标(−12,34),且图象开口向上.其顶点横坐标不在区间[0,32]内,如图2所示:当x=0时,函数y有最小值m=1.(3)将二次函数配方得:y=x2﹣4x﹣4=(x﹣2)2﹣8其对称轴为直线:x=2,顶点坐标为(2,﹣8),图象开口向上若顶点横坐标在区间[t﹣2,t﹣1]左侧,则2<t﹣2,即t>4.当x=t﹣2时,函数取得最小值:m=(−4)2−8=2−8+8若顶点横坐标在区间[t﹣2,t﹣1]上,则t﹣2≤2≤t﹣1,即3≤t≤4.当x=2时,函数取得最小值:y min=﹣8若顶点横坐标在区间[t﹣2,t﹣1]右侧,则t﹣1<2,即t<3.当x=t﹣1时,函数取得最小值:m=(−3)2−8=2−6+1综上讨论,得m=2−8+8(>4)−8(3≤≤4)2−6+1(<3).8.(易错题)已知二次函数y =﹣x 2+6x ﹣5.(1)求二次函数图象的顶点坐标;(2)当1≤x ≤4时,函数的最大值和最小值分别为多少?(3)当t ≤x ≤t +3时,函数的最大值为m ,最小值为n ,若m ﹣n =3,求t 的值.解:(1)∵y =﹣x 2+6x ﹣5=﹣(x ﹣3)2+4,∴顶点坐标为(3,4);(2)∵a =﹣1<0,∴抛物线开口向下,∵顶点坐标为(3,4),∴当x =3时,y 最大值=4,∵当1≤x ≤3时,y 随着x 的增大而增大,∴当x =1时,y 最小值=0,∵当3<x ≤4时,y 随着x 的增大而减小,∴当x =4时,y 最小值=3.∴当1≤x ≤4时,函数的最大值为4,最小值为0;(3)当t ≤x ≤t +3时,对t 进行分类讨论,①当t +3<3时,即t <0,y 随着x 的增大而增大,当x =t +3时,m =﹣(t +3)2+6(t +3)﹣5=﹣t 2+4,当x =t 时,n =﹣t 2+6t ﹣5,∴m ﹣n =﹣t 2+4﹣(﹣t 2+6t ﹣5)=﹣6t +9,∴﹣6t +9=3,解得t =1(不合题意,舍去),②当0≤t <3时,顶点的横坐标在取值范围内,∴m =4,i )当0≤t ≤32时,在x =t 时,n =﹣t 2+6t ﹣5,∴m ﹣n =4﹣(﹣t 2+6t ﹣5)=t 2﹣6t +9,∴t2﹣6t+9=3,解得t1=3−3,t2=3+3(不合题意,舍去);ii)当32<t<3时,在x=t+3时,n=﹣t2+4,∴m﹣n=4﹣(﹣t2+4)=t2,∴t2=3,解得t1=3,t2=−3(不合题意,舍去),③当t≥3时,y随着x的增大而减小,当x=t时,m=﹣t2+6t﹣5,当x=t+3时,n=﹣(t+3)2+6(t+3)﹣5=﹣t2+4,.m﹣n=﹣t2+6t﹣5﹣(﹣t2+4)=6t﹣9,∴6t﹣9=3,解得t=2(不合题意,舍去),综上所述,t=3−3或3.9.已知二次函数y=ax2+4x+a﹣1的最小值为2,则a的值为()A.3B.﹣1C.4D.4或﹣1解:∵二次函数y=ax2+4x+a﹣1有最小值2,∴a>0,y最小值=4a−24=4oK1)−424=2,整理,得a2﹣3a﹣4=0,解得a=﹣1或4,∵a>0,∴a=4.答案:C.10.设二次函数y=a(x﹣m)(x﹣m﹣k)(a>0,m,k是实数),则()A.当k=2时,函数y的最小值为﹣aB.当k=2时,函数y的最小值为﹣2aC.当k=4时,函数y的最小值为﹣aD.当k=4时,函数y的最小值为﹣2a题型02动轴定区间解:令y=0,则(x﹣m)(x﹣m﹣k)=0,∴x1=m,x2=m+k,∴二次函数y=a(x﹣m)(x﹣m﹣k)与x轴的交点坐标是(m,0),(m+k,0),∴二次函数的对称轴是:=1+22=rr2=2r2,∵a>0,∴y有最小值,当=2r2时y最小,即=o2r2−p(2r2−−p=−24,当k=2时,函数y的最小值为=−224=−;当k=4时,函数y的最小值为=−424=−4,答案:A.11.在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有()A.最大值5B.最大值154C.最小值5D.最小值154解:由题意可得:6=m2﹣m,解得:m1=3,m2=﹣2,∵二次函数y=x2+mx+m2﹣m,对称轴在y轴左侧,∴m>0,∴m=3,∴y=x2+3x+6,∴二次函数有最小值为:4a−24=4×1×6−324×1=154.答案:D.12.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是()A.32B.2C.32或2D.−32或2解:y=x2﹣2mx=(x﹣m)2﹣m2,①若m<﹣1,当x=﹣1时,y=1+2m=﹣2,解得:m=−32;②若m>2,当x=2时,y=4﹣4m=﹣2,解得:m=32<2(舍);③若﹣1≤m≤2,当x=m时,y=﹣m2=﹣2,解得:m=2或m=−2<−1(舍),∴m的值为−32或2,答案:D.13.(易错题)当﹣1≤x≤2时,二次函数y=x2+2kx+1的最小值是﹣1,则k的值可能是32或−解:对称轴:x=−22=−k,分三种情况讨论:①当﹣k<﹣1时,即k>1时,此时﹣1≤x≤2在对称轴的右侧,y随x的增大而增大,=(﹣1)2+2k×(﹣1)+1=﹣1,∴当x=﹣1时,y有最小值,y小k=32,②当﹣1≤﹣k≤2时,即﹣2≤k≤1,对称轴在﹣1≤x≤2内,此时函数在﹣1≤x≤﹣k,y随x的增大而减小,在﹣k≤x≤2时,y随x的增大而增大,=(﹣k)2+2k•(﹣k)+1=﹣1,∴当x=﹣k时,y有最小值,y小k2﹣2k2+2=0,k2﹣2=0,k=±2,∵﹣2≤k≤1,∴k=−2,③当﹣k>2时,即k<﹣2,此时﹣1≤x≤2在对称轴的左侧,y随x的增大而减小,∴当x=2时,y有最小值,y=22+2k×2+1=﹣1,小k=−32(舍),综上所述,k的值可能是32或−2,答案:32或−2.14.已知y=﹣x(x+3﹣a)是关于x的二次函数,当x的取值范围在1≤x≤5时,若y在x=1时取得最大值,则实数a的取值范围是a≤5.解:第一种情况:当二次函数的对称轴不在1≤x≤5内时,此时,对称轴一定在1≤x≤5的左边,函数方能在这个区域取得最大值,x=K32<1,即a<5,第二种情况:当对称轴在1≤x≤5内时,对称轴一定是在顶点处取得最大值,即对称轴为x=1,∴K32=1,即a=5综合上所述a≤5.答案:a≤5.15.(易错题)已知二次函数y=x2﹣2hx+h,当自变量x的取值在﹣1≤x≤1的范围中时,函数有最小值n,则n的最大值是14.解:二次函数y=x2﹣2hx+h图象的对称轴为直线x=h.当h≤﹣1时,x=﹣1时y取最小值,此时n=1+2h+h=1+3h≤﹣2;当﹣1<h<1时,x=h时y取最小值,此时n=h2﹣2h2+h=﹣h2+h=﹣(h−12)2+14≤14;当h≥1时,x=1时y取最小值,此时n=1﹣2h+h=1﹣h≤0.综上所述:n的最大值为14.答案:14.16.(易错题)已知二次函数y=x2﹣2x+2在t≤x≤t+1时的最小值是t,则t的值为1或2.解:y=x2﹣2x+2=(x﹣1)2+1,分类讨论:(1)若顶点横坐标在范围t≤x≤t+1右侧时,有t+1<1,即t<0,此时y随x的增大而减小,=t=(t+1)2﹣2(t+1)+2,∴当x=t+1时,函数取得最小值,y最小值方程无解.(2)若顶点横坐标在范围t≤x≤t+1内时,即有t≤1≤t+1,=1,解这个不等式,即0≤t≤1.此时当x=1时,函数取得最小值,y最小值∴t=1.(3)若顶点横坐标在范围t≤x≤t+1左侧时,即t>1时,y随x的增大而增大,=t=t2﹣2t+2,解得t=2或1(舍弃),∵当x=t时,函数取得最小值,y最小值∴t=1或2.答案:1或2.17.已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.解:(1)把(0,﹣3),(﹣6,﹣3)代入y=﹣x2+bx+c,得b=﹣6,c=﹣3.(2)∵y=﹣x2﹣6x﹣3=﹣(x+3)2+6,又∵﹣4≤x≤0,∴当x=﹣3时,y有最大值为6.(3)①当﹣3<m≤0时,当x=0时,y有最小值为﹣3,当x=m时,y有最大值为﹣m2﹣6m﹣3,∴﹣m2﹣6m﹣3+(﹣3)=2,∴m=﹣2或m=﹣4(舍去).②当m≤﹣3时,当x=﹣3时y有最大值为6,∵y的最大值与最小值之和为2,∴y最小值为﹣4,∴﹣(m+3)2+6=﹣4,∴m=−3−10或m=−3+10(舍去).综上所述,m=﹣2或−3−10.18.(易错题)已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.解:(Ⅰ)当b=2,c=﹣3时,二次函数的解析式为y=x2+2x﹣3=(x+1)2﹣4,∴当x=﹣1时,二次函数取得最小值﹣4;(Ⅱ)当c=5时,二次函数的解析式为y=x2+bx+5,由题意得,x2+bx+5=1有两个相等是实数根,∴△=b2﹣16=0,解得,b1=4,b2=﹣4,∴二次函数的解析式y=x2+4x+5,y=x2﹣4x+5;(Ⅲ)当c=b2时,二次函数解析式为y=x2+bx+b2,图象开口向上,对称轴为直线x=−2,①当−2<b,即b>0时,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而增大,∴当x=b时,y=b2+b•b+b2=3b2为最小值,∴3b2=21,解得,b1=−7(舍去),b2=7;②当b≤−2≤b+3时,即﹣2≤b≤0,∴x=−2,y=34b2为最小值,∴34b2=21,解得,b1=﹣27(舍去),b2=27(舍去);③当−2>b+3,即b<﹣2,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而减小,故当x=b+3时,y=(b+3)2+b(b+3)+b2=3b2+9b+9为最小值,∴3b2+9b+9=21.解得,b1=1(舍去),b2=﹣4;∴b=7时,解析式为:y=x2+7x+7b=﹣4时,解析式为:y=x2﹣4x+16.综上可得,此时二次函数的解析式为y=x2+7x+7或y=x2﹣4x+16.。
2022-2023学年人教版九年级数学上册二次函数专题含解析
2022-2023学年人教版九年级数学上册《第22章二次函数》解答综合练习题(附答案)1.二次函数y =ax 2+bx +c (a ≠0)图象上部分点的横坐标x ,纵坐标y 的对应值如表:x… ﹣4 ﹣3 ﹣2 1 2 …y … ﹣ 0 0 ﹣ …(1)求这个二次函数的表达式;(2)在图中画出此二次函数的图象;(3)结合图象,直接写出当﹣4≤x <0时,y 的取值范围 .2.已知抛物线y =ax 2﹣2ax +c 经过点(5,),(0,﹣1).(1)求抛物线的表达式及顶点坐标.(2)点M (x 1,y 1),N (x 2,y 2)在抛物线上,且x 2=x 1+3,若y 1,y 2始终小于0,求x 1的取值范围.3.如图,已知抛物线过A 、B 、C 三点,点A 的坐标为(﹣1,0),点B 的坐标为(3,0),且3AB =4OC .(1)求点C 的坐标;(2)求抛物线的关系式,并求出这个二次函数的最大值.4.平面直角坐标系xOy 中,二次函数y =a 2+bx +c 的顶点为(,﹣),它的图象与x 轴交于点A ,B ,AB =5,交y 轴于点C .(1)求二次函数的解析式;(2)当﹣1≤x<5时,写出该二次函数y的取值范围;(3)将抛物线向上平移m个单位长度,当抛物线与坐标轴有且只有2个公共点,求m 的值;(4)对于这个二次函数,若自变量x的值增加4时,对应的函数值y增大,求满足题意的自变量x的取值范围.5.已知:二次函数y=x2﹣(a+3)x+a+2(a为常数).(1)若该函数图象与坐标轴只有两个交点(非原点),求a的值;(2)若该函数图象与x轴相交于A(x1,0),B(x2,0)两点,x1<x2,与y轴相交于点C(0,c),c>0,且满足x12+x22﹣x1x2=7.①求抛物线的解析式;②在抛物线的对称轴上是否存在点P,使△P AC是以AC为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由.6.已知二次函数y=x2﹣2mx+m2﹣4的图象与x轴交于A、B两点(点A在点B的左边),且与y轴交于D点.(1)当点B、D都在坐标系的正半轴,且△BOD为等腰三角形,求二次函数解析式;(2)当m=﹣2时,将函数y=x2﹣2mx+m2﹣4的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象Ω.当直线y=2x+n与图象Ω仅有两个公共点时,求实数n的取值范围.7.在直角坐标平面内,二次函数图象的顶点为A(1,﹣4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象经过怎样的一次平移,可使平移后所得图象与坐标轴只有两个交点?8.已知二次函数y=x2+mx+n(m,n为常数).(1)若m=﹣2,n=﹣4,求二次函数的最小值;(2)若n=3,该二次函数的图象与直线y=1只有一个公共点,求m的值;(3)若n=m2,且3m+4<0,当x满足m≤x≤m+2时,y有最小值13,求此二次函数的解析式.9.直线y=﹣x﹣1与抛物线y=ax2+4ax+b交于x轴上A点和另一点D,抛物线交y轴于C 点,且CD∥x轴,求抛物线解析式.10.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx﹣6与x轴分别交于A、B两点(A在B的左侧),与y轴交于点C,直线y=x﹣m交x轴于点B,交y轴于点C,且OA=OB.(1)求抛物线的解析式;(2)点P为第三象限抛物线上一点,连接BP、PC,设点P的横坐标为t,△PBC的面积为S,求S与t的函数解析式;(3)在(2)的条件下,过点C作CD∥x轴交BP的延长线于点D,连接AD,若∠ADB+∠DCB=180°,求t的值.11.已知二次函数的图象与x轴交于A(﹣2,0),B(3,0)两点,且函数有最大值为2,求二次函数的解析式.12.已知:二次函数的图象经过点A(﹣1,0),B(0,﹣3)和C(3,12).(1)求二次函数的解析式并求出图象的顶点D的坐标;(2)设点M(x1,y1),N(1,y2)在该抛物线上,若y1≤y2,直接写出x1的取值范围.13.抛物线y=ax2+bx+c与坐标轴交于A,B,C三点,已知OA=2OB=2OC=4.(1)求抛物线解析式:(2)若腰长为4的等腰直角三角形BDE的一直角边在x轴上,请问抛物线平移后能否同时经过D,E两点?若能,请说明平移方式;若不能,请说明理由.14.抛物线y=ax2﹣2ax+m经过点A(﹣1,0),与x轴另一交点为B,交y轴负半轴于C 点,且S△CAB=6(1)求抛物线的解析式;(2)若在y轴右侧的抛物线上有一点M,使△AMC的面积为9,请求出M点的坐标.15.如图,已知抛物线y=﹣x2+4x+m与x轴交于A,B两点,AB=2,与y轴交于C.(1)求抛物线解析式;(2)求P为对称轴上一点,要使P A+PC最小,求点P的坐标.16.阅读下面的材料:小明在学习中遇到这样一个问题:若1≤x≤m,求二次函数y=x2﹣6x+7的最大值.他画图研究后发现,x=1和x=5时的函数值相等,于是他认为需要对m进行分类讨论.他的解答过程如下:∵二次函数y=x2﹣6x+7的对称轴为直线x=3,∴由对称性可知,x=1和x=5时的函数值相等.∴若1≤m<5,则x=1时,y的最大值为2;若m≥5,则x=m时,y的最大值为m2﹣6m+7.请你参考小明的思路,解答下列问题:(1)当﹣2≤x≤4时,二次函数y=2x2+4x+1的最大值为;(2)若p≤x≤2,求二次函数y=2x2+4x+1的最大值;(3)若t≤x≤t+2时,二次函数y=2x2+4x+1的最大值为31,则t的值为.17.已知y关于x的二次函数y=x2﹣bx+b2+b﹣5的图象与x轴有两个公共点.(1)求b的取值范围;(2)若b取满足条件的最大整数值,当m≤x≤时,函数y的取值范围是n≤y≤6﹣2m,求m,n的值;(3)若在自变量x的值满足b≤x≤b+3的情况下,对应函数y的最小值为,求此时二次函数的解析式.18.在平面直角坐标系xOy中,已知二次函数y=x2+bx+c.(1)当b=﹣2时,①若c=4,求该函数最小值;②若2≤x≤3,则此时x对应的函数值的最小值是5,求c的值;(2)当c=2b时,若对于任意的x满足b≤x≤b+2且此时x所对应的函数值的最小值是12,直接写出b的值.19.已知抛物线F:y=x2+bx+c(b、c为常数).(1)当b=﹣2,c=2,且m≤x≤m+1时,求函数y的最小值和最大值(用含m的代数式表示);(2)若抛物线过(﹣3,0),当﹣3≤x≤0时,函数的最小值为﹣4,求函数解析式;(3)当c=b2,且b≤x≤b+3时,最小值为21,求函数解析式;(4)若抛物线过点A(0,﹣2)、B(3,1),设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A、B之间的部分为图象G(包含A、B两点).若直线CD与图象G有公共点,结合函数图象,直接写出点D纵坐标t的取值范围;(5)把函数F沿着直线y=c翻折,得到的函数x<0的部分记作F1,原函数F的x≥0的部分记作F2,F1和F2合起来组成函数W,若b=﹣4,且c﹣1≤x≤c时函数W的最大值为1,则c的值为.20.已知二次函数y=x2+2bx+c(b、c为常数).(Ⅰ)当b=1,c=﹣3时,求二次函数在﹣2≤x≤2上的最小值;(Ⅱ)当c=3时,求二次函数在0≤x≤4上的最小值;(Ⅲ)当c=4b2时,若在自变量x的值满足2b≤x≤2b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.21.已知函数y=﹣x2+(m﹣1)x+m(m为常数).(1)试说明该函数的图象与x轴始终有交点;(2)求证:不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上;(3)当﹣2≤m≤3时,求该函数的图象的顶点纵坐标的取值范围.22.已知二次函数y=x2+2(m﹣1)x﹣4m﹣1(m为常数).(1)若函数y=x2+2(m﹣1)x﹣4m﹣1与x轴交点的横坐标为﹣1,,则关于x的方程4x2+4(m﹣1)x﹣4m﹣1=0的根是;(2)若不论m取何值,该函数图象的顶点都在一个新的二次函数图象上,求此新函数的解析式;(3)若该函数的顶点纵坐标的取值范围是﹣5≤y<﹣2时,求m的取值范围.23.已知抛物线C1:y1=a(x﹣h)2+2,直线l:y2=kx﹣kh+2(k≠0).(1)求证:直线l恒过抛物线C的顶点;(2)若a>0,h=1,当t≤x≤t+3时,二次函数y1=a(x﹣h)2+2的最小值为2,求t 的取值范围.(3)点P为抛物线的顶点,Q为抛物线与直线l的另一个交点,当1≤k≤3时,若线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,求a的取值范围.24.已知抛物线y=ax2+bx+c(a≠0)经过A(4,0)、B(﹣1,0)、C(0,4)三点.(1)求抛物线的函数解析式;(2)如图1,点D是在直线AC上方的抛物线的一点,DN⊥AC于点N,DM∥y轴交AC 于点M,求△DMN周长的最大值及此时点D的坐标;(3)如图2,点P为第一象限内的抛物线上的一个动点,连接OP,OP与AC相交于点Q,求的最大值.25.已知抛物线y=ax2+bx﹣1(a>0)经过点(2,﹣1),当1﹣2m≤x≤1+3m时,y的最小值为﹣2.(1)求抛物线的解析式;(2)当n<x<n+1时,y的取值范围是2n+1<y<2n+4,求n的值.参考答案1.解:(1)由题意,设二次函数的表达式为y=a(x+3)(x﹣1),∵二次函数经过点(﹣2,),∴﹣3a=,∴a=﹣,∴二次函数的表达式为y=﹣(x+3)(x﹣1)=﹣x2﹣x+;(2)y=﹣x2﹣x+=﹣(x+1)2+2,顶点为(﹣1,2),描点、连线,画出图形如图所示:(3)观察函数图象可知:当﹣4≤x<0时,y的取值范围是﹣≤y≤2,故答案为:﹣≤y≤2.2.解:(1)把点(5,),(0,﹣1)代入y=ax2﹣2ax+c得:,解得:,∴y=x2﹣x﹣1=(x﹣1)2﹣,∴抛物线的顶点坐标为(1,﹣);(2)y=x2﹣x﹣1=(x2﹣2x﹣8)=(x﹣4)(x+2),∵点M(x1,y1),N(x2,y2)在抛物线上,且x2=x1+3,∴y1=(x1﹣4)(x1+2),y2=(x2﹣4)(x2+2)=(x1﹣1)(x1+5),∵y1,y2始终小于0,∴(x1﹣4)(x1+2)<0,(x1﹣1)(x1+5)<0,∴﹣2<x1<4,﹣5<x1<1,∴﹣2<x1<1.3.解:(1)∵点A的坐标为(﹣1,0),点B的坐标为(3,0),∴OA=1,OB=3,∴AB=4,∵3AB=4OC,∴OC=3,∴C点坐标为(0,3);(2)设二次函数的解析式为y=a(x+1)(x﹣3),把C(0,3)代入得a×1×(﹣3)=3,解得a=﹣1,∴二次函数的解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3,∵a=﹣1<0,∴当x=﹣=1时,y最大值==4.4.解:(1)由题意得=,即x A+x B=3,x A﹣x B=5,联立方程,解得,∴点A坐标为(4,0),点B坐标为(﹣1,0),设抛物线解析式为y=a(x﹣)2﹣,把(4,0)代入得0=a﹣,解得a=1,∴抛物线解析式为y=(x﹣)2﹣,即y=x2﹣3x﹣4.(2)∵抛物线开口向上,对称轴为直线x=,∴当x=时,y取最小值为﹣,∵5﹣>﹣(﹣1),∴当x=5时,用取最大值,把x=5代入y=x2﹣3x﹣4得y=6.故答案为:﹣≤y<6.(3)∵抛物线y=x2﹣3x﹣4与x轴有2个交点,与y轴有一个交点,∴抛物线向上移动至顶点落在x轴上满足题意,∴﹣+m=0,解得m=,抛物线向上移动至经过原点时满足题意,即﹣4+m=0,解得m=4,综上所述,m=或m=4.(4)∵抛物线开口向上,对称轴为直线x=,∴当x与x+4所对应y值相等时,=,∴x=﹣,∴x>﹣满足题意.5.解:(1)∵抛物线与y一定有一个交点,而抛物线与坐标轴只有两个交点,∴抛物线与x轴只有一个公共点,∴△=(a+3)2﹣4(a+2)=0,整理得a2+2a+1=0,解得a1=a2=﹣1,即a的值为﹣1;(2)①根据根与系数的关系得x1+x2=a+3,x1•x2=a+2,而x12+x22﹣x1x2=7,∴(x1+x2)2﹣3x1•x2=7,∴(a+3)2﹣3(a+2)=7,整理得a2+3a﹣4=0,解得a1=﹣4,a2=1,而c>0,即a+2>0,∴a=1,∴抛物线解析式为y=x2﹣4x+3;②存在.当y=0时,x2﹣4x+3=0,解得x1=1,x2=3,则A(1,0),B(3,0),当x=0时,y=x2﹣4x+3=3,则C(0,3),∴抛物线的对称轴为直线x=2,抛物线的顶点坐标为(2,﹣1),如图,AC==,当AP=AC时,P1(2,3);当CP=CA时,CP2=,而CP1=2,则P2P1==,则P2(2,3+),同样方法得到P1P3=,所以P3(2,3﹣),∴满足条件的P点坐标为(2,3)或(2,3+)或(2,3﹣).6.解:(1)令y=0得x2﹣2mx+m2﹣4=0,解得x1=m﹣2,x2=m+2,∴A(m﹣2,0),B(m+2,0),D(0,m2﹣4),∵点D在y轴正半轴,∴m2﹣4>0,设存在实数m,使得△BOD为等腰三角形,则BO=OD,即|m+2|=m2﹣4,①当m+2>0时,m2﹣4=m+2,解得m=3或m=﹣2(舍去);②当m+2<0时,m2﹣4+m+2=0,解得m=1或m=﹣2(都舍去);③当m+2=0时,点O、B、D重合,不合题意,舍去;综上所述,m=3.故二次函数解析式为:y=x2﹣6x+5.(2)当m=﹣2时,y=x2+4x,则A(﹣4,0),B(0,0)顶点为(﹣2,﹣4),因为直线y=2x+n与图象Ω有两个公共点,则当直线y=2x+n过A点时n=8,当直线y=2x+n过B(0,0)时,n=0,当直线y=2x+n与y=﹣x2﹣4x只有一个公共点时,n=9,根据图象,可得0<n<8或n>9.7.解:(1)设抛物线的解析式为y=a(x﹣1)2﹣4,由题意,得∴0=a(3﹣1)2﹣4,∴a=1,∴抛物线的解析式为:y=(x﹣1)2﹣4.(2)∵抛物线的解析式为:y=(x﹣1)2﹣4.∴抛物线的开口向上,对称轴为x=1,当y=0时,x1=3,x2=﹣1,∴抛物线与x轴的交点是(﹣1,0)或(3,0)∴由抛物线的图象特征可以得出将抛物线向左平移3个单位时,抛物线对称轴的右侧经过原点;所得图象与坐标轴只有两个交点.抛物线向右平移1个单位时,抛物线的对称轴左侧经过原点,所得图象与坐标轴只有两个交点.抛物线向上平移3个单位时,抛物线经过原点,所得图象与坐标轴只有两个交点.抛物线向上平移4个单位时,抛物线的顶点在x轴上,所得图象与坐标轴只有两个交点.8.解:(1)当m=﹣2,n=﹣4时,y=x2﹣2x﹣4=(x﹣1)2﹣5∴当x=1时,y最小值=﹣5;(2)当n=3时,y=x2+mx+3,令y=1,则x2+mx+3=1,由题意知,x2+mx+3=1有两个相等的实数根,则△=m2﹣8=0,∴m=;(3)由3m+4<0,可知m,∴m≤x≤m+2,抛物线y=x2+mx+m2的对称轴为x=,∵m,∴,∴对称轴为x=,∴在m≤x≤m+2时,y随x的增大而减小,∴当x=m+2,y有最小值为13,∴(m+2)2+m(m+2)+m2=13,即m2+2m﹣3=0,解得m=1或m=﹣3,而m,∴m=﹣3,此时,y=x2﹣3x+9.9.解:如图,∵直线y=﹣x﹣1交于x轴上A点,∴A(﹣1,0),∵抛物线y=ax2+4ax+b交于x轴上A点,∴a﹣4a+b=0,∴b=3a,由抛物线y=ax2+4ax+b可知C(0,b),∵CD∥x轴,∴C、D是对称点,且D的纵坐标为b,∵抛物线的对称轴是:x=﹣2,∴D(﹣4,b),∵点D在直线y=﹣x﹣1上,∴b=4﹣1=3,∴a=1,∴抛物线解析式为y=x2+4x+3.10.解:(1)∵抛物线y=ax2+bx﹣6与y轴交于点C,∴点C(0,﹣6),∵直线y=x﹣m交y轴于点C,∴﹣m=﹣6∴m=6,∴直线y=x﹣6,∴当y=0时,x=6,∴点B(6,0),∴OB=6∵OA=OB,∴OA=7,∴点A(﹣7,0),∴∴∴抛物线解析式为:y=x2+x﹣6;(2)如图1,过点P作PH∥AB交BC于点H,∵点P的横坐标为t,∴点P(t,t2+t﹣6)∴t2+t﹣6=x﹣6,∴x=t2+t∴S=×6×(t2+t﹣t)=t2﹣t;(3)如图2,作抛物线的对称轴交x轴于E,BF平分∠ABC,交对称轴于点F,连接AF,DF,∵点C(0,﹣6),点A(﹣7,0),点B(6,0),∵OB=6,OC=6,AB=13,∴∠OBC=60°,∵DC∥AB,∴∠DCB+∠ABC=180°,∴∠DCB=120°,∵∠ADB+∠DCB=180°,∴∠ADB=60°,∵抛物线y=x2+x﹣6的对称轴为x=﹣;∴点E坐标为(﹣,0),AF=BF,BE==AE,∵BF平分∠ABC,∴∠ABF=30°,且AF=BF,∴∠F AB=30°,EF⊥AB,∴∠AFB=180°﹣∠F AB﹣∠FBA=120°,EF=,BF=,∴∠AFB=2∠ADB∴点D在以点F为圆心,BF为半径的圆上,设点D(x,﹣6)∴DF=BF∴(﹣﹣x)2+(6﹣)2=()2,∴x=﹣4,∴点D(﹣4,﹣6),且点B(6,0)∴BD解析式为:y=x﹣,∴解得(舍去),∴t=﹣11.解:∵二次函数的图象与x轴交于A(﹣2,0),B(3,0)两点,∴抛物线的对称轴为直线x=,∵函数有最大值为2,∴抛物线的顶点坐标为(,2),设抛物线的解析式为y=a(x+2)(x﹣3),把(,2)代入得a×(+2)(﹣3)=2,解得a=﹣,所以抛物线的解析式为y=﹣(x+2)•(x﹣3)=﹣x2+x+.12.解:(1)设抛物线解析式为y=ax2+bx+c,把A(﹣1,0),B(0,﹣3)和C(3,12)代入,得,解得:,∴抛物线解析式为y=2x2﹣x﹣3,∵y=2x2﹣x﹣3=,∴顶点D的坐标为(,﹣);(2)∵抛物线y=2x2﹣x﹣3的对称轴为直线x=,∴N(1,y2)关于直线x=的对称点为(,﹣2),∵M(x1,y1),N(1,y2)在该抛物线上,且y1≤y2,∴﹣≤x1≤1.13.解:(1)∵OA=2OB=2OC=4,∴OB=OC=2,∴A(﹣4,0)、B(2,0)、C(0,2),将A(﹣4,0)、B(2,0)、C(0,2)代入抛物线y=ax2+bx+c得:,解之得a=﹣,b=﹣,c=2,∴y=﹣,(2)抛物线平移后能同时经过点D、E两点,理由如下:∵BD=BE=4,∴E(2,4),D(6,0),设抛物线平移后的解析式为;y=,将E、D坐标代入得,解之得m=2,k=4,∴平移后抛物线顶点为(2,4),∵原抛物线顶点为(﹣1,),∴将原来抛物线向右平移3个单位,再向上平移个单位后能同时经过D、E两点.14.解:(1)设B的坐标为(x,0),∵抛物线y=ax2﹣2ax+m,A(﹣1,0),当y=0时,ax2﹣2ax+m=0,∴﹣1+x=2,∴x=3,∴B(3,0),∴AB=1+3=4,∵S△CAB=×4•×OC=6,∴OC=3,∴C(0,﹣3),把A(﹣1,0)和C(0,﹣3)代入抛物线y=ax2﹣2ax+m得:,解得:a=1,m=﹣3,∴抛物线的解析式为y=x2﹣2x﹣3;(2)设M的坐标为(x,x2﹣2x﹣3),分别过点A、M作y轴的平行线,过C作x轴的平行线,交前面平行线于D、E,连接AM,如图所示:则△AMC的面积=梯形ADEM 的面积﹣△ACD的面积﹣△CEM的面积=(3+x2﹣2x﹣3+3)(1+x)﹣×3×3﹣x (x2﹣2x﹣3+3)=9,解得:x=(负值舍去),∴x2﹣2x﹣3=,∴M点的坐标为(,).15.解:(1)抛物线的对称轴为直线x=﹣=2,∵点A与点B是抛物线的对称点,而AB=2,∴A点坐标为(1,0),B点坐标为(3,0),∴抛物线解析式为y=﹣(x﹣1)(x﹣3)=﹣x2+4x﹣3;(2)连接BC,交直线x=2于点P,则P A=PB,∴P A+PC=PB+PC=BC,∴此时P A+PC最小,设直线BC的解析式为y=kx+b,把C(0,﹣3),B(3,0)代入得,解得,∴直线BC的解析式为y=x﹣3,当x=2时,y=x﹣3=2﹣3=﹣1,∴P点坐标为(2,﹣1).16.解:(1)∵抛物线的对称轴为直线x=﹣1,∴当﹣2≤x≤4时,二次函数y=2x2+4x+1的最大值为:2×42+4×4+1=49;(2)∵二次函数y=2x2+4x+1的对称轴为直线x=﹣1,∴由对称性可知,当x=﹣4和x=2时函数值相等,∴若p≤﹣4,则当x=p时,y的最大值为2p2+4p+1,若﹣4<p≤2,则当x=2时,y的最大值为17;(3)t<﹣2时,最大值为:2t2+4t+1=31,整理得,t2+2t﹣15=0,解得t1=3(舍去),t2=﹣5,t≥﹣2时,最大值为:2(t+2)2+4(t+2)+1=31,整理得,(t+2)2+2(t+2)﹣15=0,解得t1=1,t2=﹣7(舍去),所以,t的值为1或﹣5.17.解:(1)由题意知,Δ>0,即,∴﹣4b+20>0,解得:b<5;(2)由题意,b=4,代入得:y=x2﹣4x+3,∴对称轴为直线,又∵a=1>0,函数图象开口向上,∴当m≤x≤时,y随x的增大而减小,∴当x=时,y=n=;当x=m时,y=6﹣2m=m2﹣4m+3,m2﹣2m﹣3=0,解得:m1=﹣1,m2=3(不合题意,舍去);∴m=﹣1,n=;(3)∵,∴对称轴为x=0.5b,开口向上,∴①当b≤0.5b≤b+3,即﹣6≤b≤0时,函数y在顶点处取得最小值,有b﹣5=,∴b=(不合题意,舍去);②当b+3<0.5b,即b<﹣6时,取值范围在对称轴左侧,y随x的增大而减小,∴当x=b+3时,y最小值=,代入得:,b2+16b+15=0,解得:b1=﹣15,b2=﹣1(不合题意,舍去),∴此时二次函数的解析式为:;③当0.5b<b,即b>0时,取值范围在对称轴右侧,y随x的增大而增大,∴当x=b时,y最小值=,代入得:,b2+4b﹣21=0,解得:b1=﹣7(不合题意,舍去),b2=3,∴此时二次函数的解析式为:.综上所述,符合题意的二次函数的解析式为:或.18.解:(1)①由题意,二次函数的解析式为y=x2﹣2x+4=(x﹣1)2+3,∴顶点坐标为(1,3),∴函数的最小值为3.②∵y=x2﹣2x+c,∴对称轴是直线x=1,∵2≤x≤3,则此时x对应的函数值的最小值是5,∴x=2时,y=5,∴5=4﹣4+c,∴c=5.(2)当c=2b时,y=x2+bx+2b,图象开口向上,对称轴为直线x=﹣,①当﹣<b,即b>0时,在自变量x的值满足b≤x≤b+2的情况下,y随x的增大而增大,∴当x=b时,y=b2+b•b+2b=2b2+2b最小值,∴2b2+2b=12,解得,b1=﹣3(舍去),b2=2;②当b≤﹣≤b+2时,即﹣≤b≤0,∴x=﹣,y的值最小,∴b2﹣+2b=12,方程无解.③当﹣>b+2,即b<﹣,在自变量x的值满足b≤x≤b+2的情况下,y随x的增大而减小,故当x=b+2时,y=(b+2)2+b(b+2)+2b=2b2+8b+4为最小值,∴2b2+8b+4=12.解得,b1=﹣2+2(舍去),b2=﹣2﹣2;综上所述,满足条件的b的值为2或﹣2﹣2.19.解:(1)∵b=﹣2,c=2,∴y=x2﹣2x+2=(x﹣1)2+1,开口向上,对称轴为x=1,①当m+1<1时即m<0,在对称轴的左边,y随x的增大而减小,∴y max=f(m)=m2﹣2m+2,y min=f(m+1)=m2+1,②当0≤m<时,1≤m+1<,对称轴x=1取得最小值,∴y max=f(m)=m2﹣2m+2,y min=f(1)=1,③当<m≤1时,<m+1≤2,对称轴x=1取得最小值,∴y max=f(m+1)=m2+1,y min=f(1)=1,④当m>1时,在对称轴的右边,y随x的增大而增大,∴y max=f(m+1)=m2+1,y min=f(m)=m2+2m+2,(2)∵抛物线过(﹣3,0),∴9﹣3b+c=0,∵当﹣3≤x≤0时函数最小值为﹣4,抛物线对称轴为,∴(﹣3,0)点在对称轴的左侧,不能在对称轴的右侧,①当﹣3<<0时,即0<b<6时,y min=f()=+c=﹣4,∴b=2,c=﹣3,y=x2+2x﹣3,②当>0时,即b<0,y min=f(0)=c=﹣4,∴b=(不符合舍去),故函数解析式为y=x2+2x﹣3,(3)∵c=b2,∴y=x2+bx+b2,抛物线对称轴为,①当b+3≤时,即b≤﹣2,∴y min=f(b+3)=3b2+9b+9=21,∴b=﹣4,c=16,y=x2﹣4x+16,②当b<<b+3时,即﹣2<b<0时,∴f(b)=3b2,f(b+3)=3b2+9b+9,f(b+3)>f(b),f(b)=21,b=(舍去),f(b+3)<f(b),f(b+3)=21,b=﹣4或者b=1(舍去),∴y=x2﹣4x+16,③当b>时,即b>0时,∴y min=f(b)=3b2=21,∴b=或(舍去),∴c=7,y=x2+x+7,∴综上所述解析式y=x2﹣4x+16或y=x2+x+7,故函数解析式为y=x2﹣4x+16或y=x2+x+7,(4)∵抛物线过A、B点,∴b=﹣2,c=﹣2,y=x2﹣2x﹣2,∵点B和点C关于原点对称,B(3,1),∴C(﹣3,﹣1),∴设D(1,t),CD所在的直线为L CD,①L CD过点B(与G刚好有交点),设L CD:y=kx+b,将C(﹣3,﹣1),B(3,1)代入y=kx+b,得y=x,∴t=,②L CD与G相切,即与图象只有一个交点,设L CD:y=kx+b,将C(﹣3,﹣1),D(1,t)代入y=kx+b,得y=x+,联立直线和抛物线解析式得,得x2﹣=0,∴Δ=﹣4×=0∴t=﹣33﹣16,∴(﹣33﹣16)≤t≤,故答案为:(﹣33﹣16)≤t≤,(5)∵b=﹣4,∴y=x2﹣4x+c,抛物线对称轴x=2,则函数W仍为原函数,①当c<2时,y max=f(c﹣1)=1,∴c=1,②当2<c<3时,f(c﹣1)=c2﹣5c+5,f(c)=c2﹣3c,f(c﹣1)>f(c),c<,f(c﹣1)=1,c=1或c=4(舍去),f(c﹣1)<f(c),c≤,f(c)1,c=(舍去),③c≥3,y max=f(c)=1,∴c=或c=(舍去),∴综上所述c=1 或者c=,故答案为:1或者.20.解:(Ⅰ)当b=1,c=﹣3时,二次函数解析式为y=x2+2x﹣3=(x+1)2﹣4,∴x=﹣1在﹣2≤x≤2的范围内,此时函数取得最小值为﹣4,(Ⅱ)y=x2+2bx+3,的对称轴为x=﹣b,①若﹣b<0,即b>0时,当x=0时,y有最小值为3,②若0≤b≤4,即:﹣4≤b≤0时,当x=﹣b时,y有最小值﹣b2+3;③若﹣b>4,即b<﹣4时,当x=4时,y有最小值为8b+19,(Ⅲ)当c=4b2时,二次函数的解析式为y=x2+2bx+4b2,它的开口向上,对称轴为x=﹣b的抛物线,①若﹣b<2b,即b>0时,在自变量x的值满足2b≤x≤2b+3的情况下,与其对应的函数值y随x增大而增大,∴当x=2b时,y=(2b)2+2b×2b+(2b)2=12b2为最小值,∴12b2=21,∴b=或b=﹣(舍)∴二次函数的解析式为y=x2+x+7,②若2b≤﹣b≤2b+3,即﹣1≤b≤0,当x=﹣b时,代入y=x2+2bx+4b2,得y最小值为3b2,∴3b2=21∴b=﹣(舍)或b=(舍),③若﹣b>2b+3,即b<﹣1,在自变量x的值满足2b≤x≤2b+3的情况下,与其对应的函数值y随x增大而减小,∴当x=2b+3时,代入二次函数的解析式为y=x2+2bx+4b2中,得y最小值为12b2+18b+9,∴12b2+18b+9=21,∴b=﹣2或b=(舍),∴二次函数的解析式为y=x2﹣4x+16.综上所述,b=或b=﹣2,此时二次函数的解析式为y=x2+x+7或y=x2﹣4x+16 21.解:(1)∵函数y=﹣x2+(m﹣1)x+m(m为常数),∴△=(m﹣1)2+4m=(m+1)2≥0,∴该函数的图象与x轴始终有交点;(2)y=﹣x2+(m﹣1)x+m=﹣(x﹣)2+,把x=代入y=(x+1)2得:y=(+1)2=,则不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上;(3)设函数z=,当m=﹣1时,z有最小值为0;当m<﹣1时,z随m的增大而减小;当m>﹣1时,z随m的增大而增大,当m=﹣2时,z=;当m=3时,z=4,则当﹣2≤m≤3时,该函数图象的顶点坐标的取值范围是0≤≤4.22.解:(1)∵抛物线y=x2+2(m﹣1)x﹣4m﹣1与x轴交点的横坐标为﹣1,,∴x2+2(m﹣1)x﹣4m﹣1=0的解为x=﹣1或x=,由4x2+4(m﹣1)x﹣4m﹣1=0得(2x)2+2(m﹣1)•2x﹣4m﹣1=0,∴2x=﹣1或2x=,∴x1=﹣,x2=.故答案为:x1=﹣,x2=.(2)∵y=x2+2(m﹣1)x﹣4m﹣1=x2+2(m﹣1)x+(m﹣1)2﹣(m﹣1)2﹣4m﹣1=(x+m﹣1)2﹣m2﹣2m﹣2,∴抛物线顶点坐标为(﹣m+1,﹣m2﹣2m﹣2),令﹣m+1=x,﹣m2﹣2m﹣2=y,则y=﹣x2+4x﹣5,∴抛物线顶点所在抛物线解析式为y=﹣x2+4x﹣5.(3)由题意得﹣5≤﹣m2﹣2m﹣2<﹣2,∵令y=﹣m2﹣2m﹣2=﹣(m+1)2﹣1,∴抛物线开口向下,对称轴为值m=﹣1,顶点坐标为(﹣1,﹣1),把y=﹣5代入y=﹣(m+1)2﹣1得﹣5=﹣(m+1)2﹣1,解得m=1或m=﹣3,把y=﹣2代入y=﹣(m+1)2﹣1得﹣2=﹣(m+1)2﹣1,解得m=0或m=﹣2,∴﹣5≤y<﹣2时,﹣3≤m<﹣2或0<m≤1.23.(1)证明:∵抛物线C1的解析式为y1=a(x﹣h)2+2,∴抛物线的顶点为(h,2).当x=h时,y2=kx﹣kh+2=2,∴直线l恒过抛物线C1的顶点.(2)解:∵a>0,h=1,∴当x=1时,y1=a(x﹣h)2+2取得最小值2.又∵当t≤x≤t+3时,二次函数y1=a(x﹣h)2+2的最小值为2,∴,∴﹣2≤t≤1.(3)解:令y1=y2,则a(x﹣h)2+2=k(x﹣h)+2,解得:x1=h,x2=h+.∵线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,∴>1或<﹣1.∵k>0,∴0<a<k或﹣k<a<0.又∵1≤k≤3,∴﹣1<a<0或0<a<1.24.解:(1)法一:依题意,得,解之,得,∴抛物线解析式为y=﹣x2+3x+4.法二:依题意,得y=a(x﹣4)(x+1)(a≠0),将C(0,4)坐标代入得,﹣3a=3,解得a=﹣1,∴抛物线解析式为y=﹣x2+3x+4.法三:依题意,得,解之,得,∴抛物线解析式为y=﹣x2+3x+4.(2)如图1,延长DM交x轴于点H,∵OA=OC=4,OA⊥OC,DM∥y轴交AC于点M,∴∠OAC=45°,∠AHM=90°,∵DN⊥AC于点N,∴∠AMH=∠DMN=45°,∴△DMN是等腰直角三角形,∴.设直线AC的解析式为y=kx+b'(k≠0),将A(4,0)、C(0,4)两点坐标代入得,解得,所以直线AC的解析式为y=﹣x+4,设D(m,﹣m2+3m+4),∴M(m,﹣m+4),∴DM=﹣m2+3m+4﹣(﹣m+4)=﹣m2+4m=﹣(m﹣2)2+4,∴当m=2时,DM最大值为4,此时D(2,6),∵△DMN是等腰直角三角形,∴△DMN周长=,∴△DMN周长的最大值为,此时D(2,6).(3)如图2,设Q(m,﹣m+4),P(n,﹣n2+3n+4),∴.设直线OP的解析式为y=kx(k≠0),将Q(m,﹣m+4)点代入得,∴直线OP的解析式,将P(n,﹣n2+3n+4)坐标代入得,,所以,化简得,∴,∵∴当n=2时,的最大值为1.25.解:(1)∵抛物线y=ax2+bx﹣1(a>0)经过点(2,﹣1),∴4a+2b﹣1=﹣1,∴b=﹣2a.∴y=ax2﹣2ax﹣1,∴该抛物线的对称轴为直线x=1.∵当1﹣2m≤x≤1+3m时,y的最小值为﹣2.∴当x=1时,a﹣2a﹣1=﹣2,解得:a=1.∴y=x2﹣2x﹣1;(2)由(1)知,抛物线为y=(x﹣1)2﹣2.∵当n<x<n+1时,y的取值范围是2n+1<y<2n+4,∴y不能取最小值﹣2,即n,n+1在对称轴x=1的同侧.分两种情况讨论:①n+1<1,即n<0时,在对称轴左侧y随x的增大而减小,当x=n时,(n﹣1)2﹣2=2n+4,解得:n=﹣1或n=5,当x=n+1时,(n+1﹣1)2﹣2=2n+1,解得:n=﹣1或n=3,∵n<0,∴n=﹣1.②n>1时,在对称轴左侧y随x的增大而增大,当x=n时,(n﹣1)2﹣2=2n+1,整理得:n2﹣4n﹣2=0.当x=n+1时,(n+1﹣1)2﹣2=2n+4,整理得:n2﹣2n﹣6=0.∵n2﹣4n﹣2=0与n2﹣2n﹣6=0不一致,∴不合题意,舍去.综上所述,当n<x<n+1时,y的取值范围是2n+1<y<2n+4时,n=﹣1.。
人教版初中九年级数学上册第二十二章《二次函数》经典练习题(含答案解析)(2)
一、选择题1.如果二次函数2112y x ax =-+,当1x ≤时,y 随x 的增大而减小,且关于x 的分式方程4311x ax x++=--有正整数解,则所有符合条件的a 的值之和为( ). A .9 B .8C .4D .3C解析:C 【分析】由二次函数的性质可先确定出a 的范围,再由二次函数的性质可确定出a 的范围,解分式方程确定出a 的取值范围,从而可确定出a 的取值,可求得答案. 【详解】 解:∵二次函数2112y x ax =-+, ∴抛物线开口向上,对称轴为x =a , ∴当x <a 时,y 随x 的增大而减小, ∵当x≤1时,y 随x 的增大而减小, ∴a≥1, 解分式方程4311x ax x ++=--可得x =72a -, ∵关于x 的分式方程4311x ax x++=--有正整数解, ∵x≠1,∴满足条件的a 的值为1,3,∴所有满足条件的整数a 的值之和是1+3=4, 故选:C . 【点睛】本题考查了二次函数的性质、分式方程的解,通过解分式方程以及二次函数的性质,找出a 的值是解题的关键.2.已第二次函数()2240y ax ax a =-+->图象上三点()11,A y -、()21,B y 、()32,C y ,则1y ,2y ,3y 的大小关系为( )A .132y y y <<B .312y y y <<C .123y y y <<D .213y y y <<B解析:B 【分析】把三点横坐标代入函数解析式,求出函数值,再进行比较大小即可. 【详解】解:当x=-1时,y=-2a-a-4=-3a-4; 当x=1时,y=-2a+a-4=-a-4;当x=2时,y=-8a+2a-4=-6a-4; ∵a >0∴-6a-4<-3a-4<-a-4 ∴312y y y << 故选B 【点睛】本题考查抛物线上点的坐标特征,解答本题的关键是明确题意,可以判断y 1,y 2,y 3的大小.3.已知2(0)y ax bx c a =++≠的图象如图所示,则点(,)A ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限C解析:C 【分析】根据图像判断二次函数的系数a 、b 、c 的正负性,即可求得. 【详解】∵二次函数图像开口向下 ∴a <0又∵二次函数图形与y 轴交点在y 正半轴上 ∴c >0∵对称轴在y 轴左侧∴02ba -< ∴b <0∴ac <0,bc <0∴点(,)A ac bc 在第三象限 故选C 【点睛】本题考查二次函数的图像与性质,掌握二次函数图像与系数的关系是解题关键. 4.二次函数2y ax bx c =++()0a ≠的图象如图所示,观察得出了下面4条信息:①0abc >;②0a b c -+>;③230a b -=;④240b ac ->.你认为其中正确的结论有( )A .1B .2C .3D .4C解析:C 【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行分析,进而对所得结论进行判断. 【详解】①由二次函数2y ax bx c =++的图象开口向上可知a >0,图象与y 轴交点在负半轴,c <0,对称轴b 1x=-=2a 3,2b=-a 3<0,因此0abc >,故正确; ②由图象可知x =−1时,y =a−b +c >0,故正确;③对称轴b 1x=-=2a 3,2+30a b =,故错误; ④由图象与x 轴有两个交点,可知240b ac ->,故正确. 所以①②④三项正确, 故选:C . 【点睛】本题考查了二次函数与系数的关系,解答本题关键是掌握二次函数y =ax 2+bx +c 系数符号的确定.5.在平面直角坐标系中抛物线2y x =的图象如图所示,已知点A 坐标为(1,1),过点A 作1//AA x 轴交抛物线于点A ,过点1A 作12//A A OA 交抛物线于点2A ,过点2A 作23//A A x 轴交抛物线于点3A 过点3A 作34//A A OA 交抛物线于点4A ,……则点2020A 的坐标为( )A .(1011, 21011)B .(-1011, 21011)C .(-1010, 21011)D .(1010, 21011)A解析:A 【分析】根据二次函数性质可得出点A 1的坐标,求得直线A 1A 2为y =x +2,联立方程求得A 2的坐标,即可求得A 3的坐标,同理求得A 4的坐标,即可求得A 5的坐标,根据坐标的变化找出变化规律,即可找出点A 2020的坐标. 【详解】∵A 点坐标为(1,1), ∴直线OA 为y =x ,A 1(−1,1), ∵A 1A 2∥OA , 设直线A 1A 2为y =x +b 把A 1(−1,1)代入得1=-1+b 解得b=2∴直线A 1A 2为y =x +2,解22y x y x =+⎧⎨=⎩ 得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩,∴A 2(2,4), ∴A 3(−2,4), ∵A 3A 4∥OA ,设直线A 3A 4为y =x +n ,把A 3(−2,4)代入得4=-2+n ,解得n=6 ∴直线A 3A 4为y =x +6,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴A 4(3,9), ∴A 5(−3,9)同理求出A 6(4,16),A 7(-4,16)A 8(5,25),A 9(-5,25)A 10(6,36),A 11(-6,36) …,∴A 2n 为22222,22n n ⎡⎤++⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∴A 2020(1011,10112), 故选A . 【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.6.已知二次函数()()2y x p x q =---,若m ,n 是关于x 的方程()()20x p x q ---=的两个根,则实数m ,n ,p ,q 的大小关系可能是( )A .m <p <q <nB .m <p <n <qC .p <m <n <qD .p <m <q <n A解析:A 【分析】根据二次函数图象性质和一元二次方程的知识结合已知条件,可以得到结论:m 、n 一定是一个最大、一个最小,而p 、q 一定介于m 、n 之间,从而解答本题. 【详解】解:∵二次函数的解析式是()()2y x p x q =--- ∴1a =∴该二次函数的抛物线开口向上∵m 、n 是关于x 的方程()()20x p x q ---=的两个根 ∴当x m =或xn =时,0y =∵当x p =或x q =时,2y =-∴m 、n 一定是一个最大、一个最小,而p 、q 一定介于m 、n 之间. 故选:A 【点睛】本题考查了抛物线与x 轴的交点情况和一元二次方程根的关系、二次函数图象性质,解题的关键是明确题意,利用二次函数的图象性质解答.7.下列各图象中有可能是函数()20y ax a a =+≠的图象( )A .B .C .D .B解析:B 【分析】从0a >和0a <两种情况进行分析图象的开口方向和顶点坐标,选出正确的答案. 【详解】解:当0a >时,开口向上,顶点在y 轴的正半轴; 当0a <时,开口向下,顶点在y 轴的负半轴, 故选:B . 【点睛】本题考查的是二次函数系数与图象的关系,熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标与系数的关系是解题的关键.8.关于抛物线223y x x =-+-,下列说法正确的是( ) A .开口方向向上 B .顶点坐标为()1,2- C .与x 轴有两个交点 D .对称轴是直线1x =-B解析:B 【分析】根据抛物线的解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题. 【详解】解:∵抛物线y=-x 2+2x-3=-(x-1)2-2, ∴该抛物线的开口向下,故选项A 错误; 顶点坐标为()1,2-,故选项B 正确;当y=0时,△=22-4×(-1)×(-3)=-8<0,则该抛物线与x 轴没有交点,故选项C 错误; 对称轴是直线x=1,故选项D 错误; 故选:B . 【点睛】本题考查抛物线与x 轴的交点、二次函数的额性质,解答本题的关键是明确题意,利用二次函数的性质解答.9.抛物线y=2(x -1)2-3向左平移3个单位长度,此时抛物线的对称轴是直线( ) A .x =-3 B .x =-1 C .x =-2 D .x =4C解析:C 【分析】根据二次函数图象的平移规律得出平移后的抛物线的解析式,由此即可得出答案. 【详解】由题意,平移后的抛物线的解析式为2213()3y x =-+-,即22(2)3y x =+-, 则此时抛物线的对称轴是直线2x =-, 故选:C . 【点睛】本题考查了二次函数图象的平移、二次函数的对称轴,熟练掌握二次函数图象的平移规律是解题关键.10.二次函数2y ax bx c =++的图象如图所示,下列结论正确的是( )A .0abc >B .0a b c ++=C .420a b c ++=D .240b ac -<C解析:C 【分析】由二次函数的开口方向,对称轴0x >,以及二次函数与y 的交点在x 轴的上方,与x 轴有两个交点等条件来判断各结论的正误即可. 【详解】A 、观察图象,二次函数的开口向下,∴0a <, 与y 轴的交点在x 轴上方,∴0c >, 又∵对称轴为2bx a=-,在x 轴的正半轴上, 故02bx a=->,即0b >. ∴0abc <,故选项A 不正确;B 、观察图象,抛物线对称轴为直线12122x -+== ∴在对称轴右侧,当1x =时,函数值0y a b c =++>,故选项B 不正确;C 、观察图象,当2x =时,函数值420y a b c =++=,故选项C 正确;D 、∵二次函数与x 轴有两个交点,∴240b ac =->,故D 不正确.故选:C . 【点睛】本题考查了二次函数的图象与系数的关系,能利用数形结合求解是解答此题的关键.二、填空题11.若二次函数26y x x c =-+的图象经过()11,A y -,()22,By ,()33C y +三点,则关于1y ,2y ,3y 大小关系正确的是_______.(用“<”连接)【分析】根据函数解析式的特点其对称轴为x=3图象开口向上;利用y 随x 的增大而减小可判断根据二次函数图象的对称性可判断于是【详解】根据二次函数图象的对称性可知中在对称轴的左侧y 随x 的增大而减小因为于是 解析:231y y y <<【分析】根据函数解析式的特点,其对称轴为x=3,图象开口向上;利用y 随x 的增大而减小,可判断21y y <,根据二次函数图象的对称性可判断23y y >,于是231y y y <<. 【详解】根据二次函数图象的对称性可知,33()C y 中,|33||32|1+>-=,1(1,)A y -、2(2,)B y 在对称轴的左侧,y 随x 的增大而减小,因为112-<<,于是231y y y <<.故答案为231y y y <<. 【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.12.如果抛物线y =x 2﹣6x +c 的顶点到x 轴的距离是3,那么c 的值等于____.c=6或12【分析】根据题意得顶点的纵坐标是3或-3列出方程求出解则可【详解】解:根据题意得:±3解得:c=6或12故答案为:c=6或12【点睛】本题考查了二次函数的性质熟记顶点的纵坐标公式是解题的解析:c =6或12【分析】根据题意得顶点的纵坐标是3或-3,列出方程求出解则可. 【详解】 解:根据题意得:24(6)4c --=±3, 解得:c =6或12.故答案为:c =6或12. 【点睛】本题考查了二次函数的性质,熟记顶点的纵坐标公式是解题的关键.13.把函数y =(x ﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为_____.y =(x ﹣2)2+2【分析】根据原二次函数的解析式可得原抛物线的顶点进而可得新抛物线的顶点根据平移不改变二次项的系数利用顶点式可得新函数解析式【详解】∵二次函数y =(x ﹣1)2+2的图象的顶点坐标为解析:y =(x ﹣2)2+2【分析】根据原二次函数的解析式可得原抛物线的顶点,进而可得新抛物线的顶点,根据平移不改变二次项的系数利用顶点式可得新函数解析式. 【详解】∵二次函数y =(x ﹣1)2+2的图象的顶点坐标为(1,2), ∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2), ∴所得的图象解析式为y =(x ﹣2)2+2. 故答案为y =(x ﹣2)2+2. 【点睛】本题考查了二次函数的平移问题;用到的知识点为:平移不改变二次项的系数;二次函数的平移,看顶点的坐标平移即可,用顶点式较简便.14.已知二次函数2y ax bx c =++自变量x 的部分取值和对应函数值y 如表:则在实数范围内能使得成立的取值范围是_______.的数据和二次函数的性质可以得到对称轴函数图象的开口方向再根据表格中的数据即可得到y-3>0成立的x 取值范围【详解】解:由表格可知该二次函数的对称轴是直线函数图象开口向上故y-3>解析:1x <-或3x > 【分析】根据表格中的数据和二次函数的性质,可以得到对称轴、函数图象的开口方向,再根据表格中的数据,即可得到y-3>0成立的x 取值范围. 【详解】 解:由表格可知,该二次函数的对称轴是直线1312x -+==,函数图象开口向上, 故y-3>0成立的x 的取值范围是x <-1或x >3, 故答案为:x <-1或x >3. 【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特点,解答本题的关键是明确题意,利用二次函数的性质解答.15.某种洒杯的轴截面是一条抛物线段,在酒杯中加酒,当酒水深为lcm 时,液面宽为2cm ,将酒杯装满酒后,再倾斜至与水平面成30°,此时酒杯中余下酒深度为2cm ,这个酒杯的杯口直径为______cm .【分析】建立如下图所示的平面直角坐标系相当于抛物线经过点(00)(11)求得解析式为y=x²设杯口直径为2d 设倒满酒时酒的高度为m 相当于抛物线经过(dm)再由倾斜30°时杯中酒深度为2cm 时将m 用d 319【分析】建立如下图所示的平面直角坐标系,相当于抛物线经过点(0,0),(1,1)求得解析式为y=x²,设杯口直径为2d ,设倒满酒时酒的高度为m ,相当于抛物线经过(d,m),再由倾斜30°时杯中酒深度为2cm 时将m 用d 代数式表示,再代入解析式中求出d 即可. 【详解】解:如下图所示以酒杯内最低点为原点建立直角坐标系,故抛物线的顶点坐标为原点,设抛物线解析式为y=ax²,当酒水深为lcm 时,液面宽为2cm ,相当于抛物线且经过点(1,1),代入解析式中,a=1, 故抛物线解析式为:y=x²,设杯口直径为2d ,设倒满酒时酒的高度为m ,相当于抛物线经过(d,m), 由“倾斜至与水平面成30°,此时酒杯中余下酒深度为2cm”,如下图所示:此时FH=EC=2,∠DEF=30°,DF=d , 在Rt △EDF 中,EF=2DF=2d ,3d , 在Rt △OEC 中,OE=2EC=4, ∴OD=OE+ED=43d , ∴m=OD=43d ,∴将点(,43d d ),代入y=x²,即:243dd ,解得:3192d(负值舍去),319 【点睛】本题考查了二次函数的实际应用,读懂题目意思,学会建立直角坐标系并求出对应解析式是解决本题的关键.16.在平面直角坐标系中,点A 是抛物线()24y a x k =-+与y 轴的交点,点B 是这条抛物线上的另一点,且//AB x 轴,则以AB 为边的等边三角形ABC 的周长为_____.24【分析】根据抛物线的解析式即可确定对称轴则可以确定AB 的长度然后根据等边三角形的周长公式即可求解【详解】抛物线的对称轴是过点作于点如下图所示则则则以为边的等边的周长为故答案为24【点睛】此题考查解析:24 【分析】根据抛物线的解析式即可确定对称轴,则可以确定AB 的长度,然后根据等边三角形的周长公式即可求解. 【详解】抛物线2(4)y a x k =-+的对称轴是4x = 过C 点作CD AB ⊥于点D ,如下图所示则4=AD ,则28AB AD ==则以AB 为边的等边ABC 的周长为2483=⨯. 故答案为24. 【点睛】此题考查了二次函数的性质,根据抛物线的解析式确定对称轴,从而求得AB 的长是关键.17.二次函数y=(x+2)2-5的最小值为_______.-5【分析】根据二次函数的顶点式的意义即可确定函数的最值【详解】解:∵y=(x+2)2-5∴当x=-2时函数有最小值为-5故答案为-5【点睛】本题主要考查了二次函数的最值掌握根据二次函数的顶点式求最解析:-5 【分析】根据二次函数的顶点式的意义即可确定函数的最值. 【详解】 解:∵y=(x+2)2-5∴当x=-2时,函数有最小值为-5. 故答案为-5. 【点睛】本题主要考查了二次函数的最值,掌握根据二次函数的顶点式求最值的方法是解答本题的关键.18.二次函数2y ax bx c =++(a 、b 、c 为常数,0a ≠)中的x 与y 的部分对应值如下表:_______.(填序号即可)①0abc <;②若点()12,C y -,()2,D y π在该拋物线上,则12y y <;③4n a < ;④对于任意实数t ,总有()2496at bt a b +≤+.①②④【分析】根据表格数据求出二次函数的对称轴为直线x=然后根据二次函数的性质对各小题分析判断即可得解【详解】解:由图表知当x=0时y=3当x=3时y=3∴对称轴为且∴①∵∴异号故①正确;②对称轴为解析:①②④ 【分析】根据表格数据求出二次函数的对称轴为直线x=32,然后根据二次函数的性质对各小题分析判断即可得解. 【详解】解:由图表知,当x=0时,y=3,当x=3时,y=3 ∴对称轴为0+33=222b x a =-=,且3c =,3b a =- ∴23y ax bx =++ ①∵3b a =-,3c =∴a b ,异号,0abc <,故①正确; ②对称轴为32x =,且当1x =-时,.y n = 将(1)n -,代入23y ax bx =++中得3a b n -+=, ∴3a b n -=- 又∵0n < ∴-0a b <又∵a b ,异号, ∴0a <,0.b >∴23y ax bx =++的图象开口向下, ∵33|2|||22π-->- ∴12y y <,故②正确; ③∵3b a =-, 3.a b n -=- ∴(3)3a a n --=- ∴4 3.a n =-∴4.a n <,故③错误; ④当32x =时,y 有最大值, ∴最大值为3492a b c ++ ∴对任意实数t ,总有29342at bt c a b c ++≤++, ∴24()96at bt a b +≤+,故④正确, 故答案为:①②④. 【点睛】本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.19.过点()0,2,()2,2,()2,1--的二次函数图象开口向_______(填“上”或“下”)下【分析】先用待定系数法确定二次函数的解析式然后根据二次项系数即可解答【详解】解:设一般式y=ax2+bx+c 由题意得:解得由<0则该函数图像开口向下故答案为:下【点睛】本题考查了二次函数图像的性质解析:下 【分析】先用待定系数法确定二次函数的解析式,然后根据二次项系数即可解答. 【详解】解:设一般式y=ax 2+bx+c ,由题意得:2=c2=42142a b c a b c ⎧⎪++⎨⎪-=-+⎩解得3=-83 =42 abc⎧⎪⎪⎪⎨⎪=⎪⎪⎩由3=-8a<0,则该函数图像开口向下.故答案为:下.【点睛】本题考查了二次函数图像的性质,根据题意确定二次函数的解析式是解答本题的关键.20.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标最大值为_____.8【分析】根据题意当点C的横坐标取最小值时抛物线的顶点与点A重合进而可得抛物线的对称轴则可求出此时点D的最小值然后根据抛物线的平移可求解【详解】解:∵点AB的坐标分别为(14)和(44)∴AB=3由解析:8【分析】根据题意当点C的横坐标取最小值时,抛物线的顶点与点A重合,进而可得抛物线的对称轴,则可求出此时点D的最小值,然后根据抛物线的平移可求解.【详解】解:∵点A,B的坐标分别为(1,4)和(4,4),∴AB=3,由抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),可得:当点C的横坐标取最小值时,抛物线的顶点与点A重合,∴抛物线的对称轴为:直线1x=,∵点()3,0C-,∴点D的坐标为()5,0,∵顶点在线段AB上移动,∴点D的横坐标的最大值为:5+3=8;故答案为8.【点睛】本题主要考查二次函数的平移及性质,熟练掌握二次函数的性质是解题的关键.三、解答题21.已知二次函数y=(x﹣1)(x﹣m)(m为常数)(1)求证:不论m为何值,该函数的图象与x轴总有公共点;(2)当m的值变化时,该函数图象的顶点在下列哪个函数的图象上?.A.y=x﹣1 B.y=﹣x﹣1 C.y=﹣(x+1)2 D.y=﹣(x﹣1)2解析:(1)见解析;(2)D【分析】(1)根据已知函数解析式得到抛物线与x轴的两点交点横坐标:x1=1,x2=m,据此证得结论;(2)根据顶点式先得到抛物线的顶点坐标为(-m,m),然后分别代入四个解析式中看是否满足解析式,再进行判断.【详解】(1)证明:当y=0时,(x﹣1)(x﹣m)=0.解得x1=1,x2=m.当m=1时,方程有两个相等的实数根;当m≠1时,方程有两个不相等的实数根.所以,不论m为何值,该函数的图象与x轴总有公共点.(2)由二次函数y=(x﹣1)(x﹣m)=(x﹣12m+)2+m﹣2(1)4m+得到该抛物线的顶点坐标是(12m+,m﹣2(1)4m+),而点(12m+,m﹣2(1)4m+)满足y=﹣(x﹣1)2,不满足y=x﹣1,y=﹣x﹣1,y=﹣(x+1)2,∴点(12m+,m﹣2(1)4m+)在函数y=﹣(x﹣1)2上.故答案是:D.【点睛】本题主要考查了二次函数图象上点的坐标特征,抛物线与x轴的交点,二次函数的性质等知识点,需要掌握二次函数与一元二次方程间的关系,二次函数三种形式.22.某商场销售一批名牌衬衫,平均每天可售出10件,每件赢利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出1件.(1)若商场平均每天赢利600元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?解析:(1)每件衬衫应降价20元;(2)每件衬衫降价15元时,商场平均每天赢利最多.【分析】(1)设每件衬衫应降价x 元,由题意可以得到关于x 的一元二次方程,解方程即可得到问题解答;(2)把每件衬衫的降价看成自变量x ,商场平均每天赢利看成因变量y ,由题意可以得到y 与x 之间的函数关系式,然后根据函数的性质可以得到问题解答 . 【详解】解:(1)设每件衬衫应降价x 元,由题意可以得到: (10+x )(40-x )=600,解之得:x=10或x=20, 因为尽快减少库存,∴每件衬衫降价20元时,商场平均每天赢利600元;(2)把每件衬衫的降价看成自变量x ,商场平均每天赢利看成因变量y ,由题意可以得到y 与x 之间的函数关系式为:y=(10+x )(40-x ), 配方得:()215625y x =--+, ∴当x=15时,y 取得最大值625,即当每件衬衫降价15元时,商场平均每天赢利最多,且赢利为625元. 【点睛】本题考查一元二次方程与二次函数的综合运用,根据题意列出一元二次方程或函数关系式,并根据方程的解或函数的性质作答是解题关键. 23.已知二次函数2y ax =与22y x c =-+.(1)随着系数a 和c 的变化,分别说出这两个二次函数图象的变与不变;(2)若这两个函数图象的形状相同,则a =______;若抛物线2y ax =沿y 轴向下平移2个单位就能与22y x c =-+的图象完全重合,则c =______.(3)二次函数22y x c =-+中x 、y 的几组对应值如下表:解析:(1)见解析;(2)2±,2-;(3)p m n << 【分析】(1)二次函数的二次项系数、一次项系数和常数项的变化会影响开口大小,开口方向,对称轴和顶点坐标,根据二次函数的性质即可得出图像的具体影响.(2)由于函数图像形状相同,可以得到2a =±;根据二次函数平移规律上加下减可求得函数22y ax =-,再由题意就可得到c =-2.(3)将表中数值代入二次函数即可分别得到m 、n 、p 含未知数c 的代数式,比较大小即可. 【详解】(1)二次函数2y ax =的图像随着a 的变化,开口大小和开口方向都会变化,但是对称轴、顶点坐标不会改变;二次函数22y x c =-+的图像随着c 的变化,开口大小和开口方向都没有改变,对称轴也没有改变,但是,顶点坐标会发生改变.(只要学生答对变与不变各一个点就给满分).(2)由于函数2y ax =与函数22y x c =-+的形状相同,所以2a =-,即2a =±.抛物线2y ax =沿y 轴向下平移两个单位,即得到抛物线22y ax =-. 因为该抛物线与22y x c =-+的图像完全重合 所以2c =- 故答案为2±;2-(3)表中数值代入二次函数22y x c =-+可得;8m c =-+,2n c =-+,50p c =-+因为50c -+<8c -+<2c -+ 所以p m n <<. 故答案为p m n << 【点睛】本题考查二次函数的性质,二次函数图像与几何变换,二次函数上点的坐标特征.特别注意(2)2a =时两个函数图像形状相同.24.某商场新上市一款运动鞋,每双进货价为150元,投入市场后,调研表明:当销售价为200元时,平均每天能售出10双;而当销售价每降低5元时,平均每天就能多售出5双.(1)商场要想尽快回收成本,并使这款运动鞋的销售利润平均每天均达到675元,那么这款运动鞋的销售价应定为多少元?(2)请用配方法求:这款运动鞋的销售价定为多少元时,可使商场平均每天获得的利润最大?最大利润是多少元?解析:(1)商场要想尽快回收成本,这款运动鞋的销售价应定为165元;(2)这款运动鞋的销售价定为180元时,利润最大,最大利润是900元. 【分析】(1)根据题意列方程即可得到结论;(2)根据销售利润=一双运动鞋的利润×销售运动鞋数量,一双运动鞋的利润=售价-进价,降低售价的同时,销售量就会提高,“一减一加”,根据每部的盈利×销售的数量=y ,即可列函数关系式;利用函数最值求法得出即可. 【详解】解:(1)设这款运动鞋的销售价应定为x 元.200(150)(105)6755xx --+⨯= 解得:x 1=195,x 2=165因为商场想尽快回收成本,所以定价应为165元;(2)200(150)(105)5xy x -=-+⨯ 2(180)900x =--+∴当定价为180元时,获利最多,最大利润为900元. 【点睛】此题主要考查了二次函数的应用,本题关键是找到关键描述语,找到等量关系是解决问题的关键.25.如图,在平面直角坐标系中,边长为2的正方形ABCD 的顶点A 与原点重合,顶点B 在x 轴的正半轴上,点D 在y 轴的正半轴上.抛物线2y x bx c =-++经过点B 与点D .(1)求这个二次函数的表达式;(2)将正方形ABCD 向左平移m 个单位(0m >),边AD 与BC 分别与(1)中的二次函数图像交于P 、Q ,若点Q 纵坐标是点P 纵坐标的2倍,求m 的值. 解析:(1)22y x x =-++;(2)5412-+ 【分析】(1)由题意可知点B 、D 的坐标分别为(2,0),(0,2),利用待定系数法即可求得二次函数关系式;(2)先分别表示出点P 、Q 的横坐标,进而可表示出它们的纵坐标,再根据题意列出方程求解即可. 【详解】解:(1)由题意可知点B 、D 的坐标分别为(2,0),(0,2),将(2,0),(0,2)代入2y x bx c =-++,得4202b c c -++=⎧⎨=⎩解得12b c =⎧⎨=⎩∴二次函数的表达式为22y x x =-++;(2)∵正方形ABCD 向左平移m 个单位(0m >),边AD 与BC 分别与(1)中的二次函数图像交于P 、Q ,∴点P 的横坐标为-m ,点Q 的横坐标为2-m , 当x=-m 时,22y m m =--+, 当x=2-m 时,2(2)22y m m +=---+23m m =-∵点Q 纵坐标是点P 纵坐标的2倍, ∴2232(2)m m m m -=--+解得152m -=,252m -=(舍去)∴m 的值为52-+. 【点睛】本题考查了用待定系数法求二次函数关系式,正方形的性质等相关知识,熟练掌握待定系数法求二次函数关系式是解决本题的关键.26.疫情期间,某防疫物晶销售量y (件)与售价x (元)满足一次函数关系,部分对应值如下麦,当售价为70元时,每件商品能获得40%的利润.(2)售价为多少时利润最大?最大利润为多少?解析:(1) y=-10x+1000;(2)售价为75元时有最大利润为6250元 【分析】(1)设一次函数的解析式为y=kx+b ,然后再代入点(70,300)和点(65,350)即可求解; (2)由售价为70元时,每件商品能获得40%的利润求出商品的成本为50元,进而得出商品的单个利润为(x-50),再乘以销售量y 即得到关于x 的二次函数,再利用二次函数求出最大利润即可. 【详解】解:(1)设一次函数的解析式为y=kx+b ,代入点(70,300)和点(65,350), ∴3007035065k b k b =+⎧⎨=+⎩,解得101000k b =-⎧⎨=⎩,∴y 与x 的函数关系式为:y=-10x+1000;(2)∵售价为70元时,每件商品能获得40%的利润求出商品的成本为50元, ∴商品的成本为:70÷(1+40%)=50元, ∴商品的单个利润为:(x-50)元,设销售额为w 元,则w=(x-50)y=(x-50)(-10x+1000)=-10x²+1500x-50000, 此时w 是关于x 的二次函数,且对称轴为x=75,∴当x=75时,w 有最大值为:-10×75²+1500×75-50000=6250元,故答案为:售价为75元时有最大利润为6250元. 【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常常利函数的增减性来解答,我们首先要读懂题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).27.如图,抛物线()20y ax bx c a =++≠经过原点,点11,8⎛⎫ ⎪⎝⎭和动点P 都是该抛物线上点.(1)求该抛物线的解析式.(2)若y 轴上点()0,A m ,()()0,0B m m ->,//BC x 轴,过点P 作PC BC ⊥于C ,设点(),P x y 满足AP PC =,求m 的值.解析:(1)218y x =;(2)m=2 【分析】(1)运用待定系数法求解即可;(2)分别求出PC ,PA 的长,根据PC=PA 列方程求解即可. 【详解】解:(1)由于该抛物线经过原点(0,0),对称轴为y 轴, ∴c=0,b=0∴该抛物线的解析式为2y ax =, 把点(1,18)代入得,18a =∴该抛物线的解析式为218y x =; (2)∵()0,A m ,B(0,-m),P(x ,y) 且//BC x 轴,PC BC ⊥,P 在抛物线上, ∴C (x ,-m ),P (x ,21x 8) ∴PC=218x m + 作AM ⊥PC 于M ,则222PA AM PM =+∴221()8PA x x m =+- ∵PA=PC ∴22PA PC = 即2222211()()88x m x x m +=+- 整理得,2202m x x -= ∴2(1)02m x -= ∵0x ≠ ∴102m -= 解得,m=2.【点睛】 此题主要考查了运用待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,求出PC ,PA 的长是解答此题的关键.28.在平面直角坐标系xOy 中,抛物线2223y x nx n n =-++-与y 轴交于点C ,与x 轴交于点,A B ,点A 在B 的左边,x 轴正半轴上一点D ,满足.OD OA OB =+ (1)①当2n =时,求点D 的坐标和抛物线的顶点坐标;②当2AB BD =时,求n 的值;(2)过点D 作x 轴的垂线交抛物线于P ,作射线CP ,若射线CP 与x 轴没有公共点,直接写出n 的取值范围.解析:(1)①()4,0D ,顶点为()2,1-;②2n =或0n =;(2)1311313n n -+<<<或【分析】(1)①把n=2代入2223y x nx n n =-++-求得243y x x =-+经过配方即可求得顶点坐标;再令y=0,求出x 的值,可得A ,B 的坐标,根据OD OA OB =+可求出点D 的坐标;。
二次函数-九年级数学人教版(上)(原卷版+解析版)
第二十二章 二次函数22.1.1 二次函数一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列关系中,是二次函数关系的是A .当距离S 一定时,汽车行驶的时间t 与速度v 之间的关系B .在弹性限度时,弹簧的长度y 与所挂物体的质量x 之间的关系C .圆的面积S 与圆的半径r 之间的关系D .正方形的周长C 与边长a 之间的关系2.下列函数中,是二次函数的有 ①22y x =+;②23y x x =--;③2(1)y x x x =++;④211y x=+;⑤2y x x =-+. A .1个B .2个C .3个D .4个3.已知函数y =(m 2+m )2x +mx +4为二次函数,则m 的取值范围是A .m ≠0B .m ≠-1C .m ≠0,且m ≠-1D .m =-14.用一根长为50 cm 的铁丝弯成一个长方形,设这个长方形的一边长为x (cm ),它的面积为y (cm 2),则y 与x 之间的函数关系式为A .y =-x 2+50xB .y =x 2-50xC .y =-x 2+25xD .y =-2x 2+25二、填空题:请将答案填在题中横线上.5.当m =__________时,函数y =(m -2)x m +1是二次函数. 6.函数y =(m +2)22mx -+2x -1(x ≠0),当m =__________时,它是二次函数,当m =__________时,它为一次函数.7.若函数y =(k 2-4)x 2+(k +2)x +3是二次函数,则k __________.三、解答题:解答应写出文字说明、证明过程或演算步骤.8.已知函数y =(m 2-4)x 2+(m 2-3m +2)x -m -1.(1)当m 为何值时,y 是x 的二次函数?(2)当m 为何值时,y 是x 的一次函数?9.王大爷生产经销一种农副产品,其成本价为每千克20元.市场调查发现,该产品每天的销售量w (千克)与销售价x (元/千克)有如下关系:260w x =-+.若这种产品每天的销售利润为y (元).求y 与x 之间的函数关系式.第二十二章 二次函数22.1.1 二次函数一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列关系中,是二次函数关系的是A .当距离S 一定时,汽车行驶的时间t 与速度v 之间的关系B .在弹性限度时,弹簧的长度y 与所挂物体的质量x 之间的关系C .圆的面积S 与圆的半径r 之间的关系D .正方形的周长C 与边长a 之间的关系【答案】C2.下列函数中,是二次函数的有 ①22y x =+;②23y x x =--;③2(1)y x x x =++;④211y x=+;⑤2y x x =-+. A .1个B .2个C .3个D .4个【答案】B 【解析】①不是整式,不符合二次函数的定义;②符合二次函数的定义;③整理后x 的最高次数为3,不符合二次函数的定义;④不是整式,不符合二次函数的定义;⑤符合二次函数的定义.所以是二次函数的共有2个,故选B .3.已知函数y =(m 2+m )2x +mx +4为二次函数,则m 的取值范围是A .m ≠0B .m ≠-1C .m ≠0,且m ≠-1D .m =-1 【答案】C【解析】由y =(m 2+m )2x +mx +4为二次函数,得m 2+m ≠0,解得m ≠0,m ≠-1,故选C .4.用一根长为50 cm 的铁丝弯成一个长方形,设这个长方形的一边长为x (cm ),它的面积为y (cm 2),则y 与x 之间的函数关系式为A .y =-x 2+50xB .y =x 2-50xC .y =-x 2+25xD .y =-2x 2+25 【答案】C二、填空题:请将答案填在题中横线上.5.当m =__________时,函数y =(m -2)x m +1是二次函数.【答案】1【解析】由题意得:1220m m +=⎧⎨-≠⎩,解得m =1,故当m =1时,函数y =(m -2)x m +1是二次函数,故答案为:1.6.函数y =(m +2)22mx -+2x -1(x ≠0),当m =__________时,它是二次函数,当m =__________时,它为一次函数. 【答案】2;±3或-2【解析】令m 2-2=2,得m =2或-2,∵m +2≠0,m ≠-2,∴m =2,即m =2时,22(2)21(0)m y m x x x -=+-≠+是二次函数;当m =-2时,y =2x -1,是一次函数,当m 2-2=1,即m =3±时,22(2)21(0)my m x x x -=++-≠是一次函数, 即m =3±或-2时,22(2)21(0)m y m x x x -++-≠=是一次函数.故答案为2;3±或-2.7.若函数y =(k 2-4)x 2+(k +2)x +3是二次函数,则k __________.【答案】k ≠±2【解析】∵函数y =(k 2-4)x 2+(k +2)x +3是二次函数,∴240k -≠,解得:2k ≠±.故答案为:k ≠±2.三、解答题:解答应写出文字说明、证明过程或演算步骤.8.已知函数y =(m 2-4)x 2+(m 2-3m +2)x -m -1.(1)当m 为何值时,y 是x 的二次函数?(2)当m 为何值时,y 是x 的一次函数?9.王大爷生产经销一种农副产品,其成本价为每千克20元.市场调查发现,该产品每天的销售量w (千克)与销售价x (元/千克)有如下关系:260w x =-+.若这种产品每天的销售利润为y (元).求y 与x 之间的函数关系式. 【解析】2(20)(20)(260)21001200y x w x x x x =-=--+=-+-, ∴221001200y x x =-+-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(1)∵抛物线 y ax2 bx 2(a 0) 经过点 A(-2,-4)和点 C(2,0),
则
4 4a 2b 2
0
4a
2b
2
,解得:
a 1
b
1
,
∴抛物线的解析式为 y x2 x 2 ;
(2)存在,理由是:
在 x 轴正半轴上取点 E,使 OB=OE,过点 E 作 EF⊥BD,垂足为 F,
2
2
即 2×2= 5 ×EF,解得:EF= 4 5 , 5
∴DF= DE 2 EF 2 = 3 5 , 5
∴tan∠BDE= EF = 4 5 3 5 = 4 , DF 5 5 3
若∠PBC=2∠BDO, 则∠PBC=∠BDE,
∵BD=DE= 5 ,BE=2,
则 BD2+DE2>BE2, ∴∠BDE 为锐角, 当点 P 在第三象限时, ∠PBC 为钝角,不符合; 当点 P 在 x 轴上方时,
∵∠PBC=∠BDE,设点 P 坐标为(c, c2 c 2 ),
过点 P 作 x 轴的垂线,垂足为 G,
则 BG=c+1,PG= c2 c 2 , ∴tan∠PBC= PG = c2 c 2 = 4 ,
BG c 1 3 解得:c= 2 ,
3
∴ c2 c 2 = 20 , 9
∴点 P 的坐标为( 2 , 20 ); 39
在 y x2 x 2 中,
令 y=0,解得:x=2 或-1,
∴点 B 坐标为(-1,0),
∴点 E 坐标为(1,0),
可知:点 B 和点 E 关于 y 轴对称, ∴∠BDO=∠EDO,即∠BDE=2∠BDO,
∵D(0,2),
∴DE= 22 12 5 =BD,
在△BDE 中,有 1 ×BE×OD= 1 ×BD×EF,
求出点 P 的坐标;若不存在,请说明理由;
(3)如图 2,连接 AC ,交 y 轴于点 E,点 M 是线段 AD 上的动点(不与点 A,点 D 重
合),将△CME 沿 ME 所在直线翻折,得到 FME ,当 FME 与△AME 重叠部分的
面积是
AMC
面积的
1 4
时,请直接写出线段
AM
的长.
【答案】(1) y x2 x 2 ;(2)存在,( 2 , 20 )或( 10 , 52 );(3)
则
4
0
2m1 n1 2m1 n1
,解得:
nm1 112
,
∴直线 AC 表达式为 y=x-2,
令 x=0,则 y=-2,
∴点 E 坐标为(0,-2),
可得:点 E 是线段 AC 中点, ∴△AME 和△CME 的面积相等, 由于折叠,
∴△CME≌△FME,即 S△CME=S△FME, 由题意可得:
∴ s 22 3s 22 2 2 ,
解得:s= 4 或 0(舍), 5
∴M( 4 , 2 ), 55
∴AM=
4 5
2
2
2 5
4
2
=
6
10 5
,
当点 F 在直线 AC 下方时,如图, 同理可得:四边形 AFEM 为平行四边形, ∴AM=EF, 由于折叠可得:CE=EF,
∴AM=EF=CE= 2 2 ,
九年级上册数学 二次函数专题练习(解析版)
一、初三数学 二次函数易错题压轴题(难) 1.在平面直角坐标系中,抛物线 y ax2 bx 2(a 0) 经过点 A(2, 4) 和点 C(2, 0) ,
与 y 轴交于点 D,与 x 轴的另一交点为点 B.
(1)求抛物线的解析式;
(2)如图 1,连接 BD ,在抛物线上是否存在点 P,使得 PBC 2BDO ?若存在,请
综上:AM 的长度为 6 10 或 2 2 . 5
【点睛】 本题是二次函数综合题,涉及到待定系数法,二次函数的图像和性质,折叠问题,平行四 边形的判定和性质,中线的性质,题目的综合性很强.难度很大,对学生的解题能力要求 较高.
2.对于函数 y=ax2+(b+1)x+b﹣2(a≠0),若存在实数 x0,使得 a x02 +(b+1)x0+b﹣2
当点 F 在直线 AC 上方时,
∴S△MNE= 1 S△AMC= 1 S△AME= 1 S△FME,
4
2
2
即 S△MNE= S△ANE= S△MNF,
∴MN=AN,FN=NE,
∴四边形 FMEA 为平行四边形,
∴CM=FM=AE= 1 AC= 1 22
42 42 = 2
2,
∵M(s,3s+2),
=x0 成立,则称 x0 为函数 y=ax2+(b+1)x+b﹣2(a≠0)的不动点. (1)当 a=2,b=﹣2 时,求 y=ax2+(b+1)x+b﹣2(a≠0)的不动点; (2)若对于任何实数 b,函数 y=ax2+(b+1)x+b﹣2(a≠0)恒有两相异的不动点,求实 数 a 的取值范围; (3)在(2)的条件下,若 y=ax2+(b+1)x+b﹣2(a≠0)的图象上 A,B 两点的横坐标
39
39
6 10 或 2 2 5
【解析】 【分析】 (1)根据点 A 和点 C 的坐标,利用待定系数法求解; (2)在 x 轴正半轴上取点 E,使 OB=OE,过点 E 作 EF⊥BD,垂足为 F,构造出 ∠PBC=∠BDE,分点 P 在第三象限时,点 P 在 x 轴上方时,点 P 在第四象限时,共三种情 况分别求解; (3)设 EF 与 AD 交于点 N,分点 F 在直线 AC 上方和点 F 在直线 AC 下方时两种情况,利 用题中所给面积关系和中线的性质可得 MN=AN,FN=NE,从而证明四边形 FMEA 为平行四 边形,继而求解. 【详解】
当点 P 在第四象限时,
同理可得:PG= c2 c 2 ,BG=c+1,
tan∠PBC= PG = c2 c 2 = 4 , BG c 1 3
解得:c= 10 , 3
∴ c2 c 2 = 52 , 9
∴点 P 的坐标为( 10 , 52 ), 39
综上:点 P 的坐标为( 2 , 20 )或( 10 , 52 );
39
39
(3)设 EF 与 AD 交于点 N,
∵A(-2,-4),D(0,2),设直线 AD 表达式为 y=mx+n,
则
4
2m 2n
n
,解得:
m
n
3 2
,
∴直线 AD 表达式为 y=3x+2,
设点 M 的坐标为(s,3s+2), ∵A(-2,-4),C(2,0),设直线 AC 表达式为 y=m1x+n1,