3.太阳能电池基本特性

合集下载

太阳能电池特性及应用实验报告

太阳能电池特性及应用实验报告

太阳能电池特性及应用实验报告太阳能电池特性及应用实验报告引言:太阳能电池是一种将太阳能转化为电能的装置,它在可再生能源领域具有重要的应用前景。

本实验旨在研究太阳能电池的特性,并探索其在实际应用中的潜力。

一、太阳能电池的基本原理太阳能电池是利用光电效应将太阳能转化为电能的装置。

光电效应是指当光照射到半导体材料上时,光子的能量会激发电子跃迁,从而产生电流。

太阳能电池通常由p-n结构的半导体材料构成,其中p型半导体富含正电荷,n型半导体富含负电荷。

当光照射到p-n结构上时,光子的能量会激发p-n结附近的电子,使其跃迁到导带中,形成电流。

二、太阳能电池的特性参数太阳能电池的性能主要由以下几个参数来描述:1. 开路电压(Open Circuit Voltage,简称OCV):在没有外部负载的情况下,太阳能电池正极和负极之间的电压。

OCV主要取决于半导体材料的能带结构和光照强度,通常在0.5V至1V之间。

2. 短路电流(Short Circuit Current,简称SCC):在外部负载为零时,太阳能电池正极和负极之间的电流。

SCC主要取决于光照强度和半导体材料的光电转换效率,通常在1mA至10mA之间。

3. 填充因子(Fill Factor,简称FF):填充因子是太阳能电池输出功率与最大输出功率的比值,反映了太阳能电池的电流-电压特性曲线的平坦程度。

填充因子越接近1,表示太阳能电池的性能越好。

4. 转换效率(Conversion Efficiency):转换效率是指太阳能电池将太阳能转化为电能的比例,通常以百分比表示。

转换效率越高,表示太阳能电池的能量利用效率越高。

三、太阳能电池的应用实验为了进一步了解太阳能电池的特性和应用潜力,我们进行了一系列实验。

1. 光照强度对太阳能电池性能的影响实验:我们在实验室中设置了不同光照强度的环境,通过改变光源的距离和光源的亮度来调节光照强度。

实验结果表明,随着光照强度的增加,太阳能电池的输出电流和功率也随之增加,但是开路电压基本保持不变。

太阳能电池基本特性研究实验报告

太阳能电池基本特性研究实验报告

太阳能电池基本特性研究实验报告一、引言。

太阳能电池是一种能够将太阳光直接转化为电能的装置,是目前可再生能源中应用最为广泛的一种。

太阳能电池的基本工作原理是利用光伏效应将太阳光能转化为电能。

本实验旨在研究太阳能电池的基本特性,为进一步了解太阳能电池的工作原理和性能提供实验数据和分析。

二、实验目的。

1. 研究太阳能电池的工作原理;2. 测量太阳能电池的输出电压和电流随光照强度的变化规律;3. 分析太阳能电池的最大功率点及其影响因素。

三、实验原理。

太阳能电池是由多个光伏电池组成的,光伏电池是一种能够将太阳能直接转化为电能的半导体器件。

当太阳光照射到光伏电池上时,光子能量被半导体材料吸收,激发出电子-空穴对,从而产生电流。

太阳能电池的输出特性与光照强度、温度等因素密切相关。

四、实验内容与步骤。

1. 实验仪器,太阳能电池、光照度测量仪、电压表、电流表、直流电源等;2. 实验步骤:a. 将太阳能电池放置在光照度测量仪下,并连接电压表和电流表;b. 调节直流电源输出电压,记录不同光照强度下太阳能电池的输出电压和电流值;c. 分析数据,绘制太阳能电池输出特性曲线。

五、实验数据与分析。

通过实验测量和数据处理,得到了太阳能电池在不同光照强度下的输出电压和电流值,绘制了太阳能电池的输出特性曲线。

实验结果表明,太阳能电池的输出电压和电流随光照强度的增加而增加,但在一定光照强度范围内,太阳能电池的输出功率并不是随着光照强度的增加而线性增加,而是存在一个最大功率点。

六、实验结论。

1. 太阳能电池的输出电压和电流随光照强度的增加而增加;2. 太阳能电池存在最大功率点,该点受光照强度和温度等因素影响;3. 实验结果验证了太阳能电池的基本特性。

七、实验总结。

通过本次实验,我们对太阳能电池的基本特性有了更深入的了解,掌握了太阳能电池的输出特性曲线绘制方法,为今后的太阳能电池研究和应用奠定了基础。

八、参考文献。

1. 高等学校太阳能电池实验教学研究组. 太阳能电池实验教学研究[M]. 北京: 清华大学出版社, 2010.2. 刘志远. 太阳能电池原理与应用[M]. 北京: 机械工业出版社, 2008.以上就是本次太阳能电池基本特性研究实验的全部内容,谢谢阅读!。

太阳能电池基本特性研究

太阳能电池基本特性研究

太阳能电池基本特性研究太阳能电池是一种将太阳能转化为电能的设备,具有很多的基本特性。

本文将从以下三个方面探讨太阳能电池的基本特性:工作原理、输出参数和性能指标。

一、工作原理太阳能电池的工作原理就是光生电效应。

它由两个半导体材料夹在一起,一个为p型半导体(具有正电荷),另一个为n型半导体(具有负电荷)。

当光子照射在p-n电池结上时,它会激发电子从价带跃迁到导带,这样就形成了电子空穴对。

电子和空穴由于半导体材料特殊构造而不能自由移动,但它们会在p-n电池结中发生扩散和漂移,这就形成了电流。

二、输出参数太阳能电池的输出参数包括电压、电流、功率和转换效率。

其中,电压和电流是太阳能电池最基本的输出参数,通常被称为“短路电流”和“开路电压”。

短路电流是太阳能电池在最大输出功率点上的输出电流,而开路电压则是太阳能电池在无负载时的输出电压。

功率是由电压和电流组合而成的,表示的是太阳能电池的最大输出功率。

转换效率是太阳能电池将光能转化为电能的能力,它是太阳能电池性能的最重要指标之一。

三、性能指标太阳能电池的主要性能指标包括峰值功率、开路电压、短路电流、填充因子、温度系数和寿命等。

峰值功率是太阳能电池在标准测试条件下的最大输出功率,它可以直接反映太阳能电池的性能优劣。

开路电压和短路电流也是太阳能电池的重要性能指标之一,它们决定了太阳能电池在使用过程中的电压和电流大小。

填充因子反映的是太阳能电池电流和电压之间的匹配度,它越大表示太阳能电池的性能越好。

温度系数表示太阳能电池在不同温度下的输出功率变化程度,它通常被用来判断太阳能电池是否适用于不同的工作环境。

寿命反映的是太阳能电池的使用寿命,它是影响太阳能电池性能的重要因素之一。

太阳能电池的基本特性[1]

太阳能电池的基本特性[1]

太阳能电池基本特性-----太阳能的发展前景引言:随着社会的发展,资源的利用越来越多,但是资源的储量却是越来越少,这就需要我们利用一些与传统资源相不同的新型能源。

太阳能是一种新型能源的代表,它将在我们今后的生活发展中起到很多的作用。

太阳能电池是将太阳能转换成电能的一中能量转换器,本论文将先对太阳能电池的一些基本特性进行研究,得到一些相应的结论,最后对太阳能在今后的发展中前景进行讨论!摘要:研究太阳能电池的基本结构和基本原理,通过具体实验,记录数据,对太阳能电池的基本特性和一些主要参数测定的分析,(参数包括:开路电压,短路电流,最佳负载电阻,填充因子等)。

太阳能在生活中的应用,未来的发展。

关键词:太阳能电池,特性、参数,能源。

署名:赵鹏正文:1,研究对象及相关术语。

研究太阳能电池的基本特性和主要参数,并对太阳能在生活中的应用及未来的发展前景的讨论!太阳能是一种辐射能,一种新的能源,要想将他转换成电能就必须借助一种能量转换器,即太阳能电池。

太阳能电池又称为光电池或光生伏特电池。

2,基本原理太阳能电池工作原理的基础是半导体PN结的光生伏特效应。

所谓光生伏特效应就是PN结在光照时结两端会产生光生电动势的现象。

(图)当光照在P型硅的外表面上时,如果照射光子能量大于材料的禁带宽度,则光子被吸收而在P区产生光生电子对,即光生电子和光生空穴。

由于P型硅做得很薄,故有很多光生载流子扩散到PN结中。

又因为PN结本身存在内电场,方向从N区指向P区,固而扩散的光生电子被电场加速而出穿过PN结到达N区,而光生空穴扩散到PN结中后,会被电场拉回到原来的P区。

这样,光生电子与光生空穴形成光生电场,方向与内电场相反。

太阳能电池的伏安特性:(数据,图)。

由数据及上图可得结论,在没有光照时,太阳能电池可视为一个理想的二极管!(1)对短路电流(Isc )的测量:Isc=0.76mA在具体实验中,我们是采用直接用万用表接到光电池的两端进行测量,以此表示短路电流。

物理实验(下)太阳能电池基本特性的测量

物理实验(下)太阳能电池基本特性的测量

太阳能电池基本特性的测量The Experiment of Measuring The Electronic Properties of SolarCells摘要:这个实验旨在测量太阳能电池的一系列特性,根据太阳能电池的PN结结构,探究无光条件下太阳能电池的正向偏压伏安特性。

同时探究在固定光强下太阳能电池的负载特性。

利用光功率测定仪,定量分析太阳能电池的光照特性。

使用不同滤色片测量对应太阳能电池短路电流,从而推算其禁带宽度。

关键词:太阳能电池,伏安特性,填充因子,禁带宽度Abstract:What I did in this experiment is just to achieve an purpose of investigating into the character of solar cells, during which I measured the volt-ampere characteristics with a no-sight of light by the side of the cell and also the load character with a fixed photo intensity of it. With the help of photometer and color filters, the electric properties of the semiconductor solar cells used in different circumstances of illumination are stepping out little by little. And at the end of the game, the forbidden band width of the semiconductor materials is no more hiding.Key words: solar cells; volt-ampere characteristic; filling factor; forbidden band width一、引言太阳能电池又称硅光电池,其结构简单,不需要电源,具有重量轻、寿命长、价格便宜、使用方便等优点。

第3章 太阳能电池的特性-2

第3章 太阳能电池的特性-2

其他效应 光强效应
聚光对太阳能电池的伏安特性的影响
&3.4.2
其他效应 光强效应
聚光太阳能电池
聚光太阳能电池是一种在光强大于一个太阳的光照下工作的太阳能电池。入射太阳
光被聚焦或透过光学器件形成高强度的光束射到小面积的太阳能电池中。
聚光太阳能电池有几个潜在的优势,包括比平板太阳能电池更高的转换效率和更低
&3.2.5
太阳能电池的参数 效率
发电效率是人们在比较两块电池好坏时最常使用参数。 效率的定义为电池输出的电能与射入电池的光能的比例。
除了反映太阳能电池的性能之外,效率还决定于入射光的光谱和
光强以及电池本身的温度。 在比较两块电池的性能时,必须严格控制其所处的环境。测量陆 地太阳能电池的条件是光照AM1.5和温度25°C。而空间太阳能电池 的光照则为AM0。
的成本。电池的短路电流大小与光的强度成线性关系,这种改变并没有带来转换效 率的提升,因为入射功率也随光强呈线性提高。
由于开路电压与短路电流呈对数关系,转换效率得以提升。因此,在聚光条件下,
VOC随着光强上升呈对数形式增加,如下面式子所示:
nkT ISC V' OC ln I q O
低光强
在光强变低时,并联电阻对电池的影响将慢慢变大。因为通过电池的前置 偏压和电流会随着光的强度的减小而减小,而电池的等效电阻也将开始接 近并联电阻的大小,分流到并联电阻的电流将增加,即增加了能量损失。 在多云的天气下,并联电阻高的电池比并联电阻低的电池保留更大部分的 电流。
&3.5.1太阳能电池的测量
太阳能电池中,引起串联电阻的因素有三种: 第一,穿过电池发射区和基区的电流流动; 第二,金属电极与硅之间的接触电阻; 第三便是顶部和背部的金属电阻。串联电阻对电池的主要影响

太阳能电池基本特性测定实验

太阳能电池基本特性测定实验

太阳能电池基本特性测定实验太阳能电池基本特性测定实验太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。

当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。

太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染。

太阳能电池根据所用材料的不同,可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池四大类,其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。

硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。

单晶硅太阳能电池转换效率最高,技术也最为成熟。

在实验室里最高的转换效率为23%,规模生产时的效率为15%。

在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代产品。

多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其实验室最高转换效率为18%,工业规模生产的转换效率为10%。

因此,多晶硅薄膜电池不久将会在太阳能电地市场上占据主导地位。

非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。

但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。

太阳能的利用和太阳能电池的特性研究是21 世纪的热门课题,许多发达国家正投入大量人力物力对太阳能接收器进行研究。

我们开设此太阳能电池的特性研究实验,通过实验了解太阳能电池的电学性质和光学性质,并对两种性质进行测量。

该实验作为一个综合设计性的物理实验,联系科技开发实际,有一定的新颖性和实用价值。

太阳能电池基本特性实验报告

太阳能电池基本特性实验报告

竭诚为您提供优质文档/双击可除太阳能电池基本特性实验报告篇一:实验报告--太阳能电池伏安特性的测量实验报告姓名:张伟楠班级:F0703028学号:5070309108实验成绩:同组姓名:张家鹏实验日期:08.03.17指导教师:批阅日期:太阳能电池伏安特性的测量【实验目的】1.了解太阳能电池的工作原理及其应用2.测量太阳能电池的伏安特性曲线【实验原理】1.太阳电池的结构以晶体硅太阳电池为例,其结构示意图如图1所示.晶体硅太阳电池以硅半导体材料制成大面积pn结进行工作.一般采用n+/p同质结的结构,即在约10cm×10cm面积的p型硅片(厚度约500μm)上用扩散法制作出一层很薄(厚度~0.3μm)的经过重掺杂的n型层.然后在n型层上面制作金属栅线,作为正面接触电极.在整个背面也制作金属膜,作为背面欧姆接触电极.这样就形成了晶体硅太阳电池.为了减少光的反射损失,一般在整个表面上再覆盖一层减反射膜.图一太阳电池结构示意图2.光伏效应图二太阳电池发电原理示意图当光照射在距太阳电池表面很近的pn结时,只要入射光子的能量大于半导体材料的禁带宽度eg,则在p区、n区和结区光子被吸收会产生电子–空穴对.那些在结附近n区中产生的少数载流子由于存在浓度梯度而要扩散.只要少数载流子离pn结的距离小于它的扩散长度,总有一定几率扩散到结界面处.在p区与n区交界面的两侧即结区,存在一空间电荷区,也称为耗尽区.在耗尽区中,正负电荷间形成一电场,电场方向由n区指向p区,这个电场称为内建电场.这些扩散到结界面处的少数载流子(空穴)在内建电场的作用下被拉向p区.同样,如果在结附近p区中产生的少数载流子(电子)扩散到结界面处,也会被内建电场迅速被拉向n区.结区内产生的电子–空穴对在内建电场的作用下分别移向n区和p区.如果外电路处于开路状态,那么这些光生电子和空穴积累在pn结附近,使p区获得附加正电荷,n区获得附加负电荷,这样在pn结上产生一个光生电动势.这一现象称为光伏效应(photovoltaiceffect,缩写为pV).3.太阳电池的表征参数太阳电池的工作原理是基于光伏效应.当光照射太阳电池时,将产生一个由n区到p区的光生电流Iph.同时,由于pn结二极管的特性,存在正向二极管电流ID,此电流方向从p区到n区,与光生电流相反.因此,实际获得的电流I为(1)式中VD为结电压,I0为二极管的反向饱和电流,Iph为与入射光的强度成正比的光生电流,其比例系数是由太阳电池的结构和材料的特性决定的.n称为理想系数(n值),是表示pn结特性的参数,通常在1~2之间.q为电子电荷,kb为波尔茨曼常数,T为温度.如果忽略太阳电池的串联电阻Rs,VD即为太阳电池的端电压V,则(1)式可写为(2)当太阳电池的输出端短路时,V=0(VD≈0),由(2)式可得到短路电流即太阳电池的短路电流等于光生电流,与入射光的强度成正比.当太阳电池的输出端开路时,I=0,由(2)和(3)式可得到开路电压(3)当太阳电池接上负载R时,所得的负载伏–安特性曲线如图2所示.负载R可以从零到无穷大.当负载Rm使太阳电池的功率输出为最大时,它对应的最大功率pm为(4)式中Im和Vm分别为最佳工作电流和最佳工作电压.将Voc与Isc的乘积与最大功率pm之比定义为填充因子FF,则(5)FF为太阳电池的重要表征参数,FF愈大则输出的功率愈高.FF取决于入射光强、材料的禁带宽度、理想系数、串联电阻和并联电阻等.太阳电池的转换效率η定义为太阳电池的最大输出功率与照射到太阳电池的总辐射能pin之比,即(6)图三太阳电池的伏–安特性曲线4.太阳电池的等效电路图四太阳电池的等效电路图太阳电池可用pn结二极管D、恒流源Iph、太阳电池的电极等引起的串联电阻Rs和相当于pn结泄漏电流的并联电阻Rsh组成的电路来表示,如图3所示,该电路为太阳电池的等效电路.由等效电路图可以得出太阳电池两端的电流和电压的关系为(7)为了使太阳电池输出更大的功率,必须尽量减小串联电阻Rs,增大并联电阻Rsh.【实验数据记录、实验结果计算】◆实验中测得的各个条件下的电流、电压以及对应的功率的表格如下:表11.根据以上数据作出各个条件下太阳能电池的伏安特性曲线2.各个条件下,光伏组件的输出功率p随负载电压V的变化【对实验结果中的现象或问题进行分析、讨论】◆各个条件下太阳能电池的伏安特性曲线图的分析与讨论从图中的曲线可以明显看出:1.光照距离越近,也即是光强越大,电池产生的电动势越大(但不能断定是否有上界);2.研究电动势的大小,两个电池并联,电动势几乎不变,电池串联,电动势大致增大一倍;3.研究电池电阻的大小,在I-V图里,函数线越陡,电阻越小,函数线越平坦,电阻越大。

太阳能电池基本特性研究实验报告

太阳能电池基本特性研究实验报告

太阳能电池基本特性研究实验报告一、实验目的本实验旨在研究太阳能电池的基本特性,包括太阳能电池的输出电流和电压随太阳辐射强度的变化规律、电池的光谱响应特性以及太阳能电池的能量转换效率等。

二、实验原理太阳能电池是一种半导体器件,主要由一个p型半导体和一个n型半导体构成,在两种材料的交界面上形成一个PN结。

当太阳辐射射到 PN 结上时,电子受到能量激发而从 P 区向 N 区运动,从而产生电势差,这就是太阳能电池的基本工作原理。

太阳能电池的输出电流和电压随太阳辐射强度的变化规律可以用伏安特性曲线来表示。

光谱响应特性可以通过将太阳能电池暴露在具有不同波长的单色光下,测量电池对不同波长光的响应来研究。

太阳能电池的能量转换效率可以用输出电力与进入电力之比来表示。

三、实验器材太阳能电池、恒流源、数字万用表、单色光源、光谱仪等。

四、实验步骤1. 使用数字万用表测量太阳能电池的开路电压和短路电流,并记录数据。

2. 将太阳能电池暴露在不同太阳辐射强度下,测量太阳能电池的输出电流和电压,并记录数据。

3. 将太阳能电池暴露在不同波长的单色光下,测量太阳能电池的输出电流和电压,并记录数据。

4. 使用光谱仪测量太阳能电池在不同波长光下的光谱响应,并记录数据。

5. 根据实验数据计算太阳能电池的能量转换效率,并进行比较分析。

五、实验结果与分析1. 输出电流和电压随太阳辐射强度的变化规律随着太阳辐射强度的增大,太阳能电池的输出电流和电压都会增加,但其增长趋势是不同的。

当太阳辐射强度较小时,输出电流的增长更加明显,而当太阳辐射强度较大时,输出电压的增长更加明显。

2. 光谱响应特性太阳能电池对不同波长的光的响应是不同的,其响应度最大的波长在可见光区域的绿黄色光波段。

随着波长的偏离,响应度逐渐降低。

3. 能量转换效率通过计算得到太阳能电池的能量转换效率为 XX%,与实验数据比较分析得知,太阳能电池的能量转换效率受到多种因素的影响,例如光谱匹配、电路匹配、光伏电池的材料参数等。

太阳能电池IV特性实验报告

太阳能电池IV特性实验报告

一、太阳能电池基本IV特性实验1.实验目的1.了解太阳能光伏电池的基本特性参数:开路电压、短路电流、峰值电压、峰值电流、峰值功率、填充因子及转换效率2.了解太阳能光伏电池的伏安特性及曲线绘制3.掌握电池特性的测试与计算2.实验设备光伏太阳能电池特性实验箱。

3.实验原理(1)开路电压Uoc开路电压(Open circuit voltage VOC),当将太阳能电池的正负极不接负载、使电流i=0时,此时太阳能电池正负极间的电压就是开路电压,开路电压的单位是伏特(V)。

单片太阳能电池的开路电压不随电池片面积的增减而变化,一般为0.5~0.7V。

(2)短路电流Isc短路电流(short-circuit current),当将太阳能电池的正负极短路、使电压u=0时,此时的电流就是电池片的短路电流,短路电流的单位是安培(A),短路电流随着光强的变化而变化。

(3)峰值电压Um峰值电压也叫最大工作电压或最佳工作电压。

峰值电压是指太阳能电池片输出最大功率时的工作电压,峰值电压的单位是v。

峰值电压不随电池片面积的增减而变化,一般为0.45~0.5v,典型值为0.48v。

(4)峰值电流Im峰值电流也叫最大工作电流或最佳工作电流。

峰值电流是指太阳能电池片输出最大功率时的工作电流,峰值电流的单位是安培(A)。

(5)峰值功率Pm峰值功率也叫最大输出功率或最佳输出功率。

峰值功率是指太阳能电池片正常工作或测试条件下的最大输出功率,也就是峰值电流与峰值电压的乘积:Pm=Im×Um。

峰值功率的单位是w(瓦)。

太阳能电池的峰值功率取决于太阳辐照度、太阳光谱分布和电池片的工作温度,因此太阳能电池的测量要在标准条件下进行,测量标准为欧洲委员会的101号标准,其条件是:辐照度l000W/m2、光谱AMl.5、测试温度25±1℃。

(6)填充因子FF填充因子也叫曲线因子,是指太阳能电池的最大输出功率与开路电压和短路电流乘积的比值。

太阳能电池及特性

太阳能电池及特性

光生电流密度Jph理论极限值/mAcm-2
90
80
70
黑体辐射
60 AM0
50
40
AM1.5
30
20
10 0.6 0.8 1 1.2 1.4 1.6 1.8 2
禁带宽度Eg/eV
§4.1 PN结的光生伏特效应
§4.1.2 光电压
光照射在p-n结的太阳能电池时,由于光生伏特效应,在 p-n结两端形成与内建电场相反的电动势,即光生电压。
光子的数量的比例。
W
QE 0 GR(x)CP(x)dx
量子效率与波长相对应,即与光子能量相对应。 如果某个特定波长的所有光子都被吸收,并且其所产生的
少数载流子都能被收集,则这个特定波长的所有光子的量 子效率都是相同的。 而能量低于禁带宽度的光子的量子效率为零。
§4.1.1 光生电流
通常,波长小于350nm的光子的量子效率不予测量,因为 在1.5大气质量光谱中,这些短波的光所包含能量很小。
§4.2.1 理想太阳能电池的伏安特性
短路电流Isc : 将太阳电池短路,V=0,则ID=0,所得电流为短路电流ISC
I SC I ph
短路电流Isc是太阳能电池能输出的最大电流 开路电压Voc : 太阳能电池开路,输出电流I=0,即Iph=ID:
特性。 在耗散区的所有光生载流子的收集概率都是相同的,因为
在这个区域的电子空穴对会被电场迅速地分开。 在远离电场的区域,其收集概率将下降。 当载流子在与电场的距离大于扩散长度的区域产生时,那
么它的收集概率是相当低的。
§4.1.1 光生电流
收集概率: 当载流子在与内建电场外的区域产生时,非平衡少数载流 子边扩散边复合,它扩散到内建电场边界的概率,既是收集 概率。在N区产生的空穴的收集概率如式

太阳能电池基本特性研究实验报告

太阳能电池基本特性研究实验报告

太阳能电池基本特性研究实验报告太阳能电池基本特性研究实验报告引言:太阳能电池是一种利用太阳光转化为电能的装置,具有环保、可再生等优点,因此在可持续能源领域备受关注。

本实验旨在研究太阳能电池的基本特性,包括光照强度对电池输出电流的影响、温度对电池输出电压的影响以及不同材料制成的太阳能电池的比较等。

实验一:光照强度对电池输出电流的影响实验装置:太阳能电池、光源、电流计、电压计实验步骤:1. 将太阳能电池连接到电流计和电压计上,并将光源对准电池表面。

2. 开启光源,调节光照强度,记录不同光照强度下的电流值。

3. 分析数据,绘制光照强度与电流的关系曲线。

实验结果:实验结果显示,光照强度与太阳能电池输出电流呈正相关关系。

随着光照强度的增加,电流值也随之增加。

这是因为太阳能电池中的光敏材料吸收光能后,产生电子-空穴对,从而形成电流。

因此,光照强度越高,太阳能电池输出电流越大。

实验二:温度对电池输出电压的影响实验装置:太阳能电池、温度控制装置、电压计实验步骤:1. 将太阳能电池连接到电压计上,并通过温度控制装置调节电池的温度。

2. 记录不同温度下的电压值。

3. 分析数据,绘制温度与电压的关系曲线。

实验结果:实验结果显示,温度对太阳能电池输出电压有一定的影响。

随着温度的升高,电压值呈现下降的趋势。

这是因为太阳能电池中的光敏材料在高温下容易发生退化,从而导致电池的电压下降。

因此,在实际应用中,需要注意控制太阳能电池的工作温度,以保证其正常工作和输出电压的稳定。

实验三:不同材料制成的太阳能电池的比较实验装置:不同材料制成的太阳能电池、光源、电流计、电压计实验步骤:1. 将不同材料制成的太阳能电池连接到电流计和电压计上,并将光源对准电池表面。

2. 开启光源,记录不同太阳能电池的电流和电压值。

3. 分析数据,比较不同太阳能电池的性能差异。

实验结果:实验结果显示,不同材料制成的太阳能电池具有不同的性能特点。

例如,硅太阳能电池具有较高的转换效率和稳定性,是目前应用最广泛的太阳能电池;铜铟镓硒(CuInGaSe2)太阳能电池具有较高的光吸收能力和较高的光电转换效率,但成本较高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太阳能电池的基本特性
1、太阳能电池的基本特性
太阳能电池的基本特性有太阳能电池的极性、太阳电池的性能参数、太阳能电池的伏安特性三个基本特性。

具体解释如下
1、太阳能电池的极性
硅太阳能电池的一般制成P+/N型结构或N+/P型结构,P+和N+,表示太阳能电池正面光照层半导体材料的导电类型;N和P,表示太阳能电池背面衬底半导体材料的导电类型。

太阳能电池的电性能与制造电池所用半导体材料的特性有关。

2、太阳电池的性能参数
太阳电池的性能参数由开路电压、短路电流、最大输出功率、填充因子、转换效率等组成。

这些参数是衡量太阳能电池性能好坏的标志。

3 太阳能电池的伏安特性
P-N结太阳能电池包含一个形成于表面的浅P-N结、一个条状及指状的正面欧姆接触、一个涵盖整个背部表面的背面欧姆接触以及一层在正面的抗反射层。

当电池暴露于太阳光谱时,能量小于禁带宽度Eg的光子对电池输出并无贡献。

能量大于禁带宽度Eg的光子才会对电池输出贡献能量Eg,大于Eg的能量则会以热的形式消耗掉。

因此,在太阳能电池的设计和制造过程中,必须考虑这部分热量对电池稳定性、寿命等的影响。

2、有关太阳电池的性能参数
1、开路电压
开路电压UOC:即将太阳能电池置于100 mW/cm2的光源照射下,在两端开路时,太阳能电池的输出电压值。

2、短路电流
短路电流ISC:就是将太阳能电池置于标准光源的照射下,在输出端短路时,流过太阳能电池两端的电流。

3、最大输出功率
太阳能电池的工作电压和电流是随负载电阻而变化的,将不同阻值所对应的工作电压和电流值做成曲线就得到太阳能电池的伏安特性曲线。

如果选择的负载电阻值能使输出电压和电流的乘积最大,即可获得最大输出功率,用符号Pm表示。

此时的工作电压和工作电流称为最佳工作电压和最佳工作电流,分别用符号Um和Im表示。

4、填充因子FF
太阳能电池的另一个重要参数是填充因子FF,他是最大输出功率与开路电压和短路电流乘积之比。

FF是衡量太阳能电池输出特性的重要指标,是代表太阳能电池在带最佳负载时,能输出的最大功率的特性,其值越大表示太阳能电池的输出功率越大。

实际上,由于受串联电阻和并联电阻的影响,实际太阳能电池填充因子的值要低于上式所给出的理想值。

串、并联电阻对填充因子有较大影响。

串联电阻越大,短路电流下降越多,填充因子也随之减少的越多;并联电阻越小,这部分电流就越大,开路电压就下降的越多,填充因子随之也下降的越多。

5、转换效率
太阳能电池的转换效率指在外部回路上连接最佳负载电阻时的最大能量转换效率,等于太阳能电池的输出功率与入射到太阳能电池表面的能量之比。

太阳能电池的光电转换效率是衡量电池质量和技术水平的重要参数,他与电池的结构、结特性、材料性质、工作温度、放射性粒子辐射损伤和环境变化等有关。

FF是衡量太阳能电池输出特性的重要指标,是代表太阳能电池在带最佳负载时,能输出的最大功率的特性,其值越大表示太阳能电池的输出功率越大。

实际上,由于受串联电阻和并联电阻的影响,实际太阳能电池填充因子的值要低于上式所给出的理想值。

串、并联电阻对填充因子有较大影响。

串联电阻越大,短路电流下降越多,填充因子也随之减少的越多;并联电阻越小,这部分电流就越大,开路电压就下降的越多,填充因子随之也下降的越多。

3.光伏电池的外特性
3.1 光谱响应
分析光伏电池的光谱响应,通常是讨论他的相对光谱响应,其定义是,当各种以一定等量的辐射光子入射到光伏电池上,所产生的短路电流与其中最大短路电流相比较,按波长的分布求出其比值变化曲线即为相对光谱响应。

而绝对光谱响应指的是,当各种波长的单位辐射光能或对应的光子入射到光伏电池上,将产生不同的短路电流,按波长分布求出其对应的短路电流变化曲线。

硅型光伏电池的相对响应曲线
3.2 温度特性和光照特性
光伏电池的温度特性指的是,光伏电池工作环境温度和电池吸收光子后使自身温度升高对电池性能的影响。

光伏电池材料内部很多参数都是温度和光照强度的函数,如本征载流子浓度,载流子的扩散长度,光子吸收系数等。

光伏电池的光照特性指的是电池的电气性能与光照强度之间的关系。

太阳电池的开路电压、短路电流和输出功率都会随着太阳电池本身温度的变化而变化,通常把温度每变化1℃造成的短路电流、开路电压和输出功率变化的百分数分别称为短路电流温度系数、开路电压温度系数和输出功率温度系数,并分别以α、β和γ来表示。

这样短路电流、开路电压和输出功率与温度T的关系可以分别用以下关系式
表示:
Is c = I0(1+αΔT);
Vo c= V0(1+βΔT);
P = P0(1+γΔT);
上列公式中的I0 、V0 和P0 通常取为25℃时太阳电池的开路电压、短路电流和输出功率的数值,而ΔT是太阳电池的实际温度与25℃时的温度差。

由于
P= Isc Voc= I0 V0 (1+αT)(1+βT)
= I0 V0[1+(α+β)ΔT+αβΔT2];
所以如果省略很小的二次项,就得到:
P= I0 V0[1+(α+β)ΔT]
对比式(8-6),短路电流随着温度的上升有微小上升,因此短路电流的温度系数是正的。

对一般硅太阳电池α=+(0.06~0.1)%/℃。

温度对太阳电池短路电流的影响比较复杂,随着温度的升高,本征载流子浓度变大,PN结的暗电流增大,导致短路电流减小。

但另一方面,随着温度升高,禁带宽度变小,本征吸收限向长波方向移动,使更多的光能可被利用,导致短路电流变大。

再则,温度升高可以使少子寿命和扩散长度增加,也使短路电流增加。

这些效应的综合结果,使短路电流随着温度升高而缓慢增加。

前面已经说过,开路电压Voc随温度升高而近于线性的降低,所以开路电压的温度系数是负的。

这是因为开路电压与平衡PN结的接触电位差Vd有关,随温度升高,半导体的本征载流子浓度急剧变大,致导Vd变小,因此开路电压也变小。

另一方面,随着温度上升,PN结的暗电流增大,开路电压也就降低。

对硅太阳电池而言,开路电压的温度系数随太阳电池的结构和加工工艺而有所不同,一般β=-(0.1~0.4) %/℃左右。

输出功率是电流和电压的乘积,所以输出功率的温度系数是电流和电压变化的综合结果,根据(8-9)式γ=α+β,对一般硅太阳电池而言,γ=-(0.3~0.5) %/℃左右。

从上可知,太阳电池的输出功率温度系数在千分之四左右,对一个大的太阳电池发电系统来说,影响还是很大的。

所以在设计太阳电池发电系统时,应该注意太阳电池的散热问题,使其能在尽量低的温度下工作。

(3)填充因子(Full Factor)FF
填充因子表示最大输出功率ImVm与极限输出功率IscVoc之比,通常以FF 表示,即:
FF= ImVm /IscVoc (8-1)
填充因子是表征太阳电池优劣的重要参数之一。

填充因子愈大,太阳电池性能就愈好,优质太阳电池的FF可高达0.8以上。

填充因子主要决定于串联电阻,旁路电阻及PN结特性。

串联电阻增大,旁路电阻减小,以及PN结中存在缺陷与杂质等不良情况时,都会使FF变小。

此外,填充因子随电池材料的禁带宽度的增大而增大,例如优质砷化镓太阳电池的填充因子常可达到0.87~0.89.而硅电池只能达到0.75~0.82。

此外,对同一个太阳电池,在一定光照强度范围内,填充因子随光强的减小而增加。

填充因子还与太阳电池的温度有关,一般随温度的增加而减小,其原因主要是随温度升高, PN结漏电流增加,太阳电池的电流~电压关系曲线"软化"所致。

(4)光电转换效率(Efficiency)η
光电转换效率是太阳电池性能优劣的最重要判据,常以η表示,一般定义为太阳电池最大输出功率和照射到太阳电池上的入射功率之比,即:η= ImVm /Pin (8-2)
其中Im和Vm为最大功率点的电流和电压,而Pin为入射光的功率.一般测量太阳电池的效率时,总是先用标准电池将入射光强度校正到AM0或AM1的标准光强,再进行测量。

由于自然的太阳光强度经常受到天气干扰,不稳定因素比较多,故实验室中常用人工制作的太阳模拟器作光源来测量太阳电池的效率。

各种材料制成的太阳电池的最高效率可从理论上计算出来。

由于禁带宽度增大时,电池的开路电压和填充因子都增大,但短路电流却减小,因此制作太阳电池材料的禁带宽度Eg有一最佳值。

理论计算结果表明,用禁带宽度Eg为1.5电子伏特左右的半导体材料制作太阳电池时,可获得最高的效率。

晶体硅太阳电池在室温时的最高理论效率大约为25%左右,与目前的实验结果是一致的。

太阳电池的光电转换效率还与入射光的强度(即入射光的功率密度,也即辐照度)有一定关系,一般说的太阳电池光电转换效率是指标准测试条件下的效率。

所谓标准测试条件是测试温度25 ℃,入射光强度为100mW/cm2(或1000W/m2)。

相关文档
最新文档