热处理工艺介绍
热处理工艺
热处理工艺热处理工艺是通过加热和冷却对金属材料进行控制的工艺过程,目的是改变其原有的物理和化学性质,以提升材料的性能。
热处理工艺包括退火、正火、淬火、回火、疏松加热等不同方法。
本文将介绍热处理工艺的原理、方法和应用。
一、热处理工艺原理1.金属材料的组织结构与性能金属材料由于晶粒和晶界结构,其中晶粒内的原子排列方式称为晶态。
金属材料的物理和力学性质与其晶粒和晶界结构有关。
晶粒的大小、形状、分布和晶界的状态对金属材料的强度、硬度、塑性、韧性、导电性等性质影响显著。
2.热处理过程的原理由于金属材料在加热和冷却过程中的物理和化学反应,其晶粒和晶界组成的结构也会发生变化,从而影响其物理和化学性质。
热处理工艺就是通过控制材料的加热、保温时间和冷却速度等参数来控制金属材料的组织结构,从而提高材料的性能。
二、热处理方法1.退火退火是将金属材料加热至一定温度,保温一定时间后慢冷的热处理方法。
通过退火可以改变金属材料的晶界和晶粒的结构,增强塑性、韧性和延展性能。
退火方法也有多种不同的类型,包括全退火、球化退火、等温退火和局部退火等。
2.正火正火是将金属材料加热至一定温度,保温一定时间后慢冷的热处理方法。
通过正火可以改变金属材料的晶粒组织结构,提高其强度和硬度。
3.淬火淬火是将金属材料加热至一定温度,然后迅速浸入冷却介质中,使其迅速冷却的热处理方法。
淬火可以使晶粒迅速细化,提高材料的硬度和强度,但同时也会减少塑性和韧性。
4.回火回火是在淬火后将材料重新加热至一定温度并保温一定时间后冷却的热处理方法。
回火可以通过改变材料的晶界和晶粒组织结构来调整其硬度和韧性。
5.疏松加热疏松加热是将金属材料加热至一定温度并保温一定时间,旨在在已存在的材料中生成孔洞或气体,使材料产生疏松现象。
此工艺常用于铸造后处理中,其目的是在材料中消除潜在的缺陷和裂纹。
三、应用热处理工艺广泛应用于制造业中,包括钢铁、铸造、航空航天、汽车和电子等领域。
典型的热处理工艺
典型的热处理工艺热处理是指通过加热、保温和冷却等工艺改变材料的组织结构和性能的过程。
常见的热处理工艺包括退火、正火、淬火、回火等。
下面将分别对这些典型的热处理工艺进行详细介绍。
1. 退火:退火是将材料加热到一定温度,然后缓慢冷却的过程。
退火可以改变材料的组织结构,减轻应力,提高塑性和韧性。
根据不同的目的,退火可以分为全退火、球化退火、时效退火等。
全退火是将材料加热到临界温度以上,然后慢慢冷却到室温,目的是恢复材料的再结晶组织,消除应力,并提高塑性和韧性。
球化退火是将材料加热到临界温度以下,然后冷却到室温,目的是消除应力和改善材料的加工性能。
时效退火是将材料在较低的温度下保温一段时间,目的是实现材料的时效硬化和组织稳定。
2. 正火:正火是将材料加热到一定温度,然后冷却到室温的过程。
正火可以使材料获得高硬度和高强度,但韧性相应降低。
常见的正火工艺有正火淬火、正火回火、正火水淬等。
正火淬火是将材料加热到临界温度以上,然后迅速冷却到室温,目的是形成马氏体组织,提高材料的硬度。
正火回火是将材料加热到临界温度以上,然后缓慢冷却到室温,目的是降低材料的硬度并提高韧性。
正火水淬是将材料加热到临界温度以上,然后用水迅速冷却,目的是在材料表面形成淬火硬化层,并提高表面的硬度和耐磨性。
3. 淬火:淬火是将材料加热到临界温度以上,然后迅速冷却到室温的过程。
淬火可以使材料获得高硬度和高强度,但韧性相应降低。
淬火过程中的冷却速度和冷却介质的选择都对材料的组织结构和性能有重要影响。
常见的淬火介质有水、油和气体等。
水冷速度最快,油冷次之,气体冷速度最慢。
根据不同的目的,淬火可以分为完全淬火、局部淬火、表面淬火等。
完全淬火是将整个材料同时进行淬火,目的是获得全面的硬化效果。
局部淬火是将材料的局部区域加热和淬火,目的是获得不同的硬度和性能分布。
表面淬火是在材料的表面形成淬火硬化层,提高表面的硬度和耐磨性。
4. 回火:回火是将材料在淬火之后再加热到一定温度,保温一段时间,然后冷却到室温的过程。
常用材料热处理工艺完整版
常用材料热处理工艺完整版热处理工艺是指通过加热、保温和冷却等一系列措施,改变材料的组织结构和性能的一种工艺。
常用材料热处理工艺主要包括退火、正火、淬火和回火等。
1.退火退火是指将材料加热到一定温度,保温一段时间,然后缓慢冷却到室温的过程。
退火能够消除材料内部的应力,改善材料的可加工性和机械性能。
常见的退火工艺有全退火、球化退火和时效退火等。
-全退火全退火是将材料加热到高于临界温度的区域,使组织发生再结晶,然后缓慢冷却到室温。
全退火能够使材料获得良好的塑性和韧性。
-球化退火球化退火是将材料加热到高于临界温度的区域,使组织中的晶粒成球状,然后缓慢冷却。
球化退火能够使材料获得细小均匀的晶粒,提高材料的韧性和延展性。
-时效退火时效退火是将材料加热到一定温度,在保温一定时间后快速冷却。
时效退火能够使材料的晶粒尺寸增大,提高材料的硬度和抗腐蚀性能。
2.正火正火是将材料加热到临界温度并保持一段时间,然后缓慢冷却。
正火能够消除材料内部的应力,使组织细化,提高材料的硬度和韧性。
正火适用于一些低碳钢和合金钢的热处理。
3.淬火淬火是指将材料加热到临界温度以上,保温一段时间,然后迅速冷却到室温。
淬火能够使材料快速形成马氏体组织,并获得高硬度。
淬火适用于一些高碳钢和合金钢的热处理。
4.回火回火是指将淬火处理后的材料加热到一定温度,保温一段时间,然后缓慢冷却。
回火能够使材料的硬度降低,提高材料的韧性和抗脆性。
回火适用于一些淬火处理后需要获得一定韧性的材料。
总结起来,常用材料的热处理工艺包括退火、正火、淬火和回火。
不同的材料和要求会选择不同的热处理工艺,以达到最佳的组织结构和性能。
常见热处理工艺介绍
常见热处理工艺介绍热处理是通过加热和冷却的方式改变材料的组织结构,从而改善其力学性能和耐热性能的工艺过程。
在工业领域中,热处理被广泛应用于金属和合金材料的处理和加工中。
下面将介绍一些常见的热处理工艺。
1. 固溶处理(Solution treatment):固溶处理是一种通过加热材料至溶解温度,然后迅速冷却来改变材料组织结构的处理方式。
这种处理方法主要用于合金材料中的固溶体溶解,以调整材料的硬度和强度。
固溶处理还可以消除材料中的固溶体相,提高材料的可锻性和韧性。
2. 淬火(Quenching):淬火是通过将材料迅速冷却至室温,使其由高温下的亚稳定相转变为亚稳定、高硬度的相的过程。
淬火可以提高材料的硬度和强度,但同时也会使材料变脆。
通常,淬火是在固溶处理或退火之后进行的,以进一步改善材料的性能。
3. 退火(Annealing):退火是通过加热和缓慢冷却来减轻材料的应力和改善其组织结构的过程。
退火可以提高材料的韧性、可塑性和可加工性,减少材料的硬度和强度。
退火通常分为正常退火、球化退火和全退火等不同类型,根据具体材料的要求和工艺需要进行选择。
4. 回火(Tempering):回火是一种将经过淬火处理的材料加热至较低温度并保持一段时间后,再进行冷却的过程。
回火可以通过调整材料的温度和时间,改变材料的硬度和强度,同时保持一定的韧性。
回火可以提高材料的抗冲击性和耐磨性,减少材料的脆性。
5. 冷加工(Cold working):冷加工是一种将材料在室温下进行塑性加工的方法。
通过冷加工,材料的硬度和强度可以得到显著提高,但韧性和可塑性则会相应降低。
冷加工一般包括冷轧、冷拔、冷拉和冷锻等工艺,常用于生产线上对金属材料进行形状或尺寸调整。
除了以上介绍的几种常见的热处理工艺外,还有许多其他的热处理工艺,如沉淀硬化、热处理组织改性、表面渗碳处理等。
这些热处理方法根据不同的材料要求和应用领域,选择合适的处理工艺可以使材料达到最优的力学性能和耐热性能。
热处理工艺
热处理理论、工艺
姚富海
前言
热处理的概念 通过加热、保温、冷却,使材料的组织 结构发生变化,获得所需性能的热加工 方法。
一、中国历史上的热火和 脱碳退火。 战国中晚期,我国发明了兵器的淬火技 术。 至西汉,热处理技术发展至较高水平, 出现了化学热处理,如用于刀剑上的表 面渗碳和渗氮。
5-2、感应加热表面淬火 分为:工频(50Hz)淬火;中频(1~10kHz)淬火、 高频(100~1000kHz)淬火。 加热温度:880~900 ℃。 一般零件淬透层深度为半径的1/10。根据淬透 层的深度,选择设备频率f。
f < 2500
δ x2
δx—淬透层的深度,cm。 频率愈高,淬透层愈薄。
四、淬火及回火
4-3、淬火加热温度的确定 亚共析钢(C<0.77%): Ac3+(30~50℃); 过共析钢(C>0.77%): Ac1+(30~50℃); 亚共析钢温度选择在Ac3以上是为了充分 溶解铁素体,使淬火后硬度较均匀。 过共析钢温度选择在Ac1以上是为了保留 未溶解的碳化物,以获得强度高、韧性 好的综合性能。
四、淬火及回火
4-7、淬火缺陷及其预防 (1)淬火变形、开裂 预防措施有: 均匀加热。工件加热时应均匀放置,防止单面受热, 轴类件应垂直悬挂。降低加热速度。 正确选择冷却方法。在保证硬度的要求下,采用冷 却缓慢的介质。淬火时注意均匀冷却。 及时回火。淬火微裂纹在残余应力作用下扩展,最 后发生时效断裂。淬火后及时回火是防止开裂的有 效措施。
热处理生产工艺
热处理生产工艺
热处理生产工艺是指在金属材料的加工过程中,利用加热和冷却的手段,使材料的组织结构和性能发生改变的工艺。
热处理工艺广泛应用于各个行业,包括汽车、航空航天、机械制造等领域。
下面将介绍几种常见的热处理生产工艺。
1. 灭火与淬火:灭火是指将经过热加工的材料迅速冷却,以改善材料的硬度和强度。
常见的灭火方法包括水淬、油淬和气体淬。
淬火是指将材料加热到适当温度后迅速冷却,在冷却过程中形成硬化组织。
2. 回火:回火是指在淬火后,将材料重新加热到适当温度,并保持一段时间,然后缓冷至室温。
回火能够减轻材料内部应力,提高材料的韧性和耐脆性,改善材料的可加工性。
3. 规范化:规范化是指将材料加热至适当温度,保持一段时间后,空气冷却。
规范化能够改善材料的均匀性、可加工性和机械性能。
4. 淬火回火:淬火回火是将材料先进行淬火处理,然后进行回火处理。
淬火能够提高材料的硬度和强度,回火则能够增加材料的韧性和耐脆性。
淬火回火工艺常用于高强度、高硬度材料的制备。
5. 固溶处理:固溶处理是指将材料加热至溶解温度,保持一段时间后迅速冷却。
固溶处理能够改善材料的均匀性和强度,常用于铝合金等材料的加工。
6. 等温淬火:等温淬火是指将材料加热至适当温度后保持一段时间,然后进行快速冷却。
等温淬火能够制备出具有高强度和优良韧性的材料。
总的来说,热处理生产工艺在金属材料的加工中起着至关重要的作用。
通过合理选择和控制热处理工艺,可以改善材料的组织结构和性能,提高材料的硬度、强度、韧性和可加工性,满足不同行业对材料性能的需求。
常用的热处理工艺及目的
常用的热处理工艺及目的
一、常用热处理工艺:
1、回火:通过加热和慢速冷却,以改善金属材料机械性能和提高组
织稳定性。
2、正火:用于改善金属材料的组织结构,改善其界面性能。
3、退火:通过加热和慢速冷却,以减软、增韧和提高可塑性的目的
而进行热处理。
4、淬火:通过加热和快速冷却的热处理,使金属材料具有高的强度、韧性和良好的耐磨性。
5、硬质化处理:使金属材料具有超强的硬度和韧性,提高耐磨性和
热强度。
6、马氏体稳定化处理:针对一些特定材料,利用恒定温度和时间,
使马氏体组织达到稳定。
7、球化处理:通过加热和冷却,使金属材料表面组织形成球状结晶,从而改善表面性能。
8、脆化处理:通过调节温度和时间,使金属材料变得脆性,以便后
期的热处理。
二、常用热处理的目的:
1、为了改善金属材料的机械性能,提高其强度、韧性和硬度等。
2、为了改善金属材料的抗磨性,耐腐蚀性和热强度等。
3、为了改变材料组织结构,改善显微组织形貌,改变金属材料的晶粒大小。
4、为了改善金属材料的界面性能,使其变为球状结晶,从而改善了其可塑性和抗锈腐性。
四大热处理工艺
四大热处理工艺
热处理工艺是一种通过改变材料的物理结构、化学成分和性质来改善其性能的技术。
在热处理工艺中,有四项主要的工艺,分别是退火、淬火、回火以及表面处理。
这四种热处理工艺都具有不同的特点和应用范围,并被广泛应用于现代工业生产中。
1. 退火工艺
退火工艺是将金属材料加热到一定温度,然后缓慢冷却至室温的工艺。
此工艺可以减少材料中的残余应力和提高硬度,改善材料的延展性和韧性,提高材料的加工性能,适用于铸造、锻造和变形加工等多种材料加工领域。
退火的最佳温度和持续时间会因材料不同而异。
2. 淬火工艺
淬火是将金属材料加热到一定温度后,通过迅速冷却来改变材料的组织结构和性质的工艺。
此工艺可以提高材料的硬度、强度和耐磨性,适用于制造各种机械零部件、工具等。
淬火温度、冷却速度和时间会对最终的材料性能产生显著的影响。
3. 回火工艺
回火工艺是在淬火后,将已经变硬的材料重新加热到一定温度,然后缓慢冷却的工艺。
此工艺可以减轻材料的脆性,并使其具有较好的延展性和韧性,适用于制造各种高强度零部件,如弹簧、轴承、齿轮等。
回火的最佳温度、时间和冷却速度也会因材料不同而异。
4. 表面处理工艺
表面处理工艺是将材料表面进行改性的工艺,包括氮化、硬化、镀膜等多种方法。
通过这些方法可以改善材料表面硬度、抗腐蚀性、耐磨性和抗疲劳性等,适用于制造各种高性能零部件和设备。
综上所述,四种热处理工艺在现代工业中都具有广泛的应用。
不同材料和加工要求会产生不同的需要,因此选择合适的热处理工艺不仅可以改善材料的性能,也可以提高生产效率,实现工业生产的可持续发展。
热处理工艺有哪些
热处理工艺有哪些热处理是金属材料制造过程中常用的一种工艺,通过改变金属的组织结构和性能,使其获得所需的机械性能、物理性能和化学性能,从而提高材料的使用寿命。
热处理工艺的选择是根据金属材料的性质和工件的使用要求来确定的。
下面将介绍一些常见的热处理工艺。
1. 淬火淬火是一种通过迅速冷却来提高钢材硬度和韧性的热处理工艺。
淬火可以改善钢材的晶体结构,减少晶界的碳偏析和奥氏体生成,从而提高钢材的硬度和韧性。
淬火分为水淬、油淬和盐浴淬三种方式,选择的方式取决于钢材的成分和应用要求。
2. 回火回火是一种通过加热已经淬火的钢材,然后在适当的温度下保温一段时间,最后冷却来改变其组织结构和性能的热处理工艺。
回火可以调整钢材的硬度和韧性,降低材料的内应力,提高材料的可加工性。
回火温度和时间的选择决定了材料硬度和韧性之间的平衡。
3. 规整化规整化是一种通过加热钢材到一定温度,然后保温一段时间,最后冷却以改善材料的组织结构和性能的热处理工艺。
规整化可以去除钢材中的残余应力,改善材料的韧性和可加工性。
规整化温度和保温时间的选择与具体的钢材有关。
4. 简化退火简化退火是一种通过在亚临界温度下进行加热和保温,然后缓慢冷却来改变材料的组织结构和性能的热处理工艺。
简化退火可以去除金属材料中的残余应力,并提高其韧性和可加工性。
简化退火温度和时间的选择对于材料的性能调控至关重要。
5. 固溶处理固溶处理是一种通过将固溶体加热至一定温度,然后保温一段时间后迅速冷却,以改变材料的组织结构和性能的热处理工艺。
固溶处理常用于合金材料中,可以固溶分散相,细化晶粒并提高材料的强度和耐腐蚀性能。
6. 等温处理等温处理是一种通过将材料加热至一定温度,然后保温一段时间,最后冷却来调整材料的组织结构和性能的热处理工艺。
等温处理常用于高合金钢和高速切削工具钢等特殊材料,可以使材料获得均匀的组织结构和良好的性能。
总结起来,热处理工艺包括淬火、回火、规整化、简化退火、固溶处理和等温处理等多种方式。
介绍热处理工艺和获得的主要组织
热处理工艺是一种通过对材料进行加热和冷却,以改善其物理性能和结构的工艺。
在热处理过程中,材料会经历一系列的相变和组织结构的改变,从而获得所需的性能。
以下是对热处理工艺和获得的主要组织的介绍:一、热处理工艺1.1 加热热处理的第一步是加热材料至一定温度。
加热温度取决于材料的类型和所需的性能。
在加热过程中,材料内部的晶粒会开始发生变化,原子开始重新排列。
1.2 保温加热至一定温度后,需要保持一定时间,以保证材料内部的结构和晶粒得到充分的改变和调整。
这个过程称为保温。
1.3 冷却经过保温后,材料需要经历冷却过程,使其内部结构和晶粒固定在所需的状态。
二、获得的主要组织2.1 贝氏体组织在热处理过程中,当材料经过加热和快速冷却时,会形成一种具有高硬度和韧性的组织,称为贝氏体组织。
它通常是棒状或片状的形式存在。
2.2 马氏体组织在热处理中通过适当的加热和冷却条件,材料会形成马氏体组织。
这种组织具有良好的强度和耐磨性,可以提高材料的使用寿命。
2.3 淬火组织淬火是指将材料加热至一定温度后经过急冷处理,形成均匀的马氏体组织的过程。
获得的淬火组织具有高硬度和强度,常用于制造工具和刀具等领域。
2.4 回火组织回火是指在淬火后,将材料重新加热至较低温度并保温一段时间后进行缓慢冷却的过程。
这样可以降低材料的脆性,提高其韧性和强度。
2.5 沉淀硬化组织通过加热和保温处理,使材料中的溶质元素形成沉淀物,从而增强材料的硬度和强度。
以上是关于热处理工艺和获得的主要组织的介绍。
热处理工艺在材料加工和制造领域起着非常重要的作用,通过合理的热处理工艺可以使材料获得所需的性能,满足不同工程应用的要求。
3. 金相组织热处理工艺不仅可以对金属材料进行处理,对于一些金属合金材料也同样适用。
经过热处理后,材料的金相组织会得到改善,从而提高其硬度和耐磨性。
金相组织的改善可以使金属材料具备更广泛的应用范围,包括航空航天、汽车制造和机械制造等领域。
常见热处理工艺
常见热处理工艺
热处理是指通过加热、保温和冷却等工艺,改变金属材料的组织和性能。
在工业生产中,热处理是一种重要的工艺手段,可以使金属材料具有更好的力学性能、物理性能和化学性能。
常见的热处理工艺有退火、正火、淬火、回火等。
1. 退火
退火是指将金属材料加热到一定温度,然后缓慢冷却至室温。
退火可以改善金属的塑性、韧性和可加工性,同时对于去除应力和改善表面质量也有很好的效果。
2. 正火
正火是指将金属材料加热到一定温度,然后在空气中自然冷却。
正火可以提高金属的硬度和强度,同时提高金属的韧性和可焊性。
3. 淬火
淬火是指将金属材料加热到一定温度,然后迅速浸入水或者油中冷却。
淬火可以使金属的硬度和强度提高,但是会降低金属的韧性。
淬火常用于制造高强度、高硬度的零件。
4. 回火
回火是指将经过淬火处理的金属材料再次加热到一定温度,然后冷却。
回火可以改善金属的韧性和韧度,同时可以去除淬火时产生的残余应力。
除了以上四种热处理工艺,还有渗碳、氮化、钝化等特殊的热处理工艺。
渗碳是一种将碳元素渗透到表面的热处理工艺,可以提高金属表面的硬度和耐磨性;氮化是一种将氮元素渗透到表面的热处理工艺,可以提高金属表面的抗腐蚀性;钝化是一种将金属表面形成一层氧化膜的热处理工艺,可以提高金属的抗腐蚀性。
热处理是一种非常重要的工艺手段,可以对金属材料的性能进行改善和调整,因此在工业生产中得到了广泛的应用。
不同的热处理工艺可以适用于不同的金属材料和不同的工艺要求,需要根据具体情况进行选择和应用。
热处理工艺介绍
热处理工艺介绍关键信息项:1、热处理工艺的类型2、热处理的目的3、适用的材料4、处理过程中的温度控制5、保温时间6、冷却方式7、设备要求8、质量检测标准9、安全注意事项11 热处理工艺的类型111 退火退火是将金属材料加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。
其目的是降低材料的硬度,改善切削加工性能,消除残余应力,均匀化学成分等。
112 正火正火是将钢件加热到临界温度以上 30 50℃,保温适当时间后,在空气中冷却的热处理工艺。
正火的作用与退火相似,但冷却速度稍快,得到的组织较细,强度和硬度稍高。
113 淬火淬火是将钢件加热到临界温度以上,保温一段时间,然后在水、油或其他介质中快速冷却,以获得高硬度和高强度的马氏体组织。
114 回火淬火后的钢件内部存在很大的内应力和脆性,回火则是将淬火后的钢件重新加热到一定温度,保温一定时间,然后冷却。
回火可以降低钢件的脆性,调整硬度,提高韧性和塑性。
115 调质处理调质处理是淬火加高温回火的综合热处理工艺,可获得良好的综合力学性能。
12 热处理的目的121 改善材料的力学性能通过改变材料的组织结构,提高强度、硬度、韧性、耐磨性等力学性能,满足不同工作条件下的使用要求。
122 消除残余应力加工过程中产生的残余应力可能导致材料变形、开裂等问题,热处理可以有效消除残余应力,提高材料的尺寸稳定性和可靠性。
如退火可以降低材料的硬度,便于切削、冲压等加工操作。
124 提高材料的耐腐蚀性能适当的热处理工艺可以改善材料的表面组织结构,增强其耐腐蚀能力。
13 适用的材料131 钢铁材料包括碳素钢、合金钢、工具钢等,不同类型的钢铁材料需要根据其成分和性能要求选择合适的热处理工艺。
132 有色金属材料如铝合金、铜合金等,也可以通过热处理来改善其性能。
133 其他材料如一些特殊的陶瓷材料、复合材料等,在特定情况下也可能需要进行热处理。
14 处理过程中的温度控制141 加热温度的确定根据材料的成分、相变点和性能要求,精确确定加热温度是热处理成功的关键。
常见的热处理工艺
常见的热处理工艺热处理是指通过控制材料的加热和冷却过程来改变材料的内部结构和性能的一种加工工艺。
常见的热处理工艺主要包括退火、正火、淬火、回火和固溶处理等。
下面我将对这些常见的热处理工艺进行详细介绍。
退火是指将金属材料加热到一定温度,然后缓慢冷却的过程。
退火可以消除金属材料的残余应力,改善其机械性能,提高材料的塑性和韧性。
退火分为完全退火和球化退火两种。
完全退火是将材料加热到足够高的温度,使晶界和晶内析出的金属元素重新溶解,并进行充分的扩散。
球化退火主要用于冷加工后的金属材料,通过加热使其再结晶,形成均匀的晶粒。
正火是指将材料加热到一定温度,保持一段时间后进行冷却的过程。
正火主要用于提高材料的硬度和强度。
正火时,材料在加热过程中经历初生组织→渗碳组织→奥氏体组织→混合组织→马氏体组织的相变过程。
淬火是将材料加热到临界温度,然后迅速冷却的过程。
淬火可以使材料快速从奥氏体组织转变为马氏体组织,从而增加材料的硬度和脆性。
淬火的制冷介质通常有水、油和气体等。
不同的制冷介质对材料的淬透性和硬化效果有一定影响。
回火是在淬火后将材料加热到较低的温度,保持一段时间后进行冷却的过程。
回火可以消除淬火过程中产生的残余应力,提高材料的韧性。
回火的温度和时间需要根据具体材料和要求进行调整。
固溶处理是将合金材料加热到高温,溶解固体溶质,并进行充分的扩散。
固溶处理可以提高合金材料的强度和耐腐蚀性能。
常见的固溶处理有两种方式,一种是单相固溶处理,即将合金材料加热到固溶温度,保持一段时间后冷却;另一种是多相固溶处理,即先将合金材料加热到固溶温度,再进行相变,最后冷却。
除了上述常见的热处理工艺,还有一些其他的热处理工艺,如低温处理、震荡淬火、等离子体渗碳等。
这些热处理工艺在特定的领域和工艺要求下应用较多。
总之,热处理是一种常见的金属材料加工工艺,通过加热和冷却过程来改善材料的性能。
不同的热处理工艺可以使材料具有不同的组织和性能,从而满足不同的工程和使用要求。
热处理工艺介绍课件
高强度钢是一种广泛应用于建筑、桥梁、航空航天等领域的重要材料,其制造过程中需要进行热处理工艺。通过研究高强度钢的热处理工艺,可以提高其强度、韧性和抗疲劳性能,从而满足各种工程应用的需求。
在研究高强度钢的热处理工艺时,需要进行实验研究和理论分析,以确定最优的热处理工艺参数。同时,还需要进行生产成本的评估和环保性能的评估,以确定最优的热处理工艺方案。
热处理工艺介绍课件
目录
热处理工艺概述热处理工艺基本原理常见热处理工艺介绍热处理工艺参数控制热处理工艺对性能的影响热处理工艺应用案例分析
01
CHAPTER
热处理工艺概述
回火
分类
根据加热和冷却方式的不同,热处理可分为以下几类
正火
加热至一定温度后,保温一段时间,然后快速冷却至室温。
淬火
加热至一定温度后,保温一段时间,然后快速冷却至室温,最后进行回火处理。
06
CHAPTER
热处理工艺应用案例分析
汽车零件的制造过程中,热处理工艺是非常关键的一环。通过优化热处理工艺,可以提高汽车零件的强度、硬度、耐磨性和抗疲劳性能,从而提高汽车的整体性能和使用寿命。
在优化热处理工艺的过程中,需要考虑的因素包括:加热温度、保温时间、冷却速度和淬火介质等。同时,还需要进行生产成本的评估和环保性能的评估,以确定最优的热处理工艺方案。
定义
目的
方法
消除金属中的内应力,提高金属的塑性和韧性,为后续的加工或热处理工艺做好准备。
空气退火、炉内退火、等温退火等。
03
02
01
淬火是一种将金属加热到临界温度以上,保温一段时间,然后迅速冷却的一种工艺方法。
定义
提高金属的硬度、强度和耐磨性。
目的
热处理工艺介绍范文
热处理工艺介绍范文热处理是一种通过控制材料加热和冷却过程来改变材料的组织结构和性能的工艺。
它主要用于增强材料的硬度、强度和耐磨性,改善材料的延展性和可塑性,消除材料的应力和裂纹,并改善材料的耐腐蚀性能。
下面将介绍一些常见的热处理工艺。
1. 淬火(Quenching):淬火是将材料加热到临界温度以上,然后迅速冷却,通常是通过浸泡在水、油或其他淬火介质中。
这个过程引起了材料的马氏体相变,使材料的硬度和强度大大增加。
淬火可用于低碳钢、合金钢和不锈钢等材料的处理。
2. 回火(Tempering):回火是将淬火后的材料加热到较低的温度,然后迅速冷却。
这个过程用于减轻淬火过程中产生的应力和脆性,并提高材料的韧性。
回火可用于淬火过的高碳钢、合金钢和粉末冶金材料等。
3. 灭火(Annealing):灭火是将材料加热到较高的温度,然后缓慢冷却,以改变材料的组织结构和性能。
灭火可用于消除材料的应力和裂纹,并改善材料的可塑性和延展性。
灭火可用于低碳钢、不锈钢和铝合金等。
4. 固溶处理(Solution Treatment):固溶处理是将合金材料加热到固溶温度以上,然后迅速冷却。
这个过程用于将固溶体形成固溶体溶解,从而提高材料的硬度和强度。
固溶处理可用于铝合金、镁合金和钛合金等。
5. 预应力(Pre-stressing):预应力是将材料加热到较高温度,然后通过施加外力,使材料发生塑性变形。
这个过程用于消除材料的应力和裂纹,并提高材料的延展性和可塑性。
预应力可用于钢材、铝材和钛材等。
6. 零件退火(Stress Relieving):零件退火是将整个零件加热到较高温度,然后缓慢冷却,以消除材料的内部应力和剩余应力。
这个过程用于减轻材料的变形和疲劳。
零件退火可用于铸造零件、锻造零件和焊接零件等。
7. 焊接热处理(Welding Heat Treatment):焊接热处理是对焊接接头进行热处理,以改善焊接接头的组织结构和性能。
热处理知识及工艺介绍
1. 正火normalizing:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。 2. 退火annealing:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺 3. 淬火quenching:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺 4. 回火tempering:将经过淬火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺
相区
(1)单相区 简化的Fe- Fe3C相图中有F、A、L和Fe3C 四个单相区。 (2)两相区 简化的Fe- Fe3C相图中有五个两相区,即 L+A两相区、L+Fe3C两相区、A+Fe3C两相区、A+F两相 区和F+ Fe3C两相区。 每个两相区都与相应的两个单相区相邻;两条三相共存线, 即共晶线ECF,L、A和Fe3C三相共存,共析线PSK,A、F 和Fe3C三相共存。
4)合金工具钢
(1)低合金刃具钢 车、铣、铰刀等 性能要求: 回火稳定性 a) 硬度和耐磨性;b)强度和韧性;c)红硬性 ;d)工艺性 (2)高速钢 淬透性好,红硬性高,小截面刀具空气中能淬透 典型牌号: W18Cr4V (3)模具钢 a)冷作模具钢 b)热作模具钢 P70性能 (4)量具钢 多选用碳素工具钢、低合金工具钢(9SiCr、CrMn)、轴承钢(GCr15)制作
3、奥氏体的形成速度
43
(1)温度:加热温度越高,晶粒越大; (2)合金成分: ① 碳含量增高,晶粒长大倾向增大,残余渗碳体增加,则倾向减小; ② 形成碳化物、氮化物、氧化物的元素增加,则阻碍晶粒长大; ③ 锰、磷元素增加,晶粒增大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
渗碳钢的特点
• 渗碳钢的工作条件及对性能的要求 渗碳钢常用在受冲击和磨损条件下工作的一些机械零件, 如汽车、拖拉机上的变速齿轮、内燃机上的凸轮、活塞销等, 要求表面硬、耐磨,而零件心部则要求有较高的韧性和强度 以承受冲击。通常尺寸小的、受力小的,采用低碳钢,而尺 寸大的、受力大的则采用低碳合金钢。 • 为什么渗碳钢一般都采用低碳钢? 为什么渗碳钢一般都采用低碳钢? 为了满足“外硬内韧”的要求,这类钢一般含碳量为 0.1~0.25%,经过滲碳后,零件的表面变为高碳的,而心部 仍是低碳的,通过淬火+低温回火后使用。零件表面组织为 回火马氏体+碳化物+少量残余奥氏体,硬度达HRC58~62, 满足耐磨的要求,而心部的组织是低碳马氏体,保持较高的 韧性,满足承受冲击载荷的要求。
钢的化学热处理(渗碳)简述
• 基本概念 渗碳就是将钢置于富碳介质中加热,保温足够长的时间,使 活性碳原子渗入工件表层,提高表层碳浓度的过程。渗碳后 经过淬火与低温回火,可以改善表层及心部组织,提高表面 硬度及耐磨性,增加钢的疲劳强度。 • 对渗碳(淬火)的技术要求 对渗碳(淬火)的技术要求: • 表面碳浓度——通常0.85~1.05%。 表面碳浓度 通常0.85~1.05%。 • 渗碳层深度——根据工件的尺寸,工作条件和渗碳钢的化学 成分等决定。 • 碳浓度梯度——含碳量沿渗层下降的状况。 • 渗层组织及状态——马氏体的粗细,碳化物的大小、形状、 数量和分布,残余奥氏体的数量。 • 零件表面的物理、化学和力学性能——硬度、强度、韧性等。 • 渗碳根据介质的状态分为固体渗碳、液体渗碳和气体渗碳三 渗碳根据介质的状态分为固体渗碳、 目前广泛应用的是气体渗碳。 种,目前广泛应用的是气体渗碳。
合金元素在材料中的主要作用
• C:是组成钢的基本元素,它可以提高钢材的强度和硬度; • Cr:能够提高钢材的耐磨性和耐锈蚀性能和强度,提高钢材 的淬透性(即淬硬深度),促进渗碳。 • Mn:提高钢的强度、硬度和耐磨性,提高钢材的淬透性,但 含锰较高时,有较明显的回火脆性,有促进晶粒长大的作用, 因其价格便宜,在我国钢材中具有极为广泛的应用。 • Ti:阻止奥氏体晶粒长大,细化晶粒。 • Mo:提高钢材淬透性,在增加淬硬层深度方面为各元素之首, 可以防止钢材在高温加热时的晶粒长大,增加高温抗拉强度 和提高蠕变强度。 • Ni:提高钢的冲击韧度和淬透性,尤其低温抗冲击性,提高 钢材耐腐蚀性,它与Cr 配合使用性能更好。 • Si:能提高钢的强度、疲劳极限、耐腐蚀性及抗氧化性。
热处理基础
• 前言 在机床制造中约60%~70%的零件要经过热处理 在汽车、拖拉机制造中,需要热处理的零件多达70%~80%, 工模具及滚动轴承,则要100%进行热处理。 • 热处理工艺中有三大基本要素: 热处理工艺中有三大基本要素 1. 加热 2. 保温 3. 冷却 • 热处理基本工艺方法 1. 退火 2. 正火 3. 淬火 4. 回火 5. 化学热处理
渗碳的方法
1.一段渗碳法 在渗碳和扩散阶段使炉内的碳势始终控制在等于零件预定要求的表面碳 浓度,这种方法操作简单但生产周期长。 2.分段渗碳法 使零件在高碳势下渗碳、在低碳势下扩散。 在强渗阶段采用强渗碳剂使炉内碳势远超过预定的表层碳浓度。在此高 碳势下让钢的表面强烈增碳,造成很高的碳浓度梯度增加碳原子的扩散 速度,从而加速渗碳过程的进行。渗碳阶段结束时钢的表层具有超出预 定的碳含量、低的渗层深度和高的碳浓度梯度。 在扩散阶段把炉内碳势控制设定在预定的表层碳浓度,此时炉内碳势对 钢的表层碳浓度而言是脱碳气氛,因此表层碳原子一方面由表面向内扩 散,由于碳浓度梯度大扩散速率高。另一方面是离开表面脱溶入渗碳气 氛中,扩散的结果是表层碳浓度降低、渗碳层增加以及碳浓度梯度的降低。 扩散期的长短取决于零件的渗碳层要求。
5.渗入原子的扩散 钢件表面吸收活性碳原子后,其表面渗入的碳原子的浓度大大提高, 表面与里层之间产生了浓度差。在高温下,碳原子沿着浓度梯度下 降的方向作定向移动,从而形成一定厚度的渗层。 碳原子扩散的驱动力是钢件表面与心部之间的浓度差。
渗碳温度的选择
• 由于碳在铁素体中的溶解度极小(约为0.025%)而在奥氏体 中溶解度却很大(最高为2.0%),所以渗碳必须在AC3以上 的温度,使钢件在奥氏体状态下进行。 渗碳温度越高,碳的扩散速度越快有利于快速渗碳提高生 产效率,但渗碳温度过高以后设备的使用成碳化物 等缺陷。 因此渗碳温度的范围一般在850℃-950℃ 因此渗碳温度的范围一般在 ℃ ℃ 对于大模数渗碳层要求深的零件渗碳温度取上限。 对于小模数渗碳层要求浅、热处理变形要求高的零件渗碳 温度取下限。
钢的预备热处理(正火) 钢的预备热处理(正火)
• 锻打后的毛坯以及直接下料的棒料带有锻造、轧制的组织 缺陷、硬度也不符合机械加工的要求,因此必须通过正火 来改变这些缺陷。 • 正火是将钢材或钢件加热到临界温度以上,保温后空冷的 热处理工艺。 • 正火(退火)的目的 正火(退火)的目的: 1、降低硬度,便于切削加工。 2、提高钢的塑性和韧性,以便于冷变形加工。 3、消除锻件的组织缺陷。 4、细化晶粒,改善组织,为最终热处理做准备。 5、消除应力,防止畸变和开裂。
钢材简介
通常所指的钢铁材料是钢和铸铁的总称,指所有的铁碳合金。 • 碳素钢(简称碳钢)是含碳量大于0.0218%而小于2.11%的铁碳合金。 • 合金钢是在碳钢的基础上,添加某些合金元素,用以保证一定的生产和 加工工艺以及所要求的组织与性能的铁基合金。 • 按钢材的化学成分可分为碳素钢和合金钢两大类。 • 碳素钢(简称碳钢)是含碳量大于0.0218%而小于2.11%的铁碳合金。 1. 低碳钢(C%≤0.25%) 2. 中碳钢(C%=0.25%~0.60%) 3. 高碳钢(C%>0.6%) • 合金钢是在碳钢的基础上,添加某些合金元素,用以保证一定的生产和 加工工艺以及所要求的组织与性能的铁基合金。 1. 低合金钢(合金元素总量<5%) 2. 中合金钢(合金元素总量为5~10%) 3. 高合金钢(合金元素总量>10%)
气体渗碳的基本过程
• 气体渗碳可分为五个基本过程
1.渗碳介质的分解 渗碳介质在高温下进行分解反应,析出活性碳原子以保证炉内气氛具有一 定的碳势。例如醋酸乙酯的热分解反应: CH3COOC2H5→2〔C〕+2CO+4H2 式中 〔C〕表示是活性碳原子,它是以原子状态存在的碳。只有它才会被 钢件表面吸收,但它们又极不稳定,当未被钢件吸收时,就会形成稳定的 分子状态的碳,即碳黑。热处理炉之所以需要烧碳黑原因就在于此。
正火工艺简介
• 正火工艺的特点 • 加热温度一般在AC3以上 • 保温时间足够长 根据毛坯的大小和炉子的加热能力来制订保温时间 • 冷却速度一般较慢 可根据零件的硬度要求制订冷却速度(一般是风冷)。 • 几种钢材常见的正火温度 20CrMnTi(H)的加热温度为960℃左右; 20CrMoH、8620H的加热温度为940℃左右.
正火检验
• 组织检验 组织检验: 金相组织应是细片状珠光体,不允许出现粒状贝氏体,规定 1~3级属合格。 • 带状检验 带状检验: 根据带状组织的形态分级,不允许出现连续的带状组织,3 级以下属合格。 • 硬度检验 硬度检验: 采用布氏硬度计检验。我公司采用的是φ10mm直径的钢球, 用3000公斤力,在10秒中保持时间内压入毛坯表面,然后检 查压痕直径的检验办法。表示方法HB 10/3000/10207。
2.气体向钢件表面的对流 炉内气氛中的渗碳成分(如CO、CH4等)不断流向钢件表面,经过吸收 活性碳原子后剩下的脱碳性气体(包括CO2、H2O等)应及时离开钢件表 面,为此应不断添加渗碳剂并要求有足够的流速或足够的换气次数。炉内 应设置循环风扇,保证气体向钢件表面的对流。
渗碳的基本过程
3.活性碳原子向钢件表面迁移 4.钢件表面吸收碳 首先要求钢件表面洁净,另外要控制渗碳剂的分解和钢件表面对碳的吸 收两个阶段,使之在速度上恰当配合,一方面如果分解速度小于吸 收速度就会减缓渗碳速度。另一方面钢件表面对渗碳剂的分解有催 化作用。若分解速度大于吸收速度则容易在钢件上沉积碳黑。
材料检验
• 鉴定钢材的冶金质量,通常采用化学分析、低倍(或称 宏观)分析、高倍分析、断口分析等四个方面。 1、化学分析 化学分析: 化学分析 分析钢材化学成分,即各元素含量。 2、低倍(8倍)分析 低倍( 分析: 低倍 检查钢材疏松(组织不致密性)、缩孔残余、偏析、气泡、 发纹(裂纹)、夹杂、白点。 3、高倍(400倍)分析 高倍( 高倍 400倍 分析: 检查钢材带状组织、液析、非金属夹杂。 4、断口分析 断口分析: 断口分析 分为脆性断口(淬火断口)、韧性断口(调质断口)。
W2:钢箔渗碳后的重量 W1:钢箔渗碳前的重量 Co:钢箔的原始含碳量
渗碳剂介绍
1、井式气体渗碳炉所用介质是煤油,煤油是分子中含有11~17个碳 原子的多种烃类的混合物。850℃以下裂解不充分,低分子烃较 多,易产生碳黑和结焦。由于成分不固定,不能作为自动控制的 介质使用。 2、多用炉渗碳介质是甲醇(CH3OH)、醋酸乙酯(CH3COOC2H5)、 丙酮(CH3COCH3 ) 。甲醇作为稀释剂,醋酸乙酯或丙酮作为渗 碳剂。 • 以甲醇+醋酸乙酯介绍: 甲醇的分解 CH3OH CO+2H2 醋酸乙酯的分解 CH3COOC2H5 2〔C〕+4H2+2CO • 以丙酮+空气介绍 丙酮的分解 CH3COCH3 2〔C〕+3H2+CO • 渗碳反应 方程式 2CO CO2+〔C〕 CH4 2H2+ 〔C〕
铁碳合金相图
铁碳合金相图
• 铁碳合金中的基本相 铁碳合金相图实际上是Fe-Fe3C相图 相图,铁碳合金的基本 相图 组元也应该是纯铁和Fe3C。铁存在着同素异晶转变,即 在固态下有不同的结构。不同结构的铁与碳可以形成不同 的固溶体,Fe—Fe3C相图上的固溶体都是间隙固溶体。 由于α-Fe和γ-Fe晶格中的孔隙特点不同,因而两者的溶碳 能力也不同。 • 1.铁素体 铁素体 碳溶于α-Fe 中形成的间隙固溶体 2.奥氏体 奥氏体 碳溶于γ-Fe中形成的间隙固溶体 3.渗碳体 渗碳体 铁和碳形成的化合物