2019-2020学年唐山市高三摸底考试数学数学试题及答案A卷
2021高考数学(新高考版)一轮复习考点考法精练:第九章 第三讲 椭 圆 Word版含解析
析姓名,年级:时间:析第三讲 椭 圆1。
[2020湖南岳阳入学调研考试]已知定点M (1,0)和椭圆x 29+y 23=1上两个动点P ,Q 满足MP ⊥MQ ,则MP⃗⃗⃗⃗⃗⃗ ·QP ⃗⃗⃗⃗⃗ 取得最小值时点P 的横坐标为 ( )A 。
12B 。
1 C.32 D.522。
[2020安徽省示范高中名校联考]已知椭圆C :x 2a 2+y2b 2=1(a 〉b >0),F 1,F 2分别为其左、右焦点,|F 1F 2|=2√2,B 为短轴的一个端点,三角形BF 1O (O 为坐标原点)的面积为√7,则椭圆的长轴长为( )A 。
4B 。
8C 。
1+√332D 。
1+√333。
[2020陕西省部分学校摸底检测]已知F 1,F 2分别为椭圆x 2a 2+y 2b 2=1(a 〉b >0)的左、右焦点,点P 是椭圆上位于第一象限的点,延长PF 2交椭圆于点Q ,若PF 1⊥PQ ,且|PF 1|=|PQ |,则椭圆的离心率为( )A.2—√2B.√3-√2C.√2-1D.√6−√34.[2020福建省三明市模拟]已知P 是椭圆x 225+y 29=1上一点,F 1,F 2分别为椭圆的左、右焦点,且∠F 1PF 2=60°,则△F 1PF 2面积为( )A 。
3√3 B.2√3 C.√3 D.√335.[2019唐山市高三摸底考试]已知椭圆C :x 2a 2+y 2b 2=1(a 〉b >0)和双曲线E :x 2-y 2=1有相同的焦点F 1,F 2,且椭圆C 与双曲线E 的离心率之积为1,P 为两曲线的一个交点,则△F 1PF 2为 ( )A.锐角三角形B.直角三角形 C 。
钝角三角形 D 。
不能确定6.[2020洛阳市第一次联考]已知椭圆C 1:x 2a 12+y 2b12=1(a 1>b 1〉0)与双曲线C 2:x 2a 22−y 2b 22=1(a 2>0,b 2>0)有相同的焦点F 1,F 2,点P 是曲线C 1与C 2的一个公共点,e 1,e 2分别是C 1和C 2的离心率,若PF 1⊥PF 2,则4e 12+e 22的最小值为 .7。
2019年9月河北省唐山市2019~2020学年度高2020届高2017级高三年级摸底考试理科数学试题参考答案
=P (CA1)P (CB1)+P (CA1)P (CB2)+P (CA2)P (CB2).
|FA|+|FB|=x421+1+x422+1 =(x1+x2)42-2x1x2+2.
…4 分
当 k=1 时,由①②得|FA|+|FB|=10
…5 分
( ) ( ) (2)由题意可知,→ FA = x1,x421-1 ,→ FB = x2,x422-1 ,→ FC =(-3,-3).
由→ → PPCB ··nn==00,,得ya-x+z=y-0,z=0,取 n=(0,1,1).
…7 分
y D
C
O
x
A
B
又因为 0<A<π,所以 sin A≠0,
直线 BD 与平面 PBC 所成的角为 30,得
因此 b=3ccos A.
(2)因为
tan A=2,所以
cos A=
5 5
P (C)=280×1200+280×230+1210×230=143070.
…12 分
|→ → FFAA ·||→ → FFCC |=|→ → FFBB ·||→ → FFCC |,整理得 4+2(x1+x2)-x1x2=0,
解得
k=-
3 2
,
所以,直线 l 的方程为 3x+2y-4=0.
…11 分 …12 分
∴PA∥平面 BED.
…4 分
(2)以 D 为坐标原点,DA,DC,DP 所在直线分别为 x 轴,
y 轴,z 轴,建立空间直角坐标系 D-xyz,设 PD=CD=1,
z P
E
二.填空题: (13)0
三.解答题:
(14) 32
( ] (15)
9 8
,183
河北省唐山市2019—2020学年度高三年级第一次模拟考试数学(文科)参考答案
(2)设 A(2cosα,2+2sin α),0<α<2π,则 B(2,2+2sin α).
所以 S=2(1-cosα)(1+sin α)
=2sinα-2cosα-2cosαsin α+2
=(sin α-cos α)2+2(sin α-cos α)+1
=(sin α-cos α+1)2
=[
( ) ] 2sin
…10 分
高三文科数学参考答案第 4 页
1 a
=1-a12.
由(1)得,
当
0<a<1
时,f
(a)<0,f
(
1 a
)<0,
所以
f
( x)仅在(
1 a
,+∞)上有一个零点,
因此 0<a<1 时成立.
当 a=1 时,f (1)=0,所以 f (x)在 R 上仅有一个零点 1.
当 a>1 时,f (a1)>0,所以要满足题设须有 f (a)>0,
当 a>1 时,a>1a,
Q M P x
…12 分 …2 分
高三文科数学参考答案第 2 页
所以 x<a1或 x>a 时,f '(x)>0,
从而 f (x)在(-∞,1a),(a,+∞)上单调递增;
当1a<x<a 时,f '(x)<0,
从而 f (x)在(1a,a)上单调递减.
( ) (2)f (a)=-a4+3a2-2=(a2-1)(2-a2);f
{ } 所以 f (x)>1 的解集为 x|23<x<2 .
(2)存在.
高三文科数学参考答案第 3 页
…8 分
…12 分 …4 分 …10 分 …4 分
若 a>-1,则 f (x)=x3-x+a-a-3,3,x-<a-≤ax,≤1, -x+a+1,x>1.
高考数学之三角函数压轴小题的解法
教海探索摘要:纵观这几年的高考数学题目,经常在三角函数这块出一些比较难的压轴小题,这类题目深度考查三角函数的图象与性质,然而学生对于这类压轴小题的得分却很低,所以本文详细介绍这一类三角函数压轴小题的解法,旨在帮助学生攻克这类三角函数压轴小题。
关键词:三角函数;压轴小题;取值范围;整体换元本文中笔者将讲解这类压轴小题的具体考法以及“正面解法”,正面解法是指在小题里,特别是选择题里,不采用特值检验选项的方法,完全依据题目给的条件推出正确选项.在平时做练习题的时候,训练正面解法有助于提升我们的数学思维,加深对三角函数图象与性质的理解。
一、从单调性方面考查w 的取值范围这种题目会给出正余弦型函数在某区间上是单调递增或单调递减或者直接说是单调的,只要题目中提到正余弦型函数在某区间上是单调的,那这个单调区间的长度一定小于等于T2(T 是正余弦型函数的最小正周期),这时再结合最小正周期公式T =2πw,可以初步确定w 的一个大范围。
确定了w 的一个大范围,接下来我们用整体换元法来推出w 的具体范围:题目中给出了单调区间,等于给出了x 的范围,我们可以推出wx +φ的范围,这时我们将wx +φ视为一个整体,令t =wx +φ,此时正余弦型函数就变成了我们熟悉的正余弦函数。
这时我们一定要明白wx +φ的范围是由题目中给的单调区间推过来的,而正余弦函数的单调区间公式是一个总的单调区间。
所以wx +φ的范围一定是包含于(⊆)正余弦函数的单调区间公式,这时就可以解出w 的范围,再联立一开始利用单调区间的长度一定小于等于T2求得的w 的大范围,从而求出w的具体范围。
接下来以一道高考题为例:2012年高考新课标卷理科第9题:已知w >0,函数f (x )=sin(wx +π4)在区间(π2,π)上单调递减,求w 的取值范围。
解析:在(π2,π)上单调递减,可以得出π-π2≤T2,结合最小正周期公式T =2πw ,可以得出π2≤πw 。
2019-2020学年河北省唐山市高三9月摸底考试数学(理)试题
2019-2020学年河北省唐山市高三9月摸底考试数学(理)试题2019-2020学年河北省唐山市高三9月摸底考试数学(理)试题一、选择题(每小题5分,共12小题,共60分)1.若集合A、B、C、D满足A∩B=C∩D,则D为()。
A。
A∪B。
B。
A∩D。
C。
B∩D。
D。
A∪C2.设命题:p:∣x∣>1,q:x2>1,则下列命题的否定命题是()。
A。
p∨q。
B。
p∧q。
C。
¬p∧¬q。
D。
¬p∨¬q3.已知∠A、∠B、∠C的内角和为180°,且∠A的对边为a,∠B的对边为b,∠C的对边为c,则()。
A。
ab>c。
C。
ac。
D。
a>b<c4.已知△ABC中,∠B=120°,AB=√3,BC=1,则AC=()。
A。
1.B。
√3.C。
2.D。
2√35.已知函数f(x)=x3+3x2-3x-5,则f(-2)的值为()。
A。
1.B。
-1.C。
0.D。
26.在平面直角坐标系中,直线2x-y+1=0与x轴的交点为A,与y轴的交点为B,则点P(1,2)关于直线AB的对称点为()。
A。
(-1,0)。
B。
(-1,2)。
C。
(1,0)。
D。
(3,2)7.函数y=2x-3在直线x=k上的截距为5,则k的值为()。
A。
-1.B。
1.C。
2.D。
38.已知两个单位向量的夹角为60°,则下列向量是单位向量的是()。
A。
(1/2,√3/2)。
B。
(-1/2,√3/2)。
C。
(1/2,-√3/2)。
D。
(-1/2,-√3/2)9.已知函数f(x)=x3-3x,则f(x)在x=1处的切线斜率为()。
A。
2.B。
3.C。
1.D。
-310.已知函数f(x)=xlnx,在(1,∞)上单调递增,其图象关于直线y=x对称,则“f(x)在x=1处有极值”是“f'(x)在(0,1)上存在间断点”的()。
A。
充要条件。
B。
必要不充分条件。
C。
河北省唐山市2019-2020学年高考数学三模考试卷含解析
河北省唐山市2019-2020学年高考数学三模考试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.定义域为R 的偶函数()f x 满足任意x ∈R ,有(2)()(1)f x f x f +=-,且当[2,3]x ∈时,2()21218f x x x =-+-.若函数()log (1)a y f x x =-+至少有三个零点,则a 的取值范围是( )A .0,2⎛ ⎝⎭B .⎛ ⎝⎭C .⎛ ⎝⎭D .⎛ ⎝⎭【答案】B 【解析】 【分析】由题意可得()f x 的周期为2,当[2,3]x ∈时,2()21218f x x x =-+-,令()log (1)a g x x =+,则()f x 的图像和()g x 的图像至少有3个交点,画出图像,数形结合,根据(2)(2)g f >,求得a 的取值范围. 【详解】()f x 是定义域为R 的偶函数,满足任意x ∈R ,(2)()(1)f x f x f +=-,令1,(1)(1)(1)x f f f =-=--,又(1)(1),(1))(2)(0,f f x f x f f -=∴+==,()f x ∴为周期为2的偶函数,当[2,3]x ∈时,22()212182(3)f x x x x =-+-=--,当2[0,1],2[2,3],()(2)2(1)x x f x f x x ∈+∈=+=--, 当2[1,0],[0,1],()()2(1)x x f x f x x ∈--∈=-=-+, 作出(),()f x g x 图像,如下图所示:函数()log (1)a y f x x =-+至少有三个零点, 则()f x 的图像和()g x 的图像至少有3个交点,()0f x ≤Q ,若1a >,()f x 的图像和()g x 的图像只有1个交点,不合题意,所以01a <<,()f x 的图像和()g x 的图像至少有3个交点, 则有(2)(2)g f >,即log (21)(2)2,log 32a a f +>=-∴>-,221133,,01,033a a a a ∴><<<∴<<Q . 故选:B.【点睛】本题考查函数周期性及其应用,解题过程中用到了数形结合方法,这也是高考常考的热点问题,属于中档题.2.设双曲线22221y x a b-=(0a >,0b >)的一条渐近线与抛物线213y x =+有且只有一个公共点,且椭圆22221x y a b+=的焦距为2,则双曲线的标准方程为( ) A .22143x y -= B .22143y x -=C .22123x y -=D .22132y x -=【答案】B 【解析】 【分析】设双曲线的渐近线方程为y kx =,与抛物线方程联立,利用0∆=,求出k 的值,得到ab的值,求出,a b 关系,进而判断,a b 大小,结合椭圆22221x y a b+=的焦距为2,即可求出结论.【详解】设双曲线的渐近线方程为y kx =, 代入抛物线方程得2103x kx -+=, 依题意240,33k k ∆=-==, 33a ab b ∴==>,∴椭圆22221x y a b +=的焦距2222a b -=,22222411,3,433b b b b a -====, 双曲线的标准方程为22143y x -=.故选:B. 【点睛】本题考查椭圆和双曲线的标准方程、双曲线的简单几何性质,要注意双曲线焦点位置,属于中档题. 3.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表: 黄赤交角 2341︒'2357︒'2413︒'2428︒'2444︒'正切值 0.439 0.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( ) A .公元前2000年到公元元年 B .公元前4000年到公元前2000年 C .公元前6000年到公元前4000年 D .早于公元前6000年【答案】D 【解析】 【分析】先理解题意,然后根据题意建立平面几何图形,在利用三角函数的知识计算出冬至日光与春秋分日光的夹角,即黄赤交角,即可得到正确选项. 【详解】解:由题意,可设冬至日光与垂直线夹角为α,春秋分日光与垂直线夹角为β, 则αβ-即为冬至日光与春秋分日光的夹角,即黄赤交角,将图3近似画出如下平面几何图形:则16tan 1.610α==,169.4tan 0.6610β-==, tan tan 1.60.66tan()0.4571tan tan 1 1.60.66αβαβαβ---==≈++⨯g .0.4550.4570.461<<Q ,∴估计该骨笛的大致年代早于公元前6000年.故选:D . 【点睛】本题考查利用三角函数解决实际问题的能力,运用了两角和与差的正切公式,考查了转化思想,数学建模思想,以及数学运算能力,属中档题.4.若复数()()2a i 1i (i ++为虚数单位)在复平面内所对应的点在虚轴上,则实数a 为( ) A .2- B .2C .12-D .12【答案】D 【解析】 【分析】利用复数代数形式的乘除运算化简,再由实部为0求得a 值. 【详解】解:()()()()2a i 1i 2a 12a 1i ++=-++Q 在复平面内所对应的点在虚轴上,2a 10∴-=,即1a 2=. 故选D . 【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题. 5.已知y ax b =+与函数()2ln 5f x x =+和2()4g x x =+都相切,则不等式组3020x ay x by -+≥⎧⎨+-≥⎩所确定的平面区域在2222220x y x y ++--=内的面积为( ) A .2π B .3πC .6πD .12π【答案】B 【解析】【分析】根据直线y ax b =+与()f x 和()g x 都相切,求得,a b 的值,由此画出不等式组所表示的平面区域以及圆2222220x y x y ++--=,由此求得正确选项.【详解】()()''2,2f x g x x x==.设直线y ax b =+与()f x 相切于点()00,2ln 5A x x +,斜率为02x ,所以切线方程为()()00022ln 5y x x x x -+=-,化简得0022ln 3y x x x =++①.令()'022g x x x ==,解得01x x =,200114g x x ⎛⎫=+ ⎪⎝⎭,所以切线方程为20001214y x x x x ⎛⎫⎛⎫-+=- ⎪ ⎪⎝⎭⎝⎭,化简得200214y x x x =-+②.由①②对比系数得02012ln 34x x +=-+,化简得02012ln 10x x +-=③.构造函数()()212ln 10h x x x x =+->,()()()'3321122x x h x x x x+-=-=,所以()h x 在()0,1上递减,在()1,+∞上递增,所以()h x 在1x =处取得极小值也即是最小值,而()10h =,所以()0h x =有唯一解.也即方程③有唯一解01x =.所以切线方程为23y x =+.即2,3a b ==.不等式组3020x ay x by -+≥⎧⎨+-≥⎩即230320x y x y -+≥⎧⎨+-≥⎩,画出其对应的区域如下图所示.圆2222220x y x y ++--=可化为()()221124x y ++-=,圆心为()1,1A -.而方程组230320x y x y -+=⎧⎨+-=⎩的解也是11x y =-⎧⎨=⎩.画出图像如下图所示,不等式组230320x y x y -+≥⎧⎨+-≥⎩所确定的平面区域在2222220x y x y ++--=内的部分如下图阴影部分所示.直线230x y -+=的斜率为12,直线320x y +-=的斜率为13-.所以()tan tan BAC AED ADE ∠=∠+∠1123111123+==-⨯,所以4BAC π∠=,而圆A=,所以阴影部分的面积是(21324ππ⨯⨯=. 故选:B【点睛】本小题主要考查根据公共切线求参数,考查不等式组表示区域的画法,考查圆的方程,考查两条直线夹角的计算,考查扇形面积公式,考查数形结合的数学思想方法,考查分析思考与解决问题的能力,属于难题.6.已知平面向量a r ,b r满足()1,2a =-r ,()3,b t =-r ,且()a ab ⊥+r r r ,则b =r ( )A .3B .10C .23D .5【答案】B 【解析】 【分析】先求出a b +r r,再利用()0a a b ⋅+=r r r 求出t ,再求b r .【详解】解:()()()1,23,2,2t t a b -+-=-=-+r r由()a a b ⊥+r r r ,所以()0a a b ⋅+=r r r()()()12220t ⨯-+-⨯-=,1t =,()3,1b =-r,10=r b 故选:B 【点睛】考查向量的数量积及向量模的运算,是基础题. 7.命题“(0,1),ln x x e x -∀∈>”的否定是( ) A .(0,1),ln x x e x -∀∈≤ B .000(0,1),ln x x e x -∃∈> C .000(0,1),ln x x ex -∃∈<D .000(0,1),ln x x ex -∃∈≤【解析】 【分析】根据全称命题的否定是特称命题,对命题进行改写即可. 【详解】全称命题的否定是特称命题,所以命题“(0,1)x ∀∈,ln x e x ->”的否定是:0(0,1)x ∃∈,00ln x e x -≤.故选D . 【点睛】本题考查全称命题的否定,难度容易.8.已知函数()f x 是R 上的偶函数,且当[)0,x ∈+∞时,函数()f x 是单调递减函数,则()2log 5f ,31log 5f ⎛⎫ ⎪⎝⎭,()5log 3f 的大小关系是( )A .()()3521log log 3log 55f f f <<⎛⎫⎪⎝⎭B .()()3251log log 5log 35f f f <<⎛⎫⎪⎝⎭C .()()5321log 3log log 55f f f ⎪<⎛⎫⎝⎭< D .()()2351log 5log log 35f f f ⎪<⎛⎫⎝⎭< 【答案】D 【解析】 【分析】利用对数函数的单调性可得235log 5log 5log 3>>,再根据()f x 的单调性和奇偶性可得正确的选项. 【详解】因为33log 5log 31>=,5550log 1log 3log 51=<<=, 故35log 5log 30>>.又2233log 5log 42log 9log 50>==>>,故235log 5log 5log 3>>. 因为当[)0,x ∈+∞时,函数()f x 是单调递减函数, 所以()()()235log 5log 5log 3f f f <<. 因为()f x 为偶函数,故()()3331log log 5log 55f f f ⎛⎫== ⎪⎝⎭-, 所以()()2351log 5log log 35f f f ⎪<⎛⎫⎝⎭<. 故选:D.本题考查抽象函数的奇偶性、单调性以及对数函数的单调性在大小比较中的应用,比较大小时注意选择合适的中间数来传递不等关系,本题属于中档题.9.已知直线l :210y x =+过双曲线()222210,0x y a b a b-=>>的一个焦点且与其中一条渐近线平行,则双曲线的方程为( )A .221520x y -=B .221205x y -=C .221169x y -= D .221916x y -=【答案】A 【解析】 【分析】根据直线l :210y x =+过双曲线()222210,0x y a b a b-=>>的一个焦点,得5c =,又和其中一条渐近线平行,得到2b a =,再求双曲线方程. 【详解】因为直线l :210y x =+过双曲线()222210,0x y a b a b-=>>的一个焦点,所以()5,0F -,所以5c =, 又和其中一条渐近线平行, 所以2b a =,所以25a =,220b =,所以双曲线方程为221520x y -=.故选:A. 【点睛】本题主要考查双曲线的几何性质,还考查了运算求解的能力,属于基础题. 10.已知{}1A x x =<,{}21xB x =<,则A B =U ( ) A .()1,0- B .()0,1C .()1,-+∞D .(),1-∞【答案】D 【解析】 【分析】分别解出集合,A B 、然后求并集.解:{}{}111A x x x x =<=-<<,{}{}210xB x x x =<=<A B =U (),1-∞故选:D 【点睛】考查集合的并集运算,基础题.11.已知复数z 满足()1z i i =-,(i 为虚数单位),则z =( ) A .2 B .3C .2D .3【答案】A 【解析】()11z i i i =-=+,故2z =,故选A.12.如图,点E 是正方体ABCD-A 1B 1C 1D 1的棱DD 1的中点,点F ,M 分别在线段AC ,BD 1(不包含端点)上运动,则( )A .在点F 的运动过程中,存在EF//BC 1B .在点M 的运动过程中,不存在B 1M ⊥AEC .四面体EMAC 的体积为定值D .四面体FA 1C 1B 的体积不为定值 【答案】C 【解析】 【分析】采用逐一验证法,根据线线、线面之间的关系以及四面体的体积公式,可得结果. 【详解】 A 错误由EF ⊂平面AEC ,1BC //1AD 而1AD 与平面AEC 相交,故可知1BC 与平面AEC 相交,所以不存在EF//BC 1 B 错误,如图,作11B M BD ⊥由11,,AC BD AC BB BD BB B ⊥⊥⋂=又1,BD BB ⊂平面11BB D D ,所以AC ⊥平面11BB D D 又1B M ⊂平面11BB D D ,所以1B M AC ⊥ 由OE //1BD ,所以1B M OE ⊥AC OE O =I ,,AC OE ⊂平面AEC所以1B M ⊥平面AEC ,又AE ⊂平面AEC 所以1B M AE ⊥,所以存在 C 正确四面体EMAC 的体积为13M AEC AEC V S h -∆=⋅⋅ 其中h 为点M 到平面AEC 的距离,由OE //1BD ,OE ⊂平面AEC ,1BD ⊄平面AEC 所以1BD //平面AEC ,则点M 到平面AEC 的距离即点B 到平面AEC 的距离, 所以h 为定值,故四面体EMAC 的体积为定值D 错误由AC //11A C ,11A C ⊂平面11A C B ,AC ⊄平面11A C B 所以AC //平面11A C B ,则点F 到平面11A C B 的距离1h 即为点A 到平面11A C B 的距离, 所以1h 为定值所以四面体FA 1C 1B 的体积1111113F A C B A C B V S h -∆=⋅⋅为定值。
河北省唐山市2019-2020学年高考数学三模试卷含解析
河北省唐山市2019-2020学年高考数学三模试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数12z i =+,若复数12,z z 在复平面内对应的点关于虚轴对称,则12z z 等于( ) A .345i+-B .345i+ C .34i -+D .345i-+ 【答案】A 【解析】 【分析】先通过复数12,z z 在复平面内对应的点关于虚轴对称,得到22z i =-+,再利用复数的除法求解12z z . 【详解】因为复数12,z z 在复平面内对应的点关于虚轴对称,且复数12z i =+, 所以22z i =-+所以()()()122223422255+--+===---+-+--i i z i i z i i i 故选:A 【点睛】本题主要考查复数的基本运算和几何意义,属于基础题.2.已知函数()()3cos 0f x x x ωωω+>,对任意的1x ,2x ,当()()1212f x f x =-时,12min 2x x π-=,则下列判断正确的是( )A .16f π⎛⎫=⎪⎝⎭ B .函数()f x 在,62ππ⎛⎫⎪⎝⎭上递增 C .函数()f x 的一条对称轴是76x π= D .函数()f x 的一个对称中心是,03π⎛⎫⎪⎝⎭【答案】D 【解析】 【分析】利用辅助角公式将正弦函数化简,然后通过题目已知条件求出函数的周期T ,从而得到ω,即可求出解析式,然后利用函数的性质即可判断. 【详解】Q ()3sin 3cos 23sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,又sin 13x πω⎛⎫-≤+≤ ⎪⎝⎭Q ,即2323sin 233x πω⎛⎫-≤+≤ ⎪⎝⎭, ∴有且仅有232312-⨯=-满足条件;又12min2x x π-=,则22T T ππ=⇒=, 22T πω∴==,∴函数()23sin 23f x x π⎛⎫=+ ⎪⎝⎭,对于A ,223sin 363f ππ⎛⎫== ⎪⎝⎭,故A 错误; 对于B ,由()222232k x k k Z πππππ-+≤+≤+∈,解得()51212k x k k Z ππππ-+≤≤+∈,故B 错误; 对于C ,当76x π=时,77223sin 23sin 6333f ππππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,故C 错误; 对于D ,由223sin 0333f πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,故D 正确. 故选:D 【点睛】本题考查了简单三角恒等变换以及三角函数的性质,熟记性质是解题的关键,属于基础题.3.将一张边长为12cm 的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是( )A 33263cm B 36463cm C 33223cm D 36423cm 【答案】B 【解析】设折成的四棱锥的底面边长为a ,高为h ,则32h a =,故由题设可得12124222a a a +=⨯⇒=所以四棱锥的体积2313646=(42)42323V cm ⨯⨯=,应选答案B . 4.已知双曲线2222:1(0,0)x y C a b a b-=>>的焦距为2c ,过左焦点1F 作斜率为1的直线交双曲线C 的右支于点P ,若线段1PF 的中点在圆222:O x y c +=上,则该双曲线的离心率为( ) A .2 B .22 C .21+ D .221+【答案】C 【解析】 【分析】设线段1PF 的中点为A ,判断出A 点的位置,结合双曲线的定义,求得双曲线的离心率. 【详解】设线段1PF 的中点为A ,由于直线1F P 的斜率是1,而圆222:O x y c +=,所以()0,A c .由于O 是线段12F F 的中点,所以222PF OA c ==,而1122222PF AF c c ==⨯=,根据双曲线的定义可知122PF PF a -=,即2222c c a -=,即21222ca==+-.故选:C【点睛】本小题主要考查双曲线的定义和离心率的求法,考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.5.阅读名著,品味人生,是中华民族的优良传统.学生李华计划在高一年级每周星期一至星期五的每天阅少阅读一次,则每周不同的阅读计划共有( ) A .120种 B .240种 C .480种 D .600种【答案】B 【解析】 【分析】首先将五天进行分组,再对名著进行分配,根据分步乘法计数原理求得结果. 【详解】将周一至周五分为4组,每组至少1天,共有:2115323310C C C A =种分组方法; 将四大名著安排到4组中,每组1种名著,共有:4424A =种分配方法;由分步乘法计数原理可得不同的阅读计划共有:1024240⨯=种 本题正确选项:B 【点睛】本题考查排列组合中的分组分配问题,涉及到分步乘法计数原理的应用,易错点是忽略分组中涉及到的平均分组问题.6.已知函数()()f x x R ∈满足(1)1f =,且()1f x '<,则不等式()22lg lg f x x <的解集为( )A .10,10⎛⎫ ⎪⎝⎭B .()10,10,10骣琪??琪桫C .1,1010⎛⎫⎪⎝⎭D .()10,+∞【答案】B 【解析】 【分析】构造函数()()g x f x x =-,利用导数研究函数的单调性,即可得到结论. 【详解】设()()g x f x x =-,则函数的导数()()1g x f x ''=-,()1f x Q '<,()0g x '∴<,即函数()g x 为减函数,(1)1f =Q ,(1)(1)1110g f ∴=-=-=,则不等式()0<g x 等价为()(1)g x g <,则不等式的解集为1x >,即()f x x <的解为1x >,22(1)1f g x g x Q <,由211g x >得11gx >或11gx <-,解得10x >或1010x <<, 故不等式的解集为10,(10,)10⎛⎫⋃+∞ ⎪⎝⎭.故选:B . 【点睛】是难题.7. “哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( ) A .15B .13C .35D .23【答案】A 【解析】 【分析】列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有336+=,利用古典概型求解即可. 【详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3), (4,2),(5,1), 而加数全为质数的有(3,3), 根据古典概型知,所求概率为15P =. 故选:A. 【点睛】本题主要考查了古典概型,基本事件,属于容易题.8.已知正四面体ABCD 的棱长为1,O 是该正四面体外接球球心,且AO x AB y AC z AD =++u u u r u u u r u u u r u u u r,,,x y z ∈R ,则x y z ++=( )A .34B .13 C .12D .14【答案】A 【解析】 【分析】如图设AF ⊥平面BCD ,球心O 在AF 上,根据正四面体的性质可得34AO AF =,根据平面向量的加法的几何意义,重心的性质,结合已知求出x y z ++的值. 【详解】如图设AF ⊥平面BCD ,球心O 在AF 上,由正四面体的性质可得:三角形BCD 是正三角形,2,FOB 中,222222636()()334OB OF BF OA AO AO =+⇒=-+⇒=, 34AO AF =,=+u u u r u u u r u u u r AF AB BF ,AF AD DF =+u u u r u u u r u u u r ,AF AC CF =+u u u r u u u r u u u r ,因为F 为重心,因此0FB FC FD ++=u u u r u u u r u u u r r ,则3AF AB AC AD =++u u u r u u u r u u u r u u u r ,因此()14AO AB AC AD =++u u u r u u u r u u u r u u u r ,因此14x y z ===,则34x y z ++=,故选A.【点睛】本题考查了正四面体的性质,考查了平面向量加法的几何意义,考查了重心的性质,属于中档题. 9.如图,网格纸是由边长为1的小正方形构成,若粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .920π+B .926π+C .520π+D .526π+【答案】C 【解析】 【分析】根据三视图还原为几何体,结合组合体的结构特征求解表面积. 【详解】由三视图可知,该几何体可看作是半个圆柱和一个长方体的组合体,其中半圆柱的底面半圆半径为1,高为4,长方体的底面四边形相邻边长分别为1,2,高为4,所以该几何体的表面积2112141222S ππ=⨯+⨯⨯⨯+⨯⨯14224520π+⨯⨯+⨯=+,故选C.本题主要考查三视图的识别,利用三视图还原成几何体是求解关键,侧重考查直观想象和数学运算的核心素养.10.函数()()23ln 1x f x x+=的大致图象是A .B .C .D .【答案】A 【解析】 【分析】利用函数的对称性及函数值的符号即可作出判断. 【详解】由题意可知函数()f x 为奇函数,可排除B 选项; 当x 0<时,()0f x <,可排除D 选项; 当x 1=时,()12f ln =,当x 3=时,ln10ln10(3),ln 22727f =>, 即()()1?3f f >,可排除C 选项, 故选:A 【点睛】本题考查了函数图象的判断,函数对称性的应用,属于中档题.11.如图是甲、乙两位同学在六次数学小测试(满分100分)中得分情况的茎叶图,则下列说法错误..的是( )A .甲得分的平均数比乙大B .甲得分的极差比乙大C .甲得分的方差比乙小D .甲得分的中位数和乙相等【答案】B 【解析】由平均数、方差公式和极差、中位数概念,可得所求结论. 【详解】 对于甲,179888282939185.86x +++++=≈;对于乙,272748189969985.26x +++++=≈,故A 正确;甲的极差为937914-=,乙的极差为997227-=,故B 错误; 对于甲,方差2126S ≈.5,对于乙,方差22106.5S ≈,故C 正确; 甲得分的中位数为8288852+=,乙得分的中位数为8189852+=,故D 正确. 故选:B . 【点睛】本题考查茎叶图的应用,考查平均数和方差等概念,培养计算能力,意在考查学生对这些知识的理解掌握水平,属于基础题.12.若()12nx -的二项展开式中2x 的系数是40,则正整数n 的值为( ) A .4 B .5 C .6 D .7【答案】B 【解析】 【分析】先化简()12n x -的二项展开式中第1r +项()112rrn r r n T C x -+=⋅⋅-,然后直接求解即可【详解】()12nx -的二项展开式中第1r +项()112r r n r r n T C x -+=⋅⋅-.令2r =,则()2232n T C x =⋅-,∴2440n C =,∴4n =-(舍)或5n =. 【点睛】本题考查二项展开式问题,属于基础题二、填空题:本题共4小题,每小题5分,共20分。
江西省稳派教育2020届高三下学期调研考试(三)数学(文科)试题(含答案)
2019-2020学年高三年级调研考试(三)数学(文)卷一、选择题1.若集合A =x ,y x 2-2x =0,y ∈R ,B =x ,y y 2=2x ,则A ∩B 中元素的个数为()A.1B.2C.3D.4【答案】C【解析】因为A =x ,y x =0 或x =2,y ∈R ,B =x ,y y 2=2x ,所以A ∩B =0,0 ,2,2 ,2,-2 ,故选C .2.已知a +2i 2a ∈R 是纯虚数,则a +i =()A.3 B.5 C.3D.5【答案】B【解析】a +2i 2=a 2-4+4a i ,因为a +2i 2a ∈R 是纯虚数,所以a 2-4=04a ≠0,所以a =±2,由a +i =±2+i =5 ,故选B .3.若a <b <1且ab ≠0,则下列结论恒成立的是()A.a <12B.ab <b 2C.1a >1b>1D.ab +1>a +b【答案】D【解析】取a =23 ,b =34 ,可排除A ,取a =-2,b =-12 ,可排除B ,取a =-2,b =12,可排除C ,由a <b <1可得a -1 b -1 >0,展开得ab +1>a +b ,故选D .4.已知圆x 2+y 2-2x +4y =0关于双曲线C :x 22m -y 2m +1=1m >0 的一条渐近线对称,则m =()A.12B.13C.15D.17【答案】D【解析】圆x 2+y 2-2x +4y =0关于双曲线C :x 22m-y 2m +1=1m >0 的一条渐近线对称,则圆心1,-2 在渐近线y =-m +12mx 上,所以m +12m =2,m =17,故选D .5.已知a ,b 是单位向量,且a +b =2,-1 ,则a -b =()A.1B.2C.3D.2【答案】A【解析】因为a ,b 是单位向量,a +b =2 ,-1 ,两边平方得2a ⋅b =1,所以a -b =a 2-2a ⋅b +b 2=1,故选A .6.已知等差数列a n 的前n 项和为S n ,若a 6=2,a 2+a 10 2a 3+a 9 =12,则S 5=()A.5B.3C.-3D.-5【答案】D【解析】由题意得a 2+a 10 2a 3+a 9 =2a 6a 3+a 3+a 9 =2a 6a 3+2a 6 =4a 3+4 =12,可得a 3=-1,所以S 5=5a 3=-5,故选D .7.新冠肺炎病毒可以通过飞沫方式传染,已知甲通过检测确诊为新冠肺炎,经过追踪发现甲有A ,B ,C ,D ,E 5名密切接触者,现把这5人分为2组(一组2人,一组3人),分别送到2个医院进行隔离观察,则A ,B 在同一个医院的概率为()A.15B.310C.25D.12【答案】C【解析】把A ,B ,C ,D ,E 分为2组(一组2人,一组3人),结果有:AB ,CDE ,AC ,BDE ,AD ,BCE ,AE ,BCD ,BC ,ADE ,BD ,ACE ,BE ,ACD ,CD ,ABE ,CE ,ABD ,DE ,ABC ,共10种,A ,B 在同一个医院的结果有:AB ,CDE ,CD ,ABE ,CE ,ABD ,DE ,ABC ,共4种,所以所求概率P =410 =25 ,故选C .8.已知函数f x =1,x >00,x =0-1,x <0,g x =sinπx ,则下列结论错误的是()A.g f x =0B.f f x =f xC.f x g x =sinπxD.f g x +2 =1【答案】C【解析】由f x =1,x >00,x =0-1,x <0,g x =sinπx ,可得当x >0时,g f x =g 1 =sinπ=0,当x =0时,g f x =g 0 =sin0=0,当x <0时g f x =g -1 =sin -π =0,所以A 正确;当x >0时,f x =1,f f x =f 1 =1,f f x =f x 成立,当x =0时,f 0 =0,f f 0 =f 0 =0,f f x =f x 成立,当x <0时,f x =-1,f f x =f -1 =-1,f f x =f x 成立,所以B 正确,由f 32 g 32 =-1,可知C 错误,由g x ≥-1,g x +2≥1,可知f g x +2 =1正确,故选C .9.已知函数f x =x 3+ax 2-3x +b 满足f x +f -x =2,则f x 的图象在x =1处的切线方程为()A.y =-1B.y =0C.y =x -1D.y =-x +1【答案】A【解析】由f x +f-x=2可得2ax2+2b=2,所以a=0,b=1,f x =x3-3x+1,f x =3x2-3,f1 =-1,f 1 =0,所以f x 的图象在x=1处的切线方程为y=-1,故选A.10.《算法统宗》全称《新编直指算法统宗》,共17卷,是中国古代数学名著,明朝数学家程大位著.书中有这样一道著名的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大、小和尚各几丁?”现给出该问题中求小僧人数的算法的程序框图,则图中①②可分别填入()A.s=3m+n3 ;n=100B.s=3n+m3 ;n=100C.s=3n+m3 ;s=100D.s=3m+n3 ;s=100【答案】D【解析】由程序框图可知,n表示小僧人数,m表示大僧人数,根据“大僧三个更无争,小僧三人分一个”,设馒头数为s,则s=3m+n3 ,所以①中填入s=3m+n3,当s=100时结束程序,输出n,故选D.11.如图,正三角形ABC为圆锥的轴截面,D为AB的中点,E为弧BC的中点,则直线DE与AC所成角的余弦值为()A.13B.12C.22D.34【答案】C【解析】取BC 中点O ,BO 中点F ,连接OD ,OE ,FE ,DF ,则∠ODE 就是直线DE 与AC 所成角.设AB =4,则OD =2,OF =1,OE =2,DF =3 ,EF =OE 2+OF 2 =5 ,DE =DF 2+EF 2 =22 ,所以∠ODE =π4 ,即直线DE 与AC 所成角的余弦值为22,故选C .12.已知椭圆C :x 2a 2 +y 2b2 =1a >b >0 的右焦点为F ,设c =a 2-b 2 ,直线x c +y b =1与椭圆C 在第四象限交于点A ,点A 在x 同上的射影为B ,若AB ⋅AF =49b 2,则椭圆C 的离心率为()A.15B.5 5C.25D.10 5【答案】B【解析】由AB ⊥x 轴可得AB ⋅AF =AB 2,所以AB =2b 3,又AB FB=tan ∠BFA =b c ,所以FB =2c 3 ,所以A 5c 3 ,-2b3,代入椭圆C 的方程得25c 29a 2+49 =1,所以e =5 5,故选B .二、填空题13.若函数f x =x 2,x ≥1a x +1 ,x <1的值域为R ,则a 的取值范围是______.【答案】12 ,+∞ 【解析】当x ≥1时,f x =x 2≥1,若a =0,x <1时,f x =0,f x 的值域不是R ;若a <0,x <1时,f x >2a ,f x 的值域不是R ,若a >0,x <1时,f x <2a ,所以当2a ≥1时,f x 的值域为R ,所以a 的取值范围是12,+∞ .14.正项数列a n 满足a 2=1,a 2n +1a n=2a n +a n +1,则使a n >100的最小的n 值为______.【答案】9【解析】由a 2n +1a n=2a n +a n +1得a 2n +1-a n a n +1-2a 2n =0,即a n +1+a n a n +1-2a n =0,因为a n >0,所以a n +1-2a n =0,a n +1=2a n ,a n =a 2⋅2n -2=2n -2,a 8=64,a 9=128,所以使a n >100的最小的n 值为9.15.已知f x =sin x +π3 ,若方程f x =a 在0,5π3上只有4个不同实根x 1,x 2,x 3,x 4x 1<x 2<x 3<x 4 ,则a x 1+2x 2+2x 3+x 4 的最小值为______.【答案】23π【解析】画出f x 的图象,由图象可知3 2≤a <1,x 1+x 2=2×π6 =π3 ,x 2+x 3=2×2π3 =4π3 ,x 3+x 4=2×7π6 =7π3,相加得x 1+2x 2+2x 3+x 4=4π,所以a x 1+2x 2+2x 3+x 4 的最小值为23 π.16.在△ABC 中,AB =AC =3,BC =3,点D 在BC 上,且BD =2DC ,将△ABD 沿AD 折起,使点B 到达点P 位置,且AP ⊥AC ,则三棱锥P -ACD 的外接球半径为______.【答案】7 2【解析】由题意可得AD =DC =1,AB ⊥AD ,因为AP ⊥AC ,所以三棱锥P -ACD 中,AP ⊥底面ADC ,把三棱锥P -ACD 补成三棱柱,则该三棱柱的外接球就是三棱锥P -ACD 的外接球,球心是三棱柱上下底面外接圆圆心连线的中点,底面外接圆半径r =12 ⋅3 sin120°=1,又AP =3,所以三棱锥P -ACD 外接球半径R =12+3 22 =72.三、解答题17.2020年上半年,随着新冠肺炎疫情在全球蔓延,全球超过60个国家或地区宣布进人紧急状态,部分国家或地区直接宣布“封国”或“封城”,随着国外部分活动进入停摆,全球经济缺乏活力,一些企业开始倒闭,下表为2020年第一季度企业成立年限与倒闭分布情况统计表:企业成立年份20192018201720162015企业成立年限x 12345倒闭企业数量(万家) 5.28 4.72 3.58 2.70 2.15倒闭企业所占比例y %21.4%19.1%14.5%10.9%8.7%(1)由所给数据可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明;(2)建立y 关于x 的回归方程,预测2014年成立的企业中倒闭企业所占比例.参考数据:5i =1y i =74.6 ,5i =1x i y i =190.2 ,5i =1y i-y 2≈10.70,10 ≈3.16,相关系数r =ni =1x i y i -nx yn i =1x i -x 2ni =1y i -y2,样本x i ,y i i =1,2,...,n 的最小二乘估计公式为b =ni =1x i y i -nx yni =1x 2i -nx2 ,a =y -b x .【答案】(1)用线性回归模型拟合y 与x 的关系;(2)4.84%【解析】(1)由表中数据及参考数据可得x =3,5i =1x i -x 2=10 ,5i =1y i -y 2≈10.70,由5i =1x i =15 ,5i =1y i =74.6 ,可得x =3,y =14.92,所以5i =1x i y i -5x y=190.2-5×3×14.92=-33.6 ,所以r ≈-33.610.70×3.16≈-0.99,因为y 与x 的相关系数近似为-0.99,说明y 与x 的相关程度相当高,从而可以用线性回归模型拟合y 与x 的关系.(2)b =5i =1x i y i -5x y5i =1x 2i -5x 2 =-33.655-5×9 =-3.36,则a =y -b x=14.92+3.36×3=25,所以y 关于x 的回归方程y=-3.36x +25.当x =6时,y=-3.36×6+25=4.84,所以预测2014年成立的企业中倒闭企业所占比例为4.84%.18.已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足c tan A tan C+1 -9b =0.(1)求cos A 的值;(2)若点D 在边BC 上,AD 平分角A ,且AD =5 ,求1b+1c 的值.【答案】(1)19 ;(2)23【解析】(1)由c tan Atan C+1 -9b =0及正弦定理可得sin C ⋅sin A cos C +sin C cos Asin C cos A-9sin B =0,即sin A +Ccos A-9sin B =0,因为sin A +C =sin π-B =sin B ,且sin B ≠0,所以cos A =19.(2)因为cos A =19 ,所以sin A =1-cos 2A =459 ,因为AD 平分角A ,所以sin ∠BAD =sin ∠CAD =1-cos A 2=1-19 2=23,由S △ABC =S △ADB +S △ADC ,可得12 bc sin A =12 c ⋅AD sin ∠BAD +12b ⋅AD sin ∠CAD ,12 bc ⋅459 =12 c ⋅5 ⋅23 +12 b ⋅5 ⋅23 ,整理得23bc =b +c ,所以1b+1c =23 .19.如图,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,点D 为BB 1中点,点E 为点B 关于直线AC 的对称点,AB =BC =AA 1=2,AC =22.(1)求证:平面AC 1D ⊥平面ACC 1A 1;(2)求三棱锥E -ADC 1的体积.【答案】(1)见解析;(2)三棱锥E -ADC 1的体积为23【解析】(1)设AC 1的中点为F ,连接BE 与AC 交于G ,则点G 为AC 中点,连接DF ,FG ,则FG ∥CC 1,且FG =12CC 1.又D 为BB 1的中点,所以DB ∥FG ,且DB =FG ,所以四边形BDFG 为平行四边形,所以BG ∥DF ,因为AA 1⊥底面ABC ,所以平面ABC ⊥平面ACC 1A 1,因为AB =BC ,G 为AC 中点,所以BG ⊥平面ACC 1A 1,所以DF ⊥平面ACC 1A 1.又DF ⊂平面AC 1D ,所以平面AC 1D ⊥平面ACC 1A 1.(2)由(1)知BE ∥DF ,所以点E ,B 到平面ADC 1的距离相等,所以V 三棱锥E -ADC 1=V 三棱锥B -ADC 1=V 三棱锥A -BDC 1.由AB =BC =2,AC =22,可得AB ⊥BC ,因为平面ABC ⊥平面BCC 1B 1,AB ⊥平面BCC 1B 1,又△BDC 1的面积S =12 ×1×2=1,所以V 三棱锥A -BDC 1=13 ×AB ×S =13 ×2×1=23,所以三棱锥E -ADC 1的体积为23.20.已知抛物线C :y 2=2px p >0 与直线y =x +1只有一个公共点,点A ,B 是抛物线C 上的动点.(1)求抛物线C 的方程;(2)①若k OA +k OB =1,求证:直线AB 过定点;②若P x 0,y 0 是抛物线C 上与原点不重合的定点,且k PA +k PB =0,求证:直线AB 的斜率为定值,并求出该定值.【答案】(1)y 2=4x ;(2)①见解析;②见解析,定值为-2y 0 .【解析】(1)y 2=2px 与y =x +1联立得y 2-2py +2p =0因为抛物线C 与直线y =x +1只有一个公共点,所以△=2p 2-8p =0,p =2,所以抛物线C 的方程为y 2=4x .(2)①设A y 214 ,y 1 ,B y 224 ,y 2,则k OA +k OB =4y 1 +4y 2=1,所以y 1y 2y 1+y 2 =4,又k AB =y 1-y 2y 214 -y 224=4y 1+y 2 ,所以直线AB 的方程为y -y 1=4y 1+y 2x -y 214,即y =4y 1+y 2 x +y 1-y 21y 1+y 2 =4y 1+y 2 x +y 1y 2y 1+y 2 =4y 1+y 2x +4,当x =0时y =4,所以直线AB 过定点0,4 .②设A y 214 ,y 1 ,B y 224 ,y 2,则k PA +k PB =y 1-y 0y 214 -y 204 +y 2-y 0y 224 -y 204=4y 1+y 0 +4y 2+y 0 =0,所以y 1+y 0+y 2+y 0=0,y 1+y 2=-2y 0,所以直线AB 的斜率k AB =y 1-y 2y 214 -y 224=4y 1+y 2 =-2y 0 .即直线AB 的斜率为定值-2y 0 .21.已知函数f x =ax 2ln x +12-x ln x +1.(1)若a <e2,讨论f x 的单调性;(2)若a =1,x ≥1,求证:f x >32 x 2-2x +1+sin x .【答案】(1)当a ≤0时,f x 在0,1e 上单调递增,在1e,+∞ 上单调递减;当0<a <e 2 时,f x 在0,1e 和12a ,+∞ 上单调递增,在1e ,12a上单调递减;(2)见解析【解析】(1)因为f x =ax 2ln x +12-x ln x +1,所以f x =2ax ln x +2ax -ln x -1=2ax -1 ln x +1 x >0 ,①若a ≤0,则2ax -1<0,当x ∈0,1e时,f x >0,f x 是增函数,当x ∈1e,+∞ 时,f x <0,f x 是减函数;②若0<a <e 2 ,即12a >1e ,当x ∈0,1e 和x ∈12a ,+∞ 时,f x >0,f x 是增函数,当x ∈1e ,12a时,f x <0,f x 是减函数.综上可得,当a ≤0时,f x 在0,1e 上单调递增,在1e,+∞ 上单调递减;当0<a <e 2 时,f x 在0,1e 和12a ,+∞ 上单调递增,在1e ,12a上单调递减.(2)当a =1时,要证f x >32x 2-2x +1+sin x ,只需证f x ≥32 x 2-2x +2,即证x 2-x ln x -1+1x≥0,因为x ≥1,所以x 2-x ≥0,设g x =ln x -1+1x,则g x =1x -1x 2 =x -1x2 ≥0,所以g x 在1,+∞ 上是增函数,g x ≥g 1 =0,ln x -1+1x≥0,所以x 2-x ln x -1+1x≥0,因此f x >32x 2-2x +1+sin x 成立22.平面直角坐标系xOy 中,点A 的坐标为3,3 ,在以坐标原点为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ2=2+22 ρsin θ+π4.(1)求曲线C 的参数方程;(2)若P ,Q 是曲线C 上的不同两点,且AP 2+AQ 2=40,求证:线段PQ 的中点M 恒在一条直线上,并求出此直线的直角坐标方程.【答案】(1)曲线C 的参数方程x =1+2cos φy =1+2sin φ(φ为参数);(2)x +y =0【解析】(1)ρ2=2+22 ρsin θ+π4=2+2ρcos θ+2ρsin θ,由ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y ,得曲线C 的直角坐标方程为x 2+y 2=2+2x +2y ,即x -1 2+y -1 2=4,设x -1=2cos φ,y -1=2sin φ,得曲线C 的参数方程x =1+2cos φy =1+2sin φ(φ为参数).(2)设P 1+2cos φ1,1+2sin φ1 ,Q 1+2cos φ2,1+2sin φ2 ,设M x ,y ,则x =1+cos φ1+cos φ2,y =1+sin φ1+sin φ2,由AP 2+AQ 2=40,得2cos φ1-2 2+2sin φ1-2 2+2cos φ2-2 2+2sin φ2-2 2=40,整理得1+cos φ1+cos φ2+1+sin φ1+sin φ2=0,即x +y =0,所以点M 恒在直线x +y =0上,所以此直线的直角坐标方程为x +y =0.23.已知函数f x =x -m -x -2m .(1)若m =2,求不等式f x >1的解集;(2)若对满足a >b >0的任意实数a ,b ,关于x 的方程f x =a +1a -b b的解集∅,求m 的取值范围.【答案】(1)72,+∞ ;(2)m 的取值范围是-3,3【解析】解:(1)当m =2时,f x =x -2 -x -4 =-2,x <22x -6,2≤x ≤42,x >4,当x <2时,-2>1不成立,当2≤x ≤4时,由2x -6>1,得72<x ≤4,当x >4时,2>1成立,所以不等式f x >1的解集为72,+∞ .(2)因为f x =x -m -x -2m ≤x -m -x -2m =m ,所以-m ≤f x ≤m ,又a +1a -b b =a -b +b +1a -b b ≥33a -b b ⋅1a -b b=3,当a -b =b =1a -b b,即a =2,b =1时取等号,若对满足a >b >0的任意实数a ,b ,关于x 的方程f x =a +1a -b b的解集为∅,则m <3,所以m 的取值范围是-3,3 .。
2019-2020学年唐山市高三理科数学一模试题及答案
唐山市2019—2020学年度高三年级第一次模拟考试理科数学注意事项:1、答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2、回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3、考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={-1,0,1,2},B={y|y=2x},M=A∩B,则集合M的子集个数是A.2 B.3 C.4 D.82.设i是虚数单位,复数z=2+i3-i,则z-在复平面内对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.人口平均预期寿命是综合反映人们健康水平的基本指标.2010年第六次全国人口普查资料表明,随着我国社会经济的快速发展,人民生活水平的不断提高以及医疗卫生保障体系的逐步完善,我国人口平均预期寿命继续延长,国民整体健康水平有较大幅度的提高.右图体现了我国平均预期寿命变化情况,依据此图,下列结论错误的是A.男性的平均预期寿命逐渐延长B.女性的平均预期寿命逐渐延长C.男性的平均预期寿命延长幅度略高于女性D.女性的平均预期寿命延长幅度略高于男性4.《孙子算经》是我国古代内容极其丰富的数学名著,书中有如下问题:“今有圆窖周五丈四尺,深一丈八尺,问受粟几何?”其意思为:“有圆柱形容器,底面圆周长五丈四尺,高一丈八尺,求此容器能放多少斛米”(古制1丈=10尺,1斛=1.62立方尺,圆周率π=3),则该圆柱形容器能放米A.900斛B.2700斛C.3600斛D.10800斛5.已知向量a,b满足|a+b|=|b|,且|a|=2,则b在a方向上的投影是A.2 B.-2C.1 D.-16.已知数列{a n}是等差数列,{b n}是等比数列,a2=b2=m,a3=b3=n,若m,n为正数,且m≠n,则A.a1<b1B.a1>b1C.a1=b1D.a1,b1的大小关系不确定7.已知随机变量X服从正态分布N(0,1),随机变量Y服从正态分布N(1,1),且P(X>1)=0.1587,则P(1<Y<2)=A.0.1587 B.0.3413C.0.8413 D.0.65878.函数f(x)=tan x-x2在(-π2,π2)上的图象大致为9.设函数f(x)=sin(2x+2π3),则下列结论中正确的是A.y=f(x)的图象关于点(π3,0)对称B.y=f(x)的图象关于直线x=π3对称C.f(x)在[0,π3]上单调递减D.f(x)在[-π6,0]上的最小值为010.已知四棱锥P-ABCD的顶点都在球O的球面上,P A⊥底面ABCD,AB=AD=1,BC=CD=2,若球O的表面积为36π,则直线PC与底面ABCD所成角的余弦值为A.36B.56C.33D.5311.已知F是双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点,M是C的渐近线上一点,且MF⊥x 轴,过F作直线OM的平行线交C的渐近线于点N(O为坐标原点),若MN⊥ON,则双曲线C的离心率是A.233B. 3C.62D.212.已知a>2,f(x)=e x(x-a)+x+a,有如下结论:①f(x)有两个极值点;②f(x)有3个零点;③f(x)的所有零点之和等于零.则正确结论的个数是A .0 B.1C.2D.3O xyA.O xyC.O xyD.B.二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,x -3y +1≤0,则z =2x -y 的最小值为________.14.中国古代的四书是指:《大学》、《中庸》、《论语》、《孟子》,甲、乙、丙、丁4名同学从中各选一书进行研读,已知四人选取的书恰好互不相同,且甲没有选《中庸》,乙和丙都没有选《论语》,则4名同学所有可能的选择有________种. 15.在数列{a n }中,已知a 1=1,a n +1=a n +tn (n ∈N *,t 为非零常数),且a 1,a 2,a 3成等比数列,则a n =___________. 16.已知F 为抛物线C :y 2=2px (p >0)的焦点,K 为C 的准线与x 轴的交点,点P 在抛物线C上.设∠KPF =α,∠PKF =β,∠PFK =θ,有以下3个结论:①β的最大值是 π4; ②tan β=sin θ; ③存在点P ,满足α=2β.其中正确结论的序号是___________. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =4,△ABC 的面积为23.(1)若A = π3,求△ABC 的周长;(2)求sin B ·sin C 的最大值.18.(12分)如图,直三棱柱ABC -A 1B 1C 1的底面为等边三角形,D ,E 分别为AC ,A 1C 1的中点,点F 在棱CC 1上,且EF ⊥BF . (1)证明:平面BEF ⊥平面BDF ;(2)若AB =4,C 1F =2FC ,求二面角D -BE -F 的余弦值.19.(12分)甲、乙二人进行一场比赛,该比赛采用三局两胜制,即先获得两局胜利者获得该场比赛胜利.在每一局比赛中,都不会出现平局,甲获胜的概率都为p (0<p <1). (1)求甲在第一局失利的情况下,反败为胜的概率;(2)若p =12,比赛结束时,设甲获胜局数为X ,求其分布列和期望E (X );(3)若甲获得该场比赛胜利的概率大于甲每局获胜的概率,求p 的取值范围.20.(12分)已知P 是x 轴上的动点(异于原点....O ),点Q 在圆O :x 2+y 2=4上,且|PQ |=2,设线段PQ 的中点为M ,当点P 移动时,记点M 的轨迹为曲线E . (1)求曲线E 的方程;(2)当直线PQ 与圆O 相切于点Q ,且点Q 在第一象限. (ⅰ)求直线OM 的斜率;(ⅱ)直线l 平行OM ,交曲线E 于不同的两点A ,B ,线段AB 的中点为N ,直线ON 与曲线E 交于两点C ,D ,证明:|NA |·|NB |=|NC |·|ND |.21.(12分)已知函数f (x )=ln x +1x -1,f '(x )为f (x )的导函数,f (x 1)=f (x 2)且x 1<x 2.证明:(1)f '(x )<0; (2)x 2-x 1>1.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题记分.22.[选修4-4:坐标系与参数方程](10分)在极坐标系中,圆C :ρ=4sin θ,直线l :ρcos θ=2.以极点O 为坐标原点,以极轴为x 轴的正半轴建立直角坐标系.(1)求圆C 的参数方程,直线l 的直角坐标方程;(2)点A 在圆C 上,AB ⊥l 于B ,记△OAB 的面积为S ,求S 的最大值.23.[选修4-5:不等式选讲](10分)已知函数f (x )=|x +a |-2|x -1|-1.(1)当a =1时,求不等式f (x )>0的解集;(2)是否存在实数a ,使得f (x )的图象与x 轴有唯一的交点?若存在,求a 的值;若不存在,说明理由.C 1B 1A 1FEDCBA唐山市2019—2020学年度高三年级第一次模拟考试理科数学参考答案一.选择题:CDCBD ABACB AD 二.填空题:13.-2 14.1015.n 2-n +2216.①②③三.解答题: 17.解:(1)因为S △ABC = 1 2bc sin A =34bc =23,所以bc =8.由余弦定理得b 2+c 2-bc =a 2,所以(b +c )2=a 2+3bc , 又a =4,bc =8,所以(b +c )2=40,即b +c =210, 故△ABC 的周长为4+210. …5分(2)由正弦定理得a sin A =b sin B =csin C ,所以sin B ·sin C =bc sin 2A a 2,又S △ABC = 12bc sin A =23,a =4, 所以sin B ·sin C =3sin A 4≤34.当sin A =1时,A = π2,此时b 2+c 2=a 2=16,bc =43,即b =23,c =2;或b =2,c =23.故A = π 2时,sin B ·sin C 取得最大值34. …12分18.解:(1)因为三棱柱ABC -A 1B 1C 1为直三棱柱,所以A 1A ⊥平面ABC ,从而有A 1A ⊥BD , 因为△ABC 为等边三角形,D 为AC 的中点,所以BD ⊥AC . 又A 1A ∩AC =A ,所以BD ⊥平面ACC 1A 1,所以BD ⊥EF . 又因为EF ⊥BF ,BD ∩BF =B ,所以EF ⊥平面BDF . 又因为EF ⊂平面BEF ,所以平面BEF ⊥平面BDF .…5分(2)由(1)可知EF ⊥平面BDF ,所以EF ⊥DF .设CF =m ,则有m 2+4+4m 2+4=9m 2,即4m 2=8,得m =2.以D 为坐标原点,DB ,DC ,DE 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系D -xyz ,则D (0,0,0),B (23,0,0),C (0,2,0),E (0,0,32),F (0,2,2),设平面BEF 的法向量为m =(x ,y ,z ), BE →=(-23,0,32),EF →=(0,2,-22),由⎩⎪⎨⎪⎧BE →·m =-23x +32z =0,EF →·m =2y -22z =0,解得m =(3,2,2),因为DC ⊥平面BDE ,所以平面BDE 的法向量为DC →=(0,2,0), cos 〈m ,DC →〉=m ·DC →|m ||DC →|=42×9=23,所以二面角D -BE -F 的余弦值为23. …12分19.解:(1)设A :甲在第一局失利,B :甲获得了比赛的胜利则P (B |A )=P (AB )P (A )=(1-p )p 21-p=p 2. …3分(2)X 的可能取值为0,1,2,则P (X =0)=(1-p )2=14,P (X =1)=C 12p (1-p )2=14,P (X =2)=p 2+C 12(1-p )p 2=12. X 的分布列如下:则E (X )=0×14+1×14+2×12=54. …9分(3)甲获得该场比赛胜利的概率为p 2+C 12(1-p )p 2,则p 2+C 12(1-p )p 2>p ,即2p 2-3p +1<0,解得12<p <1.所以p 的取值范围是(12,1)…12分20.解: (1)连接OQ ,设M (x ,y )(x ≠0), 由|OQ |=|PQ |=2,由M 为PQ 的中点, 得P (4x 3,0),则Q (2x 3,2y ),把Q (2x 3,2y )代入x 2+y 2=4,整理得x 29+y 2=1,所以曲线E 的方程为x 29+y 2=1(x ≠0).…4分(2)(ⅰ)当直线PQ 与圆O 相切于点Q ,则OQ ⊥PQ ,|OQ |=|PQ |=2,则|OP |=22,又点Q 在第一象限, 得P (22,0),Q (2,2).由M 为PQ 的中点,得M (322,22),所以直线OM 的斜率为 13. …7分z yxC 1 B 1A 1 F EDC B A(ⅱ)设A (x 1,y 1),B (x 2,y 2),直线l :y = 13x +t ,由⎩⎨⎧y = 13x +t ,x 29+y 2=1整理得2x 2+6tx +9t 2-9=0,x 1+x 2=-3t ,x 1x 2=9t 2-92. 所以N 点坐标为(-3t 2, t 2),直线ON 方程为y =- 13x , …9分由方程组⎩⎨⎧y =- 13x ,x 29+y 2=1得C (-322,22),D (322,-22). …10分所以|NC |·|ND |=103(322-3t 2)·103(322+3t 2)= 52(2-t 2).又|NA |·|NB |= 1 4|AB |2= 1 4×109×[(x 1+x 2)2-4x 1x 2]=518[9t 2-2(9t 2-9)]= 52(2-t 2), 所以|NA |·|NB |=|NC |·|ND |. …12分 21.证明:(1)f '(x )=- 1x-ln x (x -1)2,令g (x )=- 1 x -ln x ,则g'(x )= 1 x 2- 1x =1-xx2.所以当0<x <1时,g'(x )>0;当x >1时,g'(x )<0; 所以g (x )≤g (1)=-1<0. 在f '(x )中x ≠1,因此f '(x )<0. …4分 (2)由(1)得,f (x )在(0,1),(1,+∞)上单调递减,所以0<x 1<1<x 2.f (x +1)-f (x )=ln (x +1)+1x -ln x +1x -1=x ln (x +1)-x ln x -1-ln (x +1)x (x -1)= 1 x -ln (1+ 1x )1-x +ln (x +1)x (1-x ),0<x <1. …8分由(1)得g (x )=- 1x-ln x ≤-1,等号当且仅当x =1时成立,从而ln 1 x ≤ 1x-1,即ln x ≤x -1,等号当且仅当x =1时成立,又x >0时,1+ 1 x >1,因此ln (1+ 1 x )< 1x,所以当0<x <1时, 1 x -ln (1+ 1x )1-x >0,又ln (x +1)x (1-x )>0,所以当0<x <1时,f (x +1)-f (x )>0,即f (x +1)>f (x ),所以f (x 1+1)>f (x 1)=f (x 2),由f (x )在(1,+∞)上单调递减,且x 1+1>1,x 2>1,所以,可得x 2>x 1+1, 故x 2-x 1>1. …12分 22.解:(1)由题意得x =ρcos θ,所以l :x =2,又ρ2=x 2+y 2,y =ρsin θ,所以C :x 2+(y -2)2=4,从而C 的参数方程为⎩⎨⎧x =2cos α,y =2+2sin α,(α为参数). …4分(2)设A (2cos α,2+2sin α),0<α<2π,则B (2,2+2sin α). 所以S =2(1-cos α)(1+sin α)=2sin α-2cos α-2cos αsin α+2 =(sin α-cos α)2+2(sin α-cos α)+1 =(sin α-cos α+1)2=[2sin (α- π4)+1]2.当α- π 4= π 2,即α=3π4时,S 取得最大值3+22. …10分23.解:(1)当a =1时,f (x )>0化为|x +1|-2|x -1|-1>0. 当x ≤-1时,不等式化为x -4>0,无解;当-1<x <1时,不等式化为3x -2>0,解得 23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为{x | 23<x <2}. …4分(2)存在.若a >-1,则f (x )=⎩⎪⎨⎪⎧x -a -3,x <-a ,3x +a -3,-a ≤x ≤1,-x +a +1,x >1.此时f (x )的最大值f (1)=a ,所以a =0时满足题设.若a <-1,则f (x )=⎩⎪⎨⎪⎧x -a -3,x <1,-3x -a +1,1≤x ≤-a ,-x +a +1,x >-a .此时f (x )的最大值f (1)=-a -2,所以a =-2时满足题设.若a =-1,则f (x )=-|x -1|-1<0,所以a =-1时不满足题设. 综上所述,存在实数a =0或a =-2满足题设. …10分。
唐山市 2019—2020 学年度高三年级第一次模拟考试-理科数学
唐山市2019—2020学年度高三年级第一次模拟考试理科数学注意事项:1、答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2、回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3、考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={-1,0,1,2},B={y|y=2x},M=A∩B,则集合M的子集个数是A.2 B.3 C.4 D.82.设i是虚数单位,复数z=2+i3-i,则z-在复平面内对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.人口平均预期寿命是综合反映人们健康水平的基本指标.2010年第六次全国人口普查资料表明,随着我国社会经济的快速发展,人民生活水平的不断提高以及医疗卫生保障体系的逐步完善,我国人口平均预期寿命继续延长,国民整体健康水平有较大幅度的提高.右图体现了我国平均预期寿命变化情况,依据此图,下列结论错误的是A.男性的平均预期寿命逐渐延长B.女性的平均预期寿命逐渐延长C.男性的平均预期寿命延长幅度略高于女性D.女性的平均预期寿命延长幅度略高于男性4.《孙子算经》是我国古代内容极其丰富的数学名著,书中有如下问题:“今有圆窖周五丈四尺,深一丈八尺,问受粟几何?”其意思为:“有圆柱形容器,底面圆周长五丈四尺,高一丈八尺,求此容器能放多少斛米”(古制1丈=10尺,1斛=1.62立方尺,圆周率π=3),则该圆柱形容器能放米A.900斛B.2700斛C.3600斛D.10800斛5.已知向量a,b满足|a+b|=|b|,且|a|=2,则b在a方向上的投影是A.2 B.-2C.1 D.-1 6.已知数列{a n}是等差数列,{b n}是等比数列,a2=b2=m,a3=b3=n,若m,n为正数,且m≠n,则A.a1<b1B.a1>b1C.a1=b1D.a1,b1的大小关系不确定7.已知随机变量X服从正态分布N(0,1),随机变量Y服从正态分布N(1,1),且P(X>1)=0.1587,则P(1<Y<2)=A.0.1587 B.0.3413C.0.8413 D.0.65878.函数f(x)=tan x-x2在(-π2,π2)上的图象大致为9.设函数f(x)=sin(2x+2π3),则下列结论中正确的是A.y=f(x)的图象关于点(π3,0)对称B.y=f(x)的图象关于直线x=π3对称C.f(x)在[0,π3]上单调递减D.f(x)在[-π6,0]上的最小值为010.已知四棱锥P-ABCD的顶点都在球O的球面上,P A⊥底面ABCD,AB=AD=1,BC=CD=2,若球O的表面积为36π,则直线PC与底面ABCD所成角的余弦值为A.36B.56C.33D.5311.已知F是双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点,M是C的渐近线上一点,且MF⊥x 轴,过F作直线OM的平行线交C的渐近线于点N(O为坐标原点),若MN⊥ON,则双曲线C的离心率是A.233B. 3C.62D.212.已知a>2,f(x)=e x(x-a)+x+a,有如下结论:①f(x)有两个极值点;②f(x)有3个零点;③f(x)的所有零点之和等于零.则正确结论的个数是A.0 B.1C.2D.3O xyA.O xyC.O xyD.B.二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,x -3y +1≤0,则z =2x -y 的最小值为________.14.中国古代的四书是指:《大学》、《中庸》、《论语》、《孟子》,甲、乙、丙、丁4名同学从中各选一书进行研读,已知四人选取的书恰好互不相同,且甲没有选《中庸》,乙和丙都没有选《论语》,则4名同学所有可能的选择有________种. 15.在数列{a n }中,已知a 1=1,a n +1=a n +tn (n ∈N *,t 为非零常数),且a 1,a 2,a 3成等比数列,则a n =___________. 16.已知F 为抛物线C :y 2=2px (p >0)的焦点,K 为C 的准线与x 轴的交点,点P 在抛物线C上.设∠KPF =α,∠PKF =β,∠PFK =θ,有以下3个结论:①β的最大值是 π4; ②tan β=sin θ; ③存在点P ,满足α=2β.其中正确结论的序号是___________. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =4,△ABC 的面积为23.(1)若A = π3,求△ABC 的周长;(2)求sin B ·sin C 的最大值.18.(12分)如图,直三棱柱ABC -A 1B 1C 1的底面为等边三角形,D ,E 分别为AC ,A 1C 1的中点,点F 在棱CC 1上,且EF ⊥BF . (1)证明:平面BEF ⊥平面BDF ;(2)若AB =4,C 1F =2FC ,求二面角D -BE -F 的余弦值.19.(12分)甲、乙二人进行一场比赛,该比赛采用三局两胜制,即先获得两局胜利者获得该场比赛胜利.在每一局比赛中,都不会出现平局,甲获胜的概率都为p (0<p <1). (1)求甲在第一局失利的情况下,反败为胜的概率;(2)若p =12,比赛结束时,设甲获胜局数为X ,求其分布列和期望E (X );(3)若甲获得该场比赛胜利的概率大于甲每局获胜的概率,求p 的取值范围.20.(12分)已知P 是x 轴上的动点(异于原点....O ),点Q 在圆O :x 2+y 2=4上,且|PQ |=2,设线段PQ 的中点为M ,当点P 移动时,记点M 的轨迹为曲线E . (1)求曲线E 的方程;(2)当直线PQ 与圆O 相切于点Q ,且点Q 在第一象限. (ⅰ)求直线OM 的斜率;(ⅱ)直线l 平行OM ,交曲线E 于不同的两点A ,B ,线段AB 的中点为N ,直线ON 与曲线E 交于两点C ,D ,证明:|NA |·|NB |=|NC |·|ND |.21.(12分)已知函数f (x )=ln x +1x -1,f '(x )为f (x )的导函数,f (x 1)=f (x 2)且x 1<x 2.证明:(1)f '(x )<0; (2)x 2-x 1>1.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题记分.22.[选修4-4:坐标系与参数方程](10分)在极坐标系中,圆C :ρ=4sin θ,直线l :ρcos θ=2.以极点O 为坐标原点,以极轴为x 轴的正半轴建立直角坐标系.(1)求圆C 的参数方程,直线l 的直角坐标方程;(2)点A 在圆C 上,AB ⊥l 于B ,记△OAB 的面积为S ,求S 的最大值.23.[选修4-5:不等式选讲](10分)已知函数f (x )=|x +a |-2|x -1|-1.(1)当a =1时,求不等式f (x )>0的解集;(2)是否存在实数a ,使得f (x )的图象与x 轴有唯一的交点?若存在,求a 的值;若不存在,说明理由.C 1B 1A 1FEDCBA唐山市2019—2020学年度高三年级第一次模拟考试理科数学参考答案一.选择题:CDCBD ABACB AD 二.填空题:13.-2 14.1015.n 2-n +2216.①②③三.解答题: 17.解:(1)因为S △ABC = 1 2bc sin A =34bc =23,所以bc =8.由余弦定理得b 2+c 2-bc =a 2,所以(b +c )2=a 2+3bc , 又a =4,bc =8,所以(b +c )2=40,即b +c =210, 故△ABC 的周长为4+210. …5分(2)由正弦定理得a sin A =b sin B =csin C ,所以sin B ·sin C =bc sin 2A a 2,又S △ABC = 12bc sin A =23,a =4, 所以sin B ·sin C =3sin A 4≤34.当sin A =1时,A = π2,此时b 2+c 2=a 2=16,bc =43,即b =23,c =2;或b =2,c =23.故A = π 2时,sin B ·sin C 取得最大值34. …12分18.解:(1)因为三棱柱ABC -A 1B 1C 1为直三棱柱,所以A 1A ⊥平面ABC ,从而有A 1A ⊥BD , 因为△ABC 为等边三角形,D 为AC 的中点,所以BD ⊥AC . 又A 1A ∩AC =A ,所以BD ⊥平面ACC 1A 1,所以BD ⊥EF . 又因为EF ⊥BF ,BD ∩BF =B ,所以EF ⊥平面BDF . 又因为EF ⊂平面BEF ,所以平面BEF ⊥平面BDF .…5分(2)由(1)可知EF ⊥平面BDF ,所以EF ⊥DF .设CF =m ,则有m 2+4+4m 2+4=9m 2,即4m 2=8,得m =2.以D 为坐标原点,DB ,DC ,DE 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系D -xyz ,则D (0,0,0),B (23,0,0),C (0,2,0),E (0,0,32),F (0,2,2),设平面BEF 的法向量为m =(x ,y ,z ), BE →=(-23,0,32),EF →=(0,2,-22),由⎩⎪⎨⎪⎧BE →·m =-23x +32z =0,EF →·m =2y -22z =0,解得m =(3,2,2),因为DC ⊥平面BDE ,所以平面BDE 的法向量为DC →=(0,2,0), cos 〈m ,DC →〉=m ·DC →|m ||DC →|=42×9=23,所以二面角D -BE -F 的余弦值为23. …12分19.解:(1)设A :甲在第一局失利,B :甲获得了比赛的胜利则P (B |A )=P (AB )P (A )=(1-p )p 21-p=p 2. …3分(2)X 的可能取值为0,1,2,则P (X =0)=(1-p )2=14,P (X =1)=C 12p (1-p )2=14,P (X =2)=p 2+C 12(1-p )p 2=12. X 的分布列如下:则E (X )=0×14+1×14+2×12=54. …9分(3)甲获得该场比赛胜利的概率为p 2+C 12(1-p )p 2,则p 2+C 12(1-p )p 2>p ,即2p 2-3p +1<0,解得12<p <1.所以p 的取值范围是(12,1)…12分20.解: (1)连接OQ ,设M (x ,y )(x ≠0), 由|OQ |=|PQ |=2,由M 为PQ 的中点, 得P (4x 3,0),则Q (2x 3,2y ),把Q (2x 3,2y )代入x 2+y 2=4,整理得x 29+y 2=1,所以曲线E 的方程为x 29+y 2=1(x ≠0).…4分(2)(ⅰ)当直线PQ 与圆O 相切于点Q ,则OQ ⊥PQ ,|OQ |=|PQ |=2,则|OP |=22,又点Q 在第一象限, 得P (22,0),Q (2,2).由M 为PQ 的中点,得M (322,22),所以直线OM 的斜率为 13. …7分z yxC 1 B 1A 1 F EDC B A(ⅱ)设A (x 1,y 1),B (x 2,y 2),直线l :y = 13x +t ,由⎩⎨⎧y = 13x +t ,x 29+y 2=1整理得2x 2+6tx +9t 2-9=0,x 1+x 2=-3t ,x 1x 2=9t 2-92. 所以N 点坐标为(-3t 2, t 2),直线ON 方程为y =- 13x , …9分由方程组⎩⎨⎧y =- 13x ,x 29+y 2=1得C (-322,22),D (322,-22). …10分所以|NC |·|ND |=103(322-3t 2)·103(322+3t 2)= 52(2-t 2).又|NA |·|NB |= 1 4|AB |2= 1 4×109×[(x 1+x 2)2-4x 1x 2]=518[9t 2-2(9t 2-9)]= 52(2-t 2), 所以|NA |·|NB |=|NC |·|ND |. …12分 21.证明:(1)f '(x )=- 1x-ln x (x -1)2,令g (x )=- 1 x -ln x ,则g'(x )= 1 x 2- 1x =1-xx2.所以当0<x <1时,g'(x )>0;当x >1时,g'(x )<0; 所以g (x )≤g (1)=-1<0. 在f '(x )中x ≠1,因此f '(x )<0. …4分 (2)由(1)得,f (x )在(0,1),(1,+∞)上单调递减,所以0<x 1<1<x 2.f (x +1)-f (x )=ln (x +1)+1x -ln x +1x -1=x ln (x +1)-x ln x -1-ln (x +1)x (x -1)= 1 x -ln (1+ 1x )1-x +ln (x +1)x (1-x ),0<x <1. …8分由(1)得g (x )=- 1x-ln x ≤-1,等号当且仅当x =1时成立,从而ln 1 x ≤ 1x-1,即ln x ≤x -1,等号当且仅当x =1时成立,又x >0时,1+ 1 x >1,因此ln (1+ 1 x )< 1x,所以当0<x <1时, 1 x -ln (1+ 1x )1-x >0,又ln (x +1)x (1-x )>0,所以当0<x <1时,f (x +1)-f (x )>0,即f (x +1)>f (x ),所以f (x 1+1)>f (x 1)=f (x 2),由f (x )在(1,+∞)上单调递减,且x 1+1>1,x 2>1,所以,可得x 2>x 1+1, 故x 2-x 1>1. …12分 22.解:(1)由题意得x =ρcos θ,所以l :x =2,又ρ2=x 2+y 2,y =ρsin θ,所以C :x 2+(y -2)2=4,从而C 的参数方程为⎩⎨⎧x =2cos α,y =2+2sin α,(α为参数). …4分(2)设A (2cos α,2+2sin α),0<α<2π,则B (2,2+2sin α). 所以S =2(1-cos α)(1+sin α)=2sin α-2cos α-2cos αsin α+2 =(sin α-cos α)2+2(sin α-cos α)+1 =(sin α-cos α+1)2=[2sin (α- π4)+1]2.当α- π 4= π 2,即α=3π4时,S 取得最大值3+22. …10分23.解:(1)当a =1时,f (x )>0化为|x +1|-2|x -1|-1>0. 当x ≤-1时,不等式化为x -4>0,无解;当-1<x <1时,不等式化为3x -2>0,解得 23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为{x | 23<x <2}. …4分(2)存在.若a >-1,则f (x )=⎩⎪⎨⎪⎧x -a -3,x <-a ,3x +a -3,-a ≤x ≤1,-x +a +1,x >1.此时f (x )的最大值f (1)=a ,所以a =0时满足题设.若a <-1,则f (x )=⎩⎪⎨⎪⎧x -a -3,x <1,-3x -a +1,1≤x ≤-a ,-x +a +1,x >-a .此时f (x )的最大值f (1)=-a -2,所以a =-2时满足题设.若a =-1,则f (x )=-|x -1|-1<0,所以a =-1时不满足题设. 综上所述,存在实数a =0或a =-2满足题设. …10分。
2019-2020年河北省唐山市高三上学期第一次摸底考试数学(文)试题
2019-2020年河北省唐山市高三上学期第一次摸底考试数学(文)试题第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设命题p :,2x z x z ∀∈∈,则p ⌝为A .,2x z x z ∀∈∉B .00,2x z x z ∃∈∉C .,2x z x z ∀∉∉D .00,2x z x z ∃∈∈2.已知集合{}{}22,32,A x x B y y x x A =-<<==-∈,则A B = A. φ B. (2,1)- C. (2,7)- D .(1,2)- 3.若函数()sin()1(0)3f x a ax a π=++>的最小正周期为π,则f (x )的最小值为A.-2B.-1C.1D.2 4.函数()33(0)x f x x =-<的值域为A .(,3)-∞B .(0,2)C .(2,3)D .(2,)+∞5.若α的终边经过点A (2,m ),且4tan 23α=,则m = A .一4或-1 B .1或4 C .-1或4 D .一4或1 6.关于函数的极值,下列判断正确的是A .幂函数3y x =存在极值B .函数cos y x =在(,)ππ-上有极小值C .函数y x =-无极值D .函数322y x x x =--既有极小值也有极大值 7.曲线323y x x =-++的一条切线方程可以为A .23y x =-B .23y x =+C .2y x =+D .1y x =- 8.设有下面四个命题 p 1:若x <-1,则2(1)12log1x +>-;p 2:若2sin()3sin()αβαβ-=+,则5sin cos 12αβ= p 3:若x <-1,则2(1)12log 1x+<-p 4:若2sin()3sin()αβαβ-=+,则5sin cos 6αβ=,其中的真命题为 A. p 1,p 2 B . p 1,p 4 C. p 2,p 3 D. p 3, p 49.函数1()()sin f x x x x=+的部分图象大致为10.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .已知sin 10sin ,7ac B C a b =+=,且15cos2C =,则c=A.4B.5C.D.711.已知0a >,且a ≠1,函数(6)()log ax af x -=,则“1<a <3”是“()f x 在(1,2)上单调递减”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.已知函数2318,3()(2),3033,0x x f x x x x x x +<-⎧⎪=-+-≤<⎨⎪-+≥⎩,在[,]m n 上的值域为32[.9]27-,若n 一m 的最小值与最大值分别为l 1,l 2,则21l l = A .731162 B .631162 C .731135 D .631135第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.在各项均为正数的等比数列中,若,则公比__________.14.在中,,,,则__________.15.若函数在区间上的最大值是,则__________.16.设正数满足,则当取得最大值时,的最大值为__________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.设为数列的前项和,已知,,其中是不为0的常数,且成等比数列.(1)求的通项公式;(2)若,求.18.已知向量,,函数.(1)若是函数的一个零点,求的值;(2)若,求函数的最大值.19.在中,角的对边分别为,且.(1)求;(2)若,的面积为,求.20.已知函数.(1)若函数的定义域为,求的取值范围;(2)已知集合,方程的解集为,若,求的取值范围.21.已知函数,.(1)曲线在点处的切线斜率是否为定值?(2)若,证明:.22.已知函数.(1)讨论的单调性;(2)若,求的值.2019-2020年河北省唐山市高三上学期第一次摸底考试数学(文)试题第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1B2D3B4C5D6D7B8C9B10B11A12D第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在各项均为正数的等比数列中,若,则公比__________.【答案】【解析】【分析】根据等比数列的通项公式得到解出方程即可,注意公比大于0.【详解】因为,故,即解得舍去;故答案为:.【点睛】本题考查等比数列的通项公式,是基础的计算题,对于等比等差数列的小题,常用到的方法,其一是化为基本量即首项和公比或者公差,其二是观察各项间的脚码关系,即利用数列的基本性质.14.在中,,,,则__________.【答案】【解析】【分析】在中,利用两角和的正切函数,求得,则,再由余弦定理,即可求解的值.【详解】在中,,所以,则,又因为,,由余弦定理得,所以.【点睛】本题主要考查了两角和的正切函数和余弦定理的应用,其中解答中根据三角形的内角和定理和两角和的正切函数求得和利用余弦定理求解是解答的关键,着重考查了推理与运算能力.15.若函数在区间上的最大值是,则__________.【答案】0【解析】【分析】由函数,又由,则,根据二次函数的性质,即可求解函数的最大值,得到答案.【详解】由函数,因为,所以,当时,则,所以.【点睛】本题主要考查了余弦函数的性质,以及二次函数的图象与性质,其中解答中根据余弦函数,转化为关于的二次函数,利用二次函数的图象与性质是解答的关键,着重考查了转化思想,以及推理与计算能力,属于基础题.16.设正数满足,则当取得最大值时,的最大值为__________.【答案】4【解析】【分析】利用基本不等式和x2﹣5xy+9y2﹣z=0,求出z的最小值,确定取得最小值的x,y,z之间的关系,将中的x,z代换成y表示,转化成了关于的二次函数,利用二次函数的性质,即可求得的最大值.【详解】∵x2﹣5xy+9y2﹣z=0,∴z=x2﹣5xy+9y2≥,∵x,y,z均为正实数,∴,当且仅当x2=9y2,即x=3y,此时z=9y2时取“=”,∴∴故最大值为:4.故答案为:4.【点睛】本题考查了基本不等式在最值问题中的应用.在应用基本不等式求最值时要注意“一正、二定、三相等”的判断.运用基本不等式解题的关键是寻找和为定值或者是积为定值,难点在于如何合理正确的构造出定值.属于中档题.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.设为数列的前项和,已知,,其中是不为0的常数,且成等比数列.(1)求的通项公式;(2)若,求.【答案】(1);(2).【解析】【分析】(1)根据题意得到数列是公差为的等差数列,将三项均化为公差来表示,得到成等比数列,∴解出方程即可;(2)根据第一问得到,解出即可.【详解】(1)∵,∴数列是公差为的等差数列,∵,∴,,,∵成等比数列,∴,∴,∴或,∵,∴,.(2)由(1)知,,则,即,故.【点睛】本题考查等差数列的通项公式,是基础的计算题,对于等差数列的小题,常用到的方法,其一是化为基本量即首项和公差,其二是观察各项间的脚码关系,即利用数列的基本性质.18.已知向量,,函数.(1)若是函数的一个零点,求的值;(2)若,求函数的最大值.【答案】(1);(2)2.【解析】【分析】(1)由向量的数量积的运算,求得,再由题意,即可求解;(2)由,求得,进而得到,即可求解函数的最大值.【详解】(1),又,所以.(2),则函数的最大值为2.【点睛】本题主要考查了向量数量积的运算,以及三角函数的图象与性质,其中解答中根据向量的数量积的运算公式,求解函数的解析式,再利用三角函数的图象与性质求解是解答的关键,着重考查了推理与运算能力,属于基础题.19.在中,角的对边分别为,且.(1)求;(2)若,的面积为,求.【答案】(1);(2).【解析】【分析】(1)由正弦定理得到,两边消去公因式得到,化一即可求得角A;(2)因为,所以,再结合余弦定理得到结果.【详解】(1)由,得,因为,所以,整理得:,因为,所以.(2)因为,所以,因为及,所以,即.【点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.20.已知函数.(1)若函数的定义域为,求的取值范围;(2)已知集合,方程的解集为,若,求的取值范围.【答案】(1);(2).【解析】【分析】(1)由函数的定义域为,转化为恒成立,分类讨论,利用二次函数的性质,即可求解.(2)由题可知,方程在上有解,转化为在上有解,利用换元法,借助二次函数的性质,即可求解.【详解】(1)因为函数的定义域为,所以恒成立,当时,不恒成立,不符合题意;当时,,解得.综上所述:.(2)由题可知,在上有解.即在上有解,设,,则,因为在上单调递增,所以.所以.【点睛】本题主要考查了对数函数和二次函数的图象与性质的应用问题,其中解答中熟记对数函数的图象与性质,合理利用换元法,以及二次函数的图象与性质是解答的关键,着重考查了换元思想,以及分析问题和解答问题的能力,属于基础题.21.已知函数,.(1)曲线在点处的切线斜率是否为定值?(2)若,证明:.【答案】(1)是;(2)证明见解析.【解析】【分析】(1)由题意,求得函数的导数,进而求得,根据导数的几何意义,即可得到结论. (2)由,即,设,求得函数的导数,得到函数的单调性,即可求解函数的最值,进而得到证明.【详解】(1)∵,∴,故曲线在点处的切线斜率为定值.(2)证明:∵,,∴,设,当时,;当时,从而,即.【点睛】本题主要考查了导数的几何意义,以及利用导数研究函数的单调性和最值问题,其中解答中熟记导数的几何意义,及转化为利用导数研究函数的单调性,求解函数的最值是解答本题的关键,着重考查了分析问题和解答问题的能力,属于中档试题.22.已知函数.(1)讨论的单调性;(2)若,求的值.【答案】(1)当时,在上为增函数;当时,在上单调递减,在上为增函数;(2)1.【解析】【分析】(1)对函数求导分情况讨论导函数的正负进而得到单调区间;(2)根据a的情况讨论函数的.值域进而得到结果.【详解】(1)由,得,的定义域,①当时,,故在上为增函数,②当时,令,得,当时,,故为减函数,当时,,为增函数.综上可知:当时,在上为增函数;当时,在上单调递减,在上为增函数.(2)当时,在上为增函数,又,则当时,,不符合题意;当时,函数在上取得最小值,最小值为,则.令,则,故在上单调递增,在上单调递减,且,所以,综上可知:.【点睛】这个题目考查了导数在函数的单调性中的应用,判断函数的单调性常用的方法是:求导,根据导函数的正负得到函数的单调区间.导函数为正的区间是增区间,导函数为负的区间是减区间.页11第。
河北省唐山市2019-2020学年度高三年级第二学期第二次模拟考试理科数学试题 含答案
三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题,每个试题考生 都必须作答。第 22,23 题为选考题,考生根据要求作答。
(一)必考题:共 60 分
17.(12 分)
已知 Sn 是数列{an}的前 n 项和 , Sn+1 = 3Sn +1, a1 =1.
足为点 C,点 D满足AC = 2CD, 延长 BD 交 T 于点 E ( x2 y2 ).
(1)设直线 AB,BD 的斜率分别为 k1, k2 .
(i)求证: k1 = 4k2 ;
(ii)证明: ABE 是直角三角形;
(2)求 ABE 的面积的最大值.
(二)选考题:共 10 分.请考生在第 22,23 题中任选一题作答,如果多做,则按所做的第一题记分1 2
B.
1 2
,1
C.1,
3 2
D.
3 2
,
2
9.已知 f ( x) = cos2 x + sin x, 有以下命题:
①π
为
f(x)的一个周期:②f(x)的图象关于直线
x
=
2
对称;③f
(x)在
6
,
2
上单调;
则正确命题的个数是
A.3 B.2
C.1 D.0
10.已知向量 a,b 满足|a|=1 ,(a − b) ⊥ (3a − b), 则 a 与 b 的夹角的最大值为
22.[选修 4-4:坐标系与参数方程](10 分)
在直角坐标系 xOy 中,曲线 C: ( x −1)2 + y2 =1, 直线 l : y = −x.以坐标原点 O 为极点,x 轴的正半轴为极
轴建立极坐标系.
2019-2020学年人教A版河北省衡水中学高三第二学期第一次调研(理科)数学试卷 含解析
2019-2020学年高三第二学期一调数学试卷(理科)一、选择题1.已知全集U=R,集合A={y|y=x2+2,x∈R},集合B={x|y=lg(x﹣1)},则阴影部分所示集合为()A.[1,2]B.(1,2)C.(1,2]D.[1,2)2.已知复数(a∈R,i为虚数单位),若复数z的共轭复数的虚部为,则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.若a=π﹣2,b=a a,,则a,b,c的大小关系为()A.c>b>a B.b>c>a C.b>a>c D.a>b>c4.函数(其中e为自然对数的底数)图象的大致形状是()A.B.C.D.5.吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为()A.B.C.D.6.已知△ABC外接圆的圆心为O,若AB=3,AC=5,则的值是()A.2B.4C.8D.167.给出下列五个命题:①若p∨q为真命题,则p∧q为真命题;②命题“∀x>0,有e x≥1”的否定为“∃x0≤0,有<1”;③“平面向量与的夹角为钝角”的充分不必要条件是“”;④在锐角△ABC中,必有sin A+sin B>cos A+cos B;⑤{a n}为等差数列,若a m+a n=a p+a q(m,n,p,q∈N*),则m+n=p+q其中正确命题的个数为()A.1B.2C.3D.48.已知定义在(0,+∞)上的函数f(x),恒为正数的f(x)符合f(x)<f′(x)<2f (x),则的取值范围为()A.(e,2e)B.C.(e,e3)D.9.已知点A(0,2),抛物线C:y2=4x的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=()A.2:B.1:2C.1:D.1:310.定义为n个正数p1,p2,…p n的“均倒数”.若已知数列{a n}的前n 项的“均倒数”为,又,则=()A.B.C.D.11.对于任意的实数x∈[1,e],总存在三个不同的实数y∈[﹣1,5],使得y2xe1﹣y﹣ax﹣lnx =0成立,则实数a的取值范围是()A.(]B.[)C.(0,]D.[)12.如图,在正方体ABCD﹣A1B1C1D1中,A1H⊥平面AB1D1,垂足为H,给出下面结论:①直线A1H与该正方体各棱所成角相等;②直线A1H与该正方体各面所成角相等;③过直线A1H的平面截该正方体所得截面为平行四边形;④垂直于直线A1H的平面截该正方体,所得截面可能为五边形,其中正确结论的序号为()A.①③B.②④C.①②④D.①②③二、填空题(共4小题,每小题5分,满分20分)13.有一个底面圆的半径为1,高为2的圆柱,点O1,O2分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P,则点P到点O1,O2的距离都大于1的概率为.14.在数列{a n}中,若函数f(x)=sin2x+2cos2x的最大值是a1,且a n=(a n+1﹣a n﹣2)n﹣2n2,则a n=.15.秦九韶是我国南宋著名数学家,在他的著作数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂余半之,自乘于上以小斜幂乘大斜幂减上,余四约之为实一为从隅,开平方得积”如果把以上这段文字写成公式就是,共中a、b、c是△ABC的内角A,B,C的对边.若sin C=2sin A cos B,且b2,2,c2成等差数列,则△ABC面积S的最大值为16.过曲线的左焦点F1作曲线的切线,设切点为M,延长F1M交曲线于点N,其中C1,C3有一个共同的焦点,若,则曲线C1的离心率为.三、解答题:(共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.如图,在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=4,b=2,2c cos C =b,D,E分别为线段BC上的点,且BD=CD,∠BAE=∠CAE.(1)求线段AD的长;(2)求△ADE的面积.18.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠DAB=60°,∠ADP =90°,平面ADP⊥平面ABCD,点F为棱PD的中点.(Ⅰ)在棱AB上是否存在一点E,使得AF∥平面PCE,并说明理由;(Ⅱ)当二面角D﹣FC﹣B的余弦值为时,求直线PB与平面ABCD所成的角.19.如图,A为椭圆的左顶点,过A的直线交抛物线y2=2px(p>0)于B、C 两点,C是AB的中点.(1)求证:点C的横坐标是定值,并求出该定值;(2)若直线m过C点,且倾斜角和直线的倾斜角互补,交椭圆于M、N两点,求p的值,使得△BMN的面积最大.20.某共享单车经营企业欲向甲市投放单车,为制定适宜的经营策略,该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷、整理分析及开座谈会三个阶段.在随机问卷阶段,A,B两个调查小组分赴全市不同区域发放问卷并及时收回;在整理分析阶段,两个调查小组从所获取的有效问卷中,针对15至45岁的人群,按比例随机抽取了300份,进行了数据统计,具体情况如表:组别年龄A组统计结果B组统计结果经常使用单车偶尔使用单车经常使用单车偶尔使用单车[15,25)27人13人40人20人[25,35)23人17人35人25人[35,45)20人20人35人25人(1)先用分层抽样的方法从上述300人中按“年龄是否达到35岁”抽出一个容量为60人的样本,再用分层抽样的方法将“年龄达到35岁”的被抽个体数分配到“经常使用单车”和“偶尔使用单车”中去.①求这60人中“年龄达到35岁且偶尔使用单车”的人数;②为听取对发展共享单车的建议,调查组专门组织所抽取的“年龄达到35岁且偶尔使用单车”的人员召开座谈会,会后共有3份礼品赠送给其中3人,每人1份(其余人员仅赠送骑行优惠券).已知参加座谈会的人员中有且只有4人来自A组,求A组这4人中得到礼品的人数X的分布列和数学期望;(2)从统计数据可直观得出“是否经常使用共享单车与年龄(记作m岁)有关”的结论.在用独立性检验的方法说明该结论成立时,为使犯错误的概率尽可能小,年龄m应取25还是35?请通过比较K2的观测值的大小加以说明.参考公式:K2=,其中n=a+b+c+d.21.已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.(二)选考题,满分共10分,请考生在22.23题中任选一题作答,如果多做,则按所做的第一题计分.答时用2B铅笔在答题卡上把所选题目的题号涂黑[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l1过原点且倾斜角为α(0).以坐标原点O为极点,x轴正半轴为极轴建立坐标系,曲线C1的极坐标方程为ρ=2cosθ.在平面直角坐标系xOy中,曲线C2与曲线C1关于直线y=x对称.(Ⅰ)求曲线C2的极坐标方程;(Ⅱ)若直线l2过原点且倾斜角为,设直线l1与曲线C1相交于O,A两点,直线l2与曲线C2相交于O,B两点,当α变化时,求△AOB面积的最大值.[选修4--5:不等式选讲]23.已知函数f(x)=|ax+1|+|2x﹣1|.(1)当a=1时,求不等式f(x)>3的解集;(2)若0<a<2,且对任意x∈R,恒成立,求a的最小值.参考答案一、选择题(共12小题,每题5分,共60分,下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.已知全集U=R,集合A={y|y=x2+2,x∈R},集合B={x|y=lg(x﹣1)},则阴影部分所示集合为()A.[1,2]B.(1,2)C.(1,2]D.[1,2)解:集合A={y|y=x2+2,x∈R}=[2,+∞),集合B={x|y=lg(x﹣1)}=(1,+∞),图形阴影部分为∁U A∩B=(1,2),故选:B.2.已知复数(a∈R,i为虚数单位),若复数z的共轭复数的虚部为,则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解:∵=,∴的虚部为﹣,由﹣=﹣,得a=2.∴复数z在复平面内对应的点的坐标为(,),位于第一象限.故选:A.3.若a=π﹣2,b=a a,,则a,b,c的大小关系为()A.c>b>a B.b>c>a C.b>a>c D.a>b>c解:由题意0<a<1,故a<a a,故a a>,即b>c,而c=>a=π﹣2,故选:B.4.函数(其中e为自然对数的底数)图象的大致形状是()A.B.C.D.解:f(x)=(﹣1)cos x=cos x,f(﹣x)=cos(﹣x)=cos x=﹣f(x).∴f(x)为奇函数,图象关于原点对称,排除A,C;当0<x<时,e x>1,cos x>0,∴f(x)=cos x<0,故选:B.5.吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为()A.B.C.D.解:在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为:P==.故选:D.6.已知△ABC外接圆的圆心为O,若AB=3,AC=5,则的值是()A.2B.4C.8D.16解:如图,取AC中点D,AB中点E,并连接OD,OE,则:OD⊥AC,OE⊥AB;∴,;∴===8.故选:C.7.给出下列五个命题:①若p∨q为真命题,则p∧q为真命题;②命题“∀x>0,有e x≥1”的否定为“∃x0≤0,有<1”;③“平面向量与的夹角为钝角”的充分不必要条件是“”;④在锐角△ABC中,必有sin A+sin B>cos A+cos B;⑤{a n}为等差数列,若a m+a n=a p+a q(m,n,p,q∈N*),则m+n=p+q其中正确命题的个数为()A.1B.2C.3D.4解:①若p∨q为真命题的条件是p、q至少有一个是真命题,而p∧q为真命题的条件为p、q两个都是真命题,所以当p、q一个真一个假时,p∧q为假命题,所以①不正确;②命题“∀x>0,有e x≥1”的否定为“∃x0>0,有<1”;因此②不正确;③“平面向量与的夹角为钝角”⇒“”;反之不成立,平面向量与的夹角可能为平角.∴“平面向量与的夹角为钝角”的必要不充分条件是“”;因此不正确.④因为在锐角三角形中,∴π>A+B>,有>A>﹣B>0,所以有sin A>sin(﹣B)=cos B,即sin A>cos B,同理sin B>cos A,故sin A+sin B>cos A+cos B,所以④正确;⑤若等差数列{a n}为常数列,则m+n=p+q不一定成立,∴命题不正确.综上可得:只有④正确.故选:A.8.已知定义在(0,+∞)上的函数f(x),恒为正数的f(x)符合f(x)<f′(x)<2f (x),则的取值范围为()A.(e,2e)B.C.(e,e3)D.解:令g(x)=,x∈(0,+∞),∵∀x∈(0,+∞),f(x)<f′(x),∴g′(x)==>0,∴g(x)=在区间(0,+∞)上单调递增,∴g(1)=<=g(2),∴<①;再令h(x)=,x∈(0,+∞),∵∀x∈(0,+∞),f′(x)<2f(x)恒成立,∴h′(x)==<0,∴函数h(x)在x∈(0,+∞)上单调递减,∴h(1)=>=h(2),∴>②,综上①②可得:<<.故选:D.9.已知点A(0,2),抛物线C:y2=4x的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=()A.2:B.1:2C.1:D.1:3解:∵抛物线C:y2=4x的焦点为F(1,0),点A坐标为(0,2),∴抛物线的准线方程为l:x=﹣1,直线AF的斜率为k=﹣2,过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|,∵Rt△MPN中,tan∠NMP=﹣k=2,∴=2,可得|PN|=2|PM|,得|MN|==|PM|,因此可得|FM|:|MN|=|PM|:|MN|=1:.故选:C.10.定义为n个正数p1,p2,…p n的“均倒数”.若已知数列{a n}的前n 项的“均倒数”为,又,则=()A.B.C.D.解:由已知得,∴a1+a2+…+a n=n(2n+1)=S n当n≥2时,a n=S n﹣S n﹣1=4n﹣1,验证知当n=1时也成立,∴a n=4n﹣1,∴,∴∴=+()+…+()=1﹣=.故选:C.11.对于任意的实数x∈[1,e],总存在三个不同的实数y∈[﹣1,5],使得y2xe1﹣y﹣ax﹣lnx =0成立,则实数a的取值范围是()A.(]B.[)C.(0,]D.[)解:y2xe1﹣y﹣ax﹣lnx=0可化为:,设g(y)=(﹣1≤y≤5),则g′(y)=,即函数g(y)在(﹣1,0),(2,5)为减函数,在(0,2)为增函数,又g(﹣1)=e2,g(2)=,g(5)=,设f(x)=a+(x∈[1,e]),f′(x)=,即函数f(x)在[1,e]为增函数,所以a≤f(x)≤a,对于任意的实数x∈[1,e],总存在三个不同的实数y∈[﹣1,5],使得y2xe1﹣y﹣ax﹣lnx=0成立,即对于任意的实数x∈[1,e],总存在三个不同的实数y∈[﹣1,5],使得成立,即a+∈[,)对于任意的实数x∈[1,e]恒成立,即,即,故选:B.12.如图,在正方体ABCD﹣A1B1C1D1中,A1H⊥平面AB1D1,垂足为H,给出下面结论:①直线A1H与该正方体各棱所成角相等;②直线A1H与该正方体各面所成角相等;③过直线A1H的平面截该正方体所得截面为平行四边形;④垂直于直线A1H的平面截该正方体,所得截面可能为五边形,其中正确结论的序号为()A.①③B.②④C.①②④D.①②③解:如图,在正方体ABCD﹣A1B1C1D1中,A1H⊥平面AB1D1,垂足为H,连接A1C,可得A1C⊥AB1,A1C⊥AD1,即有A1C⊥平面AB1D1,直线A1H与直线A1C重合,直线A1H与该正方体各棱所成角相等,均为arctan,故①正确;直线A1H与该正方体各面所成角相等,均为arctan,故②正确;过直线A1H的平面截该正方体所得截面为A1ACC1为平行四边形,故③正确;垂直于直线A1H的平面与平面AB1D1平行,截该正方体,所得截面为三角形或六边形,不可能为五边形.故④错误.故选:D.二、填空题(共4小题,每小题5分,满分20分)13.有一个底面圆的半径为1,高为2的圆柱,点O1,O2分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P,则点P到点O1,O2的距离都大于1的概率为.解:∵到点O1的距离等于1的点构成一个半个球面,到点O2的距离等于1的点构成一个半个球面,两个半球构成一个整球,如图,点P到点O1,O2的距离都大于1的概率为:P===1﹣=;故答案为:14.在数列{a n}中,若函数f(x)=sin2x+2cos2x的最大值是a1,且a n=(a n+1﹣a n﹣2)n﹣2n2,则a n=2n2+n.解:f(x)=sin2x+2cos2x=3sin(2x+φ),当2x+φ=2kπ+,k∈Z,f(x)取得最大值3,∴a1=3.a n=(a n+1﹣a n﹣2)n﹣2n2,∴na n+1=(n+1)a n+2n2+2n,﹣=2,∴a n=n[3+2(n﹣1)]=2n2+n,故答案为:2n2+n.15.秦九韶是我国南宋著名数学家,在他的著作数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂余半之,自乘于上以小斜幂乘大斜幂减上,余四约之为实一为从隅,开平方得积”如果把以上这段文字写成公式就是,共中a、b、c是△ABC的内角A,B,C的对边.若sin C=2sin A cos B,且b2,2,c2成等差数列,则△ABC面积S的最大值为解:sin C=2sin A cos B,∴c=2a cos B.因此c=2a•,∵b2,2,c2成等差数列∴b2+c2=4,即有a2=b2=4﹣c2,因此S===,当c2=即c=时,S取得最大值×=,即△ABC面积S的最大值为,故答案为:.16.过曲线的左焦点F1作曲线的切线,设切点为M,延长F1M交曲线于点N,其中C1,C3有一个共同的焦点,若,则曲线C1的离心率为.解:设双曲线的右焦点为F,则F的坐标为(c,0),∵曲线C1与C3有一个共同的焦点,∴y2=4cx,∵,∴=,则M为F1N的中点,∵O为F1F的中点,M为F1N的中点,∴OM为△NF1F的中位线,∴OM∥PF,∵|OM|=a,∴|NF|=2a又NF⊥NF1,|F1F|=2c,∴|NF1|=2b,设N(x,y),则由抛物线的定义可得x+c=2a,∴x=2a﹣c过点F1作x轴的垂线,点N到该垂线的距离为2a.由勾股定理y2+4a2=4b2,即4c(2a﹣c)+4a2=4(c2﹣a2),得e2﹣e﹣1=0,∴e=.故答案为:.三、解答题:(共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.如图,在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=4,b=2,2c cos C =b,D,E分别为线段BC上的点,且BD=CD,∠BAE=∠CAE.(1)求线段AD的长;(2)求△ADE的面积.解:(1)根据题意,b=2,c=4,2c cos C=b,则cos C==;又由cos C===,解可得a=4,即BC=4,则CD=2,在△ACD中,由余弦定理得:AD2=AC2+CD2﹣2AC•CD cos C=6,则AD=;(2)根据题意,AE平分∠BAC,则==,变形可得:CE=BC=,cos C=,则sin C==,S△ADE=S△ACD﹣S△ACE=×2×2×﹣×2××=.18.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠DAB=60°,∠ADP =90°,平面ADP⊥平面ABCD,点F为棱PD的中点.(Ⅰ)在棱AB上是否存在一点E,使得AF∥平面PCE,并说明理由;(Ⅱ)当二面角D﹣FC﹣B的余弦值为时,求直线PB与平面ABCD所成的角.解:(Ⅰ)在棱AB上存在点E,使得AF∥平面PCE,点E为棱AB的中点.理由如下:取PC的中点Q,连结EQ、FQ,由题意,FQ∥DC且FQ=CD,AE∥CD且AE=CD,故AE∥FQ且AE=FQ.所以,四边形AEQF为平行四边形.3分所以,AF∥EQ,又EQ⊂平面PEC,AFα平面PEC,所以,AF∥平面PEC.5分(Ⅱ)由题意知△ABD为正三角形,所以ED⊥AB,亦即ED⊥CD,又∠ADP=90°,所以PD⊥AD,且平面ADP⊥平面ABCD,平面ADP∩平面ABCD=AD,所以PD⊥平面ABCD,故以D为坐标原点建立如图空间直角坐标系,7分设FD=a,则由题意知D(0,0,0),F(0,0,a),C(0,2,0),B(,1,0),=(0,2,﹣a),=(),设平面FBC的法向量为=(x,y,z),则由,令x=1,则y=,z=,所以取=(1,,),平面DFC的法向量=(1,0,0),l因为二面角D﹣FC﹣B的余弦值为,所以由题意:|cos<>|===,解得a=.10分由于PD⊥平面ABCD,所以PB在平面ABCD内的射影为BD,所以∠PBD为直线PB与平面ABCD所成的角,由题意知在Rt△PBD中,tan∠PBD==a=,从而∠PBD=60°,所以直线PB与平面ABCD所成的角为60°.12分19.如图,A为椭圆的左顶点,过A的直线交抛物线y2=2px(p>0)于B、C 两点,C是AB的中点.(1)求证:点C的横坐标是定值,并求出该定值;(2)若直线m过C点,且倾斜角和直线的倾斜角互补,交椭圆于M、N两点,求p的值,使得△BMN的面积最大.解:(1)由题意可知A(﹣2,0),设B(x1,y1),C(x2,y2),∵过A的直线l交抛物线于两点,∴直线l的斜率存在且不为0,设l:x=my﹣2,联立方程,消去x得,y2﹣2pmy+4p=0,∴y1+y2=2pm,y1y2=4p,∵点C是AB的中点,∴y1=2y2,∴,,∴4p=,∴,∴2pm2=9,∴x2=my2﹣2=﹣2=1,∴点C的横坐标为定值1;(2)直线m的倾斜角和直线l的倾斜角互补,所以直线m的斜率和直线l的斜率互为相反数,又点C(1,),所以设直线m的方程为:x=﹣m(y﹣)+1,即x=﹣my+4,设M(x1,y2),N(x2,y2),联立方程,消去x得,(m2+2)y2﹣8my+12=0,∴△=(8m)2﹣48(m2+2)=16m2﹣96>0,解得m2>6,∴,,∴|MN|===4,∵点C是AB的中点,∴S△BMN=S△AMN,设点A(﹣2,0)到直线MN的距离为d,则d ==,∴S△BMN=S△AMN ==4×=12,令t=m2﹣6,∴S△BMN=12=12≤12=,当且仅当t =,即t=8,m2=14时,等号成立,∴2p×14=9,∴p =.20.某共享单车经营企业欲向甲市投放单车,为制定适宜的经营策略,该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷、整理分析及开座谈会三个阶段.在随机问卷阶段,A,B两个调查小组分赴全市不同区域发放问卷并及时收回;在整理分析阶段,两个调查小组从所获取的有效问卷中,针对15至45岁的人群,按比例随机抽取了300份,进行了数据统计,具体情况如表:组别年龄A组统计结果B组统计结果经常使用单车偶尔使用单车经常使用单车偶尔使用单车[15,25)27人13人40人20人[25,35)23人17人35人25人[35,45)20人20人35人25人(1)先用分层抽样的方法从上述300人中按“年龄是否达到35岁”抽出一个容量为60人的样本,再用分层抽样的方法将“年龄达到35岁”的被抽个体数分配到“经常使用单车”和“偶尔使用单车”中去.①求这60人中“年龄达到35岁且偶尔使用单车”的人数;②为听取对发展共享单车的建议,调查组专门组织所抽取的“年龄达到35岁且偶尔使用单车”的人员召开座谈会,会后共有3份礼品赠送给其中3人,每人1份(其余人员仅赠送骑行优惠券).已知参加座谈会的人员中有且只有4人来自A组,求A组这4人中得到礼品的人数X的分布列和数学期望;(2)从统计数据可直观得出“是否经常使用共享单车与年龄(记作m岁)有关”的结论.在用独立性检验的方法说明该结论成立时,为使犯错误的概率尽可能小,年龄m应取25还是35?请通过比较K2的观测值的大小加以说明.参考公式:K2=,其中n=a+b+c+d.解:(1)①由分层抽样性质得:从300人中抽取60人,其中“年龄达到35岁“的人数为:100×=20人,”年龄达到35岁”中偶而使用单车的人数为:=9人.②A组这4人中得到礼品的人数X的可能取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,∴X的分布列为:X0123P∴E(X)==.(2)按“年龄是否达到35岁”对数据进行整理,得到如下列联表:经常使用单车偶尔使用单车合计未达到35岁12575200达到35岁5545100合计180120300m=35时,K2的观测值:k1===.m=25时,按“年龄是否达到25岁”对数据进行整理,得到如下列联表:经常使用单车偶尔使用单车合计未达到25岁6733100达到25岁11387200合计180120300 m=25时,K2的观测值:k2==,k2>k1,欲使犯错误的概率尽量小,需取m=25.21.已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.解:∵f(x)=e x﹣ax2﹣bx﹣1,∴g(x)=f′(x)=e x﹣2ax﹣b,又g′(x)=e x﹣2a,x∈[0,1],∴1≤e x≤e,∴①当时,则2a≤1,g′(x)=e x﹣2a≥0,∴函数g(x)在区间[0,1]上单调递增,g(x)min=g(0)=1﹣b;②当,则1<2a<e,∴当0<x<ln(2a)时,g′(x)=e x﹣2a<0,当ln(2a)<x<1时,g′(x)=e x ﹣2a>0,∴函数g(x)在区间[0,ln(2a)]上单调递减,在区间[ln(2a),1]上单调递增,g(x)min=g[ln(2a)]=2a﹣2aln(2a)﹣b;③当时,则2a≥e,g′(x)=e x﹣2a≤0,∴函数g(x)在区间[0,1]上单调递减,g(x)min=g(1)=e﹣2a﹣b,综上:函数g(x)在区间[0,1]上的最小值为;(2)由f(1)=0,⇒e﹣a﹣b﹣1=0⇒b=e﹣a﹣1,又f(0)=0,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,由(1)知当a≤或a≥时,函数g(x)在区间[0,1]上单调,不可能满足“函数f (x)在区间(0,1)内至少有三个单调区间”这一要求.若,则g min(x)=2a﹣2aln(2a)﹣b=3a﹣2aln(2a)﹣e+1令h(x)=(1<x<e)则=,∴.由>0⇒x <∴h(x)在区间(1,)上单调递增,在区间(,e)上单调递减,==<0,即g min(x)<0 恒成立,∴函数f(x)在区间(0,1)内至少有三个单调区间⇔⇒,又,所以e﹣2<a<1,综上得:e﹣2<a<1.另解:由g(0)>0,g(1)>0 解出e﹣2<a<1,再证明此时f(x)min<0 由于f(x)最小时,f'(x)=g(x)=e x﹣2ax﹣b=0,故有e x=2ax+b且f(1)=0知e﹣1=a+b,则f(x)min=2ax+b﹣ax2﹣(e﹣1﹣a)x﹣1=﹣ax2+(3a+1﹣e)x+e﹣a﹣2,开口向下,最大值(5a2﹣(2e+2)a+e2﹣2e),分母为正,只需看分子正负,分子<5﹣(2e+2)+e2﹣2e(a=1时取最大)=e2﹣4e+3<0,故f(x)min<0,故e﹣2<a<1.(二)选考题,满分共10分,请考生在22.23题中任选一题作答,如果多做,则按所做的第一题计分.答时用2B铅笔在答题卡上把所选题目的题号涂黑[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l1过原点且倾斜角为α(0).以坐标原点O为极点,x轴正半轴为极轴建立坐标系,曲线C1的极坐标方程为ρ=2cosθ.在平面直角坐标系xOy中,曲线C2与曲线C1关于直线y=x对称.(Ⅰ)求曲线C2的极坐标方程;(Ⅱ)若直线l2过原点且倾斜角为,设直线l1与曲线C1相交于O,A两点,直线l2与曲线C2相交于O,B两点,当α变化时,求△AOB面积的最大值.解:(Ⅰ)由题可知,C1的直角坐标方程为:x2+y2﹣2x=0,设曲线C2上任意一点(x,y)关于直线y=x对称点为(x0,y0),∴,又∵,即x2+y2﹣2y=0,∴曲线C2的极坐标方程为:ρ=2sinθ;(Ⅱ)直线l1的极坐标方程为:θ=α,直线l2的极坐标方程为:.设A(ρ1,θ1),B(ρ2,θ2).∴,解得ρ1=2cosα,,解得.∴==.∵0≤α<,∴<.当,即时,sin()=1,S△AOB取得最大值为:.[选修4--5:不等式选讲]23.已知函数f(x)=|ax+1|+|2x﹣1|.(1)当a=1时,求不等式f(x)>3的解集;(2)若0<a<2,且对任意x∈R,恒成立,求a的最小值.解:(1)当a=1时,f(x)=|x+1|+|2x﹣1|,即;解法一:作函数f(x)=|x+1|+|2x﹣1|的图象,它与直线y=3的交点为A(﹣1,3),B (1,3),如图所示;所以,f(x)>3的解集为(﹣∞,﹣1)∪(1,+∞);解法二:原不等式f(x)>3等价于或或,解得:x<﹣1或无解或x>1,所以,f(x)>3的解集为(﹣∞,﹣1)∪(1,+∞);(2)由0<a<2,得﹣<,a+2>0,且a﹣2<0;所以f(x)=|ax+1|+|2x﹣1|=,所以函数f(x)在上单调递减,在上单调递减,在上单调递增;所以当时,f(x)取得最小值,且;因为对∀x∈R,恒成立,所以;又因为a>0,所以a2+2a﹣3≥0,解得a≥1(a≤﹣3不合题意),所以a的最小值为1.。
2019-2020学年河北省唐山市高三上学期期末考试文科数学试卷及答案
2019-2020学年河北省唐山市高三上学期期末考试文科数学试卷及答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12z i =-,则2z =()A.34i-- B.54i- C.34i-+ D.54i+2.设集合{}1A x x =≥,{}24B x x =-<<,则A B = ()A.{}14x x ≤< B.{}21x x -<< C.{}24x x -<< D.{}2x x >-3.已知焦点在x 轴上的双曲线C 的渐近线方程为20x y ±=,则C 的离心率为()A.B.3C.D.54.已知实数x 、y 满足不等式组0220330x x y x y ≥⎧⎪+-≥⎨⎪+-≤⎩,则目标函数z x y =+的取值范围是()A.[]0,4 B.[]1,3 C.[]2,3 D.[]1,45.图(1)是某品牌汽车2019年月销量统计图,图(2)是该品牌汽车月销量占所属汽车公司当月总销量的份额统计图,则下列说法错误的是()A.该品牌汽车2019年全年销量中,1月份月销量最多B.该品牌汽车2019年上半年的销售淡季是5月份,下半年的销售淡季是10月份C.2019年该品牌汽车所属公司7月份的汽车销量比8月份多D.该品牌汽车2019年下半年月销量相对于上半年,波动性小,变化较平稳6.已知()12log f x x =-,则满足()11f x +≥的x 的取值范围是()A.3,4⎛⎤-∞- ⎥⎝⎦B.31,4⎛⎤-- ⎥⎝⎦C.3,4⎡⎫-+∞⎪⎢⎣⎭D.51,4⎛⎤⎥⎝⎦7.如图为函数()()sin f x x ωϕ=+的部分图象,将其向左平移14个单位长度后与函数()g x 的图象重合,则()g x 可以表示为()A.sin 2x πB.sin 2x π-C.sin x πD.sin xπ-8.笛卡尔心形线的极坐标方程为()1sin a ρθ=-,如图,笛卡尔心形线在半径为2的圆内.为了测算该心形线围成的区域面积,某同学利用计算机随机模拟法向该圆内随机投掷了1000个点,其中落入心形线内的点有375个,则该心形线围成的区域面积约为()A.32πB.38π C.2πD.π9.若cos 2sin 1θθ-=,则tan θ=()A.43B.34C.0或43D.0或3410.如图,三棱柱111ABC A B C -中,1AA ⊥底面ABC ,90ACB ∠= ,1AA AC CB ==,则直线1BC 与平面11ABB A 所成角的正弦值是()A.12B.22C.32D.3311.1F 、2F 为椭圆22:142x y E +=的左、右焦点,A 为短轴的一个端点,连接2AF 并延长交椭圆于B 点,则1ABF ∆的面积为()A.83B.163C.3D.812.已知直线l 与曲线()xf x e =和()lng x x =分别相切于点()11,A x y 、()22,B x y .有以下命题:①90AOB ∠> (O 为原点);②120x y +=;③()12,2x ∈-,则正确命题的个数为()A.0B.1C.2D.3二、填空题:本题共4小题,每小题5分,共20分.13.已知2a = ,3b =r ,a 与b 夹角的余弦值为13,则a b -= ______.14.已知函数()f x 满足()()23f x f x x +-=,则()1f =______.15.已知两圆1C 、2C 和x 轴正半轴,y 轴正半轴及直线2x y +=都相切,则两圆圆心的距离12C C =______.16.在ABC ∆中,120BAC ∠= ,D 、E 为边BC 上的点,且BD CD =,BAE CAE ∠=∠,若3AD =,AE =BC =______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第(22),(23)题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知{}n a 是公差不为0的等差数列,且前3项和为9.{}n b 是等比数列,且12b a =,25b a =,311b a =.(1)求n a ;(2)求{}n b 的前n 项和n T .18.河北省高考综合改革从2018年秋季入学的高一年级学生开始实施,新高考将实行“312++”模式,其中3表示语文、数学、外语三科必选,1表示从物理、历史两科中选择一科,2表示从化学、生物、政治、地理四科中选择两科.某校2018级入学的高一学生选科情况如下表:选科组合物化生物化政物化地物生政物生地物政地史政地史政化史生政史地化史地生史化生合计男1304555302515301040101520425女1004550353535402055152520475合计23090105656050703095254040900(1)完成下面的22⨯列联表,并判断是否在犯错误概率不超过0.01的前提下,认为“选择物理与学生的性别有关”?(2)学校按性别用分层抽样的方式,从选择“史地化”组合的同学中抽取了5名同学.现要从这5名同学中随机抽取3名同学参加某项活动,则抽取的3名同学中,恰有1名男生的概率.选择物理不选择物理合计男425女475合计900附表及公式:()()()()()22n ad bc K a b c d a c b d -=++++()20P K k ≥0.1500.1000.0500.0100k 2.0722.7063.8416.63519.如图,AB 是圆的直径,C 是圆上的点,PC 垂直圆所在的平面,D 、E 分别是PB 、PC 的中点.(1)求证:DE ⊥平面PAC ;(2)若2AB PC ==,1AC =,求点E 到平面ACD 的距离.20.己知抛物线2:4E y x =的焦点为F ,过点F 的直线l 与E 相交于A 、B 两点.(1)若AB 的中点纵坐标为2,求直线l 的方程;(2)设直线l 与E 的准线相交于C ,()1,2P ,求证:直线PA 、PC 、PB 的斜率成等差数列.21.设函数()2sin 4x f x x x =-+,()()g x f x '=.(1)讨论()g x 在[]0,2π上的单调性;(2)证明:()f x 在R 上仅有三个零点.(二)选考题:共10分.请考生在第(22),(23)题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,圆()22:11C x y -+=,直线:2l y =.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求圆C 和直线l 的极坐标方程;(2)设A 、B 分别为圆C 和直线l 上的点,且满足AO AB ⊥,设AOB α∠=,求tan α的最小值.[选修4-5:不等式选讲]23.已知a 、b 、c 、d 是正实数,且23a b +=,1c d +=.(1)证明:213a b+≥;(2)当ac+取得最大值?数学试题参考答案1-10ADCBC BDACC11-12AD13.3;14.3-;15.4;16.17(1)设{}n a 的公差为d ,则0d ≠,则1231339a a a a d ++=+=,得13a d +=.①因为{}n b 是等比数列,且12b a =,25b a =,311b a =,由2213b b b =,可得()()()2111104a d a d a d ++=+,化简得212a d d =,因为0d ≠,所以12a d =.②由①②解得,12a =,1d =,故()111n a a n d n =+-=+;(2)由(1)得123b a ==,256b a ==,设等比数列{}n b 的公比为q ,则212b q b ==,故11132n n n b b q --==⨯,则1332322311nn n n b b q T q --⨯==⨯---=.18.(1)依题意可得列联表选择物理不选择物理合计男300125425女300175475合计600300900将列联表中的数据代入公式计算得()22900300175300125 5.573 6.635600*********K ⨯⨯-⨯=≈<⨯⨯⨯,所以,不能在犯错误概率不超过0.01的前提下认为“选择物理与学生的性别有关”;(2)该学校选择“史地化”组合的男生、女生的比为2:3,所以从选择“史地化”组合的同学中按性别用分层抽样的方式抽取5名同学,其中男生2名,女生3名.记男生分别为1A 、2A ,女生分别为1B 、2B 、3B ,从5名同学中随机抽取3名同学,所有的基本事件有:{}121,,A A B 、{}122,,A A B 、{}123,,A A B 、{}112,,A B B 、{}113,,A B B 、{}123,,A B B 、{}212,,A B B 、{}213,,A B B 、{}223,,A B B 、{}123,,B B B ,共10种等可能的结果.其中,恰有一名男生包含的基本事件有:{}112,,A B B 、{}113,,A B B 、{}123,,A B B 、{}212,,A B B 、{}213,,A B B 、{}223,,A B B ,共6种等可能的结果,所以恰有1名男生的概率63105P ==.19.(1)因为AB 是圆的直径,所以BC AC ⊥,因为PC 垂直圆所在的平面,BC 为圆所在平面内的一条直线,所以PC BC ⊥,又因为AC PC C = ,所以BC ⊥平面PAC .因为D 、E 分别是棱PB 、PC 的中点,所以//BC DE ,从而有DE ⊥平面PAC ;(2)因为AB 是圆的直径,所以BC AC ⊥,因为PC 垂直圆所在的平面,AC 为圆所在平面内的一条直线,所以PC AC ⊥,BC PC C = ,AC ∴⊥平面PBC ,又AC ⊂平面ACD ,则平面PBC ⊥平面ACD .过E 引CD 的垂线,垂足为O ,平面PBC ⊥平面ACD ,平面PBC 平面ACD CD =,EO CD ⊥,EO ⊂平面PBC ,EO ∴⊥平面ACD ,所以EO 的长度即为点E 到平面ACD 的距离.由已知及2AB PC ==,1AC =,可得2BC DE ==,1CE =,在直角CED ∆中,72CD =,则217CE DE EO CD ⨯==.所以点E 到平面ACD 的距离为217.20.(1)由题意得()1,0F ,设:1l x my =+,设点()11,A x y 、()22,B x y ,将直线l 的方程代入24y x =得2440y my --=,则124y y m +=,124y y =-.由于AB 的中点纵坐标为2,则1244y y m +==,解得1m =.所以直线l 的方程为10x y --=;(2)设直线PA 、PB 、PC 的斜率分别为1k 、2k 、3k .由题意可解得21,C m ⎛⎫-- ⎪⎝⎭,则3221111m k m--==+--.而()1212121212121212222222211211y y y y y y k k x x my my m m y y m my y +⎛⎫----+=+=+=-+=- ⎪--⎝⎭3212212k m m ⎛⎫=+=+= ⎪⎝⎭所以,直线PA 、PC 、PB 的斜率成等差数列.21.(1)()()1cos 2x g x f x x '==-+,所以()1sin 2g x x '=-.由()0g x '=且[]0,2x π∈,得6x π=或56π.当x 变化时,()g x '和()g x 的变化情况如下表:x0,6π⎡⎫⎪⎢⎣⎭6π5,66ππ⎛⎫ ⎪⎝⎭56π5,26ππ⎛⎤⎥⎝⎦()g x '+-+()g x极大值极小值所以,函数()y g x =的单调递减区间为5,66ππ⎛⎫⎪⎝⎭,单调递增区间为0,6π⎡⎫⎪⎢⎣⎭和5,26ππ⎛⎤⎥⎝⎦;(2)由(1)得,当[]0,2x π∈时,()y f x '=的极小值()52062f f πππ⎛⎫''<=-<⎪⎝⎭;极大值()006f f π⎛⎫'>= ⎪⎝⎭,又()20f ππ'=>,所以存在15,66x ππ⎛⎫∈ ⎪⎝⎭,25,26x ππ⎛⎫∈ ⎪⎝⎭,使得()()120f x f x ''==,且当x 变化时()f x '和()f x 的变化情况如下表:x[)10,x 1x ()12,x x 2x (]2,2x π()f x '+0-0+()f x极大值极小值从而()()100f x f >=;()()2204f x f πππ<=-<,又()2220f πππ=->,所以()y f x =在()0,π,(],2ππ内各有一零点,又()00f =,所以()y f x =在[]0,2π内有3个零点.当(),0x ∈-∞时,()0f x '<,()y f x =单调递减,所以()()00f x f >=,所以()y f x =在(),0-∞上没有零点;当()2,x π∈+∞时,()222sin 210f x x ππππ>-+--> ,所以()y f x =在()2,π+∞上没有零点.综上,()y f x =在R 上仅有三个零点.22.(1)圆C 的方程为2220x y x +-=,即222x y x +=,因为222x y ρ+=,cos x ρθ=,sin y ρθ=,所以圆2:cos C ρθ=,直线:sin 2l ρθ=;(2)设(),A A ρθ、(),B B ρθα+,22ππθ-<<.依题意可得,2cos A ρθ=,()sin 2B ρθα+=,cos B A ραρ=.所以()2cos sin 2cos θθαα+=,从而2cos sin cos cos sin cos θθαθαα+=,所以2221cos sin 13tan tan tan 1tan cos 24θθαθθθθ-⎛⎫==-+=-+ ⎪⎝⎭,所以当1tan 2θ=时,tan α取得最小值34.23.(1)因为()21222559b a a b a b a b ⎛⎫++=++≥= ⎪⎝⎭,又23a b +=,故213a b+≥,当且仅当b aa b =时,即1a b ==时等号成立;(2)因为()()32222a b c d ac bd bc ad ac bd =++=+++≥++2=,+≤,当且仅当2bc ad =时等号成立,此时223a b a b c d c d +===+,故当32a c =取得最大值.。
唐山市2019-2020学年度高三摸底考试数学(理科)试卷答案
…2 分 …6 分
…9 分 …12 分 …5 分
将直线 l 的方程代入 C 并整理,得 t2-6t( 3sinα+cos α)+32=0,
所以 tA+tB=6( 3sinα+cos α),tA·tB=32. 又 A 为 MB 的中点,所以 tB=2tA,
因为 cos x<0,xsin x>0,从而 g (x)<0,
( ) 所以 g (x)在 π2,π 上单调递减,
( ) 又 g (2)=(2+tan 2)cos 2>0,g
2π 3
=-π3+
23<0,
( ) 所以 g (x)在 2,23π 内有唯一零点 t.
(2)由(1)得, x∈(0,t)时,g (x)>0,所以 f (x)>0,即 f (x)单调递增; x∈(t,π)时,g (x)<0,所以 f (x)<0,即 f (x)单调递减, 即 f (x)的最大值为 f (t)=tsin t. 由 f (t)=tcos t+sin t=0 得 t=-tan t, 所以 f (t)=-tan t·sin t,
P (CA1)=280,P (CA2)=2101,P (CB1)=2100,P (CB2)=230,
P (C)=280×1200+280×230+1210×230=143070.
…12 分
19.解:
z
(1)连接 AC 交 BD 于 O,连接 OE.
P
由题意可知,PE=EC,AO=OC,
∴PA∥EO,又 PA平面 BED,EO平面 BED,
唐山市 2019~2020 学年度高三年级摸底考试
理科数学参考答案
一.选择题:
A 卷:CADDC
CBCBB
河北省唐山市2019-2020学年高考数学三月模拟试卷含解析
河北省唐山市2019-2020学年高考数学三月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数2()2f x x x =-,集合{|()0}A x f x =≤,{}|()0B x f x '=≤,则A B =I ( )A .[-1,0]B .[-1,2]C .[0,1]D .(,1][2,)-∞⋃+∞【答案】C 【解析】 【分析】分别求解不等式得到集合,A B ,再利用集合的交集定义求解即可. 【详解】2{|20}{|02}A x x x x x =-≤=≤≤,{|220}{|1}B x x x x =-=≤≤, ∴{|01}A B x x =I ≤≤. 故选C . 【点睛】本题主要考查了集合的基本运算,难度容易.2.已知0a b >>,椭圆1C 的方程22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 和2C 的离心率之2C 的渐近线方程为( )A .0x ±=B .0y ±=C .20x y ±=D .20x y ±=【答案】A 【解析】 【分析】根据椭圆与双曲线离心率的表示形式,结合1C 和2C 的离心率之积为2,即可得,a b 的关系,进而得双曲线的离心率方程. 【详解】椭圆1C 的方程22221x y a b +=,双曲线2C 的方程为22221x y a b-=,则椭圆离心率1e a=,双曲线的离心率2e a=,由1C 和2C即122e e a a ==,解得2b a =±,所以渐近线方程为2y x =±,化简可得0x ±=, 故选:A. 【点睛】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属于基础题.3.已知α是第二象限的角,3tan()4πα+=-,则sin 2α=( ) A .1225B .1225-C .2425D .2425-【答案】D 【解析】 【分析】利用诱导公式和同角三角函数的基本关系求出2cos α,再利用二倍角的正弦公式代入求解即可. 【详解】因为3tan()4πα+=-, 由诱导公式可得,sin 3tan cos 4ααα==-, 即3sin cos 4αα=-, 因为22sin cos 1αα+=, 所以216cos 25α=,23sin 22sin cos cos 2αααα==-,所以31624sin 222525α=-⨯=-. 故选:D 【点睛】本题考查诱导公式、同角三角函数的基本关系和二倍角的正弦公式;考查运算求解能力和知识的综合运用能力;属于中档题.4.以下关于()sin 2cos 2f x x x =-的命题,正确的是 A .函数()f x 在区间20,3π⎛⎫⎪⎝⎭上单调递增 B .直线8x π=需是函数()y f x =图象的一条对称轴C .点,04π⎛⎫⎪⎝⎭是函数()y f x =图象的一个对称中心D .将函数()y f x =图象向左平移需8π个单位,可得到2y x =的图象 【答案】D 【解析】 【分析】利用辅助角公式化简函数得到())4f x x π=-,再逐项判断正误得到答案.【详解】()sin 2cos 2)4f x x x x π=-=-A 选项,132(,)4413220,x x ππππ⎛⎫∈⇒ ⎪⎝⎭-∈-函数先增后减,错误 B 选项,2084x x ππ=⇒-=不是函数对称轴,错误 C 选项,2444x x πππ=⇒-=,不是对称中心,错误D 选项,图象向左平移需8π个单位得到))284y x x ππ=+-=,正确故答案选D 【点睛】本题考查了三角函数的单调性,对称轴,对称中心,平移,意在考查学生对于三角函数性质的综合应用,对称点为P ',角x 的始边为射线OA ,终边为射线OP ,将OP OP '-u u u r u u u r表示为x 的函数()f x ,则()y f x =在[]0,π上的图像大致为( )A .B .C .D .【答案】B 【解析】 【分析】根据图象分析变化过程中在关键位置及部分区域,即可排除错误选项,得到函数图象,即可求解. 【详解】由题意,当0x =时,P 与A 重合,则P '与B 重合,所以||2OP OP BA '-==u u u r u u u r u u u r,故排除C,D 选项;当02x π<<时,||2sin()2cos 2OP OP P P x x π''-==-=u u u r u u u r ,由图象可知选B.故选:B 【点睛】本题主要考查三角函数的图像与性质,正确表示函数的表达式是解题的关键,属于中档题. 6.若复数()()2a i 1i (i ++为虚数单位)在复平面内所对应的点在虚轴上,则实数a 为( ) A .2- B .2C .12-D .12利用复数代数形式的乘除运算化简,再由实部为0求得a 值. 【详解】解:()()()()2a i 1i 2a 12a 1i ++=-++Q 在复平面内所对应的点在虚轴上,2a 10∴-=,即1a 2=. 故选D . 【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题. 7.已知集合{}10A x x =+≤,{|}B x x a =≥,若A B R =U ,则实数a 的值可以为( ) A .2 B .1C .0D .2-【答案】D 【解析】 【分析】由题意可得{|1}A x x =≤-,根据A B R =U ,即可得出1a ≤-,从而求出结果. 【详解】{|},1{|}A x x B x x a =≤-=≥Q ,且A B R =U ,1a ∴≤-,∴a 的值可以为2-. 故选:D . 【点睛】考查描述法表示集合的定义,以及并集的定义及运算.8.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( )A .B .C .D .设球心为,三棱柱的上底面的内切圆的圆心为,该圆与边切于点,根据球的几何性质可得为直角三角形,然后根据题中数据求出圆半径,进而求得球的半径,最后可求出球的体积.【详解】如图,设三棱柱为,且,高.所以底面为斜边是的直角三角形,设该三角形的内切圆为圆,圆与边切于点,则圆的半径为.设球心为,则由球的几何知识得为直角三角形,且,所以,即球的半径为,所以球的体积为.故选A.【点睛】本题考查与球有关的组合体的问题,解答本题的关键有两个:(1)构造以球半径、球心到小圆圆心的距离和小圆半径为三边的直角三角形,并在此三角形内求出球的半径,这是解决与球有关的问题时常用的方法.(2)若直角三角形的两直角边为,斜边为,则该直角三角形内切圆的半径,合理利用中间结论可提高解题的效率.A .[]0,1 B .[]0,2 C .[]1,2 D .[]1,3【答案】A 【解析】试题分析:由题意,得022{820x x ≤≤-≥,解得01x ≤≤,故选A .考点:函数的定义域.10.阅读如图所示的程序框图,运行相应的程序,则输出的结果为( )A .1112B .6C .112D .223【答案】D 【解析】 【分析】用列举法,通过循环过程直接得出S 与n 的值,得到8n =时退出循环,即可求得. 【详解】执行程序框图,可得0S =,2n =,满足条件,12S =,4n =,满足条件,113244S =+=,6n =,满足条件,1111124612S =++=,8n =,由题意,此时应该不满足条件,退出循环,输出S 的值为11228123⨯=. 故选D . 【点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的S 与n 的值是解题的关键,难度较易.11.复数()(1)2z i i =++的共轭复数为( ) A .33i - B .33i +C .13i +D .13i -【答案】D直接相乘,得13i +,由共轭复数的性质即可得结果 【详解】∵21()()13z i i i =++=+ ∴其共轭复数为13i -. 故选:D 【点睛】熟悉复数的四则运算以及共轭复数的性质. 12.若复数12biz i-=+(b R,i ∈为虚数单位)的实部与虚部相等,则b 的值为( )A .3B .3±C .3-D .【答案】C 【解析】 【分析】利用复数的除法,以及复数的基本概念求解即可. 【详解】()221125b b ibi z i --+-==+,又z 的实部与虚部相等, 221b b ∴-=+,解得3b =-.故选:C 【点睛】本题主要考查复数的除法运算,复数的概念运用. 二、填空题:本题共4小题,每小题5分,共20分。
河北省唐山市2019-2020学年高考数学考前模拟卷(3)含解析
河北省唐山市2019-2020学年高考数学考前模拟卷(3)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设m u r ,n r 为非零向量,则“存在正数λ,使得λ=u r r m n ”是“0m n ⋅>u r r”的( )A .既不充分也不必要条件B .必要不充分条件C .充分必要条件D .充分不必要条件【答案】D 【解析】 【分析】充分性中,由向量数乘的几何意义得,0m n ou r r =,再由数量积运算即可说明成立;必要性中,由数量积运算可得),0,90m n o ou r r ⎡∈⎣,不一定有正数λ,使得λ=u r r m n ,所以不成立,即可得答案. 【详解】充分性:若存在正数λ,使得λ=u r r m n ,则,0m n o u r r =,cos00m n m n m n ou r r u r r u r r ⋅==>,得证; 必要性:若0m n ⋅>u r r ,则),0,90m n o ou r r ⎡∈⎣,不一定有正数λ,使得λ=u r r m n ,故不成立; 所以是充分不必要条件 故选:D 【点睛】本题考查平面向量数量积的运算,向量数乘的几何意义,还考查了充分必要条件的判定,属于简单题. 2.已知a R ∈若(1-ai )( 3+2i )为纯虚数,则a 的值为 ( ) A .32-B .32C .23-D .23【答案】A 【解析】 【分析】根据复数的乘法运算法则化简可得()3+223a a i +-,根据纯虚数的概念可得结果. 【详解】由题可知原式为()3+223a a i +-,该复数为纯虚数,所以3+2032302a a a =⎧⇒=-⎨-≠⎩. 故选:A 【点睛】本题考查复数的运算和复数的分类,属基础题.3.双曲线﹣y 2=1的渐近线方程是( )A .x±2y=0B .2x±y=0C .4x±y=0D .x±4y=0【答案】A 【解析】试题分析:渐近线方程是﹣y 2=1,整理后就得到双曲线的渐近线.解:双曲线 其渐近线方程是﹣y 2=1整理得x±2y=1. 故选A .点评:本题考查了双曲线的渐进方程,把双曲线的标准方程中的“1”转化成“1”即可求出渐进方程.属于基础题.4.已知函数()ln ln(3)f x x x =+-,则( ) A .函数()f x 在()0,3上单调递增 B .函数()f x 在()0,3上单调递减 C .函数()f x 图像关于32x =对称 D .函数()f x 图像关于3,02⎛⎫⎪⎝⎭对称 【答案】C 【解析】 【分析】依题意可得(3)()f x f x -=,即函数图像关于32x =对称,再求出函数的导函数,即可判断函数的单调性; 【详解】解:由(3)ln(3)ln[3(3)]ln(3)ln ()f x x x x x f x -=-+--=-+=,(3)()f x f x ∴-=,所以函数图像关于32x =对称, 又1123()3(3)x f x x x x x -'=-=--,()f x 在()0,3上不单调. 故正确的只有C , 故选:C 【点睛】本题考查函数的对称性的判定,利用导数判断函数的单调性,属于基础题. 5.已知函数()f x 的图象如图所示,则()f x 可以为( )A .3()3x f x x=-B .e e ()x xf x x --= C .2()f x x x =-D .||e ()xf x x=【答案】A 【解析】 【分析】根据图象可知,函数()f x 为奇函数,以及函数在()0,∞+上单调递增,且有一个零点,即可对选项逐个验证即可得出. 【详解】首先对4个选项进行奇偶性判断,可知,e e ()x xf x x--=为偶函数,不符合题意,排除B ;其次,在剩下的3个选项,对其在()0,∞+上的零点个数进行判断, ||e ()xf x x=在()0,∞+上无零点, 不符合题意,排除D ;然后,对剩下的2个选项,进行单调性判断, 2()f x x x=-在()0,∞+上单调递减, 不符合题意,排除C. 故选:A . 【点睛】本题主要考查图象的识别和函数性质的判断,意在考查学生的直观想象能力和逻辑推理能力,属于容易题.6.己知函数sin ,2,2(),2223sin ,2,2(),222x x k k k z y x x k k k z ππππππππππ⎧⎛⎫⎡⎫+∈-+∈ ⎪⎪⎪⎢⎪⎝⎭⎣⎭=⎨⎛⎫⎡⎫⎪-+∈++∈ ⎪⎪⎢⎪⎝⎭⎣⎭⎩的图象与直线(2)(0)y m x m =+>恰有四个公共点()()()()11123344,,,,.,,,A x y B x y C x y D x y ,其中1234x x x x <<<,则()442tan x x +=( ) A .1- B .0C .1D .222+ 【答案】A 【解析】 【分析】先将函数解析式化简为|cos |y x =,结合题意可求得切点4x 及其范围4,2x ππ⎛⎫∈⎪⎝⎭,根据导数几何意义,即可求得()442tan x x +的值. 【详解】函数sin ,2,2(),2223sin ,2,2(),222x x k k k z y x x k k k z ππππππππππ⎧⎛⎫⎡⎫+∈-+∈ ⎪⎪⎪⎢⎪⎝⎭⎣⎭=⎨⎛⎫⎡⎫⎪-+∈++∈ ⎪⎪⎢⎪⎝⎭⎣⎭⎩即|cos |y x =直线(2)(0)y m x m =+>与函数|cos |y x =图象恰有四个公共点,结合图象知直线(2)(0)y m x m =+>与函数cos y x =-相切于4x ,4,2x ππ⎛⎫∈ ⎪⎝⎭, 因为sin y x '=, 故444cos sin 2x k x x -==+,所以()()()()4444444sin 1221c 2tan os 2x x x x x x x -+⨯=+⨯=-++=.故选:A. 【点睛】本题考查了三角函数的图像与性质的综合应用,由交点及导数的几何意义求函数值,属于难题. 7.复数()1z i i -=(i 为虚数单位),则z 的共轭复数在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】C 【解析】 【分析】由复数除法求出z ,写出共轭复数,写出共轭复数对应点坐标即得 【详解】 解析:()()()1111111222i i i i z i i i i +-+====-+--+Q ,1122z i ∴=--, 对应点为11(,)22--,在第三象限. 故选:C . 【点睛】本题考查复数的除法运算,共轭复数的概念,复数的几何意义.掌握复数除法法则是解题关键.8.已知复数为纯虚数(为虚数单位),则实数( ) A .-1 B .1C .0D .2【答案】B 【解析】 【分析】 化简得到,根据纯虚数概念计算得到答案.【详解】为纯虚数,故且,即.故选:. 【点睛】本题考查了根据复数类型求参数,意在考查学生的计算能力.9.已知数列{}n a 中,112,()1,n n n a n a a a n N *+=-=+∈ ,若对于任意的[]*2,2,a n N ∈-∈,不等式21211n a t at n +<+-+恒成立,则实数t 的取值范围为( ) A .(][),21,-∞-⋃+∞ B .(][),22,-∞-⋃+∞ C .(][),12,-∞-⋃+∞ D .[]2,2-【答案】B 【解析】 【分析】先根据题意,对原式进行化简可得()1111111n n a a n n n n n n +-==-+++,然后利用累加法求得11=3-11n a n n +++,然后不等式21211n at at n +<+-+恒成立转化为2213t at +-≥恒成立,再利用函数性质解不等式即可得出答案. 【详解】由题,()()11111n n n n n n a a a na n a ++-=+⇒=++即()1111111n n a a n n n n n n +-==-+++ 由累加法可得:11121111121n n nn n a a a a a a a a n n n n n ++-⎛⎫⎛⎫⎛⎫=-+-++-+ ⎪ ⎪ ⎪++-⎝⎭⎝⎭⎝⎭L即1111111123311121n a n n n n n n +⎛⎫⎛⎫⎛⎫=-+-++-+=-< ⎪ ⎪ ⎪++-+⎝⎭⎝⎭⎝⎭L 对于任意的[]*2,2,a n N ∈-∈,不等式21211n a t at n +<+-+恒成立 即22213240t at t at +-≥⇒+-≥令()[]()222424,2,2f a t at at t a =+-=+-∈-可得()20f ≥且()20f -≥即2212202120t t t t t t t t ⎧≥≤-⎧+-≥⇒⎨⎨≥≤---≥⎩⎩或或 可得2t ≥或2t ≤- 故选B 【点睛】本题主要考查了数列的通项的求法以及函数的性质的运用,属于综合性较强的题目,解题的关键是能够由递推数列求出通项公式和后面的转化函数,属于难题.10.已知抛物线y 2= 4x 的焦点为F ,抛物线上任意一点P ,且PQ ⊥y 轴交y 轴于点Q ,则 PQ PF ⋅u u u r u u u r的最小值为( ) A .-14B .-12C .-lD .1【答案】A 【解析】 【分析】设点2,4y P y ⎛⎫⎪⎝⎭,则点()0,Q y ,()1,0F ,利用向量数量积的坐标运算可得()22112164PQ PF y =⋅--u u u r u u u r ,利用二次函数的性质可得最值. 【详解】解:设点2,4y P y ⎛⎫⎪⎝⎭,则点()0,Q y ,()1,0F , 22,0,1,44PQ P y F y y ⎛⎫⎛⎫∴=-=-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r ,()22422211,01,244164164PQ P y y y y y F y ⎛⎫⎛⎫∴=-⋅--=-=-- ⎪ ⎪⎝⎭⎝⎭⋅u u u r u u u r ,当22y =时,PQ PF ⋅u u u r u u u r 取最小值,最小值为14-.故选:A.【点睛】本题考查抛物线背景下的向量的坐标运算,考查学生的计算能力,是基础题.11.网格纸上小正方形边长为1单位长度,粗线画出的是某几何体的三视图,则此几何体的体积为()A.1 B.43C.3 D.4【答案】A【解析】【分析】采用数形结合,根据三视图可知该几何体为三棱锥,然后根据锥体体积公式,可得结果. 【详解】根据三视图可知:该几何体为三棱锥如图该几何体为三棱锥A BCD-,长度如上图所以111121,11222 MBD DEC BCNS S S∆∆∆==⨯⨯==⨯⨯=所以3 222 BCD MBD DEC BCNS S S S∆∆∆∆=⨯---=所以113A BCD BCDV S AN -∆=⋅⋅=故选:A【点睛】本题考查根据三视图求直观图的体积,熟悉常见图形的三视图:比如圆柱,圆锥,球,三棱锥等;对本题可以利用长方体,根据三视图删掉没有的点与线,属中档题. 12.曲线24x y =在点()2,t 处的切线方程为( ) A .1y x =- B .23y x =-C .3y x =-+D .25y x =-+【答案】A 【解析】 【分析】将点代入解析式确定参数值,结合导数的几何意义求得切线斜率,即可由点斜式求的切线方程. 【详解】曲线24x y =,即214y x =, 当2x =时,代入可得21124t =⨯=,所以切点坐标为()2,1,求得导函数可得12y x '=, 由导数几何意义可知1212k y ='=⨯=, 由点斜式可得切线方程为12y x -=-,即1y x =-, 故选:A. 【点睛】本题考查了导数的几何意义,在曲线上一点的切线方程求法,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
河北省唐山市2019-2020学年第三次高考模拟考试数学试卷含解析
河北省唐山市2019-2020学年第三次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}1,0,1,2A =-,{}|lg(1)B x y x ==-,则A B =I ( ) A .{2} B .{1,0}-C .{}1-D .{1,0,1}-【答案】B 【解析】 【分析】求出集合B ,利用集合的基本运算即可得到结论. 【详解】由10x ->,得1x <,则集合{}|1B x x =<, 所以,{}1,0A B ⋂=-. 故选:B. 【点睛】本题主要考查集合的基本运算,利用函数的性质求出集合B 是解决本题的关键,属于基础题.2.已知集合{|A x y ==,2{|}10B x x x =-+≤,则A B I =( )A .[12]-, B .[1-C .(1-D .⎡⎣【答案】C 【解析】 【分析】计算A ⎡=⎣,(]1,2B =-,再计算交集得到答案.【详解】{|A x y ⎡==⎣=,(]2{|},1012x x B x -=-+=≤,故1(A B -=I . 故选:C . 【点睛】本题考查了交集运算,意在考查学生的计算能力.3.已知(1)n x λ+展开式中第三项的二项式系数与第四项的二项式系数相等,2012(1)n n n x a a x a x a x λ+=++++L ,若12242n a a a ++⋅⋅⋅=,则012(1)n n a a a a -+-⋅⋅⋅+-的值为( ) A .1B .-1C .8lD .-81【答案】B 【解析】 【分析】根据二项式系数的性质,可求得n ,再通过赋值求得0a 以及结果即可. 【详解】因为(1)nx λ+展开式中第三项的二项式系数与第四项的二项式系数相等,故可得5n =,令0x =,故可得01a =, 又因为125242a a a +++=L ,令1x =,则()501251243a a a a λ+=++++=L , 解得2λ=令1x =-,则()()5501251211a a a a -=-+-+-=-L . 故选:B. 【点睛】本题考查二项式系数的性质,以及通过赋值法求系数之和,属综合基础题.4.对于正在培育的一颗种子,它可能1天后发芽,也可能2天后发芽,….下表是20颗不同种子发芽前所需培育的天数统计表,则这组种子发芽所需培育的天数的中位数是( )A .2B .3C .3.5D .4【答案】C 【解析】 【分析】根据表中数据,即可容易求得中位数. 【详解】由图表可知,种子发芽天数的中位数为343.52+=, 故选:C. 【点睛】本题考查中位数的计算,属基础题. 5.将函数()sin(3)6f x x π=+的图像向右平移(0)m m >个单位长度,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数()g x 的图像,若()g x 为奇函数,则m 的最小值为( ) A .9πB .29π C .18π D .24π【答案】C 【解析】 【分析】根据三角函数的变换规则表示出()g x ,根据()g x 是奇函数,可得m 的取值,再求其最小值. 【详解】解:由题意知,将函数()sin(3)6f x x π=+的图像向右平移(0)m m >个单位长度,得()sin 36y x m π⎡⎤=-+⎢⎥⎣⎦,再将sin 336y x m π⎡⎤=-+⎢⎥⎣⎦图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数()g x 的图像,1()sin(3)26g x x m π∴=-+,因为()g x 是奇函数, 所以3,6m k k Z ππ-+=∈,解得,183k m k Z ππ=-∈, 因为0m >,所以m 的最小值为18π. 故选:C 【点睛】本题考查三角函数的变换以及三角函数的性质,属于基础题. 6.若0,0x y >>,则“222x y xy +=”的一个充分不必要条件是 A .x y = B .2x y = C .2x =且1y = D .x y =或1y =【答案】C 【解析】0,0x y >>,∴222x y xy +≥2x y = 时取等号.故“2,x =且1y = ”是“222x y xy +=的充分不必要条件.选C .7.已知向量()0,2=r a ,()23,b x =r ,且a r 与b r 的夹角为3π,则x=( )A .-2B .2C .1D .-1【答案】B【解析】 【分析】由题意cos 3a b a bπ⋅=r r r r ,代入解方程即可得解. 【详解】由题意1cos 32a b a b π⋅===r r r r ,所以0x >,且2x =2x =.故选:B. 【点睛】本题考查了利用向量的数量积求向量的夹角,属于基础题.8.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,其中焦点2F 与抛物线22y px =的焦点重合,且椭圆与抛物线的两个交点连线正好过点2F ,则椭圆的离心率为( ) A.2B1 C.3- D1【答案】B 【解析】 【分析】根据题意可得易知2p c =,且222222222444p a b p b p a a b ⎧-=⎪⎨⎪+=⎩,解方程可得22223412a p b p ⎧=⎪⎪⎨⎪=⎪⎩,再利用222c e a =即可求解. 【详解】易知2p c =,且22222222222223441442a p p a b p b p a a b b p ⎧⎧=⎪⎪-=⎪⎪⇒⎨⎨⎪⎪+==⎪⎪⎩⎩故有2223c e a==-1e ==故选:B 【点睛】本题考查了椭圆的几何性质、抛物线的几何性质,考查了学生的计算能力,属于中档题9.已知复数z 满足(1)43z i i +=-,其中i 是虚数单位,则复数z 在复平面中对应的点到原点的距离为( ) A .5 B .522C .52D .54【答案】B 【解析】 【分析】利用复数的除法运算化简z, 复数z 在复平面中对应的点到原点的距离为||,z 利用模长公式即得解. 【详解】由题意知复数z 在复平面中对应的点到原点的距离为||,z43(43)(1)1717,1222214952||442i i i i z i i z ----====-+∴=+=故选:B 【点睛】本题考查了复数的除法运算,模长公式和几何意义,考查了学生概念理解,数学运算,数形结合的能力,属于基础题.10.已知二次函数2()f x x bx a =-+的部分图象如图所示,则函数()'()x g x e f x =+的零点所在区间为( )A .(1,0)-B .(0,1)C .(1,2)D .(2,3)【答案】B 【解析】由函数f(x)的图象可知,0<f(0)=a <1,f(1)=1-b +a =0,所以1<b <2.又f′(x)=2x -b ,所以g(x)=e x +2x -b ,所以g′(x)=e x +2>0,所以g(x)在R 上单调递增, 又g(0)=1-b <0,g(1)=e +2-b >0,根据函数的零点存在性定理可知,函数g(x)的零点所在的区间是(0,1), 故选B.11.陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的《帝京景物略》一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为( )A .()85424πB .()85824πC .()854216πD .()858216π【答案】C 【解析】 【分析】根据三视图可知,该几何体是由两个圆锥和一个圆柱构成,由此计算出陀螺的表面积. 【详解】最上面圆锥的母线长为2,底面周长为2π24π⨯=,侧面积为1224π42π2⨯=,下面圆锥的母线长为252π48π⨯=,侧面积为1258π85π2⨯=,没被挡住的部分面积为22π4π212π⨯-⨯=,中间圆柱的侧面积为2π214π⨯⨯=.故表面积为()854216π,故选C.【点睛】本小题主要考查中国古代数学文化,考查三视图还原为原图,考查几何体表面积的计算,属于基础题. 12.已知,a b ∈R ,3(21)ai b a i +=--,则|3|a bi +=( ) A 10 B .3C .3D .4【答案】A 【解析】 【分析】根据复数相等的特征,求出3a 和b ,再利用复数的模公式,即可得出结果. 【详解】因为3(21)ai b a i +=--,所以3,(21),b a a =⎧⎨--=⎩,解得3,31,b a =⎧⎨=⎩则|3|13a bi i +=+==故选:A. 【点睛】本题考查相等复数的特征和复数的模,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
y
-1 O 1
x
A.
y
-1 O 1
x
பைடு நூலகம்
B.
y
2
-
-1 O 1
x
C.
-1 O 1
x
D.
5.右图来自古希腊数学家希波克拉底所研究的几何图形,此图由一个半圆和一个
四分之一圆构成,两个阴影部分分别标记为 A 和 M.在此图内任取一点,此点
取自 A 区域的概率记为 P(A),取自 M 区域的概率记为 P(M),则
7.若 sin 78°=m,则 sin 6°=
A.
m+1 2
C.
m+1 2
B.
1-m 2
D.
1-m 2
开始
输入 x
a=x MOD 4 b=x MOD 100 c=x MOD 400
是 a=0 且b≠0
否
c=0
是
否①
输出“x 是平年” 输出“x 是闰年”
8.已知等差数列{an}的公差不为零,其前 n 项和为 Sn,
2.已知 p,q∈R,1+i 是关于 x 的方程 x2+px+q=0 的一个根,则 p·q=
A.-4
B.0
C.2
D.4
3.已知 a=ln 3,b=log310,c=lg 3,则 a,b,c 的大小关系为
A.c<b<a
B.a<c<b
C.b<c<a
D.c<a<b
4.函数 f (x)=x|2-x|1的图像大致为
若 S3,S9,S27 成等比数列,则SS93=
结束
A.3
B.6
C.9
D.12
9.双曲线 C:ax22-y2=1(a>0)的右焦点为 F,点 P 为 C 的一条渐近线上的点,O 为坐标原点.若
|PO|=|PF|,则 S△OPF 的最小值为
A.
1 4
B.
1 2
C.1
D.2
10.在(x+y)(x-y)5 的展开式中,x3y3 的系数是
A.-10
B.0
C.10
D.20
11.直线 x- 3y+ 3=0 经过椭圆ax22+by22=1(a>b>0)的左焦点 F ,交椭圆于 A,B 两点,交 y
轴于 C 点,若→ FC =2→ CA ,则该椭圆的离心率是
A. 3-1
B.
3 -1 2
C.2 2-2
D. 2-1
12.设函数 f (x)=(ex-m-ax)(ln x-ax),若存在实数 a 使得 f (x)<0 恒成立,则 m 的取值范围是
20.(12 分)
A
B
已知 F 为抛物线 T:x2=4y 的焦点,直线 l:y=kx+2 与 T 相交于 A,B 两点.
(1)若 k=1,求|FA|+|FB|的值;
(2)点 C(-3,-2),若∠CFA=∠CFB,求直线 l 的方程.
M
A.P(A)>P(M) C.P(A)=P(M) 关
B.P(A)<P(M)
A
D.P(A)与 P(M)的大小关系与半径长度有
6.右图是判断输入的年份 x 是否是闰年的程序框图,若先后输入 x= 1 900,x=2 400,则输出的结果分别是 (注:x MOD y 表示 x 除以 y 的余数) A.1 900 是闰年,2 400 是闰年 B.1 900 是闰年,2 400 是平年 C.1 900 是平年,2 400 是闰年 D.1 900 是平年,2 400 是平年
试卷类型:A
唐山市 2019~2020 学年度高三年级摸底考试 理科数学
注意事项: 1、答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2、回答选择题时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。如需
改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试 卷上无效。
3、考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符
合题目要求的.
1.已知集合 A={x|x-1<0},B={x|x2-2x<0},则 A∩B=
A.{x|x<0}
B.{x|x<1}
C.{x|0<x<1}
D.{x|1<x<2}
A.(-∞,0] B.[0,2)
C.(2,+∞) D.(-∞,2)
高三理科数学 A 卷第 1 页
二、填空题:本题共 4 小题,每小题 5 分,共 20 分.
13.若 x,y 满足约束条件x2-x-y+y+21≥≤0,0,则 z=3x-y 的最大值为____. x-2y+2≤0,
14.已知 e1,e2 是夹角为 60的两个单位向量,a=e1-e2,b=e1-2e2,则 a·b=___.
( ) 15.已知函数 f (x)=sin
ωx+
π 4
(ω>0),若 f (x)在[0,2π]上恰有 3 个极值点,则 ω 的取值范围是
________.
16.在三棱锥 P−ABC 中,∠BAC=60°,∠PBA=∠PCA=90°,PB=PC= 3,点 P 到底面 ABC 的距离为 2,则三棱锥 P−ABC 的外接球的表面积为________.
的概率,求事件 C 发生的概率.
19.(12 分)
P
如图,在四棱锥 P−ABCD 中,底面 ABCD 是矩形,侧棱 PD⊥底
面 ABCD,PD=DC,点 E 是 PC 的中点.
(1)求证:PA∥平面 BDE;
(2)若直线 BD 与平面 PBC 所成的角为 30,求二面角 C−PB−D
的大小.
D
E C
三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题,每个 试题考生都必须作答.第(22)、(23)题为选考题,考生根据要求作答.
(一)必考题:共 60 分.
17.(12 分)
△ABC
的内角
A,B,C
的对边分别为
a,b,c,已知△ABC
的面积为
S=
1 6
b2tan
88450844072
092940
(1)通过茎叶图比较 A,B 两位选手所得分数的平均值及分散程度(不要求计算出具体值,得
出结论即可);
(2)校方将会根据评分结果对参赛选手进行三向分流:
所得分数
低于 60 分 60 分到 79 分 不低于 80 分
分流方向
淘汰出局
复赛待选
直接晋级
记事件 C:“A 获得的分流等级高于 B”,根据所给数据,以事件发生的频率作为相应事件发生
A.
(1)证明:b=3ccos A;
(2)若 tan A=2,a=2 2,求 S.
18.(12 分)
某音乐院校举行“校园之星”评选活动,评委由本校全体学生组成,对 A,B 两位选手,随机
调查了 20 个学生的评分,得到下面的茎叶图:
A 选手
B 选手
459
351
36631
524071955783677167