必修四-任意角与弧度制--知识点汇总(教师版)

合集下载

教师版__任意角和弧度制知识点和练习

教师版__任意角和弧度制知识点和练习

9.一扇形半径长与弧长之比是3:,则该扇形所含弓形面积与该扇形的
面积之比为( )
(A)(B)(C) (D)
针对练习
1.下列角中终边与330°相同的角是( )
Α.30° B.-30° C.630° D.-630°
2.下列命题正确的是( )
A.终边相同的角一定相等 B.第一象限的角都是锐角。 C.锐角都是第一象
12.已知是第二象限角,且则的范围是
.
三、解答题
13. 在与范围内,找出与下列各角终边相同的角,并判断它们是第几象
限角?
(1)
(2)
(3)
14.写出角的终边在下图中阴影区域内角的集合(用弧度制表示)
(1)
(2)
(3)
于的角是锐角。
其中正确的命题序号是

例2:写出终边在直线上的角的集合;
练习:写出终边在直线上的角的集合。 例3: 求两个集合的交集 已知集合,, 练习:1、集合,,则等于( )
A、 B、 C、 D、 2、集合,,则等于( ) (A) (B) (C) (D) 3、,求 例4:判断下列角的集合的关系: 已知集合集合,则( )
A.三角形的内角是第一象限角或第二象限角 B.第一象限的角是锐角
C.第二象限的角比第一象限的角大 D.角α是第四象限角的充要条件 是2kπ-
<α<2kπ(k∈Z) 14.设k∈Z,下列终边相同的角是 ( )
A.(2k+1)·180°与(4k±1)·180° B.k·90°与k·180°+90° C.k·180°+30°与k·360°±30° D.k·180°+60°与k·60° 15.若90°<-α<180°,则180°-α与α的终边 ( ) A.关于x轴对称 B.关于y轴对称 C.关于原点对称 D.以上 都不对 16.设集合M={α|α=

人教A版高中数学必修四任意角和弧度制任意角和弧度制知识梳理文字素材

人教A版高中数学必修四任意角和弧度制任意角和弧度制知识梳理文字素材

《任意角和弧度制》知识梳理一、要点知识精析1.任意角是由角的终边按照一定方向旋转而定义的,由于旋转有逆时针和顺时针两个方向,因此旋转所得到的角也有正负之分.如果角的终边没有作任何旋转,则称该角为零角.注意:一般情况下,角的始边与x 轴的正半轴重合,定点在坐标原点.2.正确理解直角坐标系中的几种角象限角:是指始边与x 轴的正半轴重合,顶点在坐标原点,而终边落在某个象限内的角(注意:终边落在坐标轴上的角不属于任何象限的角);如:α是第一象限角,则2k πα<22k ππ<+()k Z ∈.轴线角:终边落在坐标轴上的角.如α的终边在x 轴的正半轴,则2k απ=;α的终边在x 轴,则k απ=;α的终边在坐标轴上,则2k πα=;(以上)k Z ∈. 区间角:是指介于两个角之间的角的集合,如030150x <≤;区域角:是介于某两条终边之间的角集,如0030360k α+∙<0090360k <+∙k Z ∈,显然区域角是无数个区间角的集合,而且象限角可以用区域角来表示.终边相同的角:具有同一终边的角的集合,与角α终边相同的角可用集合表示为{β∣0360,k k Z βα=+∙∈}或{β∣2,k k Z βαπ=+∈}.在写与角α终边相同的角的集合时要注意单位统一,避免出现“0302()k k Z π+∈或0360,6k k Z π∙+∈” 之类的错误;3.等于半径长的圆弧所对的圆心角叫1弧度的角.这一定义与圆的半径大小无关.由弧度制的定义,衍生出两个公式:弧长公式(l r α=)和扇形面积公式(212S r α=),应用这两个公式时,角的单位都必须用弧度制,这两个公式都比用角度制下的弧长公式和扇形面积公式简单.无论是角度制或是弧度制,都能在角的集合与实数集R之间建立一种一、一对应关系.4.弧度制和角度制可以相互转化:00/1801()5718rad π=≈,010.01745180rad rad π=≈.用弧度制表示角时,“弧度”二字可以省略不写,但用角度表225图2 图3示时,“度”(或“0”)不能省略.在同一个式子中,两种单位不能混用.二、解题方法指津1.判断角终边所在象限的方法角所在的象限的确定,是三角函数求值问题的关键环节,为此,要利用题中的若干条件准确地对角所在的象限进行判断. (1)利用终边相同的角的表示法判断判断一个角的终边所在位置,可先将此角化为α+∙0360k 003600(<≤α,Z k ∈)或),20(2Z k k ∈<≤+πααπ的形式,找出与此角终边相同的角α,再由角α的象限来判断此角的位置. (2)确定角的范围判断 已知单角α的象限,求2α、3α、2α等角的范围问题,通常先把α角的范围用不等式表示出来,再利用不等式的性质得出所讨论的角的范围,对k 的取值进行讨论,确定出所在象限.(3).由α所在象限,确定nα所在象限的方法 求nα所在象限,可先将各个象限n 等分,从第一象限离x 轴最近的区域开始逆时针方向依次重复标注数码1,2,3,4,直到将所有区域标完为止.如果α在第几象限,则nα就在图中标号为几的区域内.如图2所示,将各象限2等分,若α在第一象限,则2α就在图中标号为1的区域内,即一、三象限的前半区域.如图3,若α在第三象限,则3α就在图中标号为3的区域内,即一、三、四象限.依次类推.。

高中数学必修四任意角与弧度制知识点汇总

高中数学必修四任意角与弧度制知识点汇总

任意角与弧度制 知识梳理:一、任意角和弧度制 1、角的概念的推广定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。

注意:(1)“旋转”形成角,突出“旋转”(2)“顶点”“始边”“终边”“始边”往往合于x 轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。

例1、若13590<<<αβ,求βα-和βα+的范围。

(0,45) (180,270)2、角的分类:由于用“旋转”定义角之后,角的范围大大地扩大了。

可以将角分为正角、零角和负角。

正角:按照逆时针方向转定的角。

零角:没有发生任何旋转的角。

负角:按照顺时针方向旋转的角。

例2、(1)时针走过2小时40分,则分针转过的角度是 -960(2)将分针拨快10分钟,则分针转过的弧度数是 3π .3、 “象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。

角的终边落在第几象限,我们就说这个角是第几象限的角角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。

例1、30? ;390? ;?330?是第 象限角 300? ; ?60?是第 象限角585? ; 1180?是第 象限角 ?2000?是第 象限角。

例2、(1)A={小于90°的角},B={第一象限的角},则A∩B= ④ (填序号).①{小于90°的角} ②{0°~90°的角}③ {第一象限的角}④以上都不对(2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是(B )A .B=A∩CB .B∪C=CC .A ⊂CD .A=B=C例3、写出各个象限角的集合:例4、若α是第二象限的角,试分别确定2α,2α 的终边所在位置.解 ∵α是第二象限的角,∴k ·360°+90°<α<k ·360°+180°(k ∈Z ).(1)∵2k ·360°+180°<2α<2k ·360°+360°(k ∈Z ), ∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上. (2)∵k ·180°+45°<2α<k ·180°+90°(k ∈Z ), 当k=2n (n ∈Z )时, n ·360°+45°<2α<n ·360°+90°; 当k=2n+1(n ∈Z )时, n ·360°+225°<2α<n ·360°+270°. ∴2α是第一或第三象限的角. 拓展:已知α是第三象限角,问3α是哪个象限的角∵α是第三象限角,∴180°+k ·360°<α<270°+k ·360°(k ∈Z ), 60°+k ·120°<3α<90°+k ·120°. ①当k=3m(m ∈Z )时,可得 60°+m ·360°<3α<90°+m ·360°(m ∈Z ). 故3α的终边在第一象限. ②当k=3m+1 (m ∈Z )时,可得 180°+m ·360°<3α<210°+m ·360°(m ∈Z ). 故3α的终边在第三象限. ③当k=3m+2 (m ∈Z )时,可得 300°+m ·360°<3α<330°+m ·360°(m ∈Z ).故3α的终边在第四象限. 综上可知,3α是第一、第三或第四象限的角. 4、常用的角的集合表示方法 1、终边相同的角:(1)终边相同的角都可以表示成一个0?到360?的角与)(Z k k ∈个周角的和。

数学必修4知识导航 1.1任意角、弧度 含解析 精品

数学必修4知识导航 1.1任意角、弧度 含解析 精品

1.1 任意角、弧度知识梳理一、角的概念的推广1.定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.旋转开始时的射线叫做角α的始边,旋转终止时的射线叫做角α的终边,射线的端点叫做角α的顶点.2.角的分类:正角、零角、负角.3.象限角如果把角放在直角坐标系内来讨论,使角的顶点与坐标原点重合,角的始边与x 轴的正半轴重合,那么角的终边落在第几象限,就说这个角是第几象限角.α是第一象限角时,可表示为{α|2kπ<α<2kπ+2π,k ∈Z }; α是第二象限角时,可表示为{α|2kπ+2π<α<2kπ+π,k ∈Z }; α是第三象限角时,可表示为{α|2kπ+π<α<2kπ+23π,k ∈Z }; α是第四象限角时,可表示为{α|2kπ+23π<α<2kπ+2π,k ∈Z }. 4.轴线角(象限界角)当角的顶点与坐标原点重合,角的始边与x 轴的正半轴重合,如果角的终边落在坐标轴上,就称该角为轴线角,也叫象限界角.终边落在x 轴正半轴上的角的集合可记作:{α|α=2kπ,k ∈Z };终边落在x 轴负半轴上的角的集合可记作:{α|α=2kπ+π,k ∈Z };终边落在y 轴正半轴上的角的集合可记作:{α|α=2kπ+2π,k ∈Z }; 终边落在y 轴负半轴上的角的集合可记作:{α|α=2kπ+23π,k ∈Z }; 终边落在坐标轴上的角可表示为{α|α=2πk ,k ∈Z }. 5.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+2kπ,k ∈Z }.二、弧度制1.角度制:规定周角的3601为1度的角,这种计量角的度量方法称为角度制. 2.弧度的定义:规定圆弧上弧长等于半径的弧所对的圆心角为1弧度的角,即3601周角=1°,π21周角=1弧度. 3.弧度与角度的换算360°=2π rad ,180°=π rad ,1°=180πrad≈0.017 45 rad ,1 rad=(π180)°≈57.30°=57°18′.4.弧长公式:l=|α|·r(其中r 为扇形的半径,α为扇形圆心角的弧度数).5.扇形的面积公式:S 扇形=21l·r=21|α|r 2(其中r 为扇形的半径,α为扇形圆心角的弧度数). 知识导学要理解任意角概念,可创设情境“转体720°,逆(顺)时针旋转”,从而知晓角有大于360°角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、象限界角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;再通过创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运用弧长公式和扇形面积公式,以具体的实例学习角度制与弧度制的互化,能正确使用计算器.疑难突破1.弧度制与角度制相比,具有哪些优点?剖析:(1)用角度制来度量角时,人们总是十进制、六十进制并用的.例如α=66°32′2″,其中66、32、2都是十进数,而度、分、秒之间的关系是六十进(退)位的.于是,为了找出与角对应的实数(我们学的实数都是十进制),需要经过一番计算,这就太不方便了.但在用弧度表示角时,只用十进制,所以容易找到与角对应的实数.(2)弧度制下的弧长公式l=|α|r 、扇形面积公式S=21|α|r 2,与角度制下的弧长公式l=180r n π、扇形面积公式S=3602r n π比较,不但具有更简洁的形式,而且在计算弧长和扇形面积时,也更为方便.2.为何说三角函数看成是以实数为自变量的函数时,角的集合与实数集R 是一一对应关系? 剖析:在用弧度制或角度制度量角的前提下,角的集合与实数集R 建立了一种一一对应关系:每一个角都有唯一的一个实数(即这个角的角度数或弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(角的角度数或弧度数等于这个实数)与它对应.于是,有了角的集合与实数集R 的一一对应关系,就可以把三角函数看成是以实数为自变量的函数.要注意角度制是60进位制,类似22°30′这样的角,应该把它化为十进制22.5°,它与实数22.5对应,但弧度制不存在这个问题 ,因为弧度制是十进制的实数.。

(完整版)任意角和弧度制知识点和练习

(完整版)任意角和弧度制知识点和练习

知识点一:任意角的表示⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角知识点二:象限角的范围2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z o o o 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z o o o o 第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z o o o o 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z o o o o终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z o终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z o o 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z o知识点三:终边角的范围3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z o4、已知α是第几象限角,确定()*n n α∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为n α终边所落在的区域.知识点四:弧度制的转换5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l r α=. 7、弧度制与角度制的换算公式:2360π=o ,1180π=o ,180157.3π⎛⎫=≈ ⎪⎝⎭oo . 知识点五:扇形8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.例题分析【例1】如果α角是第二象限的角,那么2α角是第几象限的角?说说你的理由。

(完整word版)人教高中数学必修四第一章三角函数知识点归纳

(完整word版)人教高中数学必修四第一章三角函数知识点归纳

三角函数一、任意角、弧度制及任意角的三角函数1.任意角(1)角的看法的实行①按旋转方向不相同分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角任意角负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地址不相同分为象限角和轴线角.角的极点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,那么称为第几象限角.第一象限角的会集为k360k 36090 , k第二象限角的会集为k36090k 360180 , k第三象限角的会集为k360180k360270 , k第四象限角的会集为k360270k 360360 , k终边在 x 轴上的角的会集为k180 , k终边在 y 轴上的角的会集为k180 90 , k终边在坐标轴上的角的会集为k 90 ,k(2)终边与角α相同的角可写成α+ k·360 °(k∈Z ).终边与角相同的角的会集为k 360, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做 1 弧度的角.②弧度与角度的换算:360°= 2π弧度; 180°=π弧度.③半径为 r 的圆的圆心角所对弧的长为 l ,那么角的弧度数的绝对值是l r④ 假设扇形的圆心角为为弧度制,半径为 r ,弧长为l,周长为C,面积为S,那么l r ,C2r l ,S1lr1r 2.222.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P(x, y),它与原点的距离为r r x2y2,那么角α的正弦、余弦、正切分别是: sin α=yr, cos α=xr, tan α=yx.〔三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦〕3.特别角的三角函数值1角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的根本关系与引诱公式A.基础梳理1.同角三角函数的根本关系(1)平方关系: sin2α+ cos2α= 1;〔在利用同角三角函数的平方关系时,假设开方,要特别注意判断符号〕sin α(2)商数关系:=tanα.〔3〕倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k ) tan其中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan(π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.其中的奇、偶是指π引诱公式可概括为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假设是奇数倍,那么函数名称要变( 正弦变余弦,余弦变正弦) ;假设是偶数倍,那么函数名称不变,符号看象限是指:把πα看作锐角时,依照 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与要点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转变.〔 sin cos、sin cos、sin cos三个式子知一可求二〕2(3)巧用 “1〞的变换: 1= sin 2θ+ cos 2θ= sinπ =tan24〔 〕齐次式化切法: tank ,那么 asinbcosa tanb ak b4m sinn cosm tannmkn三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法〔如y sin x 与 y cosx 的周期是〕。

第01讲 任意角和弧度制及三角函数的概念 (精讲+精练)(教师版)

第01讲 任意角和弧度制及三角函数的概念 (精讲+精练)(教师版)

第01讲任意角和弧度制及三角函数的概念(精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:象限角、区域角、终边相同的角角度1:象限角角度2:区域角角度3角:终边相同的角高频考点二:角度制与弧制度的相互转化高频考点三:弧长公式与扇形面积公式角度1:弧长的有关计算角度2:与扇形面积有关的计算角度3:题型归类练角度4:扇形弧长公式与面积公式的应用高频考点四:任意角的三角函数角度1:单位圆法与三角函数角度2:终边上任意点法与三角函数角度3:三角函数值符号的判定高频考点五:三角函数线高频考点六:解三角不等式第四部分:高考真题感悟第五部分:第01讲任意角和弧度制及三角函数的概念(精练)1、角的概念的推广①按旋转方向不同分为正角、负角、零角.②按终边位置不同分为象限角和轴线角. ③终边相同的角:终边与角α相同的角可写成360()k k Z βα=+⋅∈.2、弧度制的定义和公式①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||lrα=,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制.比值lr与所取的r 的大小无关,仅与角的大小有关. ④弧度与角度的换算:3602rad π=;180rad π=. 若一个角的弧度数为α,角度数为n ,则180()rad απ=,180n n rad π=⋅.3、任意角的三角函数3.1.单位圆定义法:任意角的三角函数定义:设α是一个任意角,角α的终边与单位圆交于点(,)P x y ,那么 (1)点P 的纵坐标叫角α的正弦函数,记作sin y α=; (2)点P 的横坐标叫角α的余弦函数,记作cos x α=; (3)点P 的纵坐标与横坐标之比叫角α的正切函数,记作tan yxα=(0x ≠).它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.3.2.终边上任意点法:设(,)P x y 是角α终边上异于原点的任意一点,它到原点的距离为r (0r >)那么:sin y r α=;cos x rα=;tan yx α=(0x ≠)(1)弧长公式在半径为r 的圆中,弧长为l 的弧所对的圆心角大小为α,则||lrα=变形可得||l r α=,此公式称为弧长公式,其中α的单位是弧度.(2)扇形面积公式211||22S lr r α== 5、三角函数线正弦线:MPOM正切线:AT6常用结论(1)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦.(2)角度制与弧度制可利用180rad π=进行相互转化,在同一个式子中,采用的度量方式必须统一,不可混淆. 30 60 90 150 180)象限角:,k k ∈360180,}k k Z +∈36090,}k k Z +∈ 360270,}k k Z +∈180,}k k Z ∈ 18090,}k k Z +∈ 90,}k k Z ∈一、判断题1.(2022·江西·贵溪市实验中学高三阶段练习)“角α是第一象限的角”是“角2α是第一象限的角”的充分不必要条件.( ) 【答案】错误 【详解】由α是第一象限角可举例380α=︒, 则1902α=︒,得角2α是第二象限的角, 即由“角α是第一象限的角”推不到“角2α是第一象限的角”,所以不是充分条件,所以错误.故答案为:错误. 2.(2022·江西·贵溪市实验中学高三阶段练习)已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数α是1或4.( ) 【答案】正确 【详解】设扇形所在圆的半径为r ,则扇形弧长l r α=,于是得226122r r r αα+=⎧⎪⎨=⎪⎩,解得21r α=⎧⎨=⎩或14r α=⎧⎨=⎩,所以扇形的圆心角的弧度数α是1或4. 故答案为:正确3.(2022·江西·贵溪市实验中学高二阶段练习)已知角α的终边经过点()P m ,0m ≠,且sin α=,则cos α= ) 【答案】正确 【详解】因为角α的终边经过点()P m ,0m ≠,且sin α=,=m =所以cos α==故答案为:正确4.(2022·江西·贵溪市实验中学高三阶段练习)角θ终边经过点(-3,4),则7cos 225θ=-.( ) 【答案】正确 【详解】由角θ终边经过点()3,4-,可得3cos 5θ==-,而2237cos 22cos 12()1525θθ=-=--=-.故答案为:正确.5.(2022·江西·贵溪市实验中学高二阶段练习)tan 300︒= ) 【答案】错误 【详解】tan 300tan(36060)tan 60︒=︒-︒=-︒=故答案为:错误高频考点一:象限角、区域角、终边相同的角①象限角角度1:确定已知角所在象限例题1.(2022·河南·南阳中学高一阶段练习)若()45180k k α=+⋅∈Z ,则α的终边在( ) A .第二或第三象限 B .第一或第三象限 C .第二或第四象限 D .第三或第四象限【答案】B 【详解】当k 为奇数时,记21,k n n =+∈Z ,则()225360n n α+⋅∈︒=Z ,此时α为第三象限角;当k 为偶数时,记2,k n n =∈Z ,则()45360n n α+⋅∈︒=Z ,此时α为第一象限角. 故选:B例题2.(2022·上海市宝山中学高一期中)平面直角坐标系中,若角532α=︒,则α是第________象限的角. 【答案】二##2 【详解】532360172︒=︒+︒,因此532︒与172︒终边相同,而172︒是第二象限角.所以α是第二象限角. 故答案为:二.角度1题型归类练1.(2022·江西抚州·高一期中)若34πα=-,则α是第( )象限角. A .一 B .二C .三D .四【答案】C 【详解】34πα=-,α终边落在第三象限,α为第三象限角.故选:C.2.(2022·河南南阳·高一期中)“α是第一象限角”是“0,2πα⎛⎫∈ ⎪⎝⎭”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【详解】若α是第一象限角,则22,2k k k Z ππαπ<<+∈,无法得到α一定属于0,2π⎛⎫⎪⎝⎭,充分性不成立, 若0,2πα⎛⎫∈ ⎪⎝⎭,则α一定是第一象限角,必要性成立,所以“α是第一象限角”是“0,2πα⎛⎫∈ ⎪⎝⎭”的必要不充分条件.故选:B3.(多选)(2022·广东·韶关市田家炳中学高一期末)下列四个角为第二象限角的是( )A .200-B .100C .220D .420【答案】AB 【详解】对于A 选项,200160360-=-,故200-为第二象限角; 对于B 选项,100是第二象限角; 对于C 选项,220是第三象限角;对于D 选项,42060360=+,故420为第一象限角. 故选:AB.角度2:由已知角所在的象限确定某角的范围例题1.(多选)(2021·全国·高一专题练习)有一个小于360︒的正角α,这个角的6倍的终边与x 轴的非负半轴重合,则这个角可以为( ) A .60︒ B .90︒ C .120︒ D .300︒【答案】ACD 【详解】由题意,62180k α=⨯︒且k Z ∈,则1803kα︒=,又0360α︒<<︒, ∴1k =时,60α=︒;2k =时,120α=︒;3k =时,180α=︒;4k =时,240α=︒;5k =时,300α=︒; 故选:ACD6.(多选)(2021·全国·高一专题练习)若α为第一象限角,则180()k k Z α⋅︒+∈的终边所在的象限可能是( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】AC 【详解】由题设,36036090k k α''︒<<︒+︒,k Z '∈,∴(2)180180(2)18090k k k k k α''+⋅︒<⋅︒+<+⋅︒+︒,令12k k k Z '=+∈,∴1118018018090k k k α⋅︒<⋅︒+<⋅︒+︒,故180()k k Z α⋅︒+∈的终边所在的象限可能是第一、三象限. 故选:AC角度2题型归类练1.(2021·全国·高一专题练习)若α是第一象限角,则2α-是( )A .第一象限角B .第一、四象限角C .第二象限角D .第二、四象限角【答案】D 【详解】由题意知,36036090k k α⋅︒<<⋅︒+︒,k ∈Z ,则180180452k k α⋅︒<<⋅︒+︒,所以180451802k k α-⋅︒-︒<-<-⋅︒,k ∈Z .当k 为偶数时,2α-为第四象限角;当k 为奇数时,2α-为第二象限角.所以2α-是第二或第四象限角.故选:D.2.(2021·广东·中山纪念中学高一阶段练习)若α是第四象限角,则90º-α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角【答案】B 【详解】由题知,(90360,360)k k α∈-+⋅⋅,k Z ∈, 则90(90360,180360)k k α-∈-⋅-⋅,在第二象限, 故选:B3.(多选)(2022·安徽·界首中学高一期末)若α是第二象限角,则( ) A .πα-是第一象限角 B .2α是第一或第三象限角 C .32πα+是第二象限角D .2α是第三或第四象限角【答案】AB 【详解】解:因为α与α-关于x 轴对称,而α是第二象限角,所以α-是第三象限角,所以πα-是第一象限角,故A 选项正确;因为α是第二象限角,所以222k k ππαππ+<<+,k ∈Z ,所以422k k παπππ+<<+,k ∈Z ,故2α是第一或第三象限角,故B 选项正确;因为α是第二象限角,所以32πα+是第一象限角,故 C 选项错误;因为α是第二象限角,所以222k k ππαππ+<<+,k ∈Z ,所以4224k k ππαππ+<<+,k ∈Z ,所以2α的终边可能在y 轴负半轴上,故D 选项错误. 故选:AB.角度3:确定n 倍角所在象限例题1.(2022·广东广州·高一期末)已知α是锐角,那么2α是( ). A .第一象限角 B .第二象限角 C .小于180°的正角 D .第一或第二象限角【答案】C 【详解】因为α是锐角,所以0,2πα⎛⎫∈ ⎪⎝⎭,所以()20,απ∈,满足小于180°的正角.其中D 选项不包括90,故错误. 故选:C2.(2021·上海·高一课时练习)角θ的终边在第二象限,则角2θ的终边在_________. 【答案】第三、四象限或y 轴非正半轴 【详解】解:θ是第二象限角,36090360180k k θ∴︒+︒<<︒+︒,k Z ∈.236018022360360k k θ︒+︒<<︒+︒,k Z ∈.2θ的终边的位置是第三或第四象限,y 的非正半轴.故答案为:第三、第四象限或y 轴的非正半轴角度3题型归类练1.(2021·上海·高一课时练习)若α是第三象限角,则α-是第_________象限角. 【答案】二 【详解】因为α是第三象限角,所以α的终边在第三象限, 又α-的终边与α的终边关于x 轴对称,所以α-的终边在第二象限,所以α-是第二象限角, 故答案为:二.2.(2018·广西·高一阶段练习)已知α终边在第四象限,则2α终边所在的象限为_______________. 【答案】第三象限或第四象限或y 轴负半轴 由于α是第四象限角,故π2π2π2k k α-<<,故4ππ24πk k α-<<,即2α终边在” 第三象限或第四象限或y 轴负半轴”. 角度4:确定n 分角所在象限例题1.(2021·陕西·榆林市第十中学高一阶段练习)若角α是第一象限角,则2α是( ) A .第一象限角 B .第二象限角 C .第一或第三象限角 D .第二或第四象限角【答案】C 【详解】因为α是第三象限角,所以36036090,k k k Z α⋅<<⋅+∈, 所以18018045,2k k k Z α︒⋅<<⋅+∈,当k 为偶数时,2α是第一象限角, 当k 为奇数时,2α是第三象限角. 故选:C .例题2.(多选)(2022·辽宁·抚顺县高级中学校高一阶段练习)如果α是第三象限的角,那么3α可能是下列哪个象限的角( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】ACD 【详解】α是第三象限的角,则32,22k k παπππ⎛⎫∈++ ⎪⎝⎭,k Z ∈,所以22,33332k k αππππ⎛⎫∈++ ⎪⎝⎭,k Z ∈; 当=3,k n n Z ∈,2,2,332n n n Z αππππ⎛⎫∈++∈ ⎪⎝⎭,在第一象限; 当=31,k n n Z +∈,72,2,36n n n Z αππππ⎛⎫∈++∈ ⎪⎝⎭,在第三象限; 当=32,k n n Z +∈,5112,2,363n n n Z αππππ⎛⎫∈++∈ ⎪⎝⎭,在第四象限; 所以3α可以是第一、第三、或第四象限角. 故选:ACD角度4题型归类练1.(2022·河南新乡·高一期末)“α是第四象限角”是“2α是第二或第四象限角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【详解】当α是第四象限角时,3222,2k k k Z ππαππ+<<+∈,则3,42k k k Z παπππ+<<+∈,即2α是第二或第四象限角.当324απ=为第二象限角,但32πα=不是第四象限角,故“α是第四象限角”是“2α是第二或第四象限角”的充分不必要条件. 故选:A2.(多选)(2022·江西·南昌十五中高一阶段练习)已知角α是第一象限角,则角3α可能在以下哪个象限( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】ABC 【详解】解:因为角α是第一象限角,所以222k k ππαπ<<+,k Z ∈,所以223363k k παππ<<+,k Z ∈, 当3k t =,t Z ∈时,2236t t απππ,t Z ∈,3α位于第一象限,当31k t =+,t Z ∈时,2522336t t παπππ,t Z ∈,3α位于第二象限,当32k t =+,t Z ∈时,4322332t t παπππ,t Z ∈,3α位于第三象限,综上可得3α位于第一、二、三象限; 故选:ABC3.(2022·上海师大附中高一期末)设α是第三象限的角,则2α的终边在第______象限. 【答案】二或四 【详解】因为α是第三象限角,所以3222k k ππαππ+<<+,k Z ∈,所以3224k k παπππ+<<+,k Z ∈, 当k 为偶数时,2α为第二象限角, 当k 为奇数时,2α为第四象限角. 故答案为:二或四.②区域角例题1.(2022·湖南·高一课时练习)已知角α的终边在如图阴影表示的范围内(不包含边界),那么角α的集合是________.【答案】{α|k ·360°+45°<α<k ·360°+150°,k ∈Z } 【详解】观察图形可知,终边落在边界上的角分别是36045,360150,k k k Z ⋅︒+︒⋅︒+︒∈, 所以角α的集合是{α|k ·360°+45°<α<k ·360°+150°,k ∈Z }. 故答案为:{α|k·360°+45°<α<k·360°+150°,k ∈Z} 例题2.(2020·全国·高一课时练习)如图所示,终边落在阴影部分(不包括边界)的角的集合是________.【答案】{}90180120180,k k k αα︒+⋅︒<<︒+⋅︒∈Z 【详解】因为终边落在y 轴上的角为90180,k k Z ︒+⋅︒∈,终边落在虚线上的角为1203601202180,k k ︒︒+⋅︒=+⋅︒k Z ∈; 3003601201802180120(21)180,n n n n Z ︒︒︒+⋅︒=+︒+⋅︒=++⋅︒∈,即终边在虚线上的角为120180k ︒+⋅︒,k Z ∈,所以终边落在阴影部分的角为90180120180,k k k Z α︒+⋅︒<<︒+⋅︒∈, 故答案为:{}90180120180,k k k Z αα︒+⋅︒<<︒+⋅︒∈题型归类练1.(2022·上海·华师大二附中高一期中)用弧度制表示终边落在如图所示阴影部分内(含边界)的角θ的集合是__________.【答案】32,2,Z 64k k k ππππ⎡⎤-+∈⎢⎥⎣⎦【详解】由题图,终边OB 对应角为26k ππ-且Z k ∈,终边OA 对应角为324k ππ+且Z k ∈, 所以阴影部分角θ的集合是32,2,Z 64k k k ππππ⎡⎤-+∈⎢⎥⎣⎦.故答案为:32,2,Z 64k k k ππππ⎡⎤-+∈⎢⎥⎣⎦2.(2021·全国·高一专题练习)如图所示,终边在阴影区域内(含边界)的角的集合为______.【答案】{}4518060180,n n n Z αα+⋅≤≤+⋅∈ 【详解】终边在直线OM 上的角的集合为:{}{}45360,225360,M k k Z k k Z αααα==︒+⋅︒∈⋃=︒+⋅︒∈{}(){}452180,4521180,k k Z k k Z αααα==︒+⋅︒∈⋃=︒++⋅︒∈{}45180,n n Z αα==︒+⋅︒∈.同理可得终边在直线ON 上的角的集合为{}60180,n n Z αα=︒+⋅︒∈,所以终边在阴影区域内(含边界)的角的集合为{}4518060180,n n n Z αα︒+⋅︒≤≤︒+⋅︒∈. 故答案为:{}4518060180,n n n Z αα︒+⋅︒≤≤︒+⋅︒∈3.(2020·全国·高一课时练习)如下图,终边落在OA 位置时的角的集合是__________;终边落在OB 位置,且在360360-︒︒内的角的集合是________;终边落在阴影部分(含边界)的角的集合是______.【答案】 {|360120,}k k αα=︒+︒∈Z {45,315}-︒︒ {|36045360120,}k k k αα︒-︒︒+︒∈Z 【详解】由题意以OA 为终边的一个角是120︒,因此以OA 为终边的角的集合是{|360120,}k k αα=︒+︒∈Z ;以OB 为终边的角的集合是{|36045,}k k αα=︒-︒∈Z ,在已知范围内的有45,315-︒︒两个角,集合表示为{45,315}-︒︒;∴终边落在阴影部分(含边界)的角的集合为{|36045360120,}k k k αα︒-︒︒+︒∈Z . 故答案为:{|360120,}k k αα=︒+︒∈Z ;{45,315}-︒︒;{|36045360120,}k k k αα︒-︒︒+︒∈Z .4.(2019·江苏·海安市南莫中学高一期中)如图所示,阴影部分表示的角的集合为(含边界)______(用弧度表示).【答案】{|,}3k k k Z παπαπ≤≤+∈【详解】如图,阴影部分表示的角α位于一、三象限, 在第一象限,03πα≤≤;在第三象限,43ππα≤≤, ∴阴影部分表示的角的集合为(含边界): {|223k k παπαπ≤≤+或()()21213k k ππαπ+≤≤++,}{|,}3k Z k k k Z παπαπ∈=≤≤+∈.故答案为{|,}3k k k Z παπαπ≤≤+∈.③终边相同的角例题1.(2022·北京师大附中高一期中)将x 轴正半轴绕原点逆时针旋转30,得到角α,则下列与α终边相同的角是( ) A .330︒ B .330-︒C .210︒D .210-︒【答案】B 【详解】由题意得:{}30360,k k Z αα=︒+⋅︒∈,当1k =-时,330α=-︒,B 正确,其他选项经过验证均不正确. 故选:B例题2.(2017·天津市红桥区教师发展中心高一期末)在0~180范围内,与950-终边相同的角是______.【答案】130 【详解】与950-终边相同的角的集合为}{()950360Z k k αα=-+∈, 当3k =时,9503603130α=-+⨯=,所以在0~180范围内, 与950-终边相同的角是130.故答案为:130题型归类练1.(2022·辽宁·凌源市实验中学高一阶段练习)下列与角23π的终边一定相同的角是( ) A .53πB .()43k k Z ππ-∈ C .()223k k Z ππ+∈ D .()()2213k k Z ππ++∈ 【答案】C 【详解】 对于选项C :与角23π的终边相同的角为()223k k Z ππ+∈,C 满足. 对于选项B :当()2k n n Z =∈时, ()442,33k n k Z n Z ππππ-=-∈∈成立; 当()21k n n Z =+∈时,()()44212,333k n n k Z n Z ππππππ-=+-=-∈∈不成立. 对于选项D :()()2521233k k k Z ππππ++=+∈不成立. 故选: C2.(2022·上海市奉贤区奉城高级中学高一阶段练习)与1920°终边相同的角中,最小的正角是________ 【答案】120° 【详解】19205360120︒=⨯︒+︒,所以与1920°终边相同的角中,最小的正角为120°. 故答案为:120°.高频考点二:角度制与弧制度的相互转化例题1.(2022·河南南阳·高一期中)把π5化成角度制是( )A .36°B .30°C .24°D .12°【答案】A 【详解】由角度制与弧度制的互化知,π180=︒, 所以ππ180()3655π=⨯︒=︒, 故选:A例题2.(2022·陕西汉中·高一期中)如图,时钟显示的时刻为12:55,将时针与分针视为两条线段,则该时刻的时针与分针所夹的锐角为( )A .π3B .23π72C .11π36D .3π10【答案】B 【详解】由图可知,该时刻的时针与分针所夹的锐角为2π112π23π12121272+⨯=. 故选:B.题型归类练1.(2022·安徽·砀山中学高一期中)将210°化成弧度为( ) A .5π6-B .5π6C .4π3D .7π6【答案】D 【详解】 7210=210=1806ππ︒⨯, 故选:D.2.(2022·上海市七宝中学高一开学考试)经过50分钟,钟表的分针转过___________弧度的角. 【答案】5π3-【详解】根据题意,分针转过的弧度为5052603ππ-⨯=-. 故答案为:53π-.3.(2022·湖南·高一课时练习)将下表中的角度和弧度互化:180π=︒∴1180π︒=,1801π︒=故:高频考点三:弧长公式与扇形面积公式角度1:弧长的有关计算例题1.(2022·上海奉贤区致远高级中学高一期中)已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( ) A .2 B .sin 2 C .2sin1D .2sin1【答案】C 【详解】2弧度的圆心角所对的弦长为2,∴半径1sin1r =,∴所求弧长为22sin1r =. 故选:C.例题2.(2022·湖南·高一课时练习)已知相互咬合的两个齿轮,大轮有48齿,小轮有20齿,当大轮顺时针转动一周时,小轮转动的角是多少度?多少弧度?如果大轮的转速是150r/min ,小轮的半径为10cm ,那么小轮圆周上的点每秒转过的弧长是多少? 【答案】小轮转动的角是864︒,245π弧度,小轮圆周上的点每秒转过的弧长为120π cm 【详解】由题意得,相互咬合的两个齿轮,大轮有48齿,小轮有20齿, 所以当大轮旋转一周时,大轮转了48个齿,小轮转了20齿, 所以小轮转动了4812205=周,即123608645⨯︒=︒,1224255ππ⨯=,所以当大轮的转速为150r/min 时,小轮的转速为121503605⨯=r/min , 所以小轮圆周上的点每秒转过的弧度数为 36026012ππ⨯÷=,因为小轮的半径为10cm ,所以小轮圆周上的点每秒转过的弧长 1210120ππ⨯= cm角度1题型归类练1.(2022·青海·海南藏族自治州高级中学高一期末)已知扇形的圆心角为2rad 5,半径为10,则扇形的弧长为( )A .12 B .1 C .2 D .4【答案】D 【详解】解:因为扇形的圆心角为2rad 5,半径为10,所以由弧长公式得:扇形的弧长为21045l r α=⋅=⨯=故选:D2.(2022·北京·汇文中学高一期中)一圆锥的侧面展开图为一圆心角为23π的扇形,该圆锥母线长为6,则圆锥的底面半径为________. 【答案】2 【详解】因为圆锥的母线长为6,所以侧面展开图扇形的半径为6,设该圆锥的底面半径为r , 所以有26223r r ππ⋅=⇒=, 故答案为:2.角度2:与扇形面积有关的计算例题1.(2022·河北·沧县中学高一阶段练习)已知扇形OAB 的圆心角为8rad ,其周长是,则该扇形的面积是___2cm . 【答案】8 【详解】设扇形的半径为R ,弧长是88l R R =⨯=,则其扇形周长是82R R +=R =22188cm 2R ⨯⨯=. 故答案为:8例题2.(2022·重庆八中高一期末)如图所示,弧田是由圆弧AB 和其所对弦AB 围成的图形,若弧田的弧AB 长为3π,弧所在的圆的半径为4,则弧田的面积是___________.【答案】6π-【详解】解:根据题意,只需计算图中阴影部分的面积, 设AOB α∠=,因为弧田的弧AB 长为3π,弧所在的圆的半径为4, 所以34πα=,所以阴影部分的面积为113444sin 622παπ⨯⨯-⨯⨯⨯=-所以弧田的面积是6π-故答案为:6π-例题3.(2022·湖南·雅礼中学高一期中)中国折叠扇有着深厚的文化底蕴.如图(2),在半圆O (半径为20cm )中作出两个扇形OAB 和OCD ,用扇环形ABDC (图中阴影部分)制作折叠扇的扇面.记扇环形ABDC 的面积为1S ,扇形OAB 的面积为2S,当12S S =时,扇形的现状较为美观,则此时扇形OCD 的半径为__________cm【答案】1) 【详解】设,AOB θ∠=,半圆O 的半径为r ,扇形OCD 的半径为1r ,1252S S =,所以2212112212r r rθθθ-,即2212r r r -,所以2212r r===,所以1r r =20,r cm =,所以11)r cm=, 故答案为:1).角度2题型归类练1.(2022·上海市行知中学高二期中)已知圆锥的表面积为28π,其侧面展开扇形的圆心角大小为3π,则这个圆锥的底面半径为______. 【答案】2 【详解】设圆锥的底面半径为r ,母线长为l , 由题意,有228rl r πππ+=①, 由于侧面展开扇形的圆心角大小为3π, 所以23l r ππ=,即6l r =②,由①②得12l =,2r =, 即圆锥的底面半径为2, 故答案为:2.2.(2022·上海市七宝中学高一开学考试)已知扇形的圆心角为3π,弧长为45π,则扇形的面积为___________.【答案】2425π 【详解】依题意,扇形的半径412553lrππα===,所以扇形的面积1141224225525S lrππ==⨯⨯=,故答案为:2425π.3.(2022·上海·高三专题练习)《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦´矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长等于9米的弧田.(1)计算弧田的实际面积;(2)按照《九章算术》中弧田面积的经验公式计算所得结果与(1)中计算的弧田实际面积相差多少平方米?(结果保留两位小数)【答案】(1)9π2m);(2)少1.522m.试题解析:(1) 扇形半径,扇形面积等于弧田面积=(m2)(2)圆心到弦的距离等于,所以矢长为.按照上述弧田面积经验公式计算得(弦´矢+矢2)=.平方米按照弧田面积经验公式计算结果比实际少1.52平米.角度3:扇形中的最值问题例题1.(2022·吉林·长春十一高高一期末)已知扇形周长为40,当扇形的面积最大时,扇形的圆心角为()A.32B.52C.3 D.2【答案】D 【详解】设扇形半径为r ,易得020r <<,则由已知该扇形弧长为402r -.记扇形面积为S ,则()()()22014022010024r r S r r r r +-=-=-≤=,当且仅当20r r =-,即10r =时取到最大值,此时记扇形的圆心角为θ,则40220210r r θ-=== 故选:D例题2.(2022·江西·奉新县第一中学高一阶段练习)如果一个扇形的周长为60cm ,那么当它的半径和圆心角分别为多少时,扇形的面积最大?【答案】当扇形的半径为15cm ,圆心角为2rad 时,扇形的面积最大 【详解】解:设该扇形的半径为cm r ,圆心角为θ,弧长为cm l ,面积为2cm S , 则260l r +=,所以602l r =-,其中030r <<,所以,()()2211602301522522S lr r r r r r ==-=-+=--+,所以当15cm r =时,S 最大,最大值为2225cm , 此时()602152rad 15l r θ-⨯===. 例题3.(2022·广西梧州·高一期中)已知扇形的周长为30. (1)若该扇形的半径为10,求该扇形的圆心角α,弧长l 及面积S ; (2)求该扇形面积S 的最大值及此时扇形的半径 . 【答案】(1)1α=,10l =,50S =; (2)2254,152. (1)由题知扇形的半径10r =,扇形的周长为30, ∴22030l r l +=+=, ∴10l =,10110lr α,1110105022S lr ==⨯⨯=.(2)设扇形的圆心角α,弧长l ,半径为r ,则230l r +=, ∴302l r =-,∴()()21522530112222154S lr r r r r r r -+⎛⎫--=⎪=⎭≤⎝== 当且仅当15r r -=,即152r =取等号, 所以该扇形面积S 的最大值为2254,此时扇形的半径为152.1.(2022·浙江·高三专题练习)某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形OAD 挖去扇形OBC 后构成的).已知10OA =,()010OB x x =<<,线段BA ,CD 与BC ,AD 的长度之和为30,圆心角为θ弧度.(1)求θ关于x 的函数表达式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值. 【答案】(1)210(010)10x x x θ+=<<+; (2)52x =,2254. (1)解:根据题意,可算得()m BC x θ=,()10m AD θ=. 因为30AB CD BC AD +++=,所以()2101030x x θθ-++=, 所以,()21001010x x x θ+=<<+. (2)解:根据题意,可知()()()2222251011102210AOD BOCx x y S S x x θ+-=-=-=⨯+扇形扇形 ()()22522551055024x x x x x ⎛⎫=+-=-++=--+⎪⎝⎭, 当()5m 2x =时,()2max 225m 4=y .综上所述,当5m 2x =时铭牌的面积最大,且最大面积为2225m 4. 2.(2022·全国·高一阶段练习)已知一扇形的圆心角为()0αα>,周长为C ,面积为S ,所在圆的半径为r . (1)若35α=︒,8r =cm ,求扇形的弧长;(2)若16C =cm ,求S 的最大值及此时扇形的半径和圆心角. 【答案】(1)149πcm ; (2)S 的最大值是216cm ,此时扇形的半径是4 cm ,圆心角为2. 【解析】35α=︒=735rad rad 18036ππ⨯=, 扇形的弧长7148369l r αππ==⨯=cm ; (2)设扇形的弧长为l ,半径为r ,则216r l +=,∴162l r =-()08r <<,则()()2211162841622S lr r r r r r ==-=-+=--+,当4r =时,2max 16cm S =,16248l =-⨯=cm ,2l rα,∴S 的最大值是216cm ,此时扇形的半径是4 cm ,圆心角2α=.3.(2022·河北张家口·高一期末)已知扇形的圆心角是α,半径为r ,弧长为l . (1)若135α=,10r =,求扇形的弧长l ;(2)若扇形AOB 的周长为22,当扇形的圆心角α为多少弧度时,这个扇形的面积最大,并求出此时扇形面积的最大值. 【答案】(1)152π; (2)当2α=时,扇形面积最大值max 1214S =. (1)31354πα==,∴扇形的弧长3151042l r ππα==⨯=;(2)扇形AOB 的周长()22222L r l r r r αα=+=+=+=,222rα∴=-, ∴扇形AOB 面积2221111112S r r r r r α⎛⎫==-=-+ ⎪⎝⎭,则当112r =,max 1214S =, 即当2α=时,扇形面积最大值max 1214S =. 角度4:扇形弧长公式与面积公式的应用例题1.(2022·陕西·西安中学高一期中)中国传统折扇有着极其深厚的文化底蕴.《乐府诗集》中《夏歌二十首》的第五首曰:“叠扇放床上,企想远风来轻袖佛华妆,窈窕登高台.”如图所示,折扇可看作是从一个圆面中剪下的扇形制作而成若一把折扇完全打开时圆心角为67π,扇面所在大圆的半径为20cm ,所在小圆的半径为8cm ,那么这把折扇的扇面面积为( )A .288πB .144πC .487π D .以上都不对【答案】B 【详解】 由题意得,大扇形的面积为11612002020277S ππ=⨯⨯⨯=, 小扇形的面积为21619288277S ππ=⨯⨯⨯=, 所以扇面的面积为12120019214477S S πππ-=-=. 故选:B6.(2022·全国·高一课时练习)已知扇形面积为225cm ,当扇形的圆心角为多大时,扇形的周长取得最小值? 【答案】当扇形的圆心角为2时,扇形的周长取得最小值. 【详解】解:设扇形的半径为R ,弧长为l ,扇形的周长为y ,则2y l R =+. 由题意,得1252lR =,则50l R =,故502522(0)y R R R R R ⎛⎫=+=+> ⎪⎝⎭. 利用函数单调性的定义,可得当05R <时,函数502y R R=+是减函数; 当5R >时,函数502y R R=+是增函数. 所以当5R =时,y 取得最小值20,此时10l =,2lRα==, 即当扇形的圆心角为2时,扇形的周长取得最小值. 【点睛】要求周长的最小值,可考虑将周长写成某个变量的函数式,利用函数的单调性求最值.函数()()0,0kf x x x k x=+≠>在(x ∈-∞上单调递减,在)x ∈+∞上单调递增.角度4题型归类练1.(2022·陕西·榆林市第十中学高一阶段练习)已知扇形所在圆的半径为2,圆心角的弧度数是2,则该扇形的弧长为( ) A .1 B .4C .6D .8【答案】B因为扇形所在圆的半径2r =,圆心角的弧度数α=2, 所以该扇形的弧长224l r α==⨯=. 故选:B2.(2022·北京·高一期中)已知某扇形的圆心角为6π,弧长为23π,则该扇形的半径为___________;面积为___________. 【答案】 4 43π##43π 【详解】由题设,该扇形的半径2436r ππ=÷=,面积为1244233S ππ=⨯⨯=. 故答案为:4,43π3.(2022·江苏省木渎高级中学高一期末)中国扇文化有着深厚的文化底蕴,文人雅士喜在扇面上写字作画.如图,是书画家唐寅(1470—1523)的一幅书法扇面,其尺寸如图所示,则该扇面所在扇形的圆心角为____rad ,此时扇面..面积为____cm 2.【答案】 52704 【详解】解:如图,设AOB θ∠=,OA OB r ==,由题意可得:2464(16)r r θθ=⎧⎨=+⎩,解得:485r =,52θ=. 所以,21481486416247042525OCD OAB S S S cm ⎛⎫=-=⨯⨯+-⨯⨯=⎪⎝⎭.故答案为:5;7042.高频考点四:任意角的三角函数角度1:单位圆法与三角函数例题1.(2022·全国·高三专题练习)设0a <,角α的终边与圆221x y +=的交点为(34)P a a -,,那么sin 2cos αα+=( ) A .25-B .15-C .15D .25【答案】D 【详解】画图,角α的终边与圆221x y +=的交点为(34)P a a -,,设()P x y ,,则3x a =-,4y a =,代入得22(3)(4)1a a -+=,解得2125a =, ∵0a <, ∴15a =-,∴34()55P -,, 又∵在单位圆中,cos x α=,sin y α=, ∴3cos 5α=,4sin 5α=-, ∴2sin 2cos 5αα+=, 故选:D例题2.(2022·北京师大附中高三期中)已知正角α的终边经过点1(2P -,则角α的值可以是_______(写出一个就可以).【详解】因为1(2P -,所以2tan 12α==-所以角α的值可以是23π.故答案为:23π(答案不唯一)角度1题型归类练1.(2022·全国·高三专题练习)点P 为圆221x y +=与x 轴正半轴的交点,将点P 沿圆周逆时针旋转至点P ',当转过的弧长为2π3时,点P '的坐标为( )A.1,2⎛ ⎝⎭ B.12⎛- ⎝⎭C.21⎛⎫⎪ ⎪⎝⎭ D.12⎫-⎪⎪⎝⎭【答案】B 【详解】设旋转角为θ,则22123θπππ⨯⨯=,得23πθ=,从而可得1(2P '-. 故选:B.2.(2022·四川凉山·高一期末)已知角α的顶点在原点,始边与x 轴非负半轴重合,终边与以原点为圆心,半径为1的圆相交于点则34,55A ⎛⎫-- ⎪⎝⎭,则 tan α=( )A .34B .43C .34-D .43-【答案】B 【详解】由题意可得:角α的终边与单位圆的交点为34,55A ⎛⎫-- ⎪⎝⎭,所以35x =-,45y =-,所以445tan 335y x α-===-,故选:B.角度2:终边上任意点法与三角函数例题1.(2022·北京师大附中高一期中)若角α的终边经过点(2,4)P -,则tan α=( ) A .12-B .12C .2D .2-由题设,4tan 22α==--. 故选:D例题2.(2022·北京·人大附中高一期中)已知角α的终边过点()4,3(0)P a a a ->,则cos α的值是( ) A .35 B .35C .45D .45-【答案】C 【详解】 由题意知:44cos 55a a α===.故选:C.角度2题型归类练1.(2022·山东山东·高一期中)已知点(1)P -是角α终边上一点,则cos α=() A . B .12-C D .12【答案】A 【详解】因为点(1)P -是角α终边上一点,所以cos α==故选:A.2.(2022·宁夏·石嘴山市第一中学三模(理))已知角θ的终边上有一点(4,3)(0)a a a P ->,则2sin cos θθ+的值是( ) A .25-B .25C .25或25-D .不确定【答案】B 【详解】角θ的终边上点(4,3)(0)aa a P ->,则||5r OP a ==, 于是得3344sin ,cos 5555a a a a θθ-====-, 所以3422sin cos 2()555θθ+=⨯+-=.故选:B3.(2022·河南焦作·高一期中)若角θ的终边经过点(),3P x -,且3sin 5θ=-,则tan θ=( )A .43-B .43±C .34-D .34±由三角函数的定义可得3sin 5θ==-,解得4x =±,因此3tan 4θ=±.故选:D.4.(2022·四川自贡·高一期末)角α的终边过点()12,5P ,则cos α=( ) A .513B .1213C .125D .512【答案】B 【详解】由题意P 到原点的距离为13r OP ==, 所以12cos 13α=. 故选:B .角度3:三角函数值符号的判定例题1.(2022·陕西·榆林市第十中学高一阶段练习)若3α=,则( ) A .sin 0,cos 0αα>> B .sin 0,cos 0αα>< C .sin 0,cos 0αα<> D .sin 0,cos 0αα<<【答案】B 【详解】 因32παπ<=<,则α是第二象限象限角, 所以sin 0,cos 0αα>< . 故选:B例题2.(2022·北京房山·高一期中)若sin 0θ<且tan 0θ<,则角θ所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D 【详解】sin 0θ<,则角θ在第三,四象限,tan 0θ<,则角θ在第二,四象限,所以满足sin 0θ<且tan 0θ<,角θ在第四象限. 故选:D3.(2022·全国·高三专题练习(理))若tan 0α<,则下列结论一定正确是( ) A .sin 0α< B .sin 20α<C .cos 0α<D .cos20α<【答案】B 【详解】。

高二数学必修四任意角和弧度制复习要点梳理

高二数学必修四任意角和弧度制复习要点梳理

高二数学必修四随意角和弧度制复习重点梳理数学是研究现实世界空间形式和数目关系的一门科学。

以下是查词典数学网为大家整理的高二数学必修四随意角和弧度制复习重点,希望能够解决您所碰到的有关问题,加油,查词典数学网向来陪同您。

1.随意角(1)角的分类:①按旋转方向不一样分为正角、负角、零角.②按终边地点不一样分为象限角和轴线角.(2)终边同样的角:终边与角同样的角可写成+k360(kZ).(3)弧度制:① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角 .②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||=, l 是以角作为圆心角时所对圆弧的长,r 为半径 .③用弧度做单位来胸怀角的制度叫做弧度制 .比值与所取的 r 的大小没关,仅与角的大小有关 . ④弧度与角度的换算: 360 弧度 ;180 弧度 .⑤弧长公式: l=||r ,扇形面积公式:S 扇形 =lr=||r2.2.随意角的三角函数(1)随意角的三角函数定义:设是一个随意角,角的终边与单位圆交于点P(x, y) ,那么角的正弦、余弦、正切分别是:sin =y ,cos =x,tan =,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数 .(2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦 .3.三角函数线我国古代的念书人 ,从上学之日起 ,就日诵不辍 ,一般在几年内就能识记几千个汉字 ,熟记几百篇文章 ,写出的诗文也是咬文嚼字 ,琅琅上口 ,成为博学多才的文人。

为何在现代化教课的今日 ,我们念了十几年书的高中毕业生甚至大学生 ,竟提起作文就头疼 ,写不出像样的文章呢 ?吕叔湘先生早在 1978 年就尖利地提出 : “中小学语文教课成效差,中学语文毕业生语文水平低 , 十几年上课总时数是9160 课时 ,语文是 2749 课时,恰巧是 30%,十年的时间 ,二千七百多课时 ,用来学本国语文,倒是大部分可是关 ,莫非咄咄怪事 ! ”刨根问底 ,其主要原由就是腹中无物。

24任意角与弧度制知识点总结

24任意角与弧度制知识点总结
②几何法:即利用三角函数线来作出正弦函数在0,2 内的图象,再通过平移得到
y sin x 的图象。
③五点法:在函数 y sin x , x 0,2 的图象上,起关键作用的点有以下五个:
0,0, 2 ,1,,0, 32 ,1,2,0
必修四第一章知识点总结
一、意角的概念
(1)、角的概念 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。 (2)、角的分类 ①按逆时针方向旋转形成的角叫做正角。 ②按顺时针方向旋转形成的角叫做负角。 ③如果一条射线没有作任何旋转,我们称它形成了一个零角。这样,零角的始边与终 边重合。 这样,我们就把角的概念推广到了任意角,包括正角、负角和零角。
量角的单位制
无关
以省略
有关
五、任意角的三角函数
(1)、直角坐标系内用点的坐标表示锐角三角函数
设锐角 的顶点与原点 O 重合,始边与 x 轴的非负半轴重合,那么它的终边在第一象
限。在 的终边上任取一点 P a,b ,它与原点的距离 r a2 b2 0 ,过 P 作 x 轴的
垂线,垂足为 M ,则线段 OM 的长度为 a , MP 的长度为 b 。根据初中学过的三角函数定
(4)、正弦函数、余弦函数的奇偶性
正弦函数 y sin x ( x R )是奇函数,余弦函数 y cos x ( x R )是偶函数。
(5)、正弦函数、余弦函数的单调性 ①由正弦曲线和余弦曲线可得正弦函数和余弦函数的单调性如下:
函数
y

sin
x

2k

2
,2k

2

3 2



sin

(完整版)新课标人教A版高中数学必修四三角函数知识点总结,推荐文档

(完整版)新课标人教A版高中数学必修四三角函数知识点总结,推荐文档

高中数学必修4三角函数知识点总结§1.1.1、任意角1、 正角、负角、零角、象限角的概念.2、 与角终边相同的角的集合:.α{}Z k k ∈+=,2παββ§1.1.2、弧度制1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 .rl =α3、弧长公式:.R Rn l απ==1804、扇形面积公式:.lR R n S 213602==π§1.2.1、任意角的三角函数1、 设是一个任意角,它的终边与单位圆交于点,那么:α()y x P ,xyx y ===αααtan ,cos ,sin 2、 设点为角终边上任意一点,那么:(设)(),A x yαr =,,,sin y r α=cos x r α=tan yx α=cot x yα=3、 ,,在四个象限的符号和三角函数线的画法.αsin αcos αtan 正弦线:MP; 余弦线:OM; 正切线:AT 4、 特殊角0°,30°,45°,60°,90°,180°,270等的三角函数值.α6π4π3π2π23π34ππ32π2πsin αcos αtan α§1.2.2、同角三角函数的基本关系式1、 平方关系:.1cos sin 22=+αα2、 商数关系:.αααcos sin tan =3、 倒数关系:tan cot 1αα=§1.3、三角函数的诱导公式(概括为“奇变偶不变,符号看象限”)Z k ∈1、 诱导公式一: (其中:(),cos 2cos ,sin 2sin απααπα=+=+k k )Z k ∈2、 诱导公式二: ()()().tan tan ,cos cos ,sin sin ααπααπααπ=+-=+-=+3、诱导公式三: ()()().tan tan ,cos cos ,sin sin αααααα-=-=--=-4、诱导公式四: ()()().tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=-5、诱导公式五:.sin 2cos ,cos 2sin ααπααπ=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-6、诱导公式六:.sin 2cos ,cos 2sin ααπααπ-=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+§1.4.1、正弦、余弦函数的图象和性质、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性.3、会用五点法作图.在上的五个关键点为: sin y x =[0,2]x π∈30010-12022ππππ(,)(,,)(,,)(,,)(,,).§1.4.3、正切函数的图象与性质1、记住正切函数的图象:2、记住余切函数的图象:3、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.周期函数定义:对于函数,如果存在一个非零常数T ,使得当取定义域内的每一个值时,都有()x f x ,那么函数就叫做周期函数,非零常数T 叫做这个函数的周期.()()x f T x f =+()x f图表归纳:正弦、余弦、正切函数的图像及其性质xysin =xycos =xy tan =图象定义域RR},2|{Z k k x x ∈+≠ππ值域[-1,1][-1,1]R最值max min 2,122,12x k k Z y x k k Z y ππππ=+∈==-∈=-时,时,max min 2,12,1x k k Z y x k k Z y πππ=∈==+∈=-时,时,无周期性π2=T π2=T π=T 奇偶性奇偶奇单调性Zk ∈在上单调递增[2,2]22k k ππππ-+在上单调递减3[2,2]22k k ππππ++在上单调递增[2,2]k k πππ-在上单调递减[2,2]k k πππ+在上单调递(,)22k k ππππ-+增对称性Zk ∈对称轴方程:2x k ππ=+对称中心(,0)k π对称轴方程:x k π=对称中心(,0)2k ππ+无对称轴对称中心,0)(2k π§1.5、函数的图象()ϕω+=x A y sin 1、对于函数:有:振幅A ,周期,初相,相位,频率()()sin 0,0y A x B A ωφω=++>>2T πω=ϕϕω+x .πω21==Tf 2、能够讲出函数的图象与x y sin =的图象之间的平移伸缩变换关系.()sin y A x B ωϕ=++①先平移后伸缩:平移个单位sin y x =||ϕ()sin y x ϕ=+()sin y A x ϕ=+纵坐标变为原来的A 倍()sin y A x ωϕ=+横坐标变为原来的倍1||ω()sin A x Bωϕ=++(上加下减)②先伸缩后平移:sin y =sin y A x =纵坐标变为原来的A 倍sin y A xω=横坐标变为原来的倍1||ω()sin A x ωϕ=+()sin A x Bωϕ=++(上加下减)3、三角函数的周期,对称轴和对称中心函数,x∈R 及函数,x∈R(A,,为常数,且A ≠0)的周期;sin()y x ωϕ=+cos()y x ωϕ=+ωϕ2||T πω=函数,(A,ω,为常数,且A ≠0)的周期.tan()y x ωϕ=+,2x k k Z ππ≠+∈ϕ||T πω=对于和来说,对称中心与零点相联系,对称轴与最值点联系.sin()y A x ωϕ=+cos()y A x ωϕ=+求函数图像的对称轴与对称中心,只需令与sin()y A x ωϕ=+()2x k k Z πωϕπ+=+∈()x k k Z ωϕπ+=∈解出即可.余弦函数可与正弦函数类比可得.x 4、由图像确定三角函数的解析式利用图像特征:,.max min 2y y A -=max min2y y B +=要根据周期来求,要用图像的关键点来求.ωϕ§1.6、三角函数模型的简单应用1、 要求熟悉课本例题.第三章、三角恒等变换§3.1.1、两角差的余弦公式记住15°的三角函数值:ααsin αcos αtan 12π426-426+32-§3.1.2、两角和与差的正弦、余弦、正切公式1、()βαβαβαsin cos cos sin sin +=+2、()βαβαβαsin cos cos sin sin -=-3、()βαβαβαsin sin cos cos cos -=+4、()βαβαβαsin sin cos cos cos +=-5、.()tan tan 1tan tan tan αβαβαβ+-+=6、.()tan tan 1tan tan tan αβαβαβ-+-=§3.1.3、二倍角的正弦、余弦、正切公式1、,αααcos sin 22sin =.12sin cos sin 2ααα=2、ααα22sin cos 2cos -=1cos 22-=α.α2sin 21-=变形如下:升幂公式:222cos 1cos 22sin ααα=⎨-=⎪⎩降幂公式:221cos (1cos 2)21sin (1cos 2)2αααα=+=-⎧⎪⎨⎪⎩3、.ααα2tan 1tan 22tan -=4、sin 21cos 2tan 1cos 2sin 2ααααα-==+§3.2、简单的三角恒等变换1、注意正切化弦、平方降次.2、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y (其中辅助角所在象限由点的象限决定, ).ϕ(,)a b tan b aϕ=第二章:平面向量§2.1.1、向量的物理背景与概念1、 了解四种常见向量:力、位移、速度、加速度.2、 既有大小又有方向的量叫做向量.§2.1.2、向量的几何表示1、 带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、 向量的大小,也就是向量的长度(或称模),记作;长度为零的向量叫做零向量;长度AB AB AB等于1个单位的向量叫做单位向量.3、 方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行.§2.1.3、相等向量与共线向量1、 长度相等且方向相同的向量叫做相等向量.§2.2.1、向量加法运算及其几何意义1、 三角形加法法则和平行四边形加法法则.2§2.2.2、向量减法运算及其几何意义1、 与长度相等方向相反的向量叫做的相反向量.a a2、 三角形减法法则和平行四边形减法法则.§2.2.3、向量数乘运算及其几何意义1、 规定:实数与向量的积是一个向量,这种运算叫做向量的数乘.记作:,它的长度和方向规λa a λ定如下: ⑵当时, 的方向与的方向相同;当时, 的方向与的方向相反.0>λa λa 0<λa λa 2、 平面向量共线定理:向量与 共线,当且仅当有唯一一个实数,使.()0≠a a b λa b λ=§2.3.1、平面向量基本定理1、 平面向量基本定理:如果是同一平面内的两个不共线向量,那么对于这一平面内任一向量,21,e e a 有且只有一对实数,使.21,λλ2211e e a λλ+=§2.3.2、平面向量的正交分解及坐标表示1、 .()y x j y i x a ,=+=§2.3.3、平面向量的坐标运算1、 设,则:()()2211,,,y x b y x a == ⑴,()2121,y y x x b a ++=+⑵,()2121,y y x x b a --=-⑶,()11,y x a λλλ=⑷.1221//y x y x b a =⇔2、 设,则:()()2211,,,y x B y x A .()1212,y y x x AB --=§2.3.4、平面向量共线的坐标表示1、设,则()()()332211,,,,,y x C y x B y x A ⑴线段AB 中点坐标为,()222121,y y x x ++⑵△ABC 的重心坐标为.()33321321,y y y x x x ++++§2.4.1、平面向量数量积的物理背景及其含义1、 .θb a ⋅2、 在.a b θ34.5、 .0=⋅⇔⊥b a b a §2.4.2、平面向量数量积的坐标表示、模、夹角1、 设,则:()()2211,,,y x b y x a ==⑴2121y y x x b a +=⋅2121y x +⑶121200a b a b x x y y ⊥⇔⋅=⇔+=⑷1221//0a b a b x y x y λ⇔=⇔-=2、 设,则:()()2211,,,y x B y x A3、两向量的夹角公式cos a ba bθ⋅==4、点的平移公式平移前的点为(原坐标),平移后的对应点为(新坐标),平移向量为,(,)P x y (,)P x y '''(,)PP h k '=则.x x hy y k '=+⎧⎨'=+⎩ 函数的图像按向量平移后的图像的解析式为()y f x =(,)a h k =().y k f x h -=-§2.5.1、平面几何中的向量方法§2.5.2、向量在物理中的应用举例知识链接:空间向量空间向量的许多知识可由平面向量的知识类比而得.下面对空间向量在立体几何中证明,求值的应用进行总结归纳.1、直线的方向向量和平面的法向量⑴.直线的方向向量: 若A 、B 是直线上的任意两点,则为直线的一个方向向量;与平行的任意非零向量也是l AB l AB直线的方向向量.l ⑵.平面的法向量: 若向量所在直线垂直于平面,则称这个向量垂直于平面,记作,如果,那么向量nααn α⊥ n α⊥ 叫做平面的法向量.nα⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系.②设平面的法向量为.α(,,)n x y z =③求出平面内两个不共线向量的坐标.123123(,,),(,,)a a a a b b b b ==④根据法向量定义建立方程组.n a n b ⎧⋅=⎪⎨⋅=⎪⎩ ⑤解方程组,取其中一组解,即得平面的法向量.α(如图)建议收藏下载本文,以便随时学习!2、用向量方法判定空间中的平行关系⑴线线平行设直线的方向向量分别是,则要证明∥,只需证明∥,即.12,l l a b 、1l 2l a b ()a kb k R =∈ 即:两直线平行或重合两直线的方向向量共线.⑵线面平行①(法一)设直线的方向向量是,平面的法向量是,则要证明∥,只需证明,即l a αul αa u ⊥ .0a u ⋅= 即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外②(法二)要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可.⑶面面平行若平面的法向量为,平面的法向量为,要证∥,只需证∥,即证.αu βv αβu vu v λ= 即:两平面平行或重合两平面的法向量共线.3、用向量方法判定空间的垂直关系⑴线线垂直设直线的方向向量分别是,则要证明,只需证明,即.12,l l a b、12l l ⊥a b ⊥ 0a b ⋅= 即:两直线垂直两直线的方向向量垂直.⑵线面垂直①(法一)设直线的方向向量是,平面的法向量是,则要证明,只需证明∥,即l a αu l α⊥a u.a u λ= ②(法二)设直线的方向向量是,平面内的两个相交向量分别为,若l a αm n 、0,.a m l a n α⎧⋅=⎪⊥⎨⋅=⎪⎩则即:直线与平面垂直直线的方向向量与平面的法向量共线直线的方向向量与平面内两条不共线直线的方向向量都垂直.⑶面面垂直若平面的法向量为,平面的法向量为,要证,只需证,即证.αuβv αβ⊥u v ⊥ 0u v ⋅= 即:两平面垂直两平面的法向量垂直.4、利用向量求空间角⑴求异面直线所成的角已知为两异面直线,A ,C 与B ,D 分别是上的任意两点,所成的角为,,a b ,a b ,a b θ 则cos .AC BDAC BDθ⋅=9⑵求直线和平面所成的角①定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角②求法:设直线的方向向量为,平面的法向量为,直线与平面所成的角为,与的夹角为l a αu θa u , 则为的余角或的补角ϕθϕϕ的余角.即有:cos s .in a u a uϕθ⋅== ⑶求二面角①定义:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面二面角的平面角是指在二面角的棱上任取一点O ,分别在两个半平面内作射线βα--l ,则为二面角的平面角.l BO l AO ⊥⊥,AOB ∠βα--l 如图:②求法:设二面角的两个半平面的法向量分别为,再设的夹角为,二面角l αβ--m n 、m n 、ϕ的平面角为,则二面角为的夹角或其补角l αβ--θθm n 、ϕ.πϕ-根据具体图形确定是锐角或是钝角:θ◆如果是锐角,则,θcos cos m n m nθϕ⋅== 即;arccos m n m nθ⋅= ◆如果是钝角,则,θcos cos m n m nθϕ⋅=-=- 即.arccos m n m n θ⎛⎫⋅ ⎪=- ⎪⎝⎭5、利用法向量求空间距离⑴点Q 到直线距离l 若Q 为直线外的一点,在直线上,为直线的方向向量,=,则点Q 到直线距离为l P l a l b PQ l h =⑵点A 到平面的距离α若点P 为平面外一点,点M 为平面内任一点,αα平面的法向量为,则P 到平面的距离就等于在法向量方向上的投影的绝对值.αn αMP n 即cos ,d MP n MP=10n MP MP n MP ⋅=⋅ n MP n⋅= ⑶直线与平面之间的距离a α 当一条直线和一个平面平行时,直线上的各点到平面的距离相等.由此可知,直线到平面的距离可转化为求直线上任一点到平面的距离,即转化为点面距离.即.n MP d n ⋅= ⑷两平行平面之间的距离,αβ 利用两平行平面间的距离处处相等,可将两平行平面间的距离转化为求点面距离.即.n MP d n⋅= ⑸异面直线间的距离设向量与两异面直线都垂直,则两异面直线间的距离就是在向量方n ,a b ,,M a P b ∈∈,a b d MP n 向上投影的绝对值. 即.n MP d n⋅= 6、三垂线定理及其逆定理⑴三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直推理模式:,,PO O PA A a PAa a OA αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭概括为:垂直于射影就垂直于斜线.⑵三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直推理模式:,,PO O PA A a AOa a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭概括为:垂直于斜线就垂直于射影.7、三余弦定理设AC 是平面内的任一条直线,AD 是的一条斜线AB 在内的射影,且BD⊥AD,垂足为D.设AB ααα与 α(AD)所成的角为, AD 与AC 所成的角为, AB 与AC 所1θ2θ11成的角为.则.θ12cos cos cos θθθ=8、 面积射影定理已知平面内一个多边形的面积为,它在平面内的射影图形的面积为,平面与β()S S 原α()S S '射α平面所成的二面角的大小为锐二面角,则βθ 'cos =.S S S S θ=射原9、一个结论长度为的线段在三条两两互相垂直的直线上的射影长分别为,夹角分别为,则l 123l l l 、、123θθθ、、有 .2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=(立体几何中长方体对角线长的公式是其特例).。

必修四三角函数知识点经典总结

必修四三角函数知识点经典总结

必修四三角函数知识点经典总结高一必修四:三角函数一任意角的概念与弧度制(一)角的概念的推广 1、角概念的推广:在平面,一条射线绕它的端点旋转有两个相反的方向,旋转多少度角算是多少度角。

按别同方向旋转的角可分为正角和负角,其中逆时针方向旋转的角叫做正角,顺时针方向的叫做负角;当射线没有旋转时,我们把它叫做零角。

适应上将平面直角坐标系x 轴正半轴作为角的起始边,叫做角的始边。

射线旋转停止时对应的边叫角的终边。

2、特别命名的角的定义:(1)正角,负角,零角:见上文。

(2)象限角:角的终边降在象限的角,依照角终边所在的象限把象限角分为:第一象限角、第二象限角等(3)轴线角:角的终边降在坐标轴上的角终边在x 轴上的角的集合: {}Z k k ∈?=,180| ββ 终边在y 轴上的角的集合: {}Z k k ∈+?=,90180| ββ 终边在坐标轴上的角的集合:{}Z k k ∈?=,90| ββ (4)终边相同的角:与α终边相同的角2x k απ=+ (5)与α终边反向的角:(21)x k απ=++终边在y =x 轴上的角的集合:{}Z k k ∈+?=,45180| ββ 终边在x y -=轴上的角的集合:{}Z k k ∈-?=,45180| ββ(6)若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 (7)成特别关系的两角若角α与角β的终边对于x 轴对称,则角α与角β的关系:βα-=k 360 若角α与角β的终边对于y 轴对称,则角α与角β的关系:βα-+= 180360k 若角α与角β的终边互相垂直,则角α与角β的关系:90360±+=βαk 注:(1)角的集合表示形式别唯一.(2)终边相同的角别一定相等,相等的角终边一定相同. 3、本节要紧题型: 1.表示终边位于指定区间的角.例1:写出在720-?到720?之间与1050-?的终边相同的角. 例2:若α是第二象限的角,则2,2αα是第几象限的角?写出它们的普通表达形式.例3:①写出终边在y 轴上的集合.②写出终边和函数y x =-的图像重合,试写出角α 的集合. ③α在第二象限角,试确定2,,23ααα所在的象限.④θ角终边与168?角终边相同,求在[0,360)??与3θ终边相同的角.(二)弧度制1、弧度制的定义:l Rα=2、角度与弧度的换算公式:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.一具式子中别能角度,弧度混用. 3、题型(1)角度与弧度的互化例:74315,330,,63ππ?? (2)L R α=,211,22l r s lr r αα===的应用咨询题例1:已知扇形周长10cm ,面积24cm ,求中心角.例2:已知扇形弧度数为72?,半径等于20cm ,求扇形的面积.例3:已知扇形周长40cm ,半径和圆心角取多大时,面积最大. 例4:12123 7570,750,,53ααβπβπ=-?=?==- a.求出12,αα弧度,象限.b.12,ββ用角度表示出,并在720~0-??之间找出,他们有相同终边的所有角. 二任意角三角函数(一)三角函数的定义 1、任意角的三角函数定义正弦r y =αsin ,余弦r x=αcos ,正切xy =αtan 2(二)单位圆与三角函数线1、单位圆的三角函数线定义如图(1)PM表示α角的正弦值,叫做正弦线。

【推荐下载】高二数学必修四任意角和弧度制复习要点梳理

【推荐下载】高二数学必修四任意角和弧度制复习要点梳理

[键入文字]
高二数学必修四任意角和弧度制复习要点梳理
数学是研究现实世界空间形式和数量关系的一门科学。

以下是为大家整理的高二数学必修四任意角和弧度制复习要点,希望可以解决您所遇到的相关问题,加油,一直陪伴您。

 1.任意角
 (1)角的分类:
 ①按旋转方向不同分为正角、负角、零角.
 ②按终边位置不同分为象限角和轴线角.
 (2)终边相同的角:
 终边与角&alpha;相同的角可写成&alpha;+k-360&deg;(k&isin;Z).
 (3)弧度制:
 ①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.
 ②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,
|&alpha;|=,l是以角&alpha;作为圆心角时所对圆弧的长,r为半径.
1。

高中必修四数学知识点总结

高中必修四数学知识点总结

两角和与差的正弦、余弦、正切的变形运用:
7.辅助角公式:y =asinx+bcosx = a2 +b2 ( a sinx+ b cosx)= a2 + b2 sin(x + ϕ) .
a2 +b2
a2 +b2
8.二倍角公式:
① sin 2α = 2sinα cosα ;
② cos 2α = cos2 α − sin2 α = 2cos2 α −1 = 1− 2sin2 α ;
横坐标变为 1 倍
ω→
y
= sinωx
左移ϕ 个单位
ω →
y
= sinω(x +
ϕ)
纵坐标变为A倍→
y = Asin(ωx+ϕ).
ω
④ 单调性:
y = Asin(ω x + ϕ ) ( A > 0,ω > 0) 的增区间,
把“ωx + ϕ ”代入到 y = sin x 增区间[− π + 2kπ , π + 2kπ ] (k ∈ Z ) ,
2 (-∞,+∞)

当 x=2kπ+3π ymin=-1 2
当 x=2kπ+π,ymin=-1
奇偶
奇函数
T

单调性
[2kπ − π ,2kπ + π ] 递增
2
2
[2kπ + π ,2kπ + 3π ] 递减
2
2
(注:表中 k 均为整数)
偶函数 2π
[2kπ − π ,2kπ ] 递增 [2kπ ,2kπ + π ] 递减
2
2
即求解 − π + 2kπ ≤ ωx + ϕ ≤ π + 2kπ (k ∈ Z) .

高中数学必修四知识点总结归纳

高中数学必修四知识点总结归纳

高中数学必修四第一章:三角函数1.1任意角和弧度制考点1:任意角的概念考点2:终边相同的角考点3:象限角与轴线角1.1.2弧度制考点1:弧度制考点2:弧度制与角度制考点3:用弧度表示有关角考点4:扇形的弧长与面积1.2任意角的三角函数1.2.1任意角的三角函数考点1:任意角的三角函数的定义考点2:三角函数值的符号考点3:诱导公式(一)考点4:三角函数式的化简与证明考点5:三角函数线考点6:三角函数的定义域与值域1.2.2同角三角函数的基本关系考点1:同角三角函数的基本关系考点2:三角函数式的化简考点3:利用sinα,cosα,sinαcos α之间的关系求值考点4:三角函数恒等式的证明1.3三角函数的诱导公式考点1:诱导公式考点2:运用诱导公式化简、求值考点3:诱导公式的综合运用1.4三角函数的图像与性质1.4.1正弦函数、余弦函数的图像1.4.2正弦函数。

余弦函数的性质考点1:函数的周期性考点2:正弦函数与余弦函数的图像考点3:正弦函数与余弦函数的定义域和值域考点4:正弦函数与余弦函数的奇偶性考点5:正弦函数与余弦函数的单调性考点6:正弦函数与余弦函数的对称性1.4.3正切函数的性质与图像考点1:正切函数的图像考点2:正切函数的性质考点3:正切函数的综合问题1.5函数y=Asin(ωx+φ)的综合应用考点1:用“五点法”作函数y=Asin(ωx+φ)的图像考点2:用变换作图法作函数y=Asin(ωx+φ)的图像考点3:由函数y=Asin(ωx+φ)的部分图像确定其解析式考点4:简谐运动的有关概念考点5:函数y=Asin(ωx+φ)的综合应用1.6三角函数模型的简单应用考点1:利用三角函数定义建立三角函数模型考点2:用拟合法建立三角函数模型考点3:三角函数模型应用的综合问题考法整合:考法1:任意角三角函数定义的灵活运用考法2:山脚函数图像的对称性考法3:三角函数的值域与最值问题考法4:利用图像解题第二章:平面向量2.1平面向量的事件背景及基本概念考点1:平面向量的概念考点2:平行向量(共线向量)、相等向量与相反向量考点3:平面向量的应用2.2平面向量的线性运算2.2.1向量加法运算及其几何意义2.2.2向量减法运算及其集合意义考点1:向量的加法考点2:向量的减法考点3:向量的化简考点4:响亮的加减法应用2.2.3向量数乘运算及其集合意义考点1:向量的数乘运算考点2:向量的线性运算考点3:向量的共线问题考点4:利用向量解决平面几个问题2.3平面向量的基本定理及坐标表示2.3.1平面向量的基本定理考点1:平面向量的基本定理考点2:平面向量基本定理的应用考点3:两个平面向量的夹角2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算2.3.4平面向量共线的坐标表示考点1:平面向量的坐标表示考点2:平面向量的坐标运算考点3:平面向量贡献的坐标表示考点4:线段的定比分点考点5:平面向量坐标表示的应用2.4平面向量的数量积2.4.1平面向量数量积的物理背景及其含义考点1:平面向量的数量积考点2:数量积的性质及其运算律考点3:两向量的夹角考点4:数量积的应用2.4.2平面向量数量积的坐标表示。

(完整版)三角函数知识点归纳

(完整版)三角函数知识点归纳

三角函数一、任意角、弧度制及任意角的三角函数1.任意角(1)角的概念的推广①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角.角的顶点与原点重合,角的始边与轴的非负半轴重合,终边落在第几象限,则称为第几象限角.αx α第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z终边在轴上的角的集合为x {}180,k k αα=⋅∈Z 终边在轴上的角的集合为y {}18090,k k αα=⋅+∈Z终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z(2)终边与角α相同的角可写成α+k ·360°(k ∈Z ).终边与角相同的角的集合为α{}360,k k ββα=⋅+∈Z(3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②弧度与角度的换算:360°=2π弧度;180°=π弧度.③半径为的圆的圆心角所对弧的长为,则角的弧度数的绝对值是r αl αl rα=④若扇形的圆心角为,半径为,弧长为,周长为,面积为,则,()αα为弧度制r l C S l r α=,.2C r l =+21122S lr r α== 2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为,那么角α的正弦、余弦、(r r =正切分别是:sin α=,cos α=,tan α=.(三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、y r x r yx 四余弦)3.特殊角的三角函数值角度函数030456090120135150180270360角a 的弧度0π/6π/4π/3π/22π/33π/45π/6π3π/22πsina1/2√2/2√3/21√3/2√2/21/2-1cosa 1√3/2√2/21/20-1/2-√2/2-√3/2-101tana√3/31√3-√3-1-√3/3二、同角三角函数的基本关系与诱导公式A.基础梳理1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)(2)商数关系:=tan α. (3)倒数关系:sin αcos α1cot tan =⋅αα2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos_α, 其中k ∈Z .απαtan )2tan(=+k 公式二:sin(π+α)=-sin_α,cos(π+α)=-cos_α,tan(π+α)=tan α.公式三:sin(π-α)=sin α,cos(π-α)=-cos_α,. ()tan tan παα-=-公式四:sin(-α)=-sin_α,cos(-α)=cos_α,.()tan tan αα-=-公式五:sin =cos_α,cos =sin α.(π2-α)(π2-α)公式六:sin =cos_α,cos =-sin_α.(π2+α)(π2+α)诱导公式可概括为k ·±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指的奇π2π2数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍,则函数名称不变,符号看象限是指:把α看成锐角时,根据k ·±α在哪个象限判断原三角函数值的符号,最后π2作为结果符号.B.方法与要点一个口诀1、诱导公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan α=化成正、余弦.sin αcos α(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(、、三个式子知一可求二)ααcos sin +ααcos sin -ααcos sin (3)巧用“1”的变换:1=sin 2θ+cos 2θ= sin=tan 2ππ4(4)齐次式化切法:已知,则k =αtan nmk bak n m b a n m b a ++=++=++ααααααtan tan cos sin cos sin三、三角函数的图像与性质学习目标:1会求三角函数的定义域、值域2会求三角函数的周期 :定义法,公式法,图像法(如与的周期是)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

美博教育任意角与弧度制知识梳理:一、任意角和弧度制1、角的概念的推广定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。

注意:(1)“旋转”形成角,突出“旋转”(2)“顶点”“始边”“终边”“始边”往往合于x 轴正半轴(3)“正角”与“负角”——这是由旋转的方向所决定的。

例1、若οο13590<<<αβ,求βα-和βα+的范围。

(0,45) (180,270)2、角的分类:由于用“旋转”定义角之后,角的范围大大地扩大了。

可以将角分为正角、零角和负角。

正角:按照逆时针方向转定的角。

零角:没有发生任何旋转的角。

负角:按照顺时针方向旋转的角。

例2、(1)时针走过2小时40分,则分针转过的角度是(2)将分针拨快10分钟,则分针转过的弧度数是 .3、 “象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。

角的终边落在第几象限,我们就说这个角是第几象限的角角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。

例1、30︒ ;390︒ ;-330︒是第 象限角 300︒ ; -60︒是第 象限角585︒ ; 1180︒是第 象限角 -2000︒是第 象限角。

例2、(1)A={小于90°的角},B={第一象限的角},则A∩B=(填序号).①{小于90°的角} ②{0°~90°的角}③ {第一象限的角} ④以上都不对(2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.A⊂C D.A=B=C例3、写出各个象限角的集合:α的终边所在位置.例4、若α是第二象限的角,试分别确定2α,2解∵α是第二象限的角,∴k·360°+90°<α<k·360°+180°(k∈Z).(1)∵2k·360°+180°<2α<2k·360°+360°(k∈Z),∴2α是第三或第四象限的角,或角的终边在y轴的非正半轴上.α<k·180°+90°(k∈Z),(2)∵k·180°+45°<2当k=2n(n∈Z)时,α<n·360°+90°;n·360°+45°<2当k=2n+1(n∈Z)时,α<n·360°+270°.n·360°+225°<2α是第一或第三象限的角.∴2α是哪个象限的角?拓展:已知α是第三象限角,问3∵α是第三象限角,∴180°+k·360°<α<270°+k·360°(k∈Z),α<90°+k·120°.60°+k·120°<3①当k=3m(m∈Z)时,可得α<90°+m·360°(m∈Z).60°+m·360°<3α的终边在第一象限.故3②当k=3m+1 (m∈Z)时,可得α<210°+m·360°(m∈Z).180°+m·360°<3α的终边在第三象限.故3③当k=3m+2 (m∈Z)时,可得α<330°+m·360°(m∈Z).300°+m·360°<3故3α的终边在第四象限. 综上可知,3α是第一、第三或第四象限的角. 4、常用的角的集合表示方法1、终边相同的角:(1)终边相同的角都可以表示成一个0︒到360︒的角与)(Z k k ∈个周角的和。

(2)所有与α终边相同的角连同α在内可以构成一个集合{}Z k k S ∈⋅+==,360|οαββ即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和注意:1、Z ∈k2、α是任意角3、终边相同的角不一定相等,但相等的角的终边一定相同。

终边相同的角有无数个,它们相差360°的整数倍。

4、一般的,终边相同的角的表达形式不唯一。

例1、(1)若θ角的终边与58π角的终边相同,则在[]π2,0上终边与4θ的角终边相同的角为 。

若θ角的终边与8π/5的终边相同则有:θ=2kπ+8π/5 (k 为整数)所以有:θ/4=(2kπ+8π/5)/4=kπ/2+2π/5当:0≤kπ/2+2π/5≤2π有:k=0 时,有2π/5 与θ/4角的终边相同的角k=1 时,有9π/10 与θ/4角的终边相同的角(2)若βα和是终边相同的角。

那么βα-在例2、求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角:(1)ο210-; (2)731484'-ο.例3、求θ,使θ与ο900-角的终边相同,且[]οο1260180,-∈θ.2、终边在坐标轴上的点:终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|οββ终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|οοββ终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90|οββ3、终边共线且反向的角:终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180|οοββ终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180|οοββ4、终边互相对称的角:若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k 若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαk例1、若θα+⋅=ο360k ,),(360Z m k m ∈-⋅=θβο则角α与角β的中变得位置关系是( )。

A.重合B.关于原点对称C.关于x 轴对称D.有关于y 轴对称例2、将下列各角化成0到π2的角加上)(2Z k k ∈π的形式(1) π319 (2)ο315- 例3、设集合{}Z k k x k x A ∈+⋅<<+⋅=,30036060360|οοοο,{}Z k k x k x B ∈⋅<<-⋅=,360210360|οοο,求B A I ,B A Y . 二、弧度与弧度制1、弧度与弧度制:弧度制—另一种度量角的单位制, 它的单位是rad 读作弧度定义:长度等于 的弧所对的圆心角称为1弧度的角。

o rC 2rad 1radr l=2r o AA B如图:∠AOB=1rad ,∠AOC=2rad , 周角=2πrad注意:1、正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是02、角α的弧度数的绝对值 rl =α(l 为弧长,r 为半径) 3、用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同。

4、在同一个式子中角度、弧度不可以混用。

2、角度制与弧度制的换算弧度定义:对应弧长等于半径所对应的圆心角大小叫一弧度角度与弧度的互换关系:∵ 360︒= rad 180︒= rad∴ 1︒=rad rad 01745.0180≈π'185730.571801οοο=≈⎪⎭⎫ ⎝⎛=πrad 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 例1、 把'3067ο化成弧度∴例2、 把rad π53化成度例3、将下列各角从弧度化成角度(1)36π rad (2)2.1 rad (3) rad π53 例4、用弧度制表示:1︒终边在x 轴上的角的集合 2︒终边在y 轴上的角的集合三、弧长公式和扇形面积公式r l α= ; 22121r lR S α== 例1、已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的中心角的弧度数是 1或4 .例2、若两个角的差为1弧度,它们的和为ο1,求这连个角的大小分别为 。

例3、 直径为20cm 的圆中,求下列各圆心所对的弧长 ⑴34π ⑵ ο165 例4、(1)一个半径为r 的扇形,若它的周长等于弧所在的半圆的长,那么扇形的圆心角是多少弧度?是多少度?扇形的面积是多少?(2)一扇形的周长为20 cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?.例5、(1)已知扇形的周长为10,面积为4,求扇形中心角的弧度数;(2)已知扇形的周长为40,当它的半径和中心角取何值时,才能使扇形的面积最大?最大面积是多少?(七)任意角的三角函数(定义)1. 设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y ),则P 与原点的距离02222>+=+=y x y x r 2.比值ry 叫做α的正弦 记作: r y =αsin ;比值r x 叫做α的余弦 记作: rx =αcos 比值xy 叫做α的正切 记作: x y =αtan ;比值y x 叫做α的余切 记作:yx =αcot 比值x r 叫做α的正割 记作: xr =αsec ;比值y r 叫做α的余割 记作: yr =αcsc 注意突出几个问题:①角是“任意角”,当β=2k π+α(k ∈Z)时,β与α的同名三角函数值应该是相等的,即凡是终边相同的角的三角函数值相等。

②实际上,如果终边在坐标轴上,上述定义同样适用。

③三角函数是以“比值”为函数值的函数④0>r ,而x,y 的正负是随象限的变化而不同,故三角函数的符号应由象限确定三角函数在各象限的符号:⑤定义域: αααtan cos sin ===y y y αααcsc sec cot ===y y y4. α是第二象限角,P (x ,5)为其终边上一点,且cos α=x 42,则sin α= 410 .. 已知角α的终边落在直线y=-3x (x <0)上,则=-ααααcos cos sin sin 2 .例8、 已知α的终边经过点P(2,-3),求α的六个三角函数值例9、 求下列各角的六个三角函数值⑴ 0 ⑵ π ⑶ 23π⑷ 2π例10、 ⑴ 已知角α的终边经过P(4,-3),求2sin α+cos α的值⑵已知角α的终边经过P(4a,-3a),(a ≠0)求2sin α+。

相关文档
最新文档