土壤微量元素的测定

合集下载

土壤中微量元素的测定

土壤中微量元素的测定
3.极谱极大 产生原因:汞滴表面各处电位不均匀 抑制方法:加入表面活性剂 4.氧电流 除氧办法: (1)通入惰性气体 (2)加入NaSO3,(中性或碱性溶液) (3)加入NaCO3或铁粉(强酸性介质) 5.其它干扰因素 波的重叠(分离);前放电物质(Cu2+,Fe 3 +) 氢放电的影响(半波电位较负的离子应在氨性溶液中测定
01
双硫腙比色法
02
AAS法
03
ICP法
溶液中铜、锌的测定方法
第三节 土壤中有效锰的测定
土壤中锰的形态 水溶态 交换态 易还原态 难溶态和矿物态 土壤有效锰的浸提剂 1M中性乙酸铵(临界值2.3ppm) 1M中性乙酸铵+0.1%对苯二酚(临界值25~65ppm) 测定方法 高锰酸钾比色法 AAS法 ICP法
在硫酸-苦杏仁酸(苯羟乙酸)体系中,钼与苦杏仁酸形成的配合物强烈地被吸附于电极表面,产生电极反应,六价钼被还原成五价的钼,与此同时,在溶液中产生化学反应,五价的钼被氧化为六价的钼,反应式如下:
Mo6+ —苦杏仁酸 + e Mo5+—苦杏仁酸
5
[Mo(CNS)3]2+ + 2CNS- = Mo(CNS)5 (琥珀色) Mo(CNS)5 + CNS- = [Mo(CNS)6]-
6
硫氰酸铵比色法
硫氰酸铵比色法
方法要点: 盐酸体系中,用SnCl2作还原剂时显色酸度为0.8~1.7mol·L-1H+,酸度过低,显色慢,酸度过高颜色不稳定,易褪为黄色溶液。 在硫酸体系中用SnCl2还原,其酸度为1.0~2.5 mol·L-1H+。 大量Fe3+的存在与CNS-形成红色的硫氰酸铁,干扰比色测定,但少量Fe3+存在时,不干扰钼的测定,反而会使硫氰酸钼的颜色加深,并可增加五价钼的稳定性, 铂有干扰,应避免使用铂器皿 氯化亚锡 (SnCl2)的配制方法。 显色时试剂加入的顺序不宜改变 。 离心分离除去微量水分很重要 。

土壤中微量元素和阳离子的测定

土壤中微量元素和阳离子的测定

土壤中微量元素和阳离子的测定土壤中微量元素的测定7.1概述微量元素是指土壤中含量很低的化学元素,除了土壤中某些微量元素的全含量稍高外,这些元素的含量范围一般为十万分之几到百万分之几,有的甚至少于百万分之一。

土壤中微量元素的研究涉及到化学、农业化学、植物生理、环境保护等很多领域。

作物必需的微量元素有硼、锰、铜、锌、铁、钼等。

此外,还有一些特定的对某些作物所必需的微量元素,如钴、钒是豆科植物所必需的微量元素。

随着高浓度化肥的施用和有机肥投入的减少,作物发生微量元素缺乏的情况愈来愈普遍。

有时候微量元素的缺乏会成为作物产量的限制因素,严重时甚至颗粒无收。

土壤中微量元素对作物生长影响的缺乏、适量和致毒量间的范围较窄。

因此,土壤中微量元素的供应不仅有供应不足的问题,也有供应过多造成毒害的问题。

明确土壤中微量元素的含量、分布、形态和转化的规律,有助于正确判断土壤中微量元素的供给情况。

土壤中微量元素的含量主要是由成土母质和土壤类型决定,变幅可达一百倍甚至超过一千倍(见下表),而常量元素的含量在各类土壤中的变幅则很少超过5倍。

表7-1 我国土壤微量元素的含量全量范围全量平均有效态元素 -1-1-1(mg?kg) (mg?kg) (mg?kg)硼痕迹,500 64 0.0,5(水溶性硼)钼 0.1,6.0 1.7 0.02,0.5(Tamm-Mo锌 3,790 100 0.1,4(DTPA-Zn)铜 3,300 22 0.2,4(DTPA-Cu)锰 42,5000 74*刘铮,中国土壤的合理利用和培肥影响土壤中微量元素有效性的土壤条件包括土壤酸碱度、氧化还原电位、土壤通透性和水分状况等,其中以土壤的酸碱度影响最大。

土壤中的铁、锌、锰、硼的可给性随土壤pH的升高而降低,而钼的有效性则呈相反的趋势。

所以,石灰性土壤中常出现铁、锌、锰、硼的缺乏现象。

而酸性土壤易出现钼的缺乏,酸性土壤使用石灰有时会引起硼锰等的“诱发性缺乏”现象。

土壤微量元素检测仪使用原理

土壤微量元素检测仪使用原理

土壤微量元素检测仪使用原理1.原子吸收光谱法:土壤微量元素检测仪可以采用原子吸收光谱法来测定土壤中微量元素的含量。

该方法是利用微量元素的原子对特定波长的电磁波具有选择性吸收的原理。

仪器通过电源产生一个电子束,将土壤样品中的微量元素原子化,并通过对样品进行加热或气流载气来促使元素原子化。

然后,通过光源产生的特定波长的光束通过土壤样品,检测光束透过样品后的强度变化,从而测定特定微量元素的含量。

2.火焰光度法:火焰光度法是土壤微量元素检测的常用方法之一、该方法将土壤样品中的微量元素溶解于适当的酸性溶液中,然后通过火焰的燃烧将元素原子激发到高能级,使其产生特征性的光谱线。

仪器通过光源产生特定波长的光束,经过火焰后,通过光电倍增管等光电探测器检测光谱线的强度变化,从而测定微量元素的含量。

3.电化学法:电化学法是另一种常用的土壤微量元素检测方法。

该方法通过将土壤样品中的微量元素通过合适的反应转化成电化学反应物质,测定电化学反应的电流或电势变化,从而间接测定微量元素的含量。

该方法通常需要使用电化学电极,如电解池、参比电极和工作电极等。

通过调节电极的电位和电流,可以在土壤样品中实现微量元素的选择性测定。

4.光谱分析法:光谱分析法是基于不同微量元素对特定波长的电磁波呈现不同吸收、发射或散射特性的原理。

土壤微量元素检测仪可以通过分析土壤样品中元素对特定波长的电磁波的吸收、发射或散射情况来确定微量元素的含量。

常用的光谱分析方法包括紫外可见光谱、红外光谱、拉曼光谱等。

总之,土壤微量元素检测仪的使用原理主要涉及原子吸收光谱法、火焰光度法、电化学法和光谱分析法等。

不同的原理可选择不同的测定方法,以快速准确地测定土壤中微量元素的含量。

土壤微量元素测定实验方法以及优缺点分析

土壤微量元素测定实验方法以及优缺点分析

土壤微量元素测定实验方法以及优缺点分析土壤是地球上最重要的自然资源之一,其中含有多种微量元素,这些元素对农作物的生长发育、植物根系的形成以及植物繁殖有着至关重要的作用。

要研究农作物的品质、健康和种植,必须对土壤中的微量元素进行测定。

以传统的化学分析法为例,测定土壤中微量元素的方法包括原子吸收光谱法、X射线衍射仪法、原子荧光光谱法、串联质谱法以及电感耦合等离子体发射光谱法。

其中原子吸收光谱法是土壤中各种微量元素测定最常用的方法,它可以快速、准确地测定各种微量元素的含量。

此外,X射线衍射仪法也常用于测定土壤中的微量元素,它可以实现非常小的检测细胞大小的X射线衍射成像技术,以精确检测土壤中的元素组成。

原子荧光光谱法可以用来测定低浓度的微量元素,该方法灵敏度高,具有快速、简单、准确的优点。

串联质谱法是一种精确、灵敏、多参数同时检测的方法,可以用来定量分析土壤中的各种元素含量。

而电感耦合等离子体发射光谱法则具有简便、易行、快速等优点,可用来测定高浓度的土壤微量元素。

土壤微量元素测定实验中的优点有:(1)测定方法简便,可以快速准确的测定微量元素的含量。

(2)分析时间短,可在几小时内完成。

(3)分析结果可靠,准确度较高。

(4)节约成本,该技术可以节省大量人力、物力和时间成本。

然而,土壤微量元素测定实验也存在一些缺点,如:(1)样品处理麻烦,测定实验前需要对样品进行精细的分离和提纯处理,这需要较多的时间和工作量。

(2)仪器和设备费用较高,需要安装许多昂贵的仪器和设备,以确保测定的准确性和可靠性。

(3)环境污染,实验过程中涉及的化学物质有可能对环境造成污染。

综上,土壤微量元素测定是一项重要的实验,它能有效地检测土壤中各种微量元素的含量,为土壤肥力评价和土壤改良等方面提供有价值的参考。

尽管存在一些缺点,但正确选择测定方法和正确实施测定,可以有效地克服这些问题,获取可信的测定结果。

土壤养分测定项目及方法

土壤养分测定项目及方法

土壤养分测定项目及方法土壤养分测定是一项重要的地球科学研究工作,它对于农田管理、环境保护和农作物产量提高具有重要的意义。

土壤养分测定的目的是准确评估土壤的养分含量,包括主要营养元素和微量元素,从而为土壤改良和合理施肥提供科学依据。

本文将介绍几个常见的土壤养分测定项目及方法。

一、全量测定法全量测定法是通过直接测定土壤样品中全部养分的含量,包括有机养分和无机养分。

下面分别介绍几个常用的全量测定法。

1.1全氮测定全氮测定是评估土壤中氮素含量的重要指标。

常见的测定方法有凯氏消解法、磷酸铵态氮提取法和光谱法等。

其中凯氏消解法是一种常见的表面土壤全氮测定方法,它通过采用稀酸溶解样品中的有机氮和无机氮,然后利用显色剂反应产生色度,使用分光光度计测定其吸光值,从而计算出全氮含量。

1.2全磷测定全磷测定是评估土壤中磷含量的重要指标。

常见的测定方法有Bray提取法、磁化复合氯化物提取法和钠硫酸提取法等。

其中Bray 提取法是一种常用的酸溶液提取法,通过使用酸性提取液提取土壤样品中的磷,再使用显色剂根据吸光值测定其含量。

1.3钾测定钾是土壤中的重要营养元素,对于植物生长和养分平衡具有重要作用。

常见的钾测定方法有酸提法、离子选择电极法和火焰光度法等。

其中酸提法是一种简单直观的方法,通过使用酸溶液提取样品中的钾元素,然后通过计算摄取液中的钾含量来评估土壤中的钾含量。

二、微量元素测定法微量元素是植物生长和发育所必需的元素,如铁、锌、锰、铜等。

下面介绍几种常见的微量元素测定方法。

2.1铁测定铁是土壤中的重要微量元素,对于植物的呼吸和光合作用具有重要作用。

常见的铁的测定方法有EDTA滴定法、酸性二硫代乙酸法和原自动试剂法等。

其中EDTA滴定法是一种经典的铁测定方法,通过使用EDTA试剂与样品中的铁形成络合物,然后滴定至特定的终点颜色改变,从而计算出铁的含量。

2.2锌测定锌是土壤中的重要微量元素,对于植物的生长和发育具有重要作用。

土壤里微量元素的检测方法

土壤里微量元素的检测方法

土壤里微量元素的检测方法
一、介绍
微量元素是指土壤中的一些元素,其含量很低,但是对植物的生长和发育起着至关重要的作用。

微量元素在土壤维持着一定的平衡,这些元素的含量过高或过低都会影响到作物的生长。

因此,检测土壤中微量元素的含量是重要的。

检测土壤中微量元素的方法有以下几种:
二、湿式离子交换
湿式离子交换是一种常用的检测微量元素的方法,它通过控制土壤中离子的相对浓度,来检测土壤中含有的微量元素。

该方法的原理是,将待检测的土壤溶解于一定量的碱溶液或酸溶液中,在溶液中存在的微量离子(如铜、钾、锌、锰等)依据离子交换成分的不同,与溶液中的其它离子发生交换,以交换率的变化来检测土壤中微量元素的含量。

三、微量元素的分离分析
微量元素的分离分析是利用化学试剂的作用,将土壤中的微量元素与其它元素以及杂质物分离,把微量元素从土壤中分离出来后,利用适当的方法对分离出来的微量元素进行测定,从而测定土壤中微量元素的含量。

四、原子吸收法
原子吸收法是检测土壤中微量元素的常用方法,也是一种分离分析的方法,它的原理与微量元素的分离分析是一样的,将土壤中的微量元素和杂质物分离,再用原子吸收法对分离出的微量元素的含量进行测定。

土壤微量元素测定实验方法以及优缺点分析

土壤微量元素测定实验方法以及优缺点分析

土壤微量元素测定实验方法以及优缺点分析壤中的元素是植物的生长素材颗粒,它的含量和比例不同会影响植物的生长发育,因此,对土壤中的微量元素进行测定,对植物的生长和发育是十分必要的。

土壤微量元素测定实验方法多种多样,本文主要介绍常用的特殊分析方法、影响实验结果的因素以及分析优缺点,以期能够更加准确的测定出土壤中的微量元素的含量,为植物的生长发育提供更加准确的参考。

首先,常见的土壤微量元素测定实验方法有密度梯度离心法、溶出-离子交换法、溶出-沉淀法以及气相色谱法等。

其中,密度梯度离心法主要是利用修约-阿拉伯醇作为溶剂,利用密度梯度将土样中的微量元素分离出来,得到测定结果;溶出-离子交换法则是先将土样中的微量元素溶出,然后经过离子交换色谱,可以分离出不同物质;溶出-沉淀法则是先利用不同pH等特殊条件将土样中的微量元素溶出,然后激发显影,最后进行测定;而气相色谱法则是先将土样中的微量元素释放到气相中,然后再经过气相色谱仪的分析,最后得到测定结果。

其次,土壤微量元素测定实验的准确性受到许多因素的影响,如采样、样品的组分、前处理方法、测定方法以及分析仪器的选择等。

采样时应当尽可能保证样品的统一,避免其中有偏差;进行样品前处理时,除去潜在的干扰因素,如有机物和金属离子之类;在选择测定方法时,应根据样品的复杂度选择合适的方法;在选择分析仪器的时候,应根据实验的精确度要求,来确定合适的仪器。

再者,土壤微量元素测定实验的优缺点也是需要重点分析的。

从优点来看,大多数测定方法操作简单,耗时短;结果准确,可以在较短的时间内测得大量样品的数据;结果可信,土壤中的微量元素含量可以得到准确的测定结果。

而从缺点来看,测定方法受到室温和月份的影响较大;有些微量元素检测到的特征波效应不明显;部分仪器的价格较高,因此普通实验室成本较大。

综上所述,土壤微量元素测定实验是一项十分重要的实验,可以根据样品组成、特征波效应以及用于测定的分析仪器等因素,选择合适的测定方法,从而更加准确地测定出土壤中的微量元素的含量,为植物的生长发育提供准确的参考。

7土壤微量元素测定

7土壤微量元素测定

MnO2
土壤微量元素常见测定方法
原子吸收分光光度法 可见光分光光度法 极谱分析法 ICP X光荧光分析 中子活化分析
微量元素测试上的特殊要求: 特点:含量低、组成复杂。要求分析方法灵敏度 高,操作上要防止污染。 要求: (1)方法灵敏度高:仪器分析、比色法 (2)防止污染:含量少,易污染 A、 环境:最好有专用实验室 B、 试剂:优级纯或分析纯 C、 水:重蒸馏水、高纯水
影响有效养分含量的因素
土壤酸碱度:影响最大 土壤氧化还原电位 土壤通气性 土壤水分状况
我国土壤微量元素含量分布
我国缺锌、缺锰土壤主要分布于北方(包括长江中下游中性 和石灰性土、水稻土) 缺硼和缺钼土壤主要分布于东半部; 大多土壤铜供应适中
土壤微量元素的形态
水溶态:存在土壤溶液中 交换态:吸附于固相表面 螯合态:与有机质结合在一起 矿物态:存在于原生和次生矿物 有机态:少部分与有机物结合在一起
主要干扰物:F, Al3+, Fe3+, Cu2+; 最宜显色温度:23℃,随温度升高,显色加深。 达到稳定时间:2h. 优点:水溶液中显色,易操作。 缺点:灵敏度较低。 要点:显色液避免与玻璃器皿长时间接触。
(二)姜黄素比色法
方法原理:姜黄素在酸性无水介质中与硼形成玫瑰红色
配合物——玫瑰花青苷,可用乙醇等有机溶剂溶解后 比色测定,最大吸收峰为550nm。
有效养分提取方法
1、中性盐(交换态): Fe、Mn --- 1 mol L-1 NH4OAc(Fe:pH 4.8;Mn:pH 7.0) Zn --- 1 mol L-1 KCl
Cu --- 交换态不易解吸(有机吸附) 2、稀HCl(0.1 mol L-1 HCl ):

土壤微量元素的测定

土壤微量元素的测定

2、显色条件: (5) 干扰物: C、有机质黄色的干扰:
a.活性C脱色:有时会吸附一部分B
b.KMnO4氧化:加入KMnO4氧化有机质,多余的 KMnO4可用Vc除去。
c.灼烧除去(碱化后灼烧)
d.扣除本底
(三)姜黄素比色法
1. 方法原理:
酸性介质中硼酸与姜黄素的配合物——玫 瑰花青苷,呈玫瑰红色,550nm有最大吸收峰。
❖ 反应体系中应加入过量的NH4SCN,使生成Mo(SCN)5
第三节 土壤钼的测定
四、土壤钼测定注意事项
样品中钼含量一般非常低,特别注 意操作过程中防止污染
➢ 所用测钼器皿一般专用; ➢ 器皿使用前先用盐酸浸泡,自来水、
蒸馏水、二次水洗涤,并测定最后洗 涤水电导率不得超过1μs.cm-1;
➢ 所用水为重蒸水或二次水,必须经检 查,水电导率不得超过1μs.cm-1
颜色 正常 下降20% 下降70%
(三)姜黄素比色法
2、显色条件: (2)脱水方法:络合物是在脱水过程中形成的,因
此脱水的温度、蒸发速度都会影响显色。 (3)反应介质:酸性介质中显色(草酸) (4)干扰离子:
氧化剂:可使姜黄素氧化,显棕色。土壤中主要 为NO3-,大于20 mg L-1有干扰,可碱化后灼烧除 去。 (5)稳定时间:95%酒精中稳定3小时
(一)硼测定方法类型
比色分析法
➢ 蒸干显色法:姜黄素显色法 ➢ 浓硫酸溶液中显色:胭脂红酸显色法、醌-茜素显色法 ➢ 三元络合物萃取比色法:次甲基蓝孔雀绿显色法 ➢ 水溶液中显色法:甲亚胺法、茜素-S法
➢ 目前国内外应用最普遍的方法:
姜黄素显色法 甲亚胺法
(二)甲亚胺比色法
1、方法原理: 在微酸性介质中,甲亚胺与H3BO3形成黄

土壤微量元素的测定

土壤微量元素的测定

土壤微量元素的测定-原子吸收法2016-2-24本方法用于测定土壤中Zn、Fe、Cu、Pb、Mn、Ni、Mo等微量元素。

1、提取:20g风干(过2mm筛)土,加40mlDTPA-TEA提取剂,室温震荡2小时,过滤。

2、测定:以原子吸收测定。

3、标准储存液配制:3.1、1000ppmFe:还原铁粉1.0000g于1000ml容量瓶中,加1:1 HNO3,能溶解即可,以水定容。

3.2、1000ppmCu:Cu粉1.0000g,于1000ml容量瓶中,加1:1 HNO3,能溶解即可,以1%HCl 定容。

3.3、1000ppmMn:Mn粉1.0000g于1000ml容量瓶中,加1:1 HNO3,能溶解即可,以1%HCl 定容。

或者3.0761g MnSO4.H2O(FW169)以1%HCl定容。

3.4、1000ppmZn:Cu粉1.0000g,于1000ml容量瓶中,加1:1 HNO3,能溶解即可,以1%HNO3定容。

4、标准曲线配制:吸取1000ppm上述标准液10ml,以水定容100ml,为工作液,浓度为100ppm。

可配制混合液,但是Cu要单独配制。

按下量吸取1000ppm储存液,以提取液定容100ml。

浓度ppm 0.5 1 2 5Fe(ml) 0.5 1 2 5Mn(ml) 0.5 1 2 5Cu(ml) 0.5 1 2Zn(ml) 0.5 1 25、DTPA-TEA提取液配制:溶解7.8668g二乙三胺五醋酸(分子量393.35),53.6ml三乙醇胺,5.88gCaCl2.2H2O(分子量147,或者4.44g CaCl2( 分子量111)于约3L水中,定容4L,以浓盐酸调整pH到7.3(一般不用调整)。

6、计算:土壤微量元素ppm=测定读数*提取液ml/土重g。

原子吸收参数设置Cu Fe Zn Mn K Na Ca Mg空气压力(psi)32 32 35 36 32 35 29 35空气压力(mPa)0.22 0.22 0.24 0.250.22 0.24 0.2 0.24燃气流量1600 2300 1300 1700 1800 1300 2000 1500 (ml/min)灶台高度(mm) 5 10 6 6 5 5 6 6火焰类型 计量 强富 贫燃 贫燃 计量 贫燃 富燃 贫燃灯电流(mA) 3 4 3 2 2 6 3 2。

c7土壤微量元素的测定PPT课件

c7土壤微量元素的测定PPT课件

二、样品的预处理
1、全硼:碳酸钠熔融法 2、有效硼:热水浸提 热水回流浸提法:
1:2土水比在回流情况下煮沸5min,加入Ca2+ 使分散于水中的胶体快速沉淀、澄清,过滤后测 定溶液中硼。该方法提取的有效硼与作物生长相 关性好。
• 提取硼的形态:溶液中的B,吸附B,可溶B盐 • 浸提条件:土液比1:2,沸腾5min • 澄清:CaCl2、MgSO4等
第七章 土壤微量元素的测定
B、Mo、Cu、Zn、Mn、Fe
标题添加
点击此处输入相 关文本内容
前言
点击此处输入 相关文本内容
标题添加
点击此处输入相 关文本内容
点击此处输入 相关文本内容
2
第七章 土壤微量元素的测定
第一节 第二节 第三节 第四节
概述 土壤硼的测定 土壤钼的测定 土壤铁、锰、铜、锌的测定
(一)硼测定方法类型
比色分析法
➢ 蒸干显色法:姜黄素显色法 ➢ 浓硫酸溶液中显色:胭脂红酸显色法、醌-茜素显色法 ➢ 三元络合物萃取比色法:次甲基蓝孔雀绿显色法 ➢ 水溶液中显色法:甲亚胺法、茜素-S法
➢ 目前国内外应用最普遍的方法:
姜黄素显色法 甲亚胺法源自二)甲亚胺比色法1、方法原理: 在微酸性介质中,甲亚胺与H3BO3形成黄
中下游中性和石灰性土、水稻土) ❖ 缺硼和缺钼土壤主要分布于东半部; ❖ 大多土壤铜供应适中
第一节 概述
三、土壤微量元素的形态
❖ 水溶态:存在土壤溶液中 ❖ 交换态:吸附于固相表面 ❖ 螯合态:与有机质结合在一起 ❖ 矿物态:存在于原生和次生矿物
有效态
第一节 概述
四、土壤微量元素常见测定方法 ❖ 原子吸收分光光度法 ❖ 可见光分光光度法 ❖ 极谱分析法 ❖ICP ❖ X光荧光分析 ❖ 中子活化分析

土壤微量元素的测定

土壤微量元素的测定


离子选择电极法 比色分析法: 蒸干显色法 浓硫酸溶液中显色 三元络合物萃取比色法 水溶液中显色法
(一)硼测定方法类型
比色分析法
蒸干显色法:姜黄素显色法 浓硫酸溶液中显色:胭脂红酸显色法、醌-茜素显色法 三元络合物萃取比色法:次甲基蓝孔雀绿显色法 水溶液中显色法:甲亚胺法、茜素-S法 目前国内外应用最普遍的方法:
第三节 土壤钼的测定
四、土壤钼测定注意事项
样品中钼含量一般非常低,特别注 意操作过程中防止污染 所用测钼器皿一般专用; 器皿使用前先用盐酸浸泡,自来水、 蒸馏水、二次水洗涤,并测定最后洗 涤水电导率不得超过1μs.cm-1; 所用水为重蒸水或二次水,必须经检 查,水电导率不得超过1μs.cm-1
有效形态: 土壤全锰含量只代表锰的贮备,不能作为 供锰能力指标,常用活性锰表示土壤锰有 效性。 活性锰=水溶态锰+交换态锰+易还原态锰
mg.kg-1
土壤硼供应水平 轻质土壤 充足 >0.5 粘重土壤 >0.8
适度 不足
0.25-0.50 0-0.25
0.4-0.8 0-0.4
第三节 土壤钼的测定
一、我国土壤钼的含量和形态 (一)土壤全钼 1、含量:0.1-7.0 mg.kg-1,平均1.7 mg.kg-1 不同地区、不同类型土壤钼含量有较大差异。 2、形态: (1)有机态Mo (2)无机态Mo 矿物态:Ca-Mo, Fe-Mo, Al-Mo(部分有效) 交换Mo:有效 水溶Mo:有效
洗涤的。
第二节 土壤硼的测定
一、土壤硼的含量 全硼:痕量~500mg.kg-1,平均64mg.kg-1 不同母质类型土壤由较大差别。
有效硼:0.05—5.0mg.kg-1 不同土壤差别很大

土壤微量元素的测定

土壤微量元素的测定

科学研究和生产实践证明微量元素为有机体正常生命活动所必需,在有机体的生活中起着重要作用。

土壤和植物中的微量元素都很低,而且这些微量元素在植物体中的缺乏量、适量及致毒量范围很窄,因此微量元素的分析测定工作较常量元素要求加倍严格。

1 土壤有效硼的测定(姜黄素比色法)方式原理土样经滚水浸提5分钟,浸出液中的硼用姜黄素比色法测定。

姜黄素是由姜中提取的黄色色素,以酮型和稀醇型存在,姜黄素不溶于水,但能溶于甲醇、酒精、丙酮和冰醋酸中而呈黄色,在酸性介质中与B结合成玫瑰红色的络合物,即玫瑰花青苷。

它是两个姜黄素分子和一个B原子络合而成,检出B的灵敏度是所有比色测定硼的试剂中最高的(摩尔吸收系数ε550=1.80×105)最大吸收峰在550nm处。

在比色测定B时应严格控制显色条件,以保证玫瑰花青苷的形成。

玫瑰花青苷溶液在0.0014—0.06mg/LB的浓度范围内符合Beer定律。

溶于酒精后,在室温下1—2小时内稳定。

主要仪器石英(或其他无硼玻璃);三角瓶(250或300ml)和容量瓶(100ml,1000ml);回流装置;离心机;瓷蒸发皿(Φ7.5cm);恒温水浴;分光光度计;电子天平(1/100)。

试剂(1)95%酒精(二级);(2)无水酒精(二级);(3)姜黄素—草酸溶液:称取0.04g姜黄素和5g草酸,溶于无水酒精(二级)中,加入4.2ml6mol/LHCl,移入100ml石英容量瓶中,用酒精定容。

贮存在阴凉的地方。

姜黄素容易分解,最好当天配制。

如放在冰箱中,有效期可延长至3—4天。

(4)B标准系列溶液:称取0.5716gH3BO3(一级)溶于水,在石英容量瓶中定容成1升。

此为100mg/LB标准溶液,再稀释10倍成为10mg/LB标准贮备溶液。

吸取10mg/LB溶液1.0,2.0,3.0,4.0,5.0ml,用水定容至50ml,成为0.2,0.4,0.6,0.8,1.0mg/LB的标准系列溶液,贮存在塑料试剂瓶中。

土壤磷土壤有效微量元素测定方法

土壤磷土壤有效微量元素测定方法
2.2 加H2O2时应直接滴入瓶底液中,如滴在瓶颈 内壁上,将不起氧化作用;若遗留下来,还会 影响磷的显色。
2.3 待消煮溶液至清亮后,需继续加热,把剩余 的H2O2彻底除去,否则对磷的测定影响较大。
2.4 如试液为HCI、HCIO4介质,显色剂应用HCI配 制;试液为H2SO4介质,显色剂也用H2SO4配制。 显色液酸的适宜浓度范围为0.2~1.6mol/L,最 好是0.5~1.0mol/L。酸度高显色慢且不完全, 甚至不显色;低于2.0mol/L易产生沉淀物,干 扰测定。
2.2 测试时若需稀释,应用DTPA浸提液稀释,以保持基 体一致,并在计算时乘上稀释倍数。
2.3洗净所后用备玻用璃。器皿应事先在10%HNO3溶液中浸泡过夜,
2.4 锌是比较容易受污染,注意不要使用胶塞。
2.5 所需配制的标准溶液系列应根据仪器本身的精度要 求配制
2.6 如在样品所需测定的某一元素含量较高,可能会存 在反转现象。
2.注意事项:
2.1 振荡后,必须尽快过滤,否则浸提时间会延长;过滤 时应使用慢速滤纸,而且先倒少量溶液过滤,否则滤 液易混浊。
2.2 如果土壤有效磷含量较高,应减少浸提液的吸样量, 并加浸提剂补足至10.00mL后显色,以保持显色时溶 液的酸度。
2.3 加入显色剂时,必须慢慢地放入,并且一边慢慢摇动, 否则溶液很容易冲出瓶口。
一、土壤有效磷测定
1.方法提要(原理)
碳酸氢钠溶液除可提取水溶性磷外,也可以 抑制Ca2+的活性,使一定量活性较大的Ca-P盐 类 中 的 磷 被 浸 出 , 也 可 使 一 定 量 活 性 Fe-P 和 Al-P盐类中的磷通过水解作用而浸出。由于浸 出液中Ca、Fe、Al浓度较低,不会产生磷的再 沉淀。浸提液中的磷可用钼锑抗比色法定量测 定。土壤浸出的磷量与土液比、液温、振荡时 间及方式有关。本法严格规定土液比为1:20, 浸 提 液 温 度 为 25℃±1℃ , 振 荡 提 取 时 间 为 30min。

土壤中微量元素的测定101016

土壤中微量元素的测定101016


甲亚胺 (Azomethine-H)为H酸[C10H4NH20H(SO3H)2、8—氨 基—1—萘酚—3,6—二磺酸]和水杨醛(C6H4OHCHO,O—羟基苯甲 醛)的缩合物,缩合 • 反应和结构式如下:
• • •
硼与甲亚胺在pH5.1~5.8的NH4OAc—HOAc 缓冲溶液中,配合形成棕黄色配合物。甲亚胺比 色法可以测定硼(B)0.05~1.0mg· L-1,最大 吸收 峰在410~420nm。

土壤中水溶性硼的临界浓度视土壤种类 和作物种类而异。 • 一般以0.3~ 0.5mg· kg-1作为硼缺乏的临 界浓度。 • 但土壤性质不同,临界浓度也有差异。 • 粘重土壤可高达0.6~0.8mg· kg-1,而砂 质土壤可低至0.15~0.30 mg· kg-1。
• • •
作物种类不同,对硼的需求也不等。 Berger等按作物需要硼的多少分成三组临界浓度: 需硼较多的作物(>0.5mg· kg-1):油菜、萝卜、甜菜、花 椰菜、卷心菜、芹菜、向日葵、豆类及豆科绿肥作物、苹果、 葡萄。 • 中等需硼的作物(0.1~0.5mg· kg-1):棉花、烟草、番茄、 甘薯、花生、马铃薯、胡萝卜、桃、梨、樱桃、茶树。 • 需硼较少的作物(<0.1 mg· kg-1):水稻、小麦、大麦、黑 麦、燕麦、乔麦、玉米、高粱、柑橘、草类、甘蔗。

• **根据试验对测定有影响的干扰离子有F-、Al3+、 Fe3+、Cu2+。当溶液中含有3000 mg· L-1(Al3+)、 2500mg· L-1(Cu2+)以上时,可以加EDTA溶液抑制 其干扰。Fe3+的允许含量为<10mg· L-1,且不能用 EDTA克服其干扰,因为EDTA与Fe3+的配合物是黄 色的。溶液可先用饱和BaCO3溶液沉淀去除其干扰。 • 该法的主要缺点是土壤或植物样本分解或提取 溶液中可能存在的浅黄色会给测定结果带来误差。 • 适宜的显色温度在20~35 ℃范围内,一般控 制在23 ℃ 左右为宜,否则随着温度的升高吸光度 显著减小。显色达到稳定所需的时间约2h。 •

土壤中微量元素的测定

土壤中微量元素的测定

土壤中微量元素的测定土壤中微量元素的测定7.1概述微量元素是指土壤中含量很低的化学元素,除了土壤中某些微量元素的全含量稍高外,这些元素的含量范围一般为十万分之几到百万分之几,有的甚至少于百万分之一。

土壤中微量元素的研究涉及到化学、农业化学、植物生理、环境保护等很多领域。

作物必需的微量元素有硼、锰、铜、锌、铁、钼等。

此外,还有一些特定的对某些作物所必需的微量元素,如钴、钒是豆科植物所必需的微量元素。

随着高浓度化肥的施用和有机肥投入的减少,作物发生微量元素缺乏的情况愈来愈普遍。

有时候微量元素的缺乏会成为作物产量的限制因素,严重时甚至颗粒无收。

土壤中微量元素对作物生长影响的缺乏、适量和致毒量间的范围较窄。

因此,土壤中微量元素的供应不仅有供应不足的问题,也有供应过多造成毒害的问题。

明确土壤中微量元素的含量、分布、形态和转化的规律,有助于正确判断土壤中微量元素的供给情况。

土壤中微量元素的含量主要是由成土母质和土壤类型决定,变幅可达一百倍甚至超过一千倍(见下表),而常量元素的含量在各类土壤中的变幅则很少超过5倍。

表7-1 我国土壤微量元素的含量*刘铮,中国土壤的合理利用和培肥影响土壤中微量元素有效性的土壤条件包括土壤酸碱度、氧化还原电位、土壤通透性和水分状况等,其中以土壤的酸碱度影响最大。

土壤中的铁、锌、锰、硼的可给性随土壤pH的升高而降低,而钼的有效性则呈相反的趋势。

所以,石灰性土壤中常出现铁、锌、锰、硼的缺乏现象。

而酸性土壤易出现钼的缺乏,酸性土壤使用石灰有时会引起硼锰等的“诱发性缺乏”现象。

土壤中微量元素以多种形态存在。

一般可以区分为四种化学形态:存在于土壤溶液中的“水溶态”;吸附在土壤固体表面的“交换态”;与土壤有机质相结合的“螯合态”;存在于次生和原生矿物的“矿物态”。

前三种形态易对植物有效,尤其以交换态和螯合态最为重要。

因此,无论是从植物营养或土壤环境的角度,合理地选择提取剂或提取方法以区分微量元素的不同形态是微量元素分析的重要环节。

土壤中微量元素的测定演示文稿

土壤中微量元素的测定演示文稿
=OH+
14
OCH3
可测定0.0014~0.06ppm B,吸收峰为10~420nm。
主要干扰物:较少。 最宜显色温度:55±3℃。稳定时间1~2h。 优点:灵敏度高。 缺点:姜黄素品质,蒸干时间、温度试剂量、溶剂,
空气的流速、温度等影响显色。
要点:显色液避免与玻璃器皿长时间接触。比色时防
止溶剂蒸发。 15
均值 SD
CV%
邓肯法 分类
35.71 0.465 1.30 A
32.10 1.54 4.80 B
29.99 1.61 5.37 B
15.41 1.75 11.35 C
5.585 0.70 12.50 D
11
EDTA对甲亚法灵敏度的影响
通过SAS统计,EDTA的不同浓度对含硼 1mg/kg标液的相对吸光的影响没有显著差异,这 结果与Andrade(1988)等的结果相似。
12
13
(二)姜黄素比色法
方法原理:姜黄素在酸性无水介质中与硼形成玫
瑰红色配合物——玫瑰花青苷(Rosocyanin),可 用有机溶剂溶解后比色测定,最大吸收峰为550nm。
OCH3
CH
HO-
-CH=CH-C
C=CH-CH=
OO
B
O
O
HO-
=CH-CH=C C-CH=CH-
OCH3
CH
=OH+ OCH3
概述
微量元素 影响微量元素有效性的因素
✓ pH ✓ Eh(通透性与水分) ✓ 作物种类 ✓ 土壤质地 ✓ 土壤有机质 ✓ 气候
1
微量元素的形态分级
✓水溶态 ✓交换态 ✓螯合态 ✓矿物态
微量元素测定的要求
✓对实ቤተ መጻሕፍቲ ባይዱ室与试剂的要求 ✓防污染 ✓安全性

土壤有效性铜-锌-铁-锰简易测定方法

土壤有效性铜-锌-铁-锰简易测定方法

土壤有效性铜\锌\铁\锰简易测定方法植物所需微量元素包括铜、锌、铁、锰、硼、钼等,其主要生理作用有参与体内碳氮代谢、与叶绿素合成及稳定性有关、参与体内氧化还原反应、促进生物固氮、促进生殖器官的发育等。

总之,尽管作物对微量元素的需求很少,但其对植物的生理作用却是必不可少的。

目前,全国缺乏微量元素的农田面积逐年增加,但微肥的重要性还未引起农民的足够重视。

因此,推广测土配方施肥,大力宣传植物所需微量元素的重要性以及测定土壤微量元素的含量迫在眉睫。

现就土壤微量元素铜、锌、铁、锰简易测定方法介绍如下:1基本方法土壤样品经DTPA-TEA-CaCl2提取后,用原子光谱法直接测定溶液中的锌、锌、铁、锰。

2主要仪器、设备①原子吸收分光光度计;②酸度计;③往复式振荡机;④带盖塑料瓶。

3试剂3.1DTPA浸提剂其成分为0.005mol/L DTPA、0.01mol/ L CaCl2和0.10mol /L TEA。

称取1.967g二乙酸胺五乙酸(DTPA),溶于14.92g三乙醇胺(TEA)和少量水中;再将 1.47g氯化钙(CaCl2.H2O)溶于水后,一并转入1L容量瓶中,加水至约950mL;在酸度计上用6mol/ L盐酸溶液调节pH至7.30,用水定容,贮于塑料瓶中。

3.2标准贮备液3.2.1铜标准贮备液称取1.00g金属铜(优级纯),溶解于20mL 1:1硝酸溶液,移入1L容量瓶中,用水定容,即为1 000ug /mL铜标准贮备液。

分取此液5mL于100mL容量瓶中,用水定容,即为含50 ug/ mL铜标准溶液。

3.2.2锌标准贮备液称取1.00g金属锌(优级纯),用40mL 1:2盐酸溶液溶解,移入1L容量瓶中,用水定容,即为1 000ug/ mL锌标准贮备液。

分取此液5mL于100mL容量瓶中,用水定容,即为含50 ug/ mL锌标准溶液。

3.2.3铁标准贮备液称取1.00g金属铁(优级纯),溶解于40mL 1:2盐酸溶液中(加热溶解),移入1L容量瓶中,用水定容,即为1 000ug/ mL铁标准贮备液。

土壤里微量元素的检测方法

土壤里微量元素的检测方法

土壤里微量元素的检测方法土壤中的微量元素是指在土壤中含量较低的元素,但对于作物的生长发育和产量质量至关重要。

因此,准确快速地检测土壤中的微量元素含量对于农业生产和环境监测具有重要意义。

下面将介绍几种常用的土壤微量元素检测方法。

1. 原子吸收光谱法(atomic absorption spectroscopy,AAS)原子吸收光谱法是一种广泛应用的土壤微量元素检测方法。

该方法基于金属元素吸收特定波长的可见光的原理,通过测定吸收光的强度来确定土壤中微量元素的含量。

AAS具有灵敏度高、准确性好、分析范围广的优点,但对于不同的元素需要使用特定的仪器和条件进行分析。

2. 石墨炉原子吸收光谱法(graphite furnace atomic absorption spectroscopy,GFAAS)石墨炉原子吸收光谱法是一种高灵敏度的土壤微量元素检测方法。

该方法将土壤中的微量元素溶解成溶液后,通过石墨炉的加热使其蒸发并分解为原子态,再利用原子吸收光谱法来测定吸收光的强度。

石墨炉原子吸收光谱法能够提高分析的灵敏度和准确性,但仪器价格较高。

3. X射线荧光光谱法(X-ray fluorescence spectroscopy,XRF)X射线荧光光谱法是一种非破坏性的土壤微量元素检测方法。

该方法通过将X射线瞬间照射到土壤样品上,样品吸收能量后发射出特定能量的荧光X射线,通过测定荧光X射线的能量和强度来分析土壤中微量元素的含量。

X射线荧光光谱法具有快速、准确、无需样品预处理等优点,但对不同元素的分析范围有限。

4. 原子荧光光谱法(atomic fluorescence spectroscopy,AFS)原子荧光光谱法是一种非常灵敏的土壤微量元素检测方法。

该方法通过氢化原子荧光技术,将重金属元素还原为原子态,并利用特定波长的激发光来测定原子的荧光强度来分析土壤中微量元素的含量。

原子荧光光谱法具有高灵敏度、高选择性、准确性高的优点,但仪器价格较高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浓硫酸溶液中显色法
浓硫酸起着脱水剂的作用,使硼以三价 阳离子的形态存在,然后再与显色剂生成有 色配合物,在此条件下很多金属离子均不能 与有机染料形成有色化合物,使方法表现出 很好的选择性。某些试样常可不经分离而直 接进行比色测定硼,但在硫酸介质中使操作 带来不便。在浓硫酸溶液中,能与硼产生显 色反应的显色剂很多,以胭脂红酸、醌~茜素 等试剂的应用较为普遍。胭脂红酸法的测定 硼范围0.5~10mg·L-1。
土壤中全量硼的测定
碳酸钠熔融-姜黄素比色法(A)
样品经碳酸钠熔融分解后,溶液中的硼用姜黄素 比色法测定。姜黄素又称姜黄或郁金黄,它不溶于水 而易溶于甲醇、乙醇、丙酮及冰乙酸,其溶液为黄色。 在酸性介质中与硼结合形成玫瑰红色的配合物,即玫 瑰花青苷。它可能是两个姜黄素分子和一个硼原子配 合而成。检出硼的灵敏度是所有比色测定硼的试剂中 最高的。玫瑰花青苷溶液在0.0014~0.06mg/ml的硼浓 度范围内符合Beer定理。姜黄素与B配合形成玫瑰花 青苷需要在无水条件下进行,有水存在会使配合物颜 色强度降低。所以必须蒸干脱水显色。
三元配合物萃取比色法
根据硼的负电性配位体形成络离子的这 一基本特点,以有机溶剂萃取进行硼的比色 测定。组成三元配合物的负电性配位体有HF、 水杨酸、β—间苯二酚等。常用的碱性染料有 次甲基蓝、孔雀绿等。因次甲基蓝法灵敏度 可高达10-6数量级硼的测定,使用较普遍。但 因次甲基蓝本身有少量被萃取等原因,该方 法的空白值较高。
土壤有效硼的测定
土壤有效硼的测试方法很多,目前国内外 仍然普遍采用的是热水回流浸提法。此法的土 水比为1:2的悬浊液在回流冷凝管下煮沸5min, 然后测定滤液中的硼。水溶液中的硼可以不经 分离直接测定,一般用甲亚胺比色法和姜黄素 比色法。
土壤水溶性硼的缺乏临界浓度,对一般作 物来说是0.50mg·kg-1。
分析,只是这种仪器目前在国内应用还不够广泛。
原子吸收光谱仪
ห้องสมุดไป่ตู้
等离子体 ICP
微量元素分析注意问题
微量元素分析的样本污染。在一般的实 验室中,锌是很容易受到污染的元素。医用 胶布、橡皮塞、铅印报纸、铁皮烘箱、水浴 锅等都是常见的污染源。一般应尽量使用塑 料器皿,用不锈钢器具进行样品的采集和制 备(磨细、过筛),用洁净的塑料瓶(袋)盛装或 标签标记样品。特别值得注意的是微量元素 分析应该与肥料分析分开。实验用的试剂一 般应达到分析纯,并用去离子水或重蒸馏水 配制试剂和稀释样品。
水溶液中显色法
硼与某些有机溶剂能在水溶液中显色,其 操作简便,更适宜于自动化分析,近年来得到 较多的研究和应用。其缺点是方法的灵敏度稍 低,干扰的因素也较多,如甲亚胺法、茜素-S 法等。
目前国内在土壤、植物微量硼的测定中应 用较为普遍的是姜黄素法、甲亚胺比色法。
土壤中全量硼的测定
碳酸钠熔融-甲亚胺比色法
土壤农化分析
土壤中微量元素的测定
7.2 土壤中铜、锌的测定
土壤中铜和锌的存在形态
①以游离态或复 合态离子形式存 在于土壤溶液中 的水溶态 ;
②以非专性 (交换态)或专 性吸附在土壤 粘粒的阳离子;
第七章
土壤中微量元素的测定
微量元素
微量元素是指土壤中含量很低的化学元素,除了 土壤中某些微量元素的全含量稍高外,这些元素的含 量范围一般为十万分之几到百万分之几,有的甚至少 于百万分之一。作物必需的微量元素有硼、锰、铜、 锌、铁、钼等。
土壤中的微量元素以多种形态存在。一般可以区 分为四种化学形态:存在于土壤溶液中的“水溶态”; 吸附在土壤固体表面的“交换态”;与土壤有机质相 结合的“螯合态”;存在于次生和原生矿物的“矿物 态”。
土壤中全量硼的测定
碳酸钠熔融-姜黄素比色法(B)
由于蒸干显色的姜黄素比色法的显色条件较苛刻,不 易掌握,同时有较多的干扰离子或干扰因素影响测定结果, 有时需要分离后测定硼,在实际应用时有诸多困难。
提取液(或水溶液)中的硼与溶于氯仿中的2-乙基-1,3已二醇相结合,然后再与冰乙酸-姜黄素溶液反应,在一 定量的硫酸存在下充分作用,形成红色配合物,用乙醇 稀释后在20min内在波长550nm处比色测定。该法快速、 准确、简便,特别适用于水溶液中硼的测定。由于该法 有较高的灵敏度,在一定的程度上也适用于土壤中硼的 测定 。
土壤中大部分硼存在于电气石中。电气石是复杂的 酸不溶性铝硅酸盐,而且析出的硼酸,如果在酸性条件 下加热与水蒸气一起挥发损失,所以土壤全硼测定的样 品分解都采用碳酸钠碱融法,熔融物用1:1HCI溶解, 加饱和BaCO3溶液使溶液呈碱性,大量金属离子产生氢 氧化物沉淀,分离除去干扰物质后用甲亚胺比色法测定。 本法可以在水溶液中显色,操作简便,准确、快速,测 定的浓度范围广,更适用于自动化分析。目前已较广泛 地应用在水、土壤和植物中硼的分析。
微量元素分析方法
土壤样品分解或提取溶液中微量元素的测定则 主要是分析化学的内容。现代仪器分析方法使土壤 和植物微量元素能够进行大量快速、准确的自动化 分析。
目前除了个别元素用比色分析外,大部分都采 用原子吸收分光光度法(AAS)、极谱分析、X光荧光 分析、中子活化分析等。特别是电感耦合等离子体 发射光谱技术(简称ICP)的应用,不仅进一步提高了 自动化程度,而且扩大了元素的测定范围,一些在 农业上有重要意义的非金属元素和原子吸收分光光 度法较难测定的元素如硼、磷等均可以应用ICP进行
土壤农化分析
土壤中微量元素的测定
7.1 土壤中硼的测定
溶液中硼的测定方法
ICP-AES 法
比色分析法
蒸干显色 法
ICP-AES 法对硼的监测 限可以达到 6ng/ml。
浓硫酸溶液中 显色法
水溶液中 显色法
三元配合物 萃取比色法
蒸干显色法
将含有硼酸的试液与显色试剂在蒸发干 涸时形成有色化合物,然后用有机溶剂溶解 有色化合物进行比色测定。姜黄素是被常采 用的试剂,因为它在蒸干条件下显色,加上 它的灵敏度高,该方法特别适用于土壤中硼 的微量测定,为目前较普遍使用的一种方法。 但这种方法的操作要求严格,蒸发温度、时 间及其试剂用量等都可能对分析结果的可靠 性产生较大影响 。
相关文档
最新文档