几个常用组合数公式.资料
排列组合数相关公式
排列组合数相关公式在咱们学习数学的道路上,排列组合数相关公式那可是相当重要的一部分。
就像一把神奇的钥匙,能帮咱们打开很多复杂问题的大门。
咱们先来说说排列数的公式。
排列数,简单说就是从 n 个不同元素中取出 m 个元素进行排列的方式总数。
排列数的公式是:A(n, m) = n!/ (n - m)! 这里的“!”表示阶乘,比如说 5! 就是 5×4×3×2×1。
给大家举个例子哈。
比如说学校要从 10 个同学中选出 3 个参加演讲比赛,并且要考虑他们上台的顺序,这时候就得用排列数来计算了。
那就是 A(10, 3) = 10! / (10 - 3)! = 10×9×8 = 720 种方式。
再来说说组合数的公式。
组合数呢,是从 n 个不同元素中取出 m 个元素组成一组,不考虑它们的顺序。
组合数的公式是:C(n, m) = n! / [m!(n - m)!] 。
我记得有一次,班级里组织活动,要从 20 个同学中选出 5 个组成一个小组,这时候就不用考虑这 5 个人的顺序,只关心选出这 5 个人的组合情况,那就是 C(20, 5) = 20! / [5!(20 - 5)!] ,算出来有 15504 种组合方式。
在实际生活中,排列组合数的应用那可太多了。
比如说彩票抽奖,从一堆数字中选出几个数字,这就是组合数的应用。
再比如密码设置,不同数字、字母的排列组合,增加了密码的安全性,这就用到了排列数。
咱们做排列组合数的题目时,一定要仔细分析题目是要考虑顺序还是不考虑顺序,不然很容易出错哦。
总之,排列组合数相关公式虽然看起来有点复杂,但只要咱们多做练习,多结合实际例子去理解,就一定能掌握好,让它成为咱们解决数学问题的有力武器!。
组合与组合数公式2
C
m n1
98 199 【例 2】 (1)计算C100 + C200 ; 3������ +6 (2)已知C18 = C18 , 求������; 4 8 4 4 4 (3)化简C5 + C6 + C7 + C8 + C8 . 分析:先把组合数利用性质进行化简,或利用组合数性质求解. 4������ -2
������ ������ -1 ������ -2 ������ ������ -1 ������ -1 ������ -2 (4)证明: C������ + 2C������ + C������ = C������ + C������ + C������ + C������ ������ ������ -1 ������ = C������ + C = C +1 ������ +1 ������ +2 .
������+1 ������ +1 ·C������ ; ������-������
(3)证明: ∵
������ C������
������! ������+1 ������+1 ������! ������+1 = ������!(������-������)! , ������-������ ·C������ = ������-������ ·(������+1)!(������-������-1)!
A C A
n n
m
m
m m
组合数公式:
A n(n 1)(n 2) (n m 1) C A m!
m n m n m m
n! C m !(n m)!
【最新精选】几个常用组合数公式
⑸①几个常用组合数公式n n nn n n C C C 2210=+++ 11111121153142011112++--++++++-+=+==++=+++=+++k n k n k n k n m n m m n m m m m m mn n n n n n n n C n C k nC kC C C C C C C C C C C C②常用的证明组合等式方法例.i. 裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n (利用!1)!1(1!1n n n n --=-) ii. 导数法. iii. 数学归纳法. iv. 倒序求和法.v. 递推法(即用m n m n mn C C C 11+-=+递推)如:413353433+=+++n n C C C C C . vi. 构造二项式. 如:n n n n n n C C C C 222120)()()(=+++证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中n x 的系数,左边为22120022110)()()(n n n n n n n n n n n n n nn n C C C C C C C C C C C +++=⋅++⋅+⋅+⋅-- ,而右边nn C 2= 四、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型:①直接法. ②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n 个不同元素排成一列,要求其中某)(n m m ≤个元素必相邻的排列有m m m n m n A A ⋅+-+-11个.其中11+-+-m n m n A 是一个“整体排列”,而m m A 则是“局部排列”.又例如①有n 个不同座位,A 、B 两个不能相邻,则有排列法种数为-2n A 2211A A n ⋅-.②有n 件不同商品,若其中A 、B 排在一起有2211A A n n ⋅--.③有n 件不同商品,若其中有二件要排在一起有112--⋅n n n A A .注:①③区别在于①是确定的座位,有22A 种;而③的商品地位相同,是从n 件不同商品任取的2个,有不确定性.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.例如:n 个元素全排列,其中m 个元素互不相邻,不同的排法种数为多少?m m n m n m n A A 1+---⋅(插空法),当n – m+1≥m, 即m≤21+n 时有意义. ⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有n n A 种,)(n m m 个元素的全排列有m m A 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,共有m m n nA A 种排列方法.例如:n 个元素全排列,其中m 个元素顺序不变,共有多少种不同的排法?解法一:(逐步插空法)(m+1)(m+2)…n = n!/ m !;解法二:(比例分配法)m m nn A A /.⑦平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有kk n n n n k n kn A C C C )1(-⋅.例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有3!224=C (平均分组就用不着管组与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少? (!2/102022818C C C P =)注意:分组与插空综合. 例如:n 个元素全排列,其中某m 个元素互不相邻且顺序不变,共有多少种排法?有m m m m n m nm n A A A /1+---⋅,当n – m+1 ≥m, 即m≤21+n 时有意义. ⑧隔板法:常用于解正整数解组数的问题.例如:124321=+++x x x x 的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为4321,,,x x x x 显然124321=+++x x x x ,故(4321,,,x x x x )是方程的一组解.反之,方程的任何一组解),,,(4321y y y y ,对应着惟一的一种在12个球之间插入隔板的方式(如所示)故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数311C .注意:若为非负数解的x 个数,即用n a a a ,...,21中i a 等于1+i x ,有A a a a A x x x x n n =-+-+-⇒=+++1...11...21321,进而转化为求a 的正整数解的个数为1-+n n A C .4⑨定位问题:从n 个不同元素中每次取出k 个不同元素作排列规定某r 个元素都包含在内,并且都排在某r 个指定位置则有r kr n r r A A --.例如:从n 个不同元素中,每次取出m 个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上:11--m n A ;不在某一位置上:11---m n m n A A 或11111----⋅+m n m m n A A A (一类是不取出特殊元素a ,有m n A 1-,一类是取特殊元素a ,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的)⑩指定元素排列组合问题.i. 从n 个不同元素中每次取出k 个不同的元素作排列(或组合),规定某r 个元素都包含在内 。
组合与组合数公式
4������ -2
100×99 + 200 2
= 5 150.
9×8×7×6
5 6 4 7 【变式训练 2】 (1)计算: C9 + C9 + C10 + C11 ; 2 2 2 2 2 (2)计算: C2 + C3 + C4 + C5 + C6 ; ������ (3)求证: C������ = ������ ������ ������ -1 ������ -2 (4)求证: C������ +2 = C������ + 2C������ + C������ . 5 6 5 6 6 4 7 7 7 (1)解: C9 + C9 + C10 + C11 = C10 + C10 + C11 = C11 + C11 = 5 7 C12 = C12 = 792. 3 2 3 2 2 2 2 2 2 2 (2)解: 由C2 = C3 , 得C2 + C3 + C4 + C5 + C6 = C3 + C3 + C4 + 2 2 C5 + C6 . 3 3 3 2 2 2 2 2 ∵ C3 + C3 = C4 , ∴ C3 + C3 + C4 + C5 + C6 3 2 2 2 2 2 2 = C4 + C4 + C5 + C6 , 依次类推可得C2 + C3 + C4 2 3 2 + C5 + C6 = C7 = 35.
分别有多少种?用式子表示。
【做一做1】 给出下列问题: 2 2 2 A 或 C ①有10个车站,共需准备多少种车票? 10 10 A2 ②有10个车站,共有多少种不同的票价? C 2 10 2 2 2 ③平面内有16个点,共可作出多少条不同的有向线段? A16 或C16 A2 ④有16位同学,假期中约定每两人之间通电话一次,共需通电话 2 多少次? C16 ⑤从20名学生中任选4名分别参加数学、物理、化学、生物竞 4 4 赛,有多少种选派方法? 4 或C A
排列组合公式
排列组合公式[编辑本段]定义公式P是指排列,从N个元素取R个进行排列(即排序)。
(P是旧用法,现在教材上多用A,Arrangement)公式C是指组合,从N个元素取R个,不进行排列(即不排序)。
[编辑本段]符号常见的一道题目C-组合数P-排列数(现在教材为A)N-元素的总个数R-参与选择的元素个数!-阶乘,如5!=5*4*3*2*1=120C-Combination 组合P-Permutation排列(现在教材为A-Arrangement)一些组合恒等式组合恒等式排列组合常见公式排列组合常见公式[编辑本段]历史1772年,旺德蒙德以[n]p表示由n个不同的元素中每次取p个的排列数。
而欧拉则于1771年以及于1778年以表示由n个不同元素中每次取出p个元素的组合数。
至1872年,埃汀肖森引入了以表相同之意,这组合符号(Signs of Combinations)一直沿用至今。
1830年,皮科克引入符号Cr以表示由n个元素中每次取出r个元素的组合数;1869年或稍早些,剑桥的古德文以符号nPr 表示由n个元素中每次取r个元素的排列数,这用法亦延用至今。
按此法,nPn便相当於现在的n!。
1880年,鲍茨以nCr及nPr分别表示由n个元素取出r个的组合数与排列数;六年后,惠特渥斯以及表示相同之意,而且,他还以表示可重复的组合数。
至1899年,克里斯托尔以nPr及nCr分别表示由n个不同元素中每次取出r个不重复之元素的排列数与组合数,并以nHr表示相同意义下之可重复的排列数,这三种符号也通用至今。
1904年,内托为一本百科辞典所写的辞条中,以表示上述nPr之意,以表示上述nCr之意,后者亦同时采用了。
这些符号也一直用到现代。
[编辑本段]组合数的奇偶对组合数C(n,k) (n>=k):将n,k分别化为二进制,若某二进制位对应的n为0,而k为1 ,则C(n,k)为偶数;否则为奇数。
组合数的奇偶性判定方法为:结论:对于C(n,k),若n&k == k 则c(n,k)为奇数,否则为偶数。
组合与组合数公式
步骤2
假设n=k时公式成立,推导n=k+1时的公式。
步骤3
由数学归纳法,得出结论对于所有正整数n, 组合数公式成立。
利用二项式定理的证明
步骤1
将组合数公式重写为与二项式定理形式相似的形式。
步骤2
利用二项式定理展开式中的系数与组合数公式中的系 数进行比较。
02
加密算法
组合数公式可以用于设计加密算法,通过计算不同字符或符号的组合数
量,增强信息的安全性。
03
信息传输
在无线通信和网络传输中,利用组合数公式可以优化信息的传输效率和
可靠性。通过对信号的不同组合方式进行编码和解码,可以提高通信系
统的性能。
感谢您的观看
THANKS
组合数表示从n个不同元素中取出m个 元素的组合的个数,记作C(n, m)或C(n, m),其中C(n, m) = n! / (m!(n-m)!)。
组合的特性
无序性
组合只考虑元素的排列顺序,不考虑元素的具体 位置。
可重复性
在组合中,可以重复选取同一个元素。
独立性
组合数不受元素数量的影响,只与选取的元素个 数有关。
01
概率分析
利用组合数公式,可以对彩票的概率进 行分析,帮助彩民更好地理解彩票的随 机性和公平性。
02
03
优化投注
通过计算不同组合下的中奖概率,彩 民可以优化自己的投注策略,提高中 奖的可能性。
在遗传学中的应用
基因组合
在遗传学中,基因的组合方式可以用组合数公式来表示。通过计算 基因组合的数量,可以了解生物体的遗传多样性。
组合数的上标和下标规则
上标和下标规则
常用组合数公式及证明
常⽤组合数公式及证明n m =n n −m 选出补集的⽅案数等于选出原集合的⽅案数,即把补集去掉就是原集合n m =n m n −1m −1⽤通项式直接代⼊可得,吸收恒等式n ∑i =0n i =2n等号左⾯可以看做枚举⼦集的⼤⼩再枚举这个⼤⼩的⼦集个数,等号的右⾯则是直接枚举⼦集,故相等当然可以看成⼆项式定理的特殊情况m +nm =m∑i =0n i mm −i (n ≥m )看作有两个集合 A 和 B ,A 有 n 个元素,B 有 m 个元素左⾯即从 A ,B 中共选出 m 个元素的⽅案数,右⾯即枚举 A 集合中选多少个数,剩下的数在 B 集合中选2n n=n∑i =0ni 2上式的特殊情况n ∑i =0i m =n +1m +1这⾥给出⼀种有趣的组合解释:从 0,1,⋯,n 中选出 m +1 个数,选出的数中最⼤为 i 的⽅案数为 i mn m m k =n k n −km −k 左侧为从 n 个数选出 m 个数字,再从 m 个数字中选出 k 个我们可以直接从 n 个数中选出 k 个,再从剩下 n −k 个数中选出 m −k 个在第⼆轮淘汰的数n ∑i =0n −i i =F n +1F 表⽰斐波那契数列,展⽰出了斐波那契数列和组合数之间的关系,真奇妙设 G n =n∑i =0n −i i ,显然有 G 0=F 1=1,G 0=F 2=1我们只需要证明 G 满⾜斐波那契的递推式即可,即证明:G n +2=G n +1+G n()()()()()()()()()()()()()()()()()()()G n+G n+1=n∑i=0n−ii+n+1∑i=0n−i+1i=n∑i=0n−ii+n∑i=−1n−ii+1=n∑i=0n−ii+n∑i=0n−ii+1+1=n∑i=0n−ii+n−ii+1+1=n∑i=0n−i+1i+1+1=n+1∑i=1n−i+2i+1=n+1∑i=0n−i+2i=n+2∑i=0n−i+2i=Gn+2 ()() ()()()() (()())()() ()()Processing math: 100%。
组合与组合数公式及组合数的两个性质 课件
[例3] (10分)在一次数学竞赛中,某学校有12人通过 了初试,学校要从中选出5人参加市级培训.在下列条件下, 有多少种不同的选法?
(1)任意选5人; (2)甲、乙、丙三人必需参加; (3)甲、乙、丙三人不能参加; (4)甲、乙、丙三人只能有1人参加.
[思路点拨] 本题属于组合问题中的最基本的问题, 可根据题意分别对不同问题中的“含”与“不含”作出正 确分析和判断.
(7 分)
(4)甲、乙、丙三人只能有 1 人参加,可分两步:先从甲、
乙、丙中选 1 人,有 C13=3 种选法;再从另外 9 人中选 4 人,
有 C49种选法.共有 C13C49=378 种不同的选法.
(10 分)
[一点通] 解简单的组合应用题时,要先判断它是 不是组合问题,只有当该问题能构成组合模型时,才能运 用组合数公式求解.解题时还应注意两个计数原理的运用, 在分类和分步时,应注意有无重复或遗漏.
组合数公式
组合 数公
式 性质 备注
乘积形式 Cmn =AAmnmm=nn-1n-m2!…n-m+1
阶乘形式
Cmn =
n! m!n-m!
Cmn = Cnn-m ;Cnm+1= Cmn +Cmn -1
①n,m∈N+,m≤n;②规定 C0n= 1 .Cnn= 1
1.组合的特点 组合要求n个元素是不同的,被取出的m个元素也是 不同的,即从n个不同的元素中进行m次不放回地取出. 2.组合的特性 元素的无序性,即取出的m个元素不讲究顺序,亦即 元素没有位置的要求. 3.相同的组合 根据组合的定义,只要两个组合中的元素完全相同, 不管顺序如何,就是相同的组合.
107C7m=7×71-0×m7!!m!,
∴m!55!-m!-m!6-6×m5!5-m! =7×m!170-×m7×66-×m5!5-m!, ∴1-6-6 m=7-m606-m, 即 m2-23m+42=0,解得 m=2 或 21. 而 0≤m≤5,∴m=2. ∴C8m+C58-m=C28+C38=C93=84.
排列组合公式总结大全(3篇)
第1篇在数学中,排列组合是研究有限集合中元素的不同排列和组合方式的一种数学分支。
它广泛应用于统计学、概率论、计算机科学、组合数学等领域。
以下是对排列组合中常用公式的总结,以供参考。
一、排列1. 排列的定义:从n个不同的元素中,任取m(m≤n)个不同的元素,按照一定的顺序排成一列,称为从n个不同元素中取出m个元素的一个排列。
2. 排列数公式:A(n, m) = n! / (n-m)!其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × ... × 2 × 1。
3. 排列的运算性质:(1)交换律:A(n, m) = A(n-m, n-m)(2)结合律:A(n, m) × A(m, k) = A(n, k)(3)逆运算:A(n, m) × A(m, n-m) = n!二、组合1. 组合的定义:从n个不同的元素中,任取m(m≤n)个不同的元素,不考虑它们的顺序,这样的取法称为从n个不同元素中取出m个元素的一个组合。
2. 组合数公式:C(n, m) = n! / [m! × (n-m)!]3. 组合的运算性质:(1)交换律:C(n, m) = C(n-m, n-m)(2)结合律:C(n, m) × C(m, k) = C(n, k)(3)逆运算:C(n, m) × C(m, n-m) = C(n, n)三、排列与组合的关系1. 排列与组合的关系:A(n, m) = C(n, m) × m!2. 排列与组合的区别:(1)排列考虑元素的顺序,组合不考虑元素的顺序。
(2)排列的运算性质与组合的运算性质不同。
四、排列组合的应用1. 排列组合在概率论中的应用:计算随机事件发生的概率。
2. 排列组合在计算机科学中的应用:设计算法、密码学、数据结构等。
3. 排列组合在统计学中的应用:抽样调查、数据分析等。
数学排列组合公式必看
数学排列组合公式必看每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲技巧的。
下面是小编给大家整理的一些数学排列组合公式的学习资料,希望对大家有所帮助。
人教版高二数学排列组合公式梳理1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m)表示.c(n,m)=p(n,m)/m!=n!/((n-m)!.m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!.n2!.....nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m小升初数学排列组合训练试题及答案小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?解答:把路程看成1,得到时间系数去时时间系数:1/3÷12+2/3÷30返回时间系数:3/5÷12+2/5÷30两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2小时去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)高考数学排列组合题型解题技巧1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
组合与排列的计算方法(知识点总结)
组合与排列的计算方法(知识点总结)组合和排列是离散数学中的两个重要概念,用于描述从一组元素中选择出一部分元素的方式。
在实际生活和数学问题中,我们经常需要计算不同元素的排列或组合情况。
下面将介绍组合和排列的定义、计算方法及应用。
1. 组合的计算方法组合指的是从一个元素集合中选出若干个元素,不考虑元素的顺序。
假设有n个元素,要从中选出k个元素的组合数可以用C(n, k)表示。
计算组合数的公式为:C(n, k) = n! / (k! * (n-k)!)其中,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 2 * 1。
例如,从5个元素中选出3个元素的组合数为:C(5, 3) = 5! / (3! * (5-3)!) = 5! / (3! * 2!) = 102. 排列的计算方法排列指的是从一个元素集合中选出若干个元素,考虑元素的顺序。
同样假设有n个元素,要从中选出k个元素的排列数可以用P(n, k)表示。
计算排列数的公式为:P(n, k) = n! / (n-k)!例如,从5个元素中选出3个元素的排列数为:P(5, 3) = 5! / (5-3)! = 5! / 2! = 603. 组合与排列的应用组合和排列的计算方法在实际生活和数学问题中有广泛的应用。
在数学问题中,组合和排列的计算方法可以用于计算概率。
例如,在一个抽奖活动中,有10个人参与,每人只能抽出一张奖券,那么获奖的组合数为C(10, 1) = 10。
如果要计算中奖概率,则需要将获奖的组合数除以总的可能组合数。
在计算机科学中,组合和排列的计算方法可以用于算法设计。
例如,在某个问题中,需要对一组数据进行全排列的处理,即将这组数据的所有可能的排列情况都生成出来。
通过排列的计算方法,可以快速计算出所有排列的结果。
在实际生活中,组合和排列的计算方法常用于安排座位、制定菜单、组织比赛等场景下。
例如,某个宴会上有8个座位,要从10个人中选出来安排座位,那么可能的座位组合数为C(10, 8) = 45。
组合 计算公式
组合 计算公式组合计算公式1. 组合数计算公式组合数是指从n 个不同元素中选取m 个元素的组合数目。
组合数的计算公式如下:C (n,m )=n!m!(n −m )!其中,n 和m 为非负整数,n!表示n 的阶乘。
例子:假设有10个人,选取其中3个人组成一个小组,那么可以计算出组成小组的可能性:C (10,3)=10!3!(10−3)!=10!3!7!=10×9×83×2×1=120 所以,可以有120种不同的组合方式来选取3个人组成小组。
2. 二项式系数计算公式二项式系数是组合数的特殊情况,它表示二项式展开后各项的系数。
二项式系数的计算公式如下:C (n,k )=(n k )=n!k!(n −k )!例子:假设有一个二项式展开式(a+b)8,我们想计算展开后的某一项的系数。
假设我们要计算(a+b)8展开式中的a3b5项的系数,可以使用二项式系数来计算:C(8,3)=(83)=8!3!(8−3)!=8!3!5!=8×7×63×2×1=56所以,(a+b)8展开式中的a3b5项的系数为56。
3. 全排列计算公式全排列是指将一组元素按照一定顺序排列,所有可能的排列方式的总数。
全排列的计算公式如下:P(n)=n!例子:假设有4个不同的字母a、b、c、d,我们想计算将它们排列成一个4位的字符串的所有可能性。
可以使用全排列的计算公式来计算:P(4)=4!=4×3×2×1=24所以,将字母a、b、c、d排列成一个4位的字符串共有24种不同的排列方式。
4. 全组合计算公式全组合是指将一组元素按照任意数量选择一个或多个组合的方式,列举所有可能的组合方式。
全组合的计算公式如下:2n其中,n为元素的个数。
例子:假设有3个不同的数字1、2、3,我们想列举出将它们组合成一个或多个数字的所有可能性。
可以使用全组合的计算公式来计算:23=8所以,将数字1、2、3组合成一个或多个数字共有8种不同的组合方式。
组合数与排列数的计算技巧
组合数与排列数的计算技巧在数学中,组合数和排列数是常见的基本概念。
组合数指的是从$n$个元素中取$r$个元素的组合方式数,而排列数则是把$n$个元素进行全排列的方式数。
在实际问题中,我们常常需要计算这些数值。
本文将简要介绍组合数与排列数的概念及其计算技巧。
一、组合数组合数是指从$n$个不同元素中,任取$r$ $(r≤n)$个不同元素的组合数。
通常情况下,组合数表示为$\binom{n}{r}$。
1、计算公式组合数的计算公式如下:$$\binom{n}{r}=\frac{n!}{r!(n-r)!}$$其中,$n!=n(n-1)(n-2)\cdots2\times1$表示$n$的阶乘,$r!=(r(\mathrm{r}-1)(r-2)\cdots2\times1)$,$(n-r)!=(n-r)(n-r-1)(n-r-2)\cdots2\times1$。
由组合数的计算公式可知,当$n$和$r$较大时,直接计算可能会产生数值溢出。
为了解决这个问题,我们可以考虑使用对数等技巧对公式进行转化。
2、对数等技巧利用对数等技巧可以将组合数的计算公式转化为以下形式:$$\ln\binom{n}{r}=\ln n!-\ln r!-\ln(n-r)!$$使用对数等式可以大大缩小计算量,避免数值溢出的问题。
另外,我们还可以通过运用组合恒等式进一步简化计算。
3、组合恒等式组合恒等式包括加法公式和乘法公式两种。
这里简单介绍一下乘法公式:$$\binom{n}{r}=\binom{n-1}{r}+\binom{n-1}{r-1}$$乘法公式的证明可以通过重新排列组合方式进行推导。
4、实例对于有些问题,我们可以根据实际情况将组合数的计算简化。
例如,假设有5位候选人参加竞选,选出2位当选,那么选举的方式有多少种?根据组合数的定义,选举方式数为$\binom{5}{2}=\frac{5!}{2!(5-2)!}=10$种。
二、排列数排列数是指由$n$个不同元素进行的全排列方式数。
1.3.1组合与组合数公式课件
[思路探索] 属于组合与排列的区分问题,看问题有无次序要求. 解 (1)集合中的元素具有无序性,顺序无关是组合问题. (2)两人握手与顺序无关是组合问题.
(3)学习小组的人与顺序无关是组合问题.
(4)将名额分给5个班,只与每班分得名额个数有关,属组合问题.
规律方法
区分排列还是组合问题的关键是看取出元素后是按顺
又∵0≤m-1≤8,且0≤m≤8,m∈N, 即7≤m≤8,∴m=7或8. (3)证明 n-1! n n m C-= · n-m n 1 n-m m!n-1-m!
n! = =C m n. m!n-m! 规律方法 求解与组合数有关的方程,不等式及证明问题时,要
应用组合数的公式,并注意其成立的条件.
序排列还是无序地组在一起,区分有无顺序的方法是把问题的一 个选择结果解出来,然后交换这个结果的任意两个元素的位置,
看是否会产生新的变化,若有新变化,即说明有顺序,是排列问
题;若无新变化,即说明无顺序,是组合问题.
【变式1】 有8盆不同的花, (1)从中选出2盆分别送给甲、乙两人每人一盆; (2)从中选出2盆放在教室里. 以上问题中,哪一个是组合问题?哪一个是排列问题? 解 (1)从8盆花中,选出2盆送给甲、乙两人每人一盆的送法 与顺序有关,故属排列问题. (2)从8盆花中,选出2盆放在教室的放法与顺序无关,故属组 合问题.
ห้องสมุดไป่ตู้
3.组合数公式
m nn-1n-2…n-m+1 n! A n m Cn =Am= = m! m!n-m! m
规定:C0 n=1. 试一试 找出从n个不同元素中取出m个元素的所有组合的个数 与从n个不同元素中取出m个元素的所有排列的个数的关系式.
m A n m m m 提示 Cm · A = A ,即: C = . m n m n n Am
1.2.2.1 组合及组合数公式
的选法. 同的选法. 种不同的选法. 种不同的选法.
(2 分 分) )
(2) 甲、乙、丙三人必需参加,则只需要从另外 9 人中选 2 人,是 (2) 甲、乙、丙三人必需参加,则只需要从另外 9 2 (2) 甲、乙、丙三人必需参加,则只需要从另外 9 人中选 人中选 2 (2) 甲、乙、丙三人必需参加,则只需要从另外 2
解答: (1)已知集合的元素具有无序性,因此含 3 个 元素的子集个数与元素的顺序无关, 是组合问题, 共有 C3 7个. (2)因为发件人与收件人有顺序区别,与顺序有关是排 列问题,共写了 A2 8个电子邮件. (3)同时通电话,无顺序,是组合问题,共通了 C 次电 话. (4)飞机票与起点站、终点站有关,故求飞机票的种数 是排列问题,有 A2 4种飞机票;票价只与两站的距离有关,故 票价的种数是组合问题,有 C2 4种票价.
例1 判断下列问题是组合还是排列,并用组合数或排列数 表示出来. (1)若已知集合{1,2,3,4,5,6,7}, 则集合的子集中有 3 个元素的 有多少? (2)8 人相互发一个电子邮件,共写了多少个邮件?
(3)8人相互通电话一次,共通了多少次电话? (4)在北京、上海、广州、成都四个民航站之间的直达航线 上,有多少种不同的飞机票?有多少种不同的飞机票价?
问题4:试用列举法求从1,3,5,7中任取两个元素的组合数. 提示:1、3,1、5,1、7,3、5,3、7,5、7,共6种.
问题5:你能把问题3的结论推广到一般吗?
提示:可以,从 n 个不同元素中取出 m 个元素的排列 数可由以下两个步骤得到: 第一步,从这 n 个不同元素中取出 m 个元素,共有 Cm n 种不同的取法; 第二步,将取出的 m 个元素全排列,共有 Am m种不同 的排法.
排列组合的一些公式及推导(非常详细易懂)
排列组合的一些公式及推导(非常详细易懂)绪论:加法原理、乘法原理分类计数原理:做一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn 种不同的方法。
分步计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×⋯×mn种不同的方法。
区别:分类计数原理是加法原理,不同的类加起来就是我要得到的总数;分步计数原理是乘法原理,是同一事件分成若干步骤,每个步骤的方法数相乘才是总数。
排列问题排列数从n个不同元素种取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素种取出m个元素的排列数,用符号Amn表示。
排列数公式Amn=n(n−1)(n−2)⋯(n−m+1)=n!(n−m)!,n,m∈N∗,并且m≤n(规定0!=1)推导:把n个不同的元素任选m个排序,按计数原理分步进行:取第一个:有n种取法;取第二个:有(n−1)种取法;取第三个:有(n−2)种取法;……取第m个:有(n−m+1)种取法;根据分步乘法原理,得出上述公式。
排列数性质Amn=nAm−1n−1 可理解为“某特定位置”先安排,再安排其余位置。
Amn=mAm−1n−1+Amn−1 可理解为:含特定元素的排列有mAm−1n−1,不含特定元素的排列为Amn−1。
组合问题组合数从n个不同元素种取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素种取出m个元素的组合数,用符号Cmn表示。
组合数公式Cmn=AmnAmm=n(n−1)(n−2)⋯(n−m+1)m!=n!m!(n−m)!,n,m∈N∗,并且m≤nC0n=Cnn=1证明:利用排列和组合之间的关系以及排列的公式来推导证明。
将部分排列问题Amn分解为两个步骤:第一步,就是从n个球中抽m个出来,先不排序,此即组合数问题Cmn;第二步,则是把这m个被抽出来的球排序,即全排列Amm。
基本的组合计数公式
02 基本的组合计数公式
定义
• 排列数公式是指从n个不同元素中取出m个元素(0≤m≤n) 进行排列的种数。计算公式阶乘表示法
$A_{n}^{m} = n(n-1)(n-2)...(n-m+1)$
排列数公式
$A_{n}^{m} = frac{n!}{(n-m)!}$
应用
• 排列数公式在组合数学、统计学、概率论等领域 有广泛应用,用于计算排列组合问题。
组合计数的应用场景
01
02
03
04
概率计算
在概率论中,组合计数用于计 算事件发生的可能性,如排列 组合问题、贝叶斯定理等。
统计学
在统计学中,组合计数用于样 本空间大小的计算,以及参数
估计和假设检验等。
计算机科学
在计算机科学中,组合计数用 于算法复杂度分析、数据结构
和算法设计等。
金融学
在金融学中,组合计数用于资 产配置和风险管理等。
基本的组合计数公式
目 录
• 组合计数的定义 • 基本的组合计数公式 • 组合计数公式的推导 • 组合计数公式的证明 • 组合计数公式的应用
01 组合计数的定义
组合计数的概念
组合计数是数学中研究从n个不 同元素中选取r个元素(不放回) 的种数的方法。
组合计数公式通常表示为C(n, r) = n! / (r!(n-r)!),其中"!"表示 阶乘。
THANKS FOR WATCHING
感谢您的观看
错排公式的推导
错排公式
$D_n = n!*(1/2! - 1/3! + ... + (-1)^n/n!)$
推导过程
错排公式是用来计算在n个元素中放错位置的排列个数 。首先,考虑所有元素都放错位置的情况,即第一个元 素放在第二个位置,第二个元素放在第三个位置,以此 类推,最后一个元素放在第一个位置。这种情况下的排 列数为$n!/2!$。然后考虑只有一个元素放错位置的情 况,即第一个元素放在第二个位置,第二个元素放在第 一个位置,其他元素都放错位置,这种情况下的排列数 为$n(n-1)!/2!$。以此类推,可以得到错排公式。
数学的组合公式
数学的组合公式
【实用版】
目录
1.组合公式的定义与概念
2.组合公式的计算方法
3.组合公式的应用举例
4.组合公式的扩展与高级形式
正文
【1.组合公式的定义与概念】
组合公式,是组合数学中的一种重要公式,用于计算从 n 个元素中取出 m 个元素的组合数。
组合数表示的是一种组合方式,即从 n 个元素中取出 m 个元素的方案数。
组合公式可以很好地解决这类问题,为计算组合数提供了一种简便方法。
【2.组合公式的计算方法】
组合公式的计算方法是:C(n,m) = n! / [(n-m)! * m!]。
其中,n! 表示 n 的阶乘,即 1*2*3*...*n。
【3.组合公式的应用举例】
例如,从 6 个苹果中选出 3 个,有几种选法?
根据组合公式,C(6,3) = 6! / [(6-3)! * 3!] = 20。
所以,从 6 个苹果中选出 3 个,共有 20 种选法。
【4.组合公式的扩展与高级形式】
组合公式还有许多扩展和高级形式,如二项式定理、排列组合公式等,可以解决更复杂的问题。
例如,二项式定理:(a+b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 +...+ C(n,n) * a^0 * b^n。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几个常用组合数公式.
⑸①几个常用组合数公式
②常用的证明组合等式方法例.
i. 裂项求和法. 如:(利用)
ii. 导数法. iii. 数学归纳法. iv. 倒序求和法.
v. 递推法(即用递推)如:.
vi. 构造二项式. 如:
证明:这里构造二项式其中的系数,左边为
,而右边
四、排列、组合综合.
1. I. 排列、组合问题几大解题方法及题型:
①直接法. ②排除法.
③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n个不同元素排成一列,要求其中某个元素必相邻的排列有个.其中是一个“整体排列”,而则是“局部排列”.
又例如①有n个不同座位,A、B两个不能相邻,则有排列法种数为.
②有n件不同商品,若其中A、B排在一起有.
③有n件不同商品,若其中有二件要排在一起有.
注:①③区别在于①是确定的座位,有种;而③的商品地位相同,是从n件不同商品任取的2个,有不确定性.
④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.
例如:n个元素全排列,其中m个元素互不相邻,不同的排法种数为多少?(插空法),当n –m+1≥m, 即m≤时有意义.
⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.
⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n个元素进行全
排列有种,个元素的全排列有种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n个元素排
成一列,其中m个元素次序一定,共有种排列方法.
例如:n个元素全排列,其中m个元素顺序不变,共有多少种不同的排法?
解法一:(逐步插空法)(m+1)(m+2)…n = n!/ m!;解法二:(比例分配法).
⑦平均法:若把kn个不同元素平均分成k组,每组n个,共有.
例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有
(平均分组就用不着管组与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少?
()
注意:分组与插空综合. 例如:n个元素全排列,其中某m个元素互不相邻且顺序
不变,共有多少种排法?有,当n –m+1 ≥m, 即m≤时有意义.
⑧隔板法:常用于解正整数解组数的问题.
例如:的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把
球分成4个组.每一种方法所得球的数目依次为显然,故
()是方程的一组解.反之,方程的任何一组解,对应着惟一的一种在12个球之间插入隔板的方式(如图
所示)故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数.
注意:若为非负数解的x个数,即用中等于,有
,进而转化为求a的正整数解的个数为 .
⑨定位问题:从n个不同元素中每次取出k个不同元素作排列规定某r个元素都包含在内,并且都排在某r个指定位置则有.
例如:从n个不同元素中,每次取出m个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?
固定在某一位置上:;不在某一位置上:或(一类是
不取出特殊元素a,有,一类是取特殊元素a,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的)
⑩指定元素排列组合问题.
i. 从n个不同元素中每次取出k个不同的元素作排列(或组合),规定某r个元素都包含在内。
先C后A策略,排列;组合.
ii. 从n个不同元素中每次取出k个不同元素作排列(或组合),规定某r个元素都不包含在内。
先C后A策略,排列;组合.
iii 从n个不同元素中每次取出k个不同元素作排列(或组合),规定每个排列(或组合)都只包含某r个元素中的s个元素。
先C后A策略,排列;组合
.
II. 排列组合常见解题策略:
①特殊元素优先安排策略;②合理分类与准确分步策略;③排列、组合混合问题先选后排的策略(处理排列组合综合性问题一般是先选元素,后排列);④正难则反,等价转化策略;⑤相邻问题插空处理策略;
⑥不相邻问题插空处理策略;⑦定序问题除法处理策略;⑧分排问题直排处理的策略;⑨“小集团”排列问题中先整体后局部的策略;⑩构造模型的策略.
2. 组合问题中分组问题和分配问题.
①均匀不编号分组:将n个不同元素分成不编号的m组,假定其中r组元素个数相等,不管是否分尽,其分法种数为(其中A为非均匀不编号分组中分法数).如果再有K组均匀分组应再除以.
例:10人分成三组,各组元素个数为2、4、4,其分法种数为.若分成六组,各组人数分别为1、1、2、2、2、2,其分法种数为
②非均匀编号分组: n个不同元素分组,各组元素数目均不相等,且考虑各组间的顺序,其分法种数为
例:10人分成三组,各组人数分别为2、3、5,去参加不同的劳动,其安排方法为:种.
若从10人中选9人分成三组,人数分别为2、3、4,参加不同的劳动,则安排方法有种
③均匀编号分组:n个不同元素分成m组,其中r组元素个数相同且考虑各组间的顺序,其分法种数为.
例:10人分成三组,人数分别为2、4、4,参加三种不同劳动,分法种数为
④非均匀不编号分组:将n个不同元素分成不编号的m组,每组元素数目均不相同,且不考虑各组间顺序,不管是否分尽,其分法种数为
…
例:10人分成三组,每组人数分别为2、3、5,其分法种数为若从10人中选出6人分成三组,各组人数分别为1、2、3,其分法种数为.。