(完整版)小升初简便运算奥数专题讲解
数学专项复习小升初奥数板块讲解
![数学专项复习小升初奥数板块讲解](https://img.taocdn.com/s3/m/df3a9d6aa22d7375a417866fb84ae45c3b35c226.png)
数学专项复习小升初奥数板块讲解对于即将面临小升初的同学们来说,奥数的学习和复习是提升数学能力、拓展思维的重要环节。
在这篇文章中,我们将对小升初奥数的几个常见板块进行详细讲解,帮助大家更好地应对考试。
一、计算板块计算是数学的基础,在奥数中更是占据重要地位。
1、简便运算简便运算要求同学们熟练掌握运算定律,如加法交换律、结合律,乘法交换律、结合律、分配律等。
例如:计算 25×32×125,可以将 32拆分成 4×8,然后运用乘法结合律进行计算,即 25×4×8×125 =(25×4)×(8×125)= 100×1000 = 100000。
2、分数计算分数的计算需要同学们掌握通分、约分的方法。
比如:计算 1/2 +1/3 + 1/6,先通分得到 3/6 + 2/6 + 1/6 = 6/6 = 1。
3、小数计算在小数计算中,要注意小数点的位置。
例如:025×48,可以将 48拆分成 4 + 08,然后分别与 025 相乘,即 025×4 + 025×08 = 1 + 02= 12。
二、数论板块数论是研究整数性质的数学分支。
1、整除特征要熟悉常见数的整除特征,比如能被 2 整除的数的个位是偶数,能被 3 整除的数各位数字之和能被 3 整除等。
通过这些特征可以快速判断一个数能否被另一个数整除。
2、质数与合数理解质数和合数的概念,知道 2 是唯一的偶质数。
掌握质因数分解的方法,这在解决一些问题时非常有用。
3、最大公因数和最小公倍数学会用短除法求两个或多个数的最大公因数和最小公倍数。
例如,求 12 和 18 的最大公因数和最小公倍数,通过短除法可以得到最大公因数是 6,最小公倍数是 36。
三、几何板块几何图形的认识和计算是小升初奥数的重点之一。
1、平面图形(1)三角形要掌握三角形的面积公式(面积=底×高÷2),以及三角形内角和为 180 度。
小升初简便运算专题讲解.pdf
![小升初简便运算专题讲解.pdf](https://img.taocdn.com/s3/m/9c554ea76294dd88d0d26bd6.png)
小升初简便运算明确三点:1、一般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同一级运算时,从左往右。
2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。
加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c3、注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。
我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。
4、熟记规律,常能化难为易:一、变换位置(带符号搬家)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+()+( ); a+b-c=a-( )+( );a-b-c=a-( )-( )a×b×c=a×( ) ×( );a÷b÷c=a÷( ) ÷( );a×b÷c=a÷( )×( ),a÷b×c=a×( )÷( )例1:用简便算法计算12.06+5.07+2.9434÷4÷1.7+102×7.3÷5.130.34-10.2+9.66+ 125÷2×8二、结合律法1、加括号法(1)当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
(即在加减运算中添括号时,括号前保留原符号,括号前是加号,括号里不变号,括号前是减号,括号里要变号)根据:加法结合律a+b+c=a+(); a+b-c=a+( )a-b+c=a-( ); a-b-c=a-( )例2:用简便方法计算(2)当一个计算模块(同级运算)只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
小升初数学简便计算完整版
![小升初数学简便计算完整版](https://img.taocdn.com/s3/m/fcf449574531b90d6c85ec3a87c24028905f8564.png)
小升初数学简便计算完整版数学是一个需要大量计算的科学。
在小学阶段,我们学习了加减乘除等基本运算。
而在小升初的数学考试中,我们需要熟练掌握这些基本运算,并且能够应用到解决实际问题中。
在小升初的数学考试中,除了基本运算外,还会涉及到一些简单的几何知识、分数的运算、整数的运算等。
本文将介绍一些简便计算的方法,希望能够帮助到小升初考生。
一、加法运算:要熟练掌握加法运算,可以根据不同的数字特点来进行计算。
比如:1.两个数相加时,如果有进位,则进位数的个数等于个位数和十位数进位数的和;2.两个数相加时,如果个位数为9,十位数进位数为1,则个位数为0,十位数不变;3.两个数相加时,如果单位数和十位数的和大于10,则把个位数减去10,然后十位数进位。
二、减法运算:对于减法运算,同样可以根据数字的特点来进行简便计算。
比如:1.两个数相减时,如果减数中的个位数小于被减数中的个位数,则十位数减1,个位数为10加个位数,然后相减;2.两个数相减时,如果减数中的个位数大于被减数中的个位数,则减法退位,个位数为个位数加10,十位数减1,然后相减。
三、乘法运算:乘法运算是数学中最重要的一种运算方法。
在小升初的数学考试中,经常会涉及到乘法的计算。
为了熟练掌握乘法运算,可以用以下方法简便计算:1.乘法交换律:axb=bxa。
如果遇到一个两位数和一个一位数相乘,可以按照这个规律交换位置进行计算;2.乘法的分配律:ax(b+c)=(axb)+(axc)。
如果遇到一个数乘以一个多位数,可以进行分步计算,将乘法运算和加法运算结合起来。
四、除法运算:除法运算是对除法的一种简便计算方法。
在小升初的数学考试中,常常会涉及到除法的计算。
以下是一些简便计算方法:1.除法的基本法则:如果被除数的个位数小于除数个位数,则商的个位数为0;2.除法的特殊法则:如果被除数是10的倍数,则商的个位数等于除数个位数;3.除法的近似法则:如果被除数和除数个位数相等,则商的个位数为1通过运用以上简便计算方法,我们可以在小升初数学考试中提高计算速度。
小升初奥数课程简便运算精选版
![小升初奥数课程简便运算精选版](https://img.taocdn.com/s3/m/f2067af2b307e87101f696da.png)
这一种方法在一般的小升初考试中不常见,属于小学奥数方面的知识。
有余力的孩子可以学一下。
简便运算(一)专题简析:根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
例题1。
计算4.75-9.63+(8.25-1.37)原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1计算下面各题。
1.6.73-2 817+(3.27-1917) 2. 759-(3.8+159)-115的例题,是一定会得到启发的。
分析与解在进行四则运算时,应该注意运用加法、乘法的运算定律,减法、除法的运算性质,以便使某些运算简便。
本题就是运用乘法分配律及减法性质使运算简便的。
例2 计算9999×2222+3333×3334分析与解利用乘法的结合律和分配律可以使运算简便。
9999×2222+3333×3334=3333×(3×2222)+3333×3334=3333×6666+3333×3334=3333×(6666+3334)=3333×10000=33330000分析与解将分子部分变形,再利用除法性质可以使运算简便。
分析与解在计算时,利用除法性质可以使运算简便。
分析与解这道分数乘、除法计算题中,各分数的分子、分母的数都很大,为了便于计算时进行约分,应该先将各分数的分子、分母分别分解质因数,这样计算比较简便。
分析与解通过观察发现,原算式是求七个分数相加的和,而这七个分由此得出原算式分析与解观察题中给出的数据特点,应该将小括号去掉,然后适当分组,这样可使运算简便。
分析与解观察这些分数的分母,都是连续自然数的和,我们可以先求出分母来,再进行拆项,简算。
分析与解我们知道例12 计算1×2+2×3+3×4+……+10×11分析与解将这10个等式左、右两边分别相加,可以得到例13 计算1×3+2×4+3×5+4×6+……+50×52分析与解我们知道1×3=1×3-1+1=1×(3-1)+1=1×2+12×4=2×4-2+2=2×(4-1)+2==2×3+23×5=3×5-3+3=3×(5-1)+3=3×4+34×6=4×6-4+4=4×(6-1)+4=4×5+4……50×52=50×52-50+50=50×(52-1)+50=50×51+50将上面各式左、右两边分别相加,可以得到1×3+2×4+3×5+4×6+……+50×52=1×2+1+2×3+2+3×4+3+4×5+4+……+50×51+50=1×2+2×3+3×4+4×5+……+50×51+1+2+3+4+……+50=44200+1275=45475例14 计算(1+0.23+0.34)×(0.23+0.34+0.56)-(1+0.23+0.34+0.56)×(0.23+0.34)分析与解根据题中给出的数据,设1+0.23+0.34=a,0.23+0.34=b,那么a-b=1+0.23+0.34-0.23-0.34=1。
小升初简便运算专题讲解(汇编)
![小升初简便运算专题讲解(汇编)](https://img.taocdn.com/s3/m/dea8b61e58fb770bf68a5525.png)
小升初简便运算明确三点:1、一般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同一级运算时,从左往右。
2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c3、注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。
我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。
4、熟记规律,常能化难为易:一、变换位置(带符号搬家)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+( )+( ); a+b-c=a-( )+( );a-b-c=a-( )-( )a×b×c=a×( ) ×( );a÷b÷c=a÷( ) ÷( );a×b÷c=a÷( )×( ),a÷b×c=a×( )÷( )例1:用简便算法计算12.06+5.07+2.94 34÷4÷1.7+102×7.3÷5.130.34-10.2+9.66 + 125÷2×8二、结合律法1、加括号法(1)当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
(即在加减运算中添括号时,括号前保留原符号,括号前是加号,括号里不变号,括号前是减号,括号里要变号)根据:加法结合律a+b+c=a+( ); a+b-c=a+( ) a-b+c=a-( ); a-b-c=a-( )例2:用简便方法计算(2)当一个计算模块(同级运算)只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
2020-2021【小升初】简便运算讲解(奥数专题)
![2020-2021【小升初】简便运算讲解(奥数专题)](https://img.taocdn.com/s3/m/61ee13d09fc3d5bbfd0a79563c1ec5da51e2d653.png)
2020-2021【⼩升初】简便运算讲解(奥数专题)奥数之计算综合⽬录:计算专题1⼩数分数运算律的运⽤:计算专题2⼤数认识及运⽤计算专题3分数专题计算专题4列项求和计算专题5计算综合计算专题6超⼤数的巧算计算专题7利⽤积不变、拆数和乘法分配率巧解计算题:计算专题8牢记设字母代⼊法计算专题9利⽤a ÷b=ba巧解计算题:计算专题10利⽤裂项法巧解计算题计算专题11(递推法或补数法) 计算专题12.斜着约分更简单计算专题13定义新运算计算专题14解⽅程计算专题15等差数列计算专题16尾数与完全平⽅数计算专题17加法原理、乘法原理计算专题18分数的估算求值计算专题19简单数论奥数专题20周期问题计算专题1⼩数分数运算律的运⽤:【例题精选】例题⼀: 4.75+9.63+(8.25-1.37)例题⼆:11 333387797906666124+例题三:32232537.96555+例题四:36?1.09+1.2?67.3例题五: 81.5?15.8+81.5?51.8+67.6?18.5 【练习】1、 6.73-892(3.271)1717+- 2、71713(43)0.7513413-+-3. 975?0.25+4- 4、 999999×222222+333333×3333345、 45?2.08+1.5?37.66、1391371137 138138?+?7、72?2.09-1.8?73.6 8、 53.5?35.3+53.5?43.2+78.5?46.5计算专题2⼤数认识及运⽤【例题精讲】例题⼀:1234+2341+3412+4123 例题⼆:4223.411.157.6 6.5428 5++例题三:199319941199319921994-+?例题四:(229779+)÷(5579+)例题五:有⼀串数1, 4, 9, 16,25……它们是按照⼀定规律排列的,那么其中第2010个数与2011个数相差多少?例六: 2010×201120112011-2011×201020102010【综合练习】1、 23456+34562+45623+56234+623452、198819891987 198819891+?-3、99999?77776+33333?666666、(8361971++)÷(3541179++)7、123456789×987654321-123456788×987654322计算专题3分数专题【例题精讲】例题⼀:443745271526例题⼆:11731581164179例题三:13274155+例题四:5152566139131813++例题五:20÷2010 20102010 2011÷【综合练习】1、 73?74 752、2008201020093、1157764、131441513445+ 5、13392744+ 6、1451 179179+7、238 23823831581516152++计算专题4列项求和【例题精讲】例题⼀:1111.......12233499100++++例题⼆:1111.......2446684850++++例题三:179111315131220304056-+-+-例题四:1111111248163264128++++++例题五:(1111234+++)?(11112345+++)-(++++)?(111234++)【综合练习】1、1111........1011111212134950++++2、1111112612203042+++++3、 1111142870130208++++4、 191113151420304256-+-+5、 201020102010201020101223344556++++6、22222392781243++++7、 1111111111111111() ()()()89101191011128910111291011+++?+++-++++?++计算专题5计算综合【例题精讲】例题⼀: 11111......1212312341234 (4950)+++++++++++++++例题⼆: 111111111?111111111 例题三: 12324671421135261072135++++111...1111222...2222333...3333=÷个个个例题五:从2000到6999这5000个数中数字只和能被5整除的数⼀共有多少个?例六:100+99—98—97+96+95—94—93……+4+3—2—1例七:??+????? ?????? ??+???? ?????? ??+991-1991131-131121-1211【综合练习】1、1111111111+++++++++361015212836455055 2、76666666666666201062011 个个3、1612886443224201612108654??+??++??+?? 4、 2201242012222222444444个个 62012666666个??÷5、(1+3+5+7+...+1999)-(2+4+6+8+ (1998)6、????1001-151-141-131-121-17、(13 +23 )+(14 +24 +34 )+(15 +25 +35 +45 )+…+(1100 +2100 +3100 +4100 +…+99100 )计算专题6超⼤数的巧算熟记规律,常能化难为易。
小升初第一讲《简便运算》
![小升初第一讲《简便运算》](https://img.taocdn.com/s3/m/8465046c168884868762d697.png)
3、运用积(商)不变的性质变形
典例剖析: 999×222+333×334 32÷125
4、转化运算:根据运算的定义和性质,用一 种运算代替另一种运算。
典例剖析: 1000÷0.4÷1.25÷8÷2.5
Hale Waihona Puke 1.24×0.25+2.76÷4
简便运算的计算策略:
“一看、二想、三算、四查”
即先看一看能不能运用简便方法、想一想怎么简算,再动笔去做, 最后检查有没有抄错数、运算符号对不对、简算方法对不对。
5.乘法分配律:两个数的和与一个数相乘,可以先把它们与这个 数分别相乘,再相加,这叫做乘法分配律。
(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c 乘法分配律的逆运用:a×c+a×b=(a+b)×c或a×c-b×c=(a-b)×c
运 算 性 质
【积的变化规律】在乘法里,一个因数不变,另一个因 数扩大(或缩小)若干倍,积也扩大(或缩小)若干倍。 【商不变性质】在除法里,被除数和除数同时扩大(或 缩小)相同的倍数,商不变。
【减法的性质】一个数连续减去两个数等于减于这两个 数的和。
【除法的性质】一个数依次除以两个数等于除以这两个 数的积。
(三)混合运算的添去括号的规律
1、带着符号搬家: a-b+c=a+c-b
a×b÷c=a÷c×b
2、括号前面是-、÷,去掉括号要变号:
a-(b+c)=a-b-c a-(b-c)=a-b+c a÷(b÷c)=a÷b×c a÷(b×c)=a÷b÷c
以学生已有的数学概念为基础,运用学生已有的数学知识,灵活地处理新的问题,学生通过数
有助于教学的进行。
小升初奥数第次课分数乘法简便运算
![小升初奥数第次课分数乘法简便运算](https://img.taocdn.com/s3/m/9497e9b79b89680203d8255b.png)
+
1 3
1 4
+...+
1 99
1 100
......
= 1 1
100
99
= 100 2020/6/5
1 1 1 ... 1 45 56 67 3 940
111111 2 6 12203042
11 1 1 1 6 42 56 72
2020/6/5
Hale Waihona Puke 11 1 ... 1 35 57 79 9 799
232
46
2020/6/5
第八种:裂项法和拆项法 1 1 1 ... 1 12 23 34 9 9100
思路: 11 1 1
11 22 2
11 1 1 2233 2 3
11 1 1 33 44 3 4
11 1 1 9999110000 99 100
裂项法
=
1
1 2
+
1 2
1 3
29 29 30
28 1 30
第六种:带分数化加式
25 5 4 8
(25 5)4 8
25454 8
100 5 2
102 1 2
2020/6/5
333 1 3 3
14 1 1 25 13
2020/6/5
第七种:添加因数“1”
111 5 59 1111 5 59
1 1 1 5 9
11 1 ... 1 14 47 710 9 7100
2020/6/5
2020/6/5
2020/6/5
第五种:数字化加式或减式
87 3 86
(861) 3 86
86 3 1 3 86 86
3 3 86
(完整版)小升初简便运算奥数专题讲解
![(完整版)小升初简便运算奥数专题讲解](https://img.taocdn.com/s3/m/b1fe2e0e0622192e453610661ed9ad51f11d5443.png)
(完整版)小升初简便运算奥数专题讲解戴氏教育新津总校新津县太康东路奥数之简便运算目录:计算专题1 小数分数运算律的运用:计算专题2 大数认识及运用计算专题3 分数专题计算专题4 列项求和计算专题5 计算综合计算专题6 超大数的巧算计算专题7 利用积不变、拆数和乘法分配率巧解计算题:计算专题8 牢记设字母代入法计算专题9 利用a ÷b=ba巧解计算题:计算专题10 利用裂项法巧解计算题计算专题11 (递推法或补数法) 计算专题12 斜着约分更简单计算专题13 定义新运算计算专题14 解方程计算专题15 等差数列计算专题16 尾数与完全平方数计算专题17 加法原理、乘法原理计算专题18 分数的估算求值计算专题19 简单数论奥数专题20 周期问题在小学计算题中有好多题型方法新颖独特,在升重点中学考试和进入中学分班考试中,多有出现,有的学生因为没见过这种题型常常得分很少或得零分,其实这种题型只要掌握一定的解题方法和规律一点都不难。
下面老师跟你支支招:计算专题1小数分数运算律的运用:【例题精选】例题一: 4.75+9.63+(8.25-1.37)例题二:11 333387797906666124+?例题三:32232537.96555+?例题四:36?1.09+1.2?67.3例题五: 81.5?15.8+81.5?51.8+67.6?18.5 【练习】1、 6.73-892(3.271)1717+- 2、71713(43)0.7513413-+-3. 975?0.25+39769.754- 4、999999×222222+333333×3333345、 45?2.08+1.5?37.66、1391371137 138138?+?7、72?2.09-1.8?73.6 8、 53.5?35.3+53.5?43.2+78.5?46.5计算专题2大数认识及运用【例题精讲】例题一:1234+2341+3412+4123 例题二:4223.411.157.6 6.5428 5+?+?例题三:199319941199319921994-+?例题四:(229779+)÷(5579+)例题五:有一串数1, 4, 9, 16,25……它们是按照一定规律排列的,那么其中第2010个数与2011个数相差多少?例六:2010×201120112011-2011×201020102010【综合练习】1、 23456+34562+45623+56234+623452、198819891987 198819891+?-3、99999?77776+33333?666664、30122-301125、999?274+62746、(83619711++)÷(3541179++)7、123456789×987654321-123456788×987654322计算专题3分数专题【例题精讲】例题一:44374527?1526例题二:11731581164179例题三:13274155+?例题四:5152566139131813 +?+?例题五:11664120÷2010 20102010 2011÷【综合练习】1、 73?74 752、2008201020093、1157764、131441513445+? 5、13392744+? 6、1451179179+?7、238238238239÷ 8、73171131581516152+?+?计算专题4列项求和【例题精讲】例题一:1111.......12233499100++++例题二:1111.......2446684850++++例题三:179111315131220304056-+-+-例题四:1111111 248163264128++++++例题五:(1111234+++)?(11112345+++)-(111112345++++)?(111234++)【综合练习】1、1111 ........ 1011111212134950 ++++2、111111 2612203042+++++3、1111142870130208++++ 4、191113151420304256-+-+5、201020102010201020101223344556++++6、22222392781243++++7、1111111111111111 () ()()() 89101191011128910111291011 +++?+++-++++?++计算专题5计算综合【例题精讲】例题一: 11111......1212312341234 (4950)+++++++++++++++例题二: 111111111?111111111 例题三: 12324671421135261072135+??++??+??例题四:201012010220103111...1111222...2222333...3333=÷142431424314243个个个例题五:从2000到6999这5000个数中数字只和能被5整除的数一共有多少个?例六:100+99—98—97+96+95—94—93……+4+3—2—1例七:??+????? ?????? ??+???? ?????? ??+991-1991131-131121-1211 【综合练习】1、1111111111+++++++++361015212836455055 2、76666666666666201062011434214434421个个3、1612886443224201612108654??+??++??+?? 4、443442144344212201242012222222444444个个443442162012666666个??÷5、(1+3+5+7+...+1999)-(2+4+6+8+ (1998)6、??1001-151-141-131-121-17、(13 +23 )+(14 +24 +34 )+(15 +25 +35 +45 )+…+(1100 +2100 +3100 +4100 +…+99100 )计算专题6超大数的巧算熟记规律,常能化难为易。
小升初简便运算专题讲解
![小升初简便运算专题讲解](https://img.taocdn.com/s3/m/efb59781690203d8ce2f0066f5335a8102d2660b.png)
6月 12日:小升初简便运算明确三点:1、一般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同一级运算时,从左往右。
2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。
加法交换律: a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:a× b=b× a乘法结合律:( a× b)× c=a× (b×c)乘法分配律:(a+b)× c=a× c+b× c3、注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。
我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。
4、熟记规律,常能化难为易:一、变换位置(带符号搬家)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+( )+( ); a+b-c=a-( )+( );a-b-c=a-( )-( )a×b × c=a× ( )× ();a÷b÷c=a÷ ()÷();a× b÷ c=a÷ ( )×(),a÷b×c=a×()÷ ()例 1:用简便算法计算1、 12.06+5.07 +2.942、3、4、 30.34- 10.2+9.66 + 125÷ 2× 85、 34 ÷ 4÷ 1.7+102 × 7.3 ÷ 5.16、7× 3÷ 7× 37、8、二、结合律法1、加括号法(1)当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
小升初简便运算专题讲解
![小升初简便运算专题讲解](https://img.taocdn.com/s3/m/93a64e8d71fe910ef12df8db.png)
6月12日:小升初简便运算明确三点:1、一般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同一级运算时,从左往右。
2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c3、注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。
我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。
4、熟记规律,常能化难为易:一、变换位置(带符号搬家)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+( )+( ); a+b-c=a-( )+( );a-b-c=a-( )-( )a×b×c=a×( ) ×( );a÷b÷c=a÷( ) ÷( );a×b÷c=a÷( )×( ),a÷b×c=a×( )÷( )例1:用简便算法计算1、12.06+5.07+2.942、3、4、30.34-10.2+9.66 + 125÷2×85、 34÷4÷1.7+102×7.3÷5.16、7×3÷7×37、8、二、结合律法1、加括号法(1)当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
小升初奥数课程简便运算
![小升初奥数课程简便运算](https://img.taocdn.com/s3/m/50046ea402d276a200292e59.png)
小学数学简便运算方法归类一、带符号搬家法(根据:加法交换律和乘法交换率)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带 号搬家”。
(a+b+c=a+c+b,a+b-c=a-c+b,a-b+c=a+c-b,a-b-c=a-c-b;a ×b ×c=a ×c ×b,a ÷b ÷c=a ÷c ÷b,a ×b ÷c=a ÷c ×b,a ÷b ×c=a ×c ÷b)二、结合律法(一)加括号法1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
)a+b+c=a+(b+c), a+b-c=a +(b-c), a-b+c=a -(b-c), a-b-c= a-( b +c);2.当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。
(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
) a ×b ×c=a ×(b ×c), a ×b ÷c=a ×(b ÷c), a ÷b ÷c=a ÷(b ×c), a ÷b ×c=a ÷(b ÷c)(二)去括号法1.当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。
小升初奥数课程简便运算【精选】整理版
![小升初奥数课程简便运算【精选】整理版](https://img.taocdn.com/s3/m/306211013b3567ec102d8a83.png)
小升初奥数课程简便运算【精选】整理版1、带符号搬家法(根据:加法交换律和乘法交换率)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
(a+b+c=a+c+b,a+b-c=a-c+b,a-b+c=a+c-b,a-b-c=a-c-b;abc=acb,abc=acb,abc=acb,abc=acb)二、结合律法(一)加括号法1、当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
) a+b+c=a+(b+c), a+b-c=a +(b-c), a-b+c=a-(b-c), a-b-c= a-( b +c);2、当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。
(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
) abc=a(bc), abc=a(bc), abc=a(bc), abc=a(bc)(二)去括号法1、当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。
但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。
(现在没有括号了,可以带符号搬家了哈)(注:去掉括号是添加括号的逆运算)a+(b+c)= a+b+c a+(b-c)= a+b-c a- (b-c)= a-b+c a-( b +c)= a-b-c2、当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。
2019年小升初奥数简便运算专题讲解
![2019年小升初奥数简便运算专题讲解](https://img.taocdn.com/s3/m/640c0264eff9aef8941e0698.png)
2019年小升初奥数简便运算专题讲解目录:计算专题1小数分数运算律的运用:计算专题2大数认识及运用计算专题3分数专题计算专题4列项求和计算专题5计算综合计算专题6超大数的巧算计算专题7利用积不变、拆数和乘法分配率巧解计算题:计算专题8牢记设字母代入法计算专题9利用a÷b=巧解计算题:计算专题10利用裂项法巧解计算题计算专题11(递推法或补数法)计算专题12.斜着约分更简单计算专题13定义新运算计算专题14解方程计算专题15等差数列计算专题16尾数与完全平方数计算专题17加法原理、乘法原理计算专题18分数的估算求值计算专题19简单数论奥数专题20周期问题在小学计算题中有好多题型方法新颖独特,在升重点中学考试和进入中学分班考试中,多有出现,有的学生因为没见过这种题型常常得分很少或得零分,其实这种题型只要掌握一定的解题方法和规律一点都不难。
下面老师跟你支支招:计算专题4列项求和【例题精讲】例题一:例题二:例题三:例题四:例题五:()()-()()【综合练习】1、1111 (1011111212134950)++++⨯⨯⨯⨯2、3、 4、5、 6、7、1111111111111111 () ()()() 89101191011128910111291011 +++⨯+++-++++⨯++计算专题5计算综合【例题精讲】例题一:1111 1......1212312341234 (4950)+++++++++++++++例题二: 111111111111111111 例题三:例题四:例题五:从xx到6999这5000个数中数字只和能被5整除的数一共有多少个?例六:100+99—98—97+96+95—94—93……+4+3—2—1例七:⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+⋯⋯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+991-1991131-131121-1211【综合练习】1、1111111111+++++++++361015212836455055 2、3、 4、5、(1+3+5+7+…+xx )-(2+4+6+8+…+xx )6、⎪⎭⎫ ⎝⎛⨯⋯⋯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛1001-151-141-131-121-17、(13 +23 )+(14 +24 +34 )+(15 +25 +35 +45 )+…+(1100 +2100 +3100 +4100 +…+99100 )计算专题6超大数的巧算 熟记规律,常能化难为易。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
戴氏教育新津总校新津县太康东路奥数之简便运算目录:计算专题1 小数分数运算律的运用: 计算专题2 大数认识及运用 计算专题3 分数专题 计算专题4 列项求和 计算专题5 计算综合 计算专题6 超大数的巧算计算专题7 利用积不变、拆数和乘法分配率巧解计算题: 计算专题8 牢记设字母代入法 计算专题9 利用a ÷b=ba巧解计算题:计算专题10 利用裂项法巧解计算题 计算专题11 (递推法或补数法) 计算专题12 斜着约分更简单 计算专题13 定义新运算 计算专题14 解方程 计算专题15 等差数列计算专题16 尾数与完全平方数 计算专题17 加法原理、乘法原理 计算专题18 分数的估算求值 计算专题19 简单数论 奥数专题20 周期问题在小学计算题中有好多题型方法新颖独特,在升重点中学考试和进入中学分班考试中,多有出现,有的学生因为没见过这种题型常常得分很少或得零分,其实这种题型只要掌握一定的解题方法和规律一点都不难。
下面老师跟你支支招:计算专题1小数分数运算律的运用:【例题精选】例题一: 4.75+9.63+(8.25-1.37)例题二:11 333387797906666124⨯+⨯例题三:32232537.96555⨯+⨯例题四:36⨯1.09+1.2⨯67.3例题五: 81.5⨯15.8+81.5⨯51.8+67.6⨯18.5 【练习】1、 6.73-892(3.271)1717+- 2、71713(43)0.7513413-+-3. 975⨯0.25+39769.754⨯- 4、 999999×222222+333333×3333345、 45⨯2.08+1.5⨯37.66、1391371137 138138⨯+⨯7、72⨯2.09-1.8⨯73.6 8、 53.5⨯35.3+53.5⨯43.2+78.5⨯46.5计算专题2大数认识及运用【例题精讲】例题一:1234+2341+3412+4123 例题二:4223.411.157.6 6.5428 5⨯+⨯+⨯例题三:199319941199319921994⨯-+⨯例题四:(229779+)÷(5579+)例题五:有一串数1, 4, 9, 16,25……它们是按照一定规律排列的,那么其中第2010个数与2011个数相差多少?例六: 2010×201120112011-2011×201020102010【综合练习】1、 23456+34562+45623+56234+623452、198819891987 198819891+⨯⨯-3、99999⨯77776+33333⨯666664、30122-301125、999⨯274+62746、(83619711++)÷(3541179++)7、123456789×987654321-123456788×987654322计算专题3分数专题【例题精讲】例题一:443745⨯ 27⨯1526例题二:1173158⨯1164179⨯例题三:13274155⨯+⨯例题四:5152566139131813⨯+⨯+⨯例题五:11664120÷2010201020102011÷【综合练习】1、 73⨯74752、200820102009⨯ 3、115776⨯4、131441513445⨯+⨯ 5、13392744⨯+⨯ 6、1451179179⨯+⨯7、238238238239÷ 8、73171131581516152⨯+⨯+⨯计算专题4列项求和【例题精讲】例题一:1111.......12233499100++++⨯⨯⨯⨯例题二:1111.......2446684850++++⨯⨯⨯⨯例题三:179111315131220304056-+-+-例题四:1111111248163264128++++++例题五:(1111234+++)⨯(11112345+++)-(111112345++++)⨯(111234++)【综合练习】1、1111........1011111212134950++++⨯⨯⨯⨯2、1111112612203042+++++3、1111142870130208++++ 4、191113151420304256-+-+5、201020102010201020101223344556++++⨯⨯⨯⨯⨯6、22222392781243++++7、1111111111111111 () ()()() 89101191011128910111291011 +++⨯+++-++++⨯++计算专题5计算综合【例题精讲】 例题一: 11111......1212312341234 (4950)+++++++++++++++例题二: 111111111⨯111111111 例题三: 12324671421135261072135⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯例题四:201012010220103111...1111222...2222333...3333=÷个个个例题五: 从2000到6999这5000个数中数字只和能被5整除的数一共有多少个?例六:100+99—98—97+96+95—94—93……+4+3—2—1例七:⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+⋯⋯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+991-1991131-131121-1211【综合练习】1、1111111111+++++++++361015212836455055 2、76666666666666201062011 个个⋯⋯⨯⋯⋯3、1612886443224201612108654⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯ 4、 2201242012222222444444个个⋯⋯⋯⋯ 62012666666个⋯⋯÷5、(1+3+5+7+…+1999)-(2+4+6+8+…+1998)6、⎪⎭⎫ ⎝⎛⨯⋯⋯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛1001-151-141-131-121-17、(13 +23 )+(14 +24 +34 )+(15 +25 +35 +45 )+…+(1100 +2100 +3100 +4100 +…+99100 )计算专题6超大数的巧算 熟记规律,常能化难为易。
① 25×4=100, ②125×8=1000,③41=0.25=25%,④43=0.75=75%,⑤81=0.125=12.5%,⑥83=0.375=37.5%, ⑦85=0.625=62.5%,⑧87=0.875=87.5% 利用①12321=111×111,1234321=1111×1111,123454321=11111×11111②123123=123×1001,12341234=1234×10001 ③12345679×9=111111111等规律巧解题:9999966666123454321⨯×108 11234565432999999888888⨯÷36 525525252252252525525525252252⨯⨯20102010×1999-2010×19991999 12345679×63= 72×12345679=计算专题7利用积不变、拆数和乘法分配率巧解计算题:28.67×67+3.2×286.7+573.4×0.05 314×0.043+3.14×7.2-31.4×0.1541.2×8.1+11×9.25+53.7×1.9 19931993×1993-19931992×1992-199319921.993×1993000+19.92×199200-199.3×19920-1992×1991333×332332333-332×333333332计算专题8牢记设字母代入法(1+0.21+0.32)×(0.21+0.32+0.43)-(1+0.21+0.32+0.43)×(0.21+0.32)(1+0.23+0.34)×(0.23+0.34+0.65)-(1+0.23+0.34+0.65)×(0.23+0.34)(1+21+31+41)×(21+31+41+51)-(1+21+31+41+51)×(21+31+41)(111+211+311+411)×(211+311+411+511)-(111+211+311+411+511)×(211+311+411)(135531+357579+975753)×(357579+975753+531135)-(135531+357579+975753+531135)×(357579+975753)计算专题9利用a ÷b=b a巧解计算题:①(6.4×480×33.3)÷(3.2×120×66.6) (514+415)÷(43+53)计算专题10利用裂项法巧解计算题211⨯+321⨯+431⨯+……+100991⨯ 311⨯+531⨯+751⨯+……+1191⨯ 21+61+121+201+301+421 1×2+2×3+3×4+……99×1001×2×3+2×3×4+3×4×5+……+9×10×11计算专题11(递推法或补数法) 1.111111112483162124248496+++++++2. 21+41+81+161+321+……+5121+10241.。