多项式的乘法2

合集下载

多项式的乘法

多项式的乘法

多项式的乘法一、知识结构二、重点、难点分析本节教学的重点是利用公式(x+a)(x+b)=x2+(a+b)x+ab熟练地计算.难点是理解并掌握公式.本节内容是进一步学习乘法公式及后续知识的基础.1.多项式乘法法则,是多次运用单项式与多项式相乘的法则得到的.计算时,先把看成一个单项式,是一个多项式,运用单项式与多项式相乘的法则,得到然后再次运用单项式与多项式相乘的法则,得到:2.含有一个相同字母的两个一次二项式相乘,得到的积是同一字母的二次三项式,它的二次项由两个因式中的一次项相乘得到;积的一次项是由两个因式中的常数基分别乘以两个因式中的一次项后,合并同类项得到;积的常数项等于两个因式中常数项的积.如果因式中一次项的系数都是1,那么积的二次项系数也是1,积的一次项系数等于两个因式中的常数项的和,这就是说,如果用、分别表示一个含有系数是1的相同字母的两个一次二项式中的常数项,则有3.在进行两个多项式相乘、直接写出结果时,注意不要“漏项”.检查的办法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多基同甘共苦的积.如积的项数应是,即六项:当然,如有同类项则应合并,得出最简结果.4.运用多项式乘法法则时,必须做到不重不漏,为此,相乘时,要按一定的顺序进行.例如,,可先用第一个多项式中的第一项“”分别与第二个多项式的每一项相乘,再用第一个多项式中的第二项“”分别与第二个多项式的每一项相乘,然后把所得的积相加,即.5.多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.6.注意确定积中每一项的符号,多项式中每一项都包含它前面的符号,“同号得正,异号得负”.三、教法建议教学时,应注意以下几点:(1)要防止两个多项式相乘,直接写出结果时“漏项”.检查的办法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多项式项数的积.如,积的项数应是,即四项当然,如有同类项,则应合并同类项,得出最简结果.(2)要不失时机地指出:多项式是单项式的和,每一项都包括前面的符号,在计算时一定要注意确定积中各项的符号.(3)例2的第(1)小题是乘法的平方差公式,例2的第(2)小题是两数和的完全平方公式.实际上任何乘法公式都是直接用多项式乘法计算出来的.然后,我们把这种特殊形式的乘法连同它的结果作为公式.这里只是为后面学习乘法公式作准备,不必提它们是乘法公式,分散学生的注意力.当然,在讲解这个1题时,要讲清它们在合并同类项前的项数.(4)例3是另一种形式的多项式的乘法,要讲清楚两个因式的特点,积与两个因式的关系.总之,要讲清楚这种特殊形式的两个多项式相乘的规律,使学生在计算这种类型的题目时,能够迅速地求得结果.如对于练习第1题中的等等,能够直接写出结果.一、教学目标1.理解和掌握单项式与多项式乘法法则及其推导过程.2.熟练运用法则进行单项式与多项式的乘法计算.3.通过用文字概括法则,提高学生数学表达能力.4.通过反馈练习,培养学生计算能力和综合运用知识的能力.5.渗透公式恒等变形的和谐美、简洁美.二、学法引导1.教学方法:讨论法、讲练结合法.2.学生学法:本节主要学习了多项式的乘法法则和一个特殊的二项式乘法公式,在学习时应注意分析和比较这一法则和公式的关系,事实上它们是一般与特殊的关系.当遇到多项式乘法时,首先要看它是不是的形式,若是则可以用公式直接写出结果,若不是再应用法则计算.三、重点、难点及解决办法(一)重点多项式乘法法则.(二)难点利用单项式与多项式相乘的法则推导本节法则.(三)解决办法在用面积法推导多项式与多项式乘法法则过程中,应让学生充分理解多项式乘法法则的几何意义,这样既便于学生理解记忆公式,又能让学生在解题过程中准确地使用.四、课时安排一课时.五、教具学具准备投影仪或电脑、自制胶片、长方形演示纸板.六、师生互动活动设计1.设计一组练习,以检查学生单项式乘以多项式的掌握情况.2.尝试从多角度理解多项式与多项式乘法:(1)把看成一单项式时,.(2)把看成一单项式时,.(3)利用面积法3.在理解上述过程的基础之上,引导学生归纳并指出多项式乘法的规律.4.通过举例,教师的示范,学生的尝试练习,不断巩固新学的知识.对于遇到的特殊二项式相乘可利用特殊的公式加以解决,并注意一般与特殊的关系.七、教学步骤(一)明确目标本节课将学习多项式与多项式相乘的乘法法则及其特殊形式的公式的应用.(二)整体感知多项式与多项式的相乘关键在于展开式中的四项是如何得到的,这里教师应注重引导学生细心观察、品味法则的规律性,实质就在于让一个多项式的每一项与另一个多项式的每一项遍乘既不能漏又不能重复.对特殊的多项式相乘可运用特殊的办法去处理(三)教学过程1.创设情境,复习导入(1)回忆单项式与多项式的乘法法则.(2)计算:①②③④学生活动:学生在练习本上完成,然后回答结果.【教法说明】多项式乘法是以单项式乘法和单项式与多项式相乘为基础的,通过复习引起学生回忆,为本节学习提供铺垫和思想基础.2.探索新知,讲授新课今天,我们在以前学习的基础上,学习多项式的乘法.多项式的乘法就是形如的计算.这里都表示单项式,因此表示多项式相乘,那么如何对进行计算呢?若把看成一个单项式,能否利用单项式与多项式相乘的法则计算呢?请同桌同学互相讨论,并试着进行计算.学生活动:同桌讨论,并试着计算(教师适当引导),学生回答结论.【教法说明】多项式乘法法则,是两次运用单项式与多项式相乘的法则得到的.这里的关键在于让学生理解,将看成一个单项式,然后运用单项式与多项式相乘的法则进行计算,让学生讨论并试着计算,目的是培养学生分析问题、解决问题的能力,鼓励学生积极探索知识、善于发现规律、主动参与学习.3.总结规律,揭示法则对于的计算过程可以表示为:教师引导学生用文字表述多项式乘法法则:多项式与多项式相乘,先用一个多项式的第一项乘另一个多项式的每一项,再把所得的积相加.如计算:看成公式中的;-1看成公式中的;看成公式中的;3看成公式中的.运用法则中的每一项分别去乘中的每一项,计算可得:.学生活动:在教师引导下细心观察、品味法则.【教法说明】借助算式图,指出的得出过程,实质就是用一个多项式的“每一项”乘另一个多项式的“每一项”,再把所得积相加的过程.可以达到两个目的:一是直观揭示法则,有利于学生理解;二是防止学生出现运用法则进行计算时“漏项”的错误,强调法则,加深理解,同时明确多项式是单项式的和,每一项都包括前面的符号.这个法则还可利用一个图形明显地表示出来.(1)这个长方形的面积用代数式表示为_____________.(2)Ⅰ的面积为________;Ⅱ的面积为________;Ⅲ的面积为____ ____;Ⅳ的面积为_______.结论:即学生活动:随着教师的演示,边思考,边回答问题.【教法说明】利用图形的直观性,使学生进一步理解、掌握这一法则,渗透数形结合的思想,培养学生观察、分析图形的能力.4.运用知识,尝试解题例1 计算:(1)(2)(3)解:(1)原式(2)原式(3)原式【教法说明】例1的目的是熟悉、理解法则.完成例1时,要求学生紧扣法则,按法则的文字叙发“一步步”解题,注意最后要合并同类项.让学生参与例题的解答,旨在强化学生的参与意识,使其主动思考.例2 计算:(1)(2)学生活动:在教师引导下,说出解题过程.解:(1)原式(2)原式【教法说明】例2的两个小题是后面要讲到的乘法公式,但目前仍按多项式乘法法则计算,无需说明它们是乘法公式,此题的目的在于为后面的学习做准备.5.强化训练,巩固知识(1)计算:①②③④⑤⑥(2)计算:①②③④⑤⑥。

3.3多项式的乘法(2)

3.3多项式的乘法(2)

3.3多项式的乘法(2)
班级姓名
一、新课教学
目标:1、进一步掌握多项式乘多项式的法则。

2、会用多项式、单项式的加、减、乘运算化简整式。

3、了解多项式的升幂排列和降幂排列。

法则:
多项式相乘的法则:多项式与多项式相乘,就是先用一个多项式中的每一项去乘另一个多项式的每一项,再把所得的积相加.
例题:计算
(1)、(x+y)(x2-xy) (2)、(x+1)(x2+1)
(3)、(3x4-3x2+1)(x4+x2-2)
注意:不漏不重,符号问题,合并同类项
例题:解方程100
+x
-
x
x
=
11
)
12
)(
(2-
练习:解方程0)7)(1(2)52(=+---x x x x
二.当堂检测
一、选择题
1.计算(2x -3y )(4x 2+6xy +9y 2)的正确结果是( )
A .(2x -3y )2
B .(2x +3y )2
C .8x 3-27y 3
D .8x 3+27y 3
2.(x 2-px +3)(x -q )的乘积中不含x 2项,则( )
A .p =q
B .p =±q
C .p =-q
D .无法确定
二、填空题
1.(x 3+3x 2+4x -1)(x 2-2x +3)的展开式中,x 4的系数是__________.
2.若(x 2+ax +8)(x 2-3x +b )的乘积中不含x 2和x 3项,则a =_______,b =_______. 三、计算
(1)若)5)(2(22b x x ax x +--+的积中不含3
x 和x 项,求b a +的值。

整式的乘法多项式与多项式相乘 (2)

整式的乘法多项式与多项式相乘 (2)

12.2.3 多项式与多项式相乘
重难互动探究
探究问题一 多项式与多项式相乘 例 1 [课本例 3 变式题] 计算: (1)(3x+2y)(3x-2y);(2)(2ab-1)2; (3)(2a3-3a+5)(3-a2). [解析] 多项式与多项式相乘时,先用一个多项式的每 一项“遍乘”另一个多项式的每一项,再把所得的积相加.
图 12-2-9
12.2.3 多项式与多项式相乘
[解析] 要拼一个长为(a+2b)、宽为(a+b)的大长方形, 就是看需 A ,B,C 类卡片各多少张,把(a+2b)与(a+b)相乘, 得 a2+3ab+2b2,所以需要 C 类卡片 3 张.
[归纳总结] 有关卡片的拼图问题,看似好难,但只要我 们发挥数形结合的作用,辅之整式乘法的知识即可求解.
12.2.3 多项式与多项式相乘
新知梳理
► 知识点 多项式与多项式相乘的法则 法则:多项式与多项式相乘,先用一个多项式的_每__一_项 分别乘以另一个多项式的_每_ 一项__,再把所得的_积_ 相加__. 字母表达式:(m+n )(a+b)=__ma+mb+na+nb__. 几何背景图:
图 12-2-8 大长方形的面积=四个小长方形的面积之和. 即(m +n )(a+b)=m a+m b+na+n b.
用代数式表示图形的长、宽,再利用面积(或体积)公式求 面积(或体积)是解决此类问题的关键.
12.2.3 多项式与多项式相乘
[备选例题] 有一种打印纸的长为 a cm、宽为 b cm,在 打印某文档设置页边距时,上、下均设置为 2.5 cm,左、右 均设置为 2.8 cm,那么一张这样的打印纸的实际打印面积是 多大?
客厅的面积是_a_m__平方米,餐厅的面积为__a_n_平方米, 房间一的面积是_b_m_平方米,房间二的面积是_b_n__平方米, 这四部分的总面积是(_a_m_+an+bm+b_n平) 方米.由此可以得 到一个等式,这个式是 (a+b)(m+n)=am+an+bm+bn.

多项式的基本运算知识点

多项式的基本运算知识点

多项式的基本运算知识点多项式是数学中的一个重要概念,在代数学、计算机科学等领域中具有广泛的应用。

本文将介绍多项式的基本运算知识点,包括加法、减法、乘法和除法。

一、多项式的表示形式多项式由各项的系数和指数构成,一般形式为:P(x) = a_nx^n +a_{n-1}x^{n-1} + ... + a_2x^2 + a_1x + a_0,其中 a_n、a_{n-1}、...、a_2、a_1、a_0 分别表示多项式的系数,n 表示最高次项的指数。

二、多项式的加法运算多项式的加法运算是指将两个或多个多项式相加得到一个新的多项式。

例如,对于多项式 P(x) = 3x^2 + 4x - 2 和 Q(x) = 2x^2 - 5x + 1,它们的加法运算可以表示为 P(x) + Q(x) = (3x^2 + 4x - 2) + (2x^2 - 5x + 1) = 5x^2 - x - 1。

三、多项式的减法运算多项式的减法运算是指将一个多项式减去另一个多项式得到一个新的多项式。

例如,对于多项式 P(x) = 3x^2 + 4x - 2 和 Q(x) = 2x^2 - 5x + 1,它们的减法运算可以表示为 P(x) - Q(x) = (3x^2 + 4x - 2) - (2x^2 - 5x + 1) = x^2 + 9x - 3。

四、多项式的乘法运算多项式的乘法运算是指将两个或多个多项式相乘得到一个新的多项式。

例如,对于多项式 P(x) = 3x^2 + 4x - 2 和 Q(x) = 2x + 1,它们的乘法运算可以表示为 P(x) * Q(x) = (3x^2 + 4x - 2) * (2x + 1) = 6x^3 + 11x^2 - 4x - 2。

五、多项式的除法运算多项式的除法运算是指将一个多项式除以另一个多项式得到一个新的多项式或一个除法式。

例如,对于多项式 P(x) = 6x^3 + 11x^2 - 4x - 2 和 Q(x) = 2x + 1,它们的除法运算可以表示为 P(x) / Q(x) = (6x^3 +11x^2 - 4x - 2) / (2x + 1)。

冀教版七年级下册数学第8章 整式的乘法 多项式乘多项式(2)

冀教版七年级下册数学第8章 整式的乘法 多项式乘多项式(2)
∴a=-2,b=3.
(2)该题的正确答案是多少?
解:(3x+a)(4x+b) =(3x-2)(4x+3) =12x2+9x-8x-6 =12x2+x-6.
15.用比较法解题,可以化难为易,同学们试一下: (1)如果(x+3)(x+a)=x2-2x-15,则a=________.
-5
【点拨】由(x+3)(x+a)=x2+(a+3)x+3a=x2-2x-15, 可得a+3=-2, 解得a=-5.
D.3,4
7.【2019·河北石家庄平山期末】根据图①的面积可以说明多项式的乘法运算
(2a+b)(a+b)=2a2+3ab+b2,那么根据图②的面积可以说明多项式的乘
法运算是( )
A.(a+3b)(a+b)=a2+4ab+3b2
A
B.(a+3b)(a+b)=a2+3b2
C.(b+3a)(b+a)=b2+4ab+3a2
D.(a+3b)(a-b)=a2+2ab-3b2
8.【易错:多项式与多项式相乘漏乘或误判符号导致出错】计算: (1)【2019·河北衡水武邑期中】(3x-1)(2x2+3x-4);
(2)5m2-(m-2)(3m+1)-2(m+1)(m-5). 解:原式=6x3+9x2-12x-2x2-3x+4=6x3+7x2-15x+4.
16.以下关于x的各个多项式中,a,b,c,m,n均为常数. (1)根据计算结果填写下表:
5 -1 an+bm
(2)已知x+3x+3x2+mx+n中既不含二次项,也不含一次 项,求 m+n 的值. 解:x+3x+3x2+mx+n
=x2+6x+9x2+mx+n =x4+mx3+nx2+6x3+6mx2+6nx+9x2+9mx+9n =x4+m+6x3+n+6m+9x2+6n+9mx+9n.

一元多项式的乘法与加法运算

一元多项式的乘法与加法运算

一元多项式的乘法与加法运算
一元多项式的乘法与加法运算
一、乘法运算
1、定义
一元多项式的乘法运算是指在一元多项文的基础上的乘法运算,其中
乘数和被乘数均为一元多项式。

2、运算规则
(1)同序项相乘:两个一元多项式的相同次方项,按照乘法规则运算,系数相乘,指数相加。

(2)求和:将相乘之后的项按次方合起来,系数相加,指数相同。

二、加法运算
1、定义
一元多项式的加法运算是指在一元多项式的基础上的加法运算,其中
加数和被加数均为一元多项式。

2、运算规则
(1)同序项相加:两个一元多项式的相同次方项,按照加法规则运算,系数相加,指数相同。

(2)求和:将相加之后的项按次方合起来,系数相加,指数相同。

以上就是一元多项式的乘法与加法运算,总之,一元多项式的乘法与加法运算主要有以下几点:
(1)乘法运算:同序项相乘,求和,系数相乘,指数相加。

(2)加法运算:同序项相加,求和,系数相加,指数相同。

多项式乘多项式【可修改文字】

多项式乘多项式【可修改文字】
注意:
1、必须做到不重复,不遗漏. 2、注意确定积中每一项的符号. 3、结果应化为最简式。
确定下列各式中m的值:
(1) (x+4)(x+9) = x2 + m x + 36 (1) m =13 (2) (x-2)(x-18) = x + m x + 36 (2) m = - 20 (3) (x+3)(x+p) = x + m x + 36 (3) p =12, m= 15 (4) (x-6) (x-p) = x + m x + 36 (4) p= -6, m= -12 (5) (x+p)(x+q) = x + m x + 36
2、多项式与多项式相乘时,多项式的每 一项都应该带上它前面的正负号。多项式 是单项式的和,每一项都包括前面的符号, 在计算时一定要注意确定各项的符号。
3、(x+p)(x+q) = x2 + (p+q) x + p q
4、在数学知识的学习中,“转化”思想 是的重要思想方法。在今天的学习中, 第一步是“转化”为多项式与单项式 相乘,第二步是“转化”为单项式乘 法。即将新的知识、方法化为已知的 数学知识、方法。从而使学习能够进 行。
(a+b)( m+n)=am+an+bm+bn
运 用 一:
例例:题计算解:析(1)(x+2)(x−3) (2)(3x -1)(2x+1)
解: (1) (x+2)(x−3)
注意
= x﹒x 3x + 2x - 2×3 = x2 - x - 6
两项相乘时,
先定符号。 所得积的符号由这

人教版八年级上册数学课件第14章第6课时 整式的乘法——多项式乘多项式

人教版八年级上册数学课件第14章第6课时 整式的乘法——多项式乘多项式
返回
数学
知识要点 知识点一:多项式乘多项式法则 (1)多项式与多项式相乘,先用一个多项式的 每一项 乘另一个多项式的 每一项 ,再把所得的积 相加 . 即:
ap aq bp bq
返回
数学
(2)几何解释:如图,大长方形的面积等于四个小长方形面积 的和.
返回
数学
对点训练
1.(1)下列多项式相乘的结果为 x2-4x-12 的是( B )
返回
数学
3.计算:(a+2)(a-3)-(a-1)(a-4). 解:原式=a2-a-6-(a2-5a+4) =a2-a-6-a2+5a-4=4a-10.
返回
数学
精典范例
4.【例 1】若(x+5)(2x-n)=2x2+mx-15,则( D )
A.m=-7,n=3
B.m=7,n=-3
C.m=-7,n=-3
返回
谢谢观看
返回
数学
2.计算: (1)(2a+b)(a-3b); 2a2-5ab-3b2 (2)(3a-b)(a+3b). 3a2+8ab-3b2
返回
数学
知识点三:混合运算 当同底数幂的乘法、幂的乘方、积的乘方、单项式乘单项式、 单项式乘多项式、多项式乘多项式等知识进行混合运算时, 要注意运算顺序,有同类项的要合并同类项,最后结果必须 是最简结果.
返回
数学
9.计算: (1Βιβλιοθήκη (2x+y)(3x-y); 解:原式=6x2-2xy+3xy-y2=6x2+xy-y2. (2)4x(x-y)+(2x-y)(y-2x). 解:原式=4x2-4xy-4x2+4xy-y2=-y2.
返回
数学
6.【例 3】计算:2(a-4)(a+3)-(2a+1)(a-3). 3a-21 小结:注意后面两个多项式相乘后一定要加上括号.

《多项式的乘法》教案

《多项式的乘法》教案

《多项式的乘法》教案第一课时教学目标知识与技能1.知道利用乘法分配律可以将单项式乘多项式转化为单项式乘单项式.2.会进行单项式乘多项式的计算.过程与方法1.通过面积的计算领会用长方形面积图或乘法的分配律说明单项式与多项式相乘的法则.2.经历探究单项式乘多项式法则的过程,发展有条理的思维和语言表达能力. 情感、态度与价值观1.理解整式的乘法运算的原理,体会乘法分配律的作用和转化思想.2.注意学生学习积极性,主动性的调动,增强学生学习数学重点难点重点单项式与多项式相乘的法则.难点单项式的系数的符号是负号时的情况.教学设计一、回顾交流,课堂演练1.口述单项式乘以单项式法则.2.口述乘法分配律.3.课堂演练,计算:(1)(-5x )·(3x )2(2)(-3x )·(-x )(3)31xy ·32xy 2 (4)-5m 2·(-31mn )(5)-51x 2y 4-2x 2y ·(-21x 2y 2) 二、创设情境,引入新课 小明作了一幅水彩画,所用纸的大小如图1,她在纸的左右两边各留了61a 米的空白,请同学们列出这幅画的画面面积是多少?【学生活动】小组合作,讨论.【情境问题】夏天将要来临,有3家超市以相同价格n (单位:元/台)销售A 牌空调,他们在一年内的销售量(单位:台)分别是x ,y ,z ,请你采用不同的方法计算他们在这一年内销售这种空调的总收入.【学生活动】分四人小组,与同伴交流,寻求不同的表示方法.方法一:首先计算出这三家超市销售A 牌空调的总量(单位:台),再计算出总的收入(单位:元).即:n (x +y +z ).方法二:采用分别计算出三家超市销售A 牌空调的收入,然后再计算出他们的总收入(单位:元).总结规律:单项式与多项式相乘,就是用单项式去乘多项式中的每一项,再把所得的积相加.例题解析:例10 计算:2112412()()();x y xy x ∙-+ 2212442()()().b b ab -∙- 例11 求 22212442()-()x x y y x x y ∙-∙-的值,其中x =2,y =-1. 三、范例学习,应用所学1、计算:(-2a 2)·(3ab 2-5ab 3).解:原式=(-2a 2)(3ab 2)-(-2a 2)·(5ab 3)=-6a 3b 2+10a 3b 32、化简:-3x 2·(13xy -y 2)-10x ·(x 2y -xy 2) 解:原式=-x 3y +3x 2y 2-10x 3y +10x 2y 2=-11x 3y +13x 2y 23、解方程:8x (5-x )=19-2x (4x -3)40x -8x 2=19-8x 2+6x40x-6x=19 34x=19x=19 34四、随堂练习,巩固深化计算:(1)5x2·(2x2-3x3+8)(2)-16x·(x2-3y)(3)-2a2·(12ab3+b3)(4)(23x2y3-16xy)·12xy2五、课堂总结,发展潜能1.单项式与多项式相乘法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.2.单项式与多项式相乘,应注意(1)“不漏乘”;(2)注意“符号”.第二课时教学目标知识与技能1.经历探索多项式乘法的法则的过程,理解多项式乘法的法则,并会进行多项式乘法的运算.2.进一步体会乘法分配律的作用和转化的思想,发展有条理的思考和语言表达能力.过程与方法在解决问题的过程中,注重与他人合作,培养学生的语言表达能力.情感、态度与价值观培养学生语言表达能力,以及与他人沟通、交往的能力.重点难点重点掌握多项式的乘法法则并加以运用.难点探索多项式乘法的法则,注意多项式乘法的运算中“漏项”和“符号”的问题.教学设计一、创设情境,操作感知【动手操作】首先,在硬纸板上用直尺画出一个矩形,并且分成如下图所示的四部分,标上字母.拿出准备好的硬纸板,画出上图1,并标上字母.根据图中的数据,求一下这个矩形的面积.计算出它的面积为:(m+b)×(n+a).将纸板上的矩形沿你所画竖着的线段将它剪开,分成如下图两部分,如下图.剪开之后,分别求一下这两部分的面积,再求一下它们的和.求出第一块的面积为m(n+a),第二块的面积为b(n+a),它们的和为m(n+a)+b(n+a).继续沿着横的线段剪开,将图形分成四部分,如图3,然后再求这四块长方形的面积.求出S1=mn;S2=nb;S3=am;S4=ab,它们的和为S=mn+nb+am+ab.依据上面的操作,求得的图形面积,探索(m+b)(n+a)应该等于什么?(m+b)×(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab,因为我们三次计算是按照不同的方法对同一个矩形的面积进行了计算,那么,两次的计算结果应该是相同的,所以(m+b)×(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab.多项式与多项式相乘,用第一个多项式的每一项乘以另一个多项式的每一项,再把所得的结果相加.例题解析:例12 计算:(1)(2x+y)(x-3y);(2)(2x+1)(3x2-x-5);(3)(x+a)(x+b).例13 计算:1)(a+b)(a-b);(2)(a+b)2 ;(3)(a-b)2.【探究时空】一块长m米,宽n米的玻璃,长宽各裁掉a米后恰好能铺盖一张办公桌台面(玻璃与台面一样大小),问台面面积是多少?二、法则应用下面我们利用法则来做计算.计算(1)(3x+1)(x+2)(2)(x-8y)(x-y)(3)(x+y)(x2-xy+y2)解:(1)(3x+1)(x+2)(2)(x-8y)(x-y)= 3x2·x+(3x)·2+1·x+1×2 =x2-xy - 8x + 8y2= 3x2+6x+x+2 =x2-9xy+8y2= 3x2+7x+x+2(3)(x+y)(x2-xy+y2)=x3-x2y+xy2+x2y-xy2+y3=x3+y3注:不要漏掉任何一项,注意符号巩固练习1.(1)(2x+1)(x+3):(2)(m+2m)(m-3m)=2x2+7x+3 =m2-m(3)(a-1)2(4)(a+3b)(a-3b)=a2-2a+1 =a2-9b2(5)(2x2 -1)(x-4)(6)(x2+3)(2x-5)= 2x3+8x2+x-4 =2x3-5x2-6x-15三、课堂总结,发展潜能1.多项式与多项式相乘,应充分结合导图中的问题来理解多项式与多项式相乘的结果,利用乘法分配律来理解(m+n)与(a+b)相乘的结果,导出多项式乘法的法则.2.多项式与多项式相乘,第一步要先进行整理,在用一个多项式的每一项去乘另一个多项式的每一项时,要“依次”进行,不重复,不遗漏,且各个多项式中的项不能自乘,多项式是几个单项式的和,每一项都包括前面的符号,在计算时要正确确定积中各项的符号.。

3.3多项式的乘法(2)

3.3多项式的乘法(2)
当x=4时,原式=2×4﹣9=﹣1.
21
2 x a x b x mx 28 3.已知等式
,其中a、b、m均为整数, 你认为正整数m可取哪些值?它与a、b的取值有关吗?请你写出 所有满足题意整数m的值。
22
4.中考链接
(2012年泰州市中考题)若代数式
x 2 3x 2可以表示为
11
例题5. 已知a+b=m,ab=﹣4,求(a-2)(b-2)求的值。
解: a b m, ab 4,
a 2 b 2 ab 2b 2a 4
ab 2a b 4
4 2m 4 2m
12
例题6.
能力提升
a 1a 1 a 2 1
一、必做题:1、作业本(2)第17页T1—T6; 2、参书第73页A组题T1—T4; 3.课时特训第43、44页T1—T16 二、选做题:1、参书第73页B组题T5、T6; 2.拓展探究题:参看幻灯片第25--28号。 三、抄写第22--23张幻灯片的内容。
19
1、(2012安徽中考题)计算: (a 3)(a 1) a(a 2) 分析:根据整式的乘法法则,多项式乘多项式时,用其 中一个多项式的每一项乘另一个多项式的每一项,再把 所得的积相加;单项式乘多项式,可以按照乘法分配率 进行.最后再根据合并同类项法则进行整式加减运算. 解:原式=
1 7 , 3 12
2 , 3 7 , , 3
x y
2
y2 x y x 2
9
例题4.解方程
3xx 2 4 x 2 8 x 11 x
2


解:两边去括号,得 3x

多项式代数

多项式代数

多项式代数一、多项式的概念1。

多项式的概念:如果我们把多项式看作是从1个变量引出n 个不同变量的一次函数,那么这个多项式就叫做多项式。

2。

几个重要的公式:多项式的系数=n×n÷k,其中k是常数。

多项式的次数=多项式中次数最高的项的次数+其他各项的次数和。

多项式的值域就是多项式的解析式。

多项式是整式;单项式是分式。

一个代数式a×b的形式,通常写成几个单项式相加的形式。

单项式和多项式统称为整式。

单项式中的数字因数叫做这个单项式的系数。

表示多项式的元素的数字叫做多项式的次数。

单独的一个数字因数,不能叫做多项式的次数。

2。

几种常见的多项式:二次三项式一次四项式二次五项式二次八项式一次六项式一次九项式二次十项式等等。

3。

几种常见的单项式:多项式各个字母所取的次数依次为: a, b, c, d, e, f,g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v,w, x, y, z。

注意:由一个字母连续取得两次或两次以上而得到的式子,都可以用一个数来表示,而且,只有这个数,才叫做这个多项式的次数。

4。

多项式与单项式的联系:多项式和单项式的项相同;多项式的次数比单项式的次数少一次;单项式与多项式统称为整式;多项式的每一项都是它本身。

3。

几种特殊的多项式:多项式中某一项为零多项式的次数为0的多项式叫做根式;多项式中某一项为负无穷多项式的次数为负的多项式叫做负项式;多项式中除了有限项以外,其余字母都是常数的多项式叫做常数项式。

多项式和多项式各项的指数都为零的多项式叫做零指数多项式。

二、多项式的运算法则三、多项式的次数四、多项式的化简,将多项式化成几个单项式的积的形式。

(一)多项式乘法1。

乘法的定义:用字母表示出乘数和被乘数。

2。

乘法公式:( 1)因式分解的定义:将多项式的所有字母都乘上某一个数。

( 2)因式分解的一般性方法:配方法,待定系数法,提公因式法。

多项式的性质与运算知识点总结

多项式的性质与运算知识点总结

多项式的性质与运算知识点总结多项式是数学中的重要概念,它在代数学习中占据着重要地位。

掌握多项式的性质与运算规则对于解题和推导都具有较大的帮助。

本文将针对多项式的性质与运算知识点进行总结,并以清晰的排版和通顺的语句展示。

一、多项式的定义多项式是由常数项和各种次数的变量相乘再相加而得到的代数表达式。

一个多项式通常以变量的幂次递减的方式编写。

二、多项式的性质1. 多项式的次数:多项式的次数是指其中最高次幂的次数。

例如,如果一个多项式的最高次幂为n,那么这个多项式的次数就是n。

2. 零多项式:所有系数为0的多项式都属于零多项式。

零多项式的次数没有定义。

3. 系数:多项式中,各项的系数可以是任意实数或复数。

常数项的系数也被称为多项式的常数项。

4. 降阶多项式:将多项式中次数较高的项去除后得到的多项式称为降阶多项式。

5. 相等多项式:两个多项式的各项相互对应相等,则它们是相等多项式。

6. 领导项:多项式中次数最高的项被称为领导项,也是多项式的特征所在。

三、多项式的运算规则1. 加法与减法:多项式的加法与减法遵循“同类相加”的原则。

即相同次数的项可以相加或相减,而不同次数的项则保持不变。

2. 乘法:多项式的乘法可以通过分配律扩展为每一项与另一个多项式的乘积。

例如,(a+b)(c+d) = ac + ad + bc + bd。

3. 除法:多项式的除法是通过长除法的方式进行的。

将除式的领导项与被除式的领导项相除,得到商的领导项,然后将商与除式相乘再与被除式相减,得到新的被除式,并重复该步骤直到被除式的次数小于除式的次数。

4. 幂运算:多项式的幂运算要求将每一个项都进行幂运算。

四、多项式的因式分解与求解1. 因式分解:多项式可以通过因式分解的方式,将其表达为两个或多个因式相乘的形式。

例如,x²-4可以分解为(x+2)(x-2)。

2. 方程求解:利用多项式的性质和运算规则,可以将多项式方程的系数整理成标准形式,然后使用求根公式、配方法等等求解方法进行方程求解。

多项式乘以多项式经典习题--大全

多项式乘以多项式经典习题--大全

多项式乘以多项式经典习题--大全1 导言多项式乘法是初等代数中的一个重要概念,也是一个容易被淡忘的知识点。

在研究多项式乘法的过程中,经典题是必不可少的。

本文将从简单到复杂,从易到难,收集详细解答了一些多项式乘以多项式的经典题。

2 经典题2.1 两个一次多项式相乘题目描述::求 $(x+1)(2x-3)$。

解答::$(x+1)(2x-3)=2x^2-x-3$。

2.2 一次多项式与二次多项式相乘题目描述::求 $(x-1)(x^2+2x+3)$。

解答::$(x-1)(x^2+2x+3)=x^3+x^2-x-3$。

2.3 二次多项式与二次多项式相乘题目描述::求 $(2x^2-3x+1)(x^2+4x+5)$。

解答::$(2x^2-3x+1)(x^2+4x+5)=2x^4+5x^3-7x^2+19x+5$。

2.4 高次多项式与高次多项式相乘题目描述::求 $(3x^3+4x^2-5x+2)(x^4+x^3-x+2)$。

解答::$(3x^3+4x^2-5x+2)(x^4+x^3-x+2)=3x^7+7x^6-x^5+11x^4-16x^3+9x^2-9x+4$。

2.5 高次多项式带有负指数题目描述::求 $(2x^4-3x^{-2}+1)(x^2-x^{-1}+3)$。

解答::$(2x^4-3x^{-2}+1)(x^2-x^{-1}+3)=2x^6-3+x^2-2x-3x^{-1}+9x^4$。

3 结论通过对以上多项式乘法的经典习题的解答,我们可以发现,多项式乘法并不是一件难事,只要我们熟练掌握了乘法法则和展开式的计算方法,就可以得心应手地完成各种多项式乘法的计算了。

高等代数中的多项式 基本概念与计算方法

高等代数中的多项式 基本概念与计算方法

高等代数中的多项式基本概念与计算方法高等代数中的多项式:基本概念与计算方法在高等代数中,多项式是一种重要的数学对象。

它是由各个数乘以一个(或多个)不同幂次的未知数,并加以相应系数得到的代数表达式。

本文将介绍多项式的基本概念以及常用的计算方法。

1. 多项式的定义多项式由一系列的单项式相加或相减而得。

单项式由一个数与若干个未知数的乘积构成,其系数和指数可以是实数或复数。

一个常数也可以看作是只有零个未知数的单项式。

2. 多项式的表示一般来说,多项式的表示形式为:P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0其中,P(x)代表多项式,x是未知数,a_n,...,a_0是系数,n是多项式的次数。

系数可以为实数或复数,次数n是一个非负整数。

3. 多项式的运算(1)多项式的加法和减法:两个多项式相加或相减的规则是将对应的项合并。

例如,给定多项式P(x) = 3x^2 + 2x + 1Q(x) = 2x^2 - x + 4则P(x) + Q(x) = (3x^2 + 2x + 1) + (2x^2 - x + 4) = 5x^2 + x + 5(2)多项式的乘法:多项式的乘法是将每一项相乘,并将同类项合并。

例如,给定多项式P(x) = 3x^2 + 2x + 1Q(x) = 2x - 1则P(x) × Q(x) = (3x^2 + 2x + 1) × (2x - 1) = 6x^3 -1x^2 + 4x - 14. 多项式的因式分解多项式的因式分解在很多应用中都有重要作用。

它是将一个多项式表示为几个较简单的因子相乘的形式。

例如,给定多项式P(x) = x^2 + 4x + 4可以进行因式分解为P(x) = (x + 2)(x + 2) = (x + 2)^2这里的(x + 2)称为多项式P(x)的因子。

5. 多项式的求值给定一个多项式P(x),我们可以通过给定的值x来求出P(x)的具体数值。

多项式运算求解

多项式运算求解

多项式运算求解多项式是数学中常见的一种表达式形式,它由常数项、一次项、二次项等组成,涉及到多项式的运算求解时,我们需要根据不同的情况采取相应的方法和策略。

本文将介绍常见的多项式运算求解方法,包括多项式的加法、减法、乘法和除法,并通过示例详细说明每种方法的具体步骤和要点。

一、多项式的加法运算求解多项式的加法运算是指将两个或多个多项式相加的过程。

假设有多项式A和多项式B,它们的加法运算可以通过如下步骤进行:1. 将两个多项式按照相同的指数进行配对,对应指数的系数相加。

示例:将多项式A(x) = 5x^2 + 3x + 2 和多项式B(x) = 4x^2 + 2x + 1 相加。

按照指数配对,得到结果多项式C(x) = (5 + 4)x^2 + (3 + 2)x + (2 + 1)。

化简后,C(x) = 9x^2 + 5x + 3。

二、多项式的减法运算求解多项式的减法运算是指将两个多项式相减的过程。

假设有多项式A 和多项式B,它们的减法运算可以通过如下步骤进行:1. 将减法转化为加法,即将被减数乘以-1。

2. 按照多项式加法运算求解的步骤,对两个多项式进行加法运算。

示例:将多项式A(x) = 5x^2 + 3x + 2 和多项式B(x) = 4x^2 + 2x + 1 相减。

将B(x)乘以-1,得到多项式-B(x) = -4x^2 - 2x - 1。

按照加法运算的步骤,将A(x)和-B(x)相加,得到结果多项式C(x) = (5 - 4)x^2 + (3 - 2)x + (2 - 1)。

化简后,C(x) = x^2 + x + 1。

三、多项式的乘法运算求解多项式的乘法运算是指将两个多项式相乘的过程。

假设有多项式A 和多项式B,它们的乘法运算可以通过如下步骤进行:1. 将A和B中每一项的系数相乘,得到新的多项式C。

2. 将A和B中每一项的指数相加,得到新的多项式C的指数。

3. 将C中相同指数的项合并为一个项。

如何将多项式相乘

如何将多项式相乘

如何将多项式相乘多项式是由常数和变量组成的一串数学表达式。

多项式相乘的方法取决每个于多项式内包含的项数。

下文中将告诉你如何将多项式相乘。

方法1将两个单项式相乘1 观察题目。

如果题目中只包含两个单项式,那就只需要做乘法就可以了,不需要做加减法。

一个只含两个单项式的多项式相乘问题通常是下面的形式: (ax) * (by);or (ax) * (bx)。

例如:2x * 3y例如: 2x * 3x注意这里的 a和 b代表常数项, x和 y代表自变量。

2 将常数项相乘。

常数项是指题目中的数字。

将这些数字按照乘法表格中的方法相乘。

换句话说,在这个问题里,我们把 a和 b相乘。

例如:2x * 3y = (6)(x)(y)例如:2x * 3x = (6)(x)(x)3 将自变量相乘。

自变量是指等式中的字母。

将自变量相乘时,不同的自变量写在一起就可以,相同的自变量需要写成幂次形式。

将相同的自变量相乘意味着增加这个自变量的幂次。

换句话说,你要把 x和 y或 x和 x相乘。

例如:2x * 3y = (6)(x)(y) = 6xy例如:2x * 3x = (6)(x)(x) = 6x^2写出最后的形式。

将题目完全化简后,不能再有没有合并的同类项。

4, (ax) * (by)的结果应当是 abxy。

类似的 (ax) * (bx)的结果应当是 abx^2。

例如: 6xy例如:6x^2方法2将一个单项式和一个二项式相乘1 观察问题。

在单项式与二项式相乘的问题中,一个多项式中只含有一个单项,另一个多项式中含有两项,这两项间用加号或减号相连。

单项式和二项式相乘的问题通常是下面的形式: (ax) * (bx + cy) 例如: (2x)(3x + 4y)2 将单项式与二项式中的每一项单独相乘。

将问题重新写一遍,写成用单项式与二项式中的每一项分别相乘的形式。

上一步骤之后,题目的形式应该是: (ax * bx) + (ax * cy)。

多项式乘多项式(解析版)

多项式乘多项式(解析版)

9.3多项式乘多项式题型一:多项式乘以多项式计算【例题1】(2021·广西)计算:()()36x x -+. 【答案】x 2+3x -18【分析】根据多项式乘以多项式的计算方法进行计算即可. 【详解】解:(x -3)(x +6)=x 2+6x -3x -18 =x 2+3x -18.【点睛】本题考查多项式乘以多项式的计算方法,掌握多项式乘以多项式的计算法则,是解决问题的关键. 变式训练【变式1-1】(2021·陕西)计算:()()()241221x x x x +---. 【答案】92x -【分析】先根据多项式与多项式乘法及单项式与多项式的乘法法则计算,再去括号合并同类项即可. 【详解】解:()()()241221x x x x +--- =4x 2-x +8x -2-(4x 2-2x ) =4x 2-x +8x -2-4x 2+2x =92x -.【点睛】本题考查了整式的混合运算,熟练掌握运算顺序是解答本题的关键.混合运算的顺序是先算乘方,知识点管理 归类探究再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序. 【变式1-2】(2021·江西南昌·八年级期末)计算:(1)()()211x x x -++;(2)()()()321x x x x +---. 【答案】(1)31x -;(2)26x -【分析】根据多项式乘以多项式,单项式乘以多项式的法则计算即可. 【详解】(1)解:原式3221x x x x x =++---31x =-.(2)解:原式22236x x x x x =-+--+26x =-.【点睛】本题考查了整式的乘法,熟练掌握单项式乘以多项式,多项式乘以多项式法则是解题的关键. 【变式1-3】(2021·湖南七年级期中)计算: (1)222(35)a a b - (2)(53)(32)x y x y +-.【答案】(1)42610a a b -;(2)22156x xy y --【分析】(1)根据单项式乘多项式的计算方法及同底数幂的乘法运算直接计算; (2)根据多项式乘多项式的计算方法及同底数幂的乘法运算,合并同类项直接计算. 【详解】解:(1)22422(35)610a a b a a b -=-, (2)22(53)(32)151096x y x y x xy xy y +-=-+- 22156x xy y =--.【点睛】本题考查了单项式乘多项式、多项式乘多项式,解题的关键是掌握基本的运算法则. 题型二:(x+a)(x+b)型多项式相乘【例题2】(2021·福建省宁化县教师进修学校七年级月考)(Ⅰ)计算,将结果直接填在横线上: (1)(2)x x ++=______.(1)(2)x x --=______. (1)(2)x x -+=______.(1)(2)x x +-=______.(Ⅰ)认真观察(Ⅰ)中的算式与计算结果的特征,总结其中运算规律,用公式来表示这种运算规律(用a ,b 表示常数,).【答案】(1)x 2+3x +2,x 2−3x +2,x 2+x −2,x 2−x −2;(2)(x +a )(x +b )=x 2+(a +b )x +ab 【分析】(1)根据多项式乘法的法则逐一计算即可,多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.(2)根据(1)计算的结果,式子的一般形式是(x +a )(x +b )=x 2+(a +b )x +ab . 【详解】解:(1)(x +1)(x +2)=x 2+3x +2, (x −1)(x −2)=x 2−3x +2, (x −1)(x +2)=x 2+x −2, (x +1)(x −2)=x 2−x −2.故答案是:x 2+3x +2,x 2−3x +2,x 2+x −2,x 2−x −2;(2)可以发现题(1)中,左右两边式子符合(x +a )(x +b )=x 2+(a +b )x +ab 结构. 【点睛】本题考查了多项式乘多项式法则,熟练掌握运算法则是解题的关键. 变式训练【变式2-1】(2019·全国七年级单元测试)若(x +a )(x +2)=x 2-5x +b ,求a +b 的值. 【答案】-21.【分析】先根据多项式乘多项式法则把多项式的左边展开,合并同类项后再根据多项式两边相同字母的系数相等,列出方程,求出a ,b 的值即可.【详解】解:()()222225x a x x ax x a x x b ++=+++=-+,则252a a b +=-=,, 解得714.a b =-=-, 则21.a b +=-【点睛】考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键. 【变式2-2】(2021·福建)阅读理解: (1)计算()()21232x x x x ++=++,()()12x x --=____________________, ()()12x x -+=_______________,()()12x x +-=___________________,()()()2x a x b x x ++=++_____________;( 2)应用已知a 、b 、m 均为整数,且()()212x a x b x mx ++=++,则m 的可能取值有_____________个.【答案】(1)232x x -+,22x x +-,22x x --;a b +,ab ;(2)6【分析】(1)根据多项式乘法的法则逐一计算即可,多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.(2)根据(1)计算的结果,式子的一般形式是2()()()x p x q x p q x pq ++=+++,121122634(1)(12)(2)(6)(3)(4)=⨯=⨯=⨯=-⨯-=-⨯-=-⨯-,故m 的取值6个.【详解】解:(1)2(1)(2)32x x x x ++=++, 2(1)(2)32x x x x --=-+,2(1)(2)2x x x x -+=+-,2(1)(2)2x x x x +-=--;()()()2x a x b x a b x ab ++=+++(2)可以发现题(1)中,左右两边式子符合2()()()x p x q x p q x pq ++=+++结构,因为12可以分解以下6组数,112a b ⨯=⨯,26⨯,34⨯,(1)(12)-⨯-,(2)(6)-⨯-(3)(4)-⨯-,所以m a b =+应有6个值.【点睛】本题考查了多项式乘多项式法则,熟练掌握运算法则是解题的关键.【变式2-3】(2020·厦门外国语学校海沧附属学校八年级期中)已知(x+a)(x+b)=x 2+mx+n (1)若a=1,b=2,则m=______,n=_______ (2)若a=6,b=-3,求2m+2n 的值 【答案】(1)m=3,n=2;(2)-28【分析】把已知式子展开,得出m ,n 和a ,b 的关系式,带入求解即可;【详解】Ⅰ()()()22x a x b x a b x ab x mx n ++=+++=++,Ⅰa b m +=,ab n =, (1)Ⅰa =1,b =2,Ⅰ123m =+=,122n =⨯=, 故答案是:3,2. (2)Ⅰa =6,b =-3,Ⅰ()633m =+-=,()6318n =⨯-=-,Ⅰ()322221883628m n +=+⨯-=-=-.【点睛】本题主要考查了代数式求值,准确利用整式乘法展开计算是解题的关键. 题型三:多项式乘以多项式化简求值【例题3】(2021·江苏鼓楼·七年级期中)先化简,再求值:(1)(2)3(3)2(2)(1)x x x x x x ---+++-,其中12x =. 【答案】102x --; 7-【分析】多项式乘以多项式,单项式乘以多项式展开,合并同类项对整式进行化简,然后再代值求解即可. 【详解】解:(1)(2)3(3)2(2)(1)x x x x x x ---+++-()2223239222x x x x x x x =-+--++--,222122224x x x x =--+++-, 102x =--,当12x =时,原式110272=-⨯-=-. 【点睛】本题主要考查整式的乘法运算,多项式乘以多项式,单项式乘以多项式展开,合并同类项代入求值,熟练掌握整式的乘法运算法则是解题的关键. 变式训练【变式3-1】(2021·江苏省江阴市第一中学七年级阶段练习)先化简,再求值:(3)(4)2(1)(5)y y y y +---+,其中2y =-【答案】292y y ---;12.【分析】利用多项式乘以多项式法则计算,去括号合并得到最简结果,把y 的值代入计算即可求出值. 【详解】解:(3)(4)2(1)(5)y y y y +---+22(12)2(45)y y y y =---+- 22122810y y y y =----+ 292y y =---,当2y =-时,原式()()22922=---⨯--12=.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则,准确计算是解本题的关键.【变式3-2】(2021·浙江七年级期中)先化简,再求值:()222242(()3)m m m m m -++--,其中2m =-【答案】368m m -+-,12-【分析】先分别根据多项式乘多项式、单项式乘单项式计算,再合并同类项,最后代入2m =-即可求解. 【详解】解:原式322382++44622m m m m m m m ---+-=33826m m m -=-+368m m =-+-,当2m =-时,原式()()32628=--+⨯--8128=--12=-【点睛】本题考查整式的化简求值,解题的关键是熟练掌握多项式乘多项式、单项式乘单项式计算法则. 【变式3-3】(2020·江苏省盐城中学新洋分校七年级期中)先化简,再求值:(x+2)(x -1)-2x (x+3),其中x=-1.【答案】252x x ---,2.【分析】原式利用多项式乘以多项式、单项式乘以多项式法则计算,去括号合并得到最简结果,把x 的值代入计算即可求出值.【详解】解:原式=222226x x x x x -+---, =252x x ---, 当x=-1时, 原式=-1+5-2=2.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键. 题型四:已知多项式乘积不含某项求字母的值【例题4】(2017·江苏·兴化市海河学校七年级阶段练习)若(x 2+ax +8)(x 2﹣3x +b )的乘积中不含x 2和x 3项,求a ,b 的值. 【答案】a =3,b =1【分析】直接利用多项式乘以多项式运算法则,进而利用合并同类项法则得出x 2和x 3项的系数为零进而得出答案.【详解】解:(x 2+ax +8)(x 2-3x +b ) =x 4-3x 3+bx 2+ax 3-3ax 2+abx +8x 2-24x +8b=x 4+(-3+a )x 3+(b -3a +8)x 2+(ab -24)x +8b , Ⅰ(x 2+ax +8)(x 2-3x +b )的乘积中不含x 2和x 3项, Ⅰ-3+a =0,b -3a +8=0, 解得:a =3,b =1.【点睛】此题主要考查了多项式乘以多项式,正确掌握运算法则是解题关键. 变式训练【变式4-1】(2021·江苏·常熟市第一中学七年级阶段练习)若关于x 的多项式()2(3)x x m mx +-⋅-的展开式中不含2x 项,求4(1)(2)(25)(3)m m m m +--+-的值. 【答案】16【分析】将多项式展开,合并同类项,根据不含2x 项得到m 值,再代入计算.【详解】解:原式()2(3)x x m mx =+-⋅-3222333mx x mx x m x m =-+--+()322(3)33mx m x m x m =+--++由题意得30m -=, Ⅰ3m =,Ⅰ原式4(31)(32)(235)(33)16=⨯+⨯--⨯+⨯-=.【点睛】本题考查了整式的混合运算和求值,多项式的应用,解此题的关键是能根据整式的运算法则进行化简,难度不是很大.【变式4-2】(2021·江苏·昆山市第二中学七年级阶段练习)若()2(2)x x ax b -++的积中不含x 的二次项和一次项,求2(32)2a b ab -+的值. 【答案】20【分析】原式利用多项式乘多项式法则计算,由积中不含x 的二次项和一次项,求出a 与b 的值,再把a 、b 的值代入计算可得.【详解】解:(x -2)(x 2+ax +b )=x 3+ax 2+bx -2x 2-2ax -2b =x 3+(a -2)x 2+(b -2a )x -2b , Ⅰ(x -2)(x 2+ax +b )的积中不含x 的二次项和一次项, Ⅰa -2=0且b -2a =0, 解得:a =2、b =4,将a =2、b =4代入2(32)2a b ab -+=2(3224)224⨯-⨯+⨯⨯ =4+16 =20.【点睛】本题主要考查整式的化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则. 【变式4-3】(2021·江苏省江阴市第一中学七年级阶段练习)若()2133x p x x q ⎛⎫+-+ ⎪⎝⎭的积中不含x 项与2x 项(1)求p 、q 的值; (2)求代数式20192020p q 的值 【答案】(1)13p =,3q =;(2)3 【分析】(1)先用多项式乘以多项式的运算法则展开求它们的积,并且把p 、q 看作常数合并关于x 的同类项,令x 2及x 的系数为0,分别求出p 、q 的值. (2)把p 、q 的值代入求解即可. 【详解】解:(1)21(3)()3x p x x q +-+=2321333x x qx px px pq -++-+=23131)(3+3()x p x q p x pq -+-+又Ⅰ式子展开式中不含x 2项和x 项, Ⅰ310p -=,13=03q p -解得,13p =,3q = (2)当13p =,3q =时,20192019201920201=()(3)31333p p q q q =⨯⨯=⨯= 【点睛】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.题型五:多项式乘以多项式面积问题【例题5】(2020·江苏·泰兴市实验初级中学七年级期中)如图是火箭模型截面图,上面是三角形,中间是长方形,下面是梯形.(1)用含有a 、b 的代数式表示该截面的面积S ;(需化简) (2)当a =8cm ,b =5cm 时,求这个截面图的面积.【答案】(1)S=2a 2+2ab ;(2)208【分析】(1)先算出上面三角形的面积,中间长方形的面积,下面梯形的面积,即可表示出横截面的面积; (2)把a ,b 代入(1)式中求解即可;【详解】(1)上面三角形的面积为12ab ,中间长方形的面积为22a ,下面梯形的面积为()13222a b b ab +=,则该截面的面积为221322222S ab a ab a ab =++=+; (2)当a =8cm ,b =5cm 时,22226428512880208S a ab =+=⨯+⨯⨯=+=.【点睛】本题主要考查了代数式求值,准确计算是解题的关键. 变式训练【变式5-1】(2021·江苏淮安·七年级期末)如图,某市有一块长(3)a b +米,宽为(2)a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间空白处将修建一座雕像.(1)求绿化的面积是多少平方米. (2)当2,1a b ==时求绿化面积. 【答案】(1)5a 2+3ab ;(2)26平方米【分析】(1)绿化面积=长方形的面积-正方形的面积; (2)把a =2,b =1代入(1)求出绿化面积.【详解】解:(1)S 绿化面积=(3a +b )(2a +b )-(a +b )2 =6a 2+5ab +b 2-a 2-2ab -b 2=5a 2+3ab ;答:绿化的面积是(5a 2+3ab )平方米; (2)当a =2,b =1时,绿化面积=5×22+3×2×1 =20+6 =26.答:当a =2,b =1时,绿化面积为26平方米.【点睛】本题考查了多项式乘多项式及代数式求值,看懂题图掌握多项式乘多项式法则是解决本题的关键. 【变式5-2】(2021·江苏滨湖·七年级期中)如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解决下列问题.(1)在图4中,黑色瓷砖有 块,白色瓷砖有 块;(2)已知正方形白色瓷砖边长为1米,长方形黑色瓷砖长为1米,宽为0.5米.现准备按照此图案进行装修,瓷砖无需切割,恰好能完成铺设.已知白色瓷砖每块100元,黑色瓷砖每块50元,贴瓷砖的费用每平方米15元.请回答下列问题: Ⅰ铺设图2需要的总费用为 元;Ⅰ铺设图n 需要的总费用为多少元?(用含n 的代数式表示) 【答案】(1)20;20;(2)Ⅰ1380; Ⅰ2115345230n n ++.【分析】(1)通过观察发现规律得出,第n 个图形中,黑色瓷砖的块数可以表示为4(1)n +,白瓷砖的块数可以表示为(1)n n +,将4n =代入即可求解;(2)Ⅰ求得图2的白瓷砖的块数和黑色瓷砖的块数,然后再求得占用的面积,根据费用求解即可;Ⅰ求得图n 的白瓷砖的块数和黑色瓷砖的块数,然后再求得占用的面积,根据费用求解即可; 【详解】解:(1)通过观察图形可知,1n =时,黑色瓷砖的块数为8,白色瓷砖的块数为22n =时,黑色瓷砖的块数为12,白色瓷砖的块数为6 3n =时,黑色瓷砖的块数为16,白色瓷砖的块数为12则第n 个图形中,黑色瓷砖的块数可以表示为4(1)n +,白瓷砖的块数可以表示为(1)n n +当4n =时,黑色瓷砖的块数为20,白瓷砖的块数为20故答案为20,20(2)Ⅰ图2,黑色瓷砖的块数为12,白色瓷砖的块数为6,所占用的面积为1210.561112⨯⨯+⨯⨯=(平方米)所需的费用为1250610012151380⨯+⨯+⨯=(元)故答案为1380Ⅰ第n 个图形中,黑色瓷砖的块数可以表示为4(1)n +,白瓷砖的块数可以表示为(1)n n +占用的面积为4(1)10.5(1)112(1)(1)(1)(2)n n n n n n n n +⨯⨯++⨯⨯=+++=++所需的费用为24(1)50(1)10015(1)(2)115345230n n n n n n n +⨯++⨯+⨯++=++故答案为2115345230n n ++【点睛】此题考查了图形类规律的探索问题,涉及了列代数式,整式的乘法等运算,解题的关键是根据前面图形,找到规律.【变式5-3】(2021·江苏徐州·七年级期中)(1)探究:我们小学时学过乘法分配律a (b +c )=ab +ac . 下面我们用等积法证明乘法分配律:如图,方法一:长方形ABCD 的一边长为a ,另一边长为(b +c ),所以长方形ABCD 的面积为a (b +c );方法二,长方形ABFE 的面积为ab ,长方形CDEF 的面积为ac ,所以长方形ABCD 的面积为(ab +ac ),所以a (b +c )=ab +ac .我们把这种用两种不同的方式表示同一图形面积的方法称为等积法.(2)应用请你用等积法,画出图形,并仿照上面的说理方法证明:(a +b )(c +d )=ac +ad +bc +bd ;(3)拓展请直接写出(a +b )(c +d +e )= .【答案】(2)证明见解析;(3)ac ad ae bc bd be +++++【分析】(2)画出图形,并仿照(1)的说理方法证明即可;(3)根据(1)的方法画出图形,进行计算即可.【详解】(2)如图,方法一:长方形ABCD 的一边长为()a b +,另一边长为()c d +,所以长方形ABCD 的面积为()()a b c d ++; 方法二,长方形AGOE 的面积为ac ,长方形EODH 的面积为ad ,长方形GOFB 的面积为bc ,长方形OFCH 的面积为bd ,所以长方形ABCD 的面积为(ac ad bc bd +++),所以()()a b c d ac ad bc bd ++=+++.(3)如图,同理可得:方法一可得长方形ABCD 的面积为()()a b c d e +++,方法二可得长方形ABCD 的面积为ac ad ae bc bd be +++++∴()()a b c d e ac ad ae bc bd be +++=+++++故答案为:ac ad ae bc bd be +++++【点睛】本题考查了多项式乘法与图形面积的关系,数形结合是解题的关键.题型六:多项式乘以多项式规律问题【例题6】(2021·常熟市第一中学七年级月考)观察下列各式:223324(1)(1)1(1)(1)1(1)(1)1x x x x x x x x x x x x -+=--++=--+++=-(1)根据以上的规律得:123(1)(1)_______m m m x x x x x ----+++++=(m 为正整数)(2) 请你利用上面的结论,完成下面两题的计算:Ⅰ23468691222222+++++++Ⅰ(﹣2)50+(﹣2)49+(﹣2)48+…+(﹣2)+1【答案】(1)x m -1;(2)Ⅰ7021-;Ⅰ51213+ 【分析】(1)归纳出一般规律可得;(2)Ⅰ原式乘(2-1),用规律即可得出结论;Ⅰ将原式变形为()()()()()5049481121222213++⎦⎡⎤-⨯---+--⋯+-+⎣,再依照所得规律计算即可. 【详解】解:(1)(x -1)(x m -1+x m -2+…+x +1)═x m -1(m 为正整数);(2)Ⅰ23468691222222+++++++ =()()2346869212222221+++++++- =7021-;Ⅰ()()()()50494822221---⋯++-+++ =()()()()()5049481121222213++⎦⎡⎤-⨯---+--⋯+-+⎣ =()511123⎡⎤--⨯-⎣⎦ =51213+ 【点睛】本题考查找规律解题,仔细观察,找出规律是求解本题的关键.变式训练【变式6-1】(2021·利辛县第四中学七年级期中)(1)计算:(1)(1)______a a -+=;2(1)(1)____a a a -++=;......猜想:9998972(1)(......1)_____a a a a a a -++++++=;(2)请你利用上式的结论,求199198212+2++2+2+1的值;(3)请直接写出202020192018213+3+3+3+3+1+的值.【答案】(1)231;1;a a --1001a -;(2)20021-;(3)20211(31)2⋅-. 【分析】(1)根据多项式乘多项式可进行求解;(2)由2-1=1及(1)中结论可直接进行求解;(3)根据(1)中结论可进行求解.【详解】解:(1)由题意得:2(1)(1)1a a a -+=-,23223(1)(1)11a a a a a a a a a -++=++---=-,……猜想:9998972100(1)(......1)1a a a a a a a -++++++=-;故答案为231,1,a a --1001a -;(2)由(1)可得:原式=()()19919819720021222......2121-+++++=- (3)由(1)的结论可得:原式=()()2020201928201210211)3+3+3131(31221+3+3+-+=⨯⨯⋅-. 【点睛】本题主要考查多项式乘多项式的应用,熟练掌握多项式乘多项式是解题的关键.【变式6-2】(2021·辽宁)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例.这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a +b )n (n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1、2、1,恰好对应(a +b )2=a 2+2ab +b 2展开式中各项的系数;第四行的四个数1、3、3、1,恰好对应着(a +b )3=a 3+3a 2b +3ab 2+b 3展开式中各项的系数等等.(1)根据上面的规律,(a +b )4展开式的各项系数中最大的数为 ;(2)求出25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5的值;(3)若(x ﹣1)2020=a 1x 2020+a 2x 2019+a 3x 2018+……+a 2019x 2+a 2020x +a 2021,求出a 1+a 2+a 3+……+a 2019+a 2020的值.【答案】(1)6;(2)﹣1;(3)﹣1【分析】(1)由“杨辉三角”构造方法判断即可确定出(a+b )4的展开式中各项系数最大的数;(2)将原式写成“杨辉三角”的展开式形式,即可的结果;(3)当x =0时,a 2021=1,当x =1时,得到a 1+a 2+a 3+……+a 2019+a 2020+a 2021=0,即可得到结论.【详解】解:(1)第五行即为1、 4、 6、 4 、1对应(a +b )4展开式中各项的系数,Ⅰ(a +b )4展开式的各项系数中最大的数为6,故答案为6;(2)Ⅰ(a +b )2=a 2+2ab +b 2,(a +b )3=a 3+3a 2b +3ab 2+b 3,......根据展式中的2最大指数是5,首项a =2,末项b =-3,Ⅰ25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5=[2+(﹣3)]5=(2﹣3)5=﹣1;(3)Ⅰ(x ﹣1)2020=a 1x 2020+a 2x 2019+a 3x 2018+……+a 2019x 2+a 2020x +a 2021,Ⅰ当x =1时,(1﹣1)2020=a 1×12020+a 2×12019+a 3×12018+……+a 201912+a 2020×1+a 2021,即a 1+a 2+a 3+……+a 2019+a 2020+a 2021=0,当x =0时,(0﹣1)2020=a 1×02020+a 2×02019+a 3×02018+……+a 2019×02+a 2020×0+a 2021,即a 2021=1,Ⅰa 1+a 2+a 3+……+a 2019+a 2020= a 1+a 2+a 3+……+a 2019+a 2020+a 2021- a 2021=0﹣1=﹣1.【点睛】本题考查完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应a b n +()中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高. 【变式6-3】(2021·河南省淮滨县第一中学)好学的小东同学,在学习多项式乘以多项式时发现:14(25)(36)2x x x ⎛⎫++- ⎪⎝⎭的结果是一个多项式,并且最高次项为:312332x x x x ⋅⋅=,常数项为:45(6)120⨯⨯-=-,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是:15(6)2(6)434532⨯⨯-+⨯-⨯+⨯⨯=-,即一次项为3x -. 请你认真领会小东同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.(1)计算()()()23153x x x ++-所得多项式的一次项系数为______.(2)若计算()()2213(21)x x x x a x ++-+-所得多项式不含一次项,求a 的值;(3)若202120212020201901220202021(1)x a x a x a x a x a +=+++⋯++,则2020a =______.【答案】(1)-11;(2)3a =-;(3)2021.【分析】根据题意可得出结论多项式和多项式相乘所得结果的一次项系数是每个多项式的一次项系数分别乘以其他多项式的常数项后相加所得.(1)(2)(31)(53)x x x ++-中每个多项式的一次项系数分别是1、3、5,常数项分别是2、1、-3,再根据结论即可求出(2)(31)(53)x x x ++-所得多项式的一次项系数.(2)22(1)(3)(21)x x x x a x ++-+-中每个多项式的一次项系数分别是1、-3、2,常数项分别是1、a 、-1,再根据22(1)(3)(21)x x x x a x ++-+-所得多项式的一次项系数为0,结合结论即可列关于a 的一元一次方程,从而求出a .(3)2021(1)x +中每个多项式一次项系数为1,常数项系数也为1,2020a 为2021(1)x +所得多项式的一次项系数.所以根据结论2020a 为2121个11⨯相加,即可得出结果.【详解】(1)根据题意可知(2)(31)(53)x x x ++-的一次项系数为:()()11333252111⨯⨯-+⨯-⨯+⨯⨯=-.故答案为-11.(2)根据题意可知22(1)(3)(21)x x x x a x ++-+-的一次项系数为:()()()11311213a a a ⨯⨯-+-⨯⨯-+⨯⨯=+Ⅰ该多项式不含一次项,即一次项系数为0,Ⅰ30a +=解得3a =-.(3)根据题意可知2020a 即为2021(1)x +所得多项式的一次项系数.Ⅰ20202021(11111111)2021a =⨯+⨯+⨯++⨯=故答案为2021【点睛】本题考查多项式乘多项式以及对多项式中一次项系数的理解,根据题意找出多项式乘多项式所得结果的一次项系数与多项式乘多项式中每个多项式的一次项系数和常数项关系规律是解题关键.【真题1】(2019·江苏南京·中考真题)计算22()()x y x xy y +-+.【答案】33x y +【分析】根据多项式乘以多项式的法则,可表示为(a +b )(m +n )=am +an +bm +bn ,计算即可.【详解】解:()()22x y x xy y +-+322223x x y xy x y xy y =-++-+33x y =+.【点睛】本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.【真题2】(2013·江苏南京·中考真题)计算11111111111111111111234523456234562345⎛⎫⎛⎫⎛⎫⎛⎫----++++------+++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的结果是_______. 【答案】16【详解】设11112345x +++=, 则原式()111166x x x x ⎛⎫⎛⎫-+--- ⎪ ⎪⎝⎭⎝⎭= 22115666x x x x x +---+= 16= 【真题3】(2015·江苏连云港·中考真题)已知m +n =mn ,则(m -1)(n -1)=_______.【答案】1【详解】试题分析:根据乘法公式多项式乘以多项式,用第一个多项式的每一项乘以第二个多项式的每一项,可求(1)(1)m n --=mn -m -n+1=mn -(m+n )+1,直接代入m+n=mn 可求得(1)(1)m n --=1.考点:整体代入法【真题4】(2019·台湾·中考真题)计算()()2334xx +﹣的结果,与下列哪一个式子相同?( ) A .74x -+B .712x --C .2612x -D .2612x x --【答案】D【分析】由多项式乘法运算法则:两多项式相乘时,用一个多项式的各项去乘另一个多项式的每一项,再链接中考把所得的积相加,合并同类项后所得的式子就是它们的积.【详解】解:由多项式乘法运算法则得()()22233468912612x x x x x x x-+=+---=-.故选D.【点睛】本题考查多项式乘法运算法则,牢记法则,不要漏项是解答本题的关键.【拓展1】(2021·江苏阜宁·七年级期中)如图,长方形的长为a,宽为b,横向阴影部分为长方形,另一阴影部分为平行四边形,它们的宽都为c,则空白部分的面积是___.【答案】2ab ac bc c--+【分析】先把阴影的为平行四边形的面积化为长方形的面积,然后经过平移得到空白部分的为长方形,长为a-c,宽为b-c,根据长方形面积公式列式计算即可求解即可求解.【详解】解:原图形可化为图1,将阴影部分平移得到图2,所以空白部分的面积为:()()2=a cbc ab ac bc c----+.故答案为:2ab ac bc c--+满分冲刺【点睛】本题考查了列代数式,平移,多项式乘以多项式等知识,根据题意,将平行四边形的面积转化为长方形的面积,进而进行平移,将空白部分面积转化为长方形的面积是解题关键.【拓展2】(2020·江苏徐州·七年级期中)阅读以下材料:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-; ()324(1)11x x x x x -+++=-(1)根据以上规律,()123(1)1n n n x x x x x ----+++++= ;(2)利用(1)的结论,求2345201820192000155555555+++++++++的值 【答案】(1)1nx -;(2)2021514- 【分析】(1)仔细观察上式就可以发现得数中x 的指数是式子中x 的最高指数减1,根据此规律就可求出本题.(2)不难看出所求式子是材料中等号左边式子的一个因式,将所求式子转化成()123(1)1n n n x x x x x ----+++++形式,即可利用(1)的结论进行求解.【详解】(1)()123(1)1n n n x xx x x ----+++++中最高次项为1n n x x x -•=, 所以()123(1)1n n n x x x x x ----+++++=n x -1;(2)2345201820192000155555555+++++++++ =14(5-1)(2345201820192000155555555+++++++++) =2021514- 【点睛】仔细观察式子,总结出运算规律,是解决此类题的关键.【拓展3】(2020·江苏·南通市八一中学八年级期中)阅读材料小明遇到这样一个问题:求计算()()()22334x x x +++所得多项式的一次项系数.小明想通过计算()()()22334x x x +++所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找()()223x x ++所得多项式中的一次项系数,通过观察发现:也就是说,只需用2x +中的一次项系数1乘以23x +中的常数项3,再用2x +中的常数项2乘以23x +中的一次项系数2,两个积相加13227⨯+⨯=,即可得到一次项系数.延续上面的方法,求计算()()()22334x x x +++所得多项式的一次项系数,可以先用2x +的一次项系数1,23x +的常数项3,34+x 的常数项4,相乘得到12;再用23x +的一次项系数2,2x +的常数项2,34+x 的常数项4,相乘得到16;然后用34+x 的一次项系数3,2x +的常数项223x +的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算()()443x x ++所得多项式的一次项系数为____________________.(2)计算()()()13225x x x +-+所得多项式的一次项系数为_____________.(3)若231x x -+是422x ax bx +++的一个因式,求a 、b 的值.【答案】(1)19;(2)1;(3) a= -6,b= -3.【分析】(1)根据两多项式常数项与一次项系数乘积的和即为所得多项式一次项系数可得;(2)根据三个多项式中两个多项式的常数项与另一个多项式一次项系数的乘积即为所求可得;(3)由x 4+ax 2+bx+2中4次项系数为1、常数项为2可设另一个因式为x 2+mx+2,根据三次项系数为0、二次项系数为a 、一次项系数为b 列出方程组求出a 、b 的值,可得答案.【详解】解:(1)(x+4)(4x+3)所得多项式的一次项系数为1×3+4×4=19,故答案为19;(2)()()()13225x x x +-+所得多项式的一次项系数为1×(-2)×5+1×3×5+1×(-2)×2=1,故答案为1;(3)由x 4+ax 2+bx+2中4次项系数为1、常数项为2可设另一个因式为x 2+mx+2,则(x 2-3x+1)(x 2+mx+2)=x 4+ax 2+bx+2,13101211(3)321m m a m b ⨯-⨯=⎧⎪∴⨯+⨯+-⨯=⎨⎪-⨯+⨯=⎩解得: 363m a b =⎧⎪=-⎨⎪=-⎩故答案为a= -6,b= -3.【点睛】本题考查多项式乘多项式,解题关键是熟练掌握多项式乘多项式的运算法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生练习 要使 x2 px 2 x q的乘积中不含x 2项,则p与q的关系是( C)
A.互为倒数 B.互为相反数 C.相等 D.关系不能确定
例题5.解方程 3xx 2 4x2 8 x 11 x
解:两边去括号,得 3x2 6x 4x2 32 x x2 1 x
合并同类项,得 x2 6x 32 x2 1 化简,得 6x 33 原方程的解为 x 33 11. 62
∴ b=3 , c=1
能力提升 (1)若ax2+bx+c=3x2-2x-1,则a=_3_ ,
b=_-_2 ,c=_-_1. (2) 若 (x+3)(x+a)=x2+2x-3,则a=_-_1. (3)若(x+a)(x-2)=x2+bx-6,求a,b值.
能力提升
ab
定义一种运算,若规定
ad bc,化简
cd
x 1 x x x4
x 1
解:原式=
x x 1x 4 x2
x x4
x 1x 4 x2 x2 x 4x 4 x2 3x 4
能力提升观察下列各式的计算结果与两个相
乘的多项式之间的关系:
x 1 x2 x 1 x3 1; x 2 x2 2x 4 x3 8;
a 5 解得 b 6
故此 a b 5 6 11
x 3 x2 3x 9 x3 27.
你发现有什么规律?按你发现的规律填空:
x 4 x2 4x 16 3 3 =________;
你能很快说出x y与 x2 xy y2 的积吗?你的依据是什么?
中考链接
(2015年泰州市中考题)若代数式 x2 3x 2可以表示为
例3 计算:
(1) x 2 x2 4 (2) a-b a2 ab b2
式子中只含一个字母时,结果
降幂排列 (或升幂排列)源自例题4. 化简 ab10a 3b 2a b3ab 4a2 ,这个代数式
的值与 a, b 的取值有关吗?
分析:化简后,最后的结果中是否含有字母a、b的项,若有,则 与此字母取值有关,否则无关。
数之积; ——不要漏乘
(2)各项的系数:多项式是单项式的和,每项的系数都应包括该项 前面的符号,应把系数的积作为积的系数;在合并同类项时,应
— “系数相加”,字母和字母的指数不变。 — 注 意 符 号
(3)相乘后,如果有同类项,则应合并同类项;同时要注意合并同类 项时各项的符号。
——要化成最简形式。
1.回顾一下:“单项式×多项式”运算法则以及依据?
单项式与多项式相乘的法则:
单项式与多项式相乘, 就是用单项式去乘 多项式的每一项,再把所得的积相加.
单项式与多项式相乘的依据:
单项式与单项式的乘法法则和分配律.
2.回顾一下:“多项式×多项式”运算法则?
多项式与多项式相乘的法则:
多项式与多项式相乘,先用一个多项式的每 一项乘另一个多项式的每一项,再把所得的 积相加.
X X X 即(a+m)(b+n) = a(b+n) + m (b+n)
=ab+an+mb+mn.
2
1
1
2
3
4
(a+b)(m+n) =am+an+bm+bn
34
火眼金睛
辩一辩:下面是小刚同学做的三道题,请你帮他 看一看做得对不对。
(1)(3x+1)(x+2)= 3x2 +6x+x+2= 3x2 +7X +2
本节课-----我学会了...... 使我感受最深的…… 我感到最困难的是……
挑战极限:
如果(x2+bx+8)(x2 – 3x+c)的乘积 中不含x2和x3的项,求b、c的值。
解:原式= x4 – 3x3 + c x2 +bx3 – 3bx2 +bcx+8 x2– 24x+8c
X2项系数为:c –3b+8 = 0 X3项系数为:b – 3 = 0
11 x 12 ax 1 b 的形式,则a+b的值是

解:由题意可得
x 12 ax 1 b x2 2x 1 ax a b x2 a 2x b a 1
x2 3x 2 x 12 ax 1 b
x2 3x 2 x2 a 2x b a 1
即 a 2 3 b a 1 2
解:ab10a 3b 2a b3ab 4a2
10a2b 3ab2 6a2b 8a3 3ab2 4a2b
10a2b 3ab2 6a2b 8a3 3ab2 4a2b
10 6 4a2b 33ab2 8a3
8a3.
∵这个代数式化简后只含字母a,不含字母b;∴这个代数式的值 只与字母a的取值有关,与字母b的取值无关。
(2)(x+3)(x-3)-x(x-6) =x2-3X +3X -9- x2-6x
=-6x-9.
原式 =x2-3X +3X -9 -x2+6x
=6x-9 (3)(4y-1)(y-5)=4y2-20y-y+5 =4y2-21y+5
运算时应该注意以下三点:
(1)项数:运用多项式的乘法法则时,必须做到不重不漏.其积仍然 是一个多项式,多项式与多项式相乘的展开式中若有同类项的要 合并同类项,在合并同类项之前,积的项数等于两个多项式的项
相关文档
最新文档