长沙理工大学高数机考题库

合集下载

高等数学(一)机考复习题

高等数学(一)机考复习题

高等数学(一)机考复习题一.单项选择题(在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题干后的括号内.)1.函数y=x 1-+arccos 21x +的定义域是( ) A. x<1 B.-3≤x≤1C. (-3,1)D.{x|x<1}∩{x|-3≤x≤1}矚慫润厲钐瘗睞枥庑赖賃軔朧。

2.下列函数中为奇函数的是( ) A.y=cos3x B.y=x2+sinxC.y=ln(x2+x4)D.y=1e 1e xx +-3.设f(x+2)=x2-2x+3,则f[f(2)]=( )A.3B.0C.1D.24.y=的反函数是xx323+( ) A.y=233x x +-- B.y=xx332+ C.y=log3x 1x 2- D.y=log3x2x1-5.设n n u ∞→lim =a,则当n→∞时,un 与a 的差是( )A .无穷小量 B.任意小的正数C .常量 D.给定的正数6.设f(x)=⎪⎪⎩⎪⎪⎨⎧<>0x ,x 1sin x 0x ,x1sin ,则)x (f lim 0x +→=( )A .-1 B.0 C.1 D.不存在7.当0x →时,x cos x sin 21是x 的( )A.同阶无穷小量B.高阶无穷小量C.低阶无穷小量D.较低阶的无穷小量 8.x21sinx 3lim x •∞→=( )A.∞B.0C.23D.329.设函数⎩⎨⎧≤<-≤<-=3x 1,x 21x 0,1x )x (f 在x=1处间断是因为( )A.f(x)在x=1处无定义B.)x (f lim 1x -→不存在C.)x (f lim 1x +→不存在 D.)x (f lim 1x →不存在10.设f(x)=⎩⎨⎧≥+<0x )x 1ln(0x ,x ,则f(x)在x=0处( )A.可导B.连续,但不可导C.不连续D.无定义 11.设y=2cosx,则y '=( )A.2cosxln2B.-2cosxsinxC.2cosx(ln2)sinxD.-2cosx-1sinx 12.设f(x2)=)x (f ),0x (x11'≥+则=( ) A.-2)x 1(1+ B.2x 11+C.-2)x 1(x 21+ D.2)x 1(x 21+13.曲线y=1x x132=在处切线方程是( )A.3y-2x=5B.-3y+2x=5C.3y+2x=5D.3y+2x=-5 14.设y=f(x),x=et,则22dt y d =( )A.)x (f x 2''B.)x (f x 2''+)x (f x 'C.)x (f x ''D.)x (f x ''+xf(x) 15.设y=lntg x ,则dy=( ) A.xtg dx B.xtg x d C.dx xtg x sec 2 D.xtg )x tg (d16.下列函数中,微分等于xln x dx的是( ) A.xlnx+c B.21ln2x+c C.ln(lnx)+c D.xxln +c17.下列函数在给定区间满足拉格朗日中值定理条件的是( )A.y=|x|,[-1,1]B.y=x1,[1,2] C.y=32x ,[-1,1] D.y=2x1x-,[-2,2]18.函数y=sinx-x 在区间[0,π]上的最大值是( )A.22B.0C.-πD.π 19.下列曲线有水平渐近线的是( )A.y=exB.y=x3C.y=x2D.y=lnx 20.⎰-2x xdee =( )A.-c e 21x 2+ B. -c e 2x+C-c e 212x+- D.c e 412x+-21.⎰=dx 2x 3( )A.c 2ln 231x3+ B.31(ln2)23x+cC. 3123x+c D.c 2ln 2x3+22.⎰+πdx )14(sin =( )A.-cos 4π+x+cB.-c x 4cos 4++ππC.c 14sin x ++πD. c x 4sin x ++π23.⎰-)x cos 1(d =( ) A.1-cosx B.x-sinx+cC.-cosx+cD.sinx+c 24.⎰-aax 〔f(x)+f(-x)〕dx=( )A.4⎰axf(x)dx B.2⎰ax 〔f(x)+f(-x)〕dxC.0D.以上都不正确25.设F(x)=⎰-x adt )t (f a x x,其中f(t)是连续函数,则)x (F lim a x +→=( )A.0B.aC.af(a)D.不存在26.下列积分中不能直接使用牛顿—莱布尼兹公式的是( )A.⎰+1xe1dxB.⎰π40tgxdx C.dx x1x12⎰+ D.⎰π40ctgxdx27.设f(x)=⎩⎨⎧≤≤<≤-1x 0,20x 1,1,则⎰-11dx )x (f 21=( )A.3B.23C.1D.2 28.当x>2π时,⎰π'x2dt )ttsin (=( ) A.x x sin B. x xsin +c C x x sin -π2 D. xx sin -π2+c29.下列积分中不是广义积分的是( )A.⎰-21022)x 1(dx B.⎰e1xln x dxC.⎰-113xdxD.⎰+∞-0x dx e30.下列广义积分中收敛的是( )A.⎰+∞xdx sin B.⎰-11xdxC.⎰--012x 1dx D.⎰∞--0x dx e31.下列级数中发散的是( ) A.∑∞=--1n 1n n 1)1( B. ∑∞=-++-1n 1n )n 11n 1()1(C.∑∞=-1n nn1)1( D.∑∞=-1n )n 1( 32.下列级数中绝对收敛的是( ) A.∑∞=--1n 1n nn )1( B.∑∞=--1n 1n n1)1( C. ∑∞=-3n nn ln )1( D.∑∞=--1n 321n n)1(33.设+∞=∞→n n u lim ,则级数)u 1u 1(1n 1n n ∑∞=+-( ) A.必收敛于1u 1B.敛散性不能判定C.必收敛于0D.一定发散 34.设幂级数∑∞=-0n n n)2x (a在x=-2处绝对收敛,则此幂级数在x=5处 ( )A.一定发散B.一定条件收敛C.一定绝对收敛D.敛散性不能判定35.设函数z=f(x,y)的定义域为D={(x,y)|0≤x≤1,0≤y≤1},则函数f(x2,y3)的定义域为( )聞創沟燴鐺險爱氇谴净祸測樅。

长沙理工大学考试试卷4(数电试卷库)

长沙理工大学考试试卷4(数电试卷库)

长沙理工大学考试试卷4………………………………………………………………………………………………………试卷编号 4 拟题教研室(或教师)签名 教研室主任签名………………………………………………………………………………………………………课程名称(含档次) 课程代号专 业 电子信息工程 层次(本、专) 本科 考试方式(开、闭卷) 闭卷一、填空:(20分)1、(1001101)2=( )10=( )8=( )16;(27)10=( )8421BCD 。

2、客观事物的最基本的逻辑关系有____ 逻辑____ 逻辑和_____逻辑三种。

3、函数1F AB BC =+的反演式1F = ;函数2F A B C =+的对偶式'2F = 。

4、51个“1”连续进行异或运算,其结果是 。

5、基本R-S 触发器的特征方程为_______ ;约束条件是 。

6、按照逻辑功能的不同特点,数字电路可分为______________、_____________两大类。

7、J-K 触发器,当J=K=0时,触发器处于_________状态;J=0、K=1时,触发器状态为________;K=0、J=1时,触发器状态为_________;J=K=1时,触发器状态__________。

8、某中规模寄存器内有3个触发器,用它构成的扭环型计数器模长为 ;构成最长模计数器模长为 。

二、简答题(每小题5分,共15分)1、用基本公式和定理证明下列等式:()ABC BC A C AB B C AB ++=+2、给出J-K 触发器的特征方程,状态转移真值表,状态转移图。

3、请回答两个状态等价的条件是什么?三、一个组合电路具有三个输入端X 、Y 、Z ,一个输出端L ,其输入和输出波形如图所示,试用 3线—8线译码器74138设计电路,实现其功能。

(15分)第 1 页 (共3 页)四、已知逻辑电路及时钟CP 和X 的波形如图8所示,试写出触发器的驱动方程、状态方程,并画出触发器输出端1Q 和2Q 的波形,设触发器的初始状态为0。

长沙理工大学高等数学期末考试试卷及答案

长沙理工大学高等数学期末考试试卷及答案

一、单项选择题(共20分,5个小题,每小题4分)1.已知1=a,2=b ,且两个向量的夹角为4π,则=+b a ()。

A.1B.21+ C.2D.5答案:D 。

考点:向量的运算。

解答:()()b a b a b a+⋅+=+ba b b a a ⋅+⋅+⋅=2⎪⎪⎭⎫ ⎝⎛⋅⋅++=∧b a b a b a,cos 2225222221=⋅⋅++=。

注释:了解向量的各种运算和性质,掌握两向量的点积和叉积运算。

此题利用了2a a a=⋅。

2.函数xy z =在点()0,0处满足()。

A.连续但偏导数不存在B.连续且偏导数存在C.偏导数存在但不连续D.可微答案:B 。

考点:多元函数在一点连续、可导、可微的定义。

解答:令()xyy x f z ==,(1)连续()()0,00lim,lim 0000f xy y x f y x y x ===→→→→则()xy y x f z ==,在()0,0处连续。

(2)可导()()()000lim 0,00,lim0,000=∆-=∆-∆=→∆→∆x x f x f f x x x 类似()00,0=y f ,则()xy y x f z ==,在()0,0处可导。

(3)可微()()y x f y x f z ∆∆=-∆∆=∆0,0,()()()()()()⎪⎭⎫ ⎝⎛∆+∆=⎪⎭⎫⎝⎛∆+∆+∆+∆22220,00,0y x o y x o y f x f y x 因为()()2202200limlimy x xy y x yx y x y x +=∆+∆∆∆→→→∆→∆,当()y x ,沿kx y =趋向()0,0时,该极限不存在,则()()⎪⎭⎫⎝⎛∆+∆≠∆∆22y x o y x ,即()()0,0,f y x f z -∆∆=∆()()()()⎪⎭⎫⎝⎛∆+∆+∆+∆≠220,00,0y x o y f x f y x ,故()xy y x f z ==,在()0,0处不可微,偏导数不连续(偏导连续则可微的逆否命题)。

高数A(一)2017试卷1新(1) (1)

高数A(一)2017试卷1新(1) (1)

长沙理工大学考试试卷.....................................................................................课程名称(含档次) 高等数学A (一) 课程代号专 业 各专业 层次(本、专) 本科 考试方式(开、闭卷) 闭一.选择题(在每个小题四个备选答案中选出一个正确答案,本大题总分20分,每小题4分) 1. 201sinlim sin x x x x →的值为( ).A.1B.∞C.不存在D.02.若()⎩⎨⎧≥+<=0,2sin 0,x x b x e x f ax 在0x =处可导,则a ,b 的值应为( ).A.1,2==b aB.2,1==b aC.1,2=-=b aD.1,2-==b a3.设函数212xx y +=,在( ). A.()+∞∞-,单调增加 B.()+∞∞-,单调减少C.()1,1-单调增加,其余区间单调减少D.()1,1-单调减少,其余区间单调增加4.设()f x 连续,则()220x d tf x t dt dx -=⎰( ). A.()212f x B. ()2xf x C. ()22xf x D.()22xf x - 5.设线性无关的函数123,,y y y 都是二阶非齐次线性方程组()()()'''y p x y q x y f x ++=的解,12,C C 是任意常数,则该非齐次方程的通解是( )A.11223C y C y y ++B. ()1122123C y C y C C y +-+C. ()11221231C y C y C C y +---D. ()11221231C y C y C C y ++--二.填空题(本大题总分20分,每小题4分)1.已知函数()211f x x=+,则()()30f = . 2.微分方程''2'30y y y ++=的通解为y = .第 1 页(共 2 页)3. ()20ln cos limx x x →= . 4.22sin 1cos x x dx x ππ-⎛⎫+= ⎪+⎝⎭⎰ . 5.()21ln 1x dx x +∞=+⎰ .三.解答题(本大题总分60分,每小题10分)1.设函数()()()3ln 1sin ,f x x a x bx x g x kx =+++=.若()f x 与()g x 在0x →时是等价无穷小, 求,,a b k .2.设2arctan 25t x t y ty e =⎧⎨-+=⎩确定了函数()y y x =,求dy dx .3.计算1f x ⎰,其中()()1ln 1x t f x dt t +=⎰.4.证明:()21arctan ln 12x x x ≥+.5.过曲线)0y x =≥上点A 作切线,使该切线与曲线及x 轴围成的平面图形面积D 的面积为34. (1)求A 点的坐标;(2)求平面图形D 绕x 轴旋转一周所得旋转体的体积。

长沙理工大学数值分析习题集及答案

长沙理工大学数值分析习题集及答案

数值分析习题集(适合课程《数值方法A 》和《数值方法B 》)长沙理工大学第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -= ( n=1,2,…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字≈27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2?10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小.11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好?3--13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b c s a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x - ,且101101()(,,,)()()n n n n V x V x x x x x x x ---=-- .2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj jj x l x x k n =≡=∑ii) 0()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少? 9. 若2nn y =,求4n y ∆及4n y δ. 10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆. 12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a xa x --=++++ 有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x = ;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+ .16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦ 及0182,2,,2f ⎡⎤⎣⎦ . 17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限. 19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.试求三次样条插值并满足条件i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n == ,式中i x 为插值节点,且01n a x x x b =<<<= ,则[][][]()()()()()()()()()b aS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =. 3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式. 4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式. 5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一?9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nTx 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若nf L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差.15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()n n x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26.2y a bx =+.27.用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:(1)101()()(0)()hhf x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰;(4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分10x e dx-⎰并计算误差. 5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2baf f x dx b a f b b a 'η=---⎰; (3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰. 6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1x e dx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n n nnππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误()f x第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。

长沙理工大学 数字电子技术基础复习试卷及答案 (6)

长沙理工大学 数字电子技术基础复习试卷及答案  (6)

长沙理工大学数字电子技术基础复习试卷及答案数字电子技术试卷(06)一、数制转换(12)1、(10010111)2=( )16=( )102、(8C)16=( )2=( )103、( 127 )10=( )2=( )164、( 110101.11)8=( )165、(-1101B)原码=( )反码=( )补码二、选择填空题(12)1)、以下的说法中,——是正确的。

a) 一个逻辑函数全部最小项之和恒等于0b )一个逻辑函数全部最大项之和恒等于0c )一个逻辑函数全部最大项之积恒等于1d )一个逻辑函数全部最大项之积恒等于02)、若将一个TTL异或门(输入端为A、B)当作反相器使用,则A、B端应——连接。

a )A或B有一个接1 b )A或B有一个接0c )A和B并联使用d )不能实现3)、已知R、S是或非门构成的基本RS触发器的输入端,则约束条件为——。

a )RS=0 b )R+S=1c )RS=1d )R+S=04)、用8级触发器可以记忆——种不同的状态。

a )8b )16c )128d )2565)、由3级触发器构成的环形和扭环形计数器的计数模值依次为——。

a )8和8b )6和3c )6和8d )3和6三、用卡诺图化简法将下列逻辑函数化为最简与或形式(12)(1)、D C A D C A C B A D C ABD ABC Y +++++=(2)、D C B A D C B A D C A Y ++++=,给定约束条件为:0=+++++ABCD D ABC D C AB D C AB CD B A D C B A四、证明下列逻辑恒等式(方法不限)(12)(1)、1))(()(=+++++C B D B A C B D C C B A(2)D C A D C B A D AC D C B D C A ⊕+=+++⊕+)(五、设计一位二进制全减器逻辑电路。

(D=A-B-CI,A:被减数,B:减数,CI:借位输入,D:差,另有CO:借位输出)(16)六、分析如下时序电路的逻辑功能。

长沙理工大学近年高数上期末考题(1)

长沙理工大学近年高数上期末考题(1)

长沙理工大学考试试卷………………………………………………………………………………………………………………………一、填空题:(本题总分16分,每小题4分)1.已知11xf x x =-()(),为使f x ()在0x =点连续,则应补充定义0f =() .2.已知225lim 232n a n bn n →∞++=-,则a = ,b = .3.设f x ()的一个原函数是cos x ,则f x '=() .4.已知220d sin d d x t t x =⎰ .二、选择题:(本题总分16分,每小题4分) 1.设f x ()在0x x =处可导,则000limx f x x f x x∆→-∆-=∆()()( )A .0f x '-()B .0f x '-()C .0f x '()D .02f x '()2.下列函数在1, e []上满足拉格朗日定理条件的是( )A .ln ln xB .1ln x C .ln xD .ln 2x -() 3.根据估值定理,积分201d 103cos x x+⎰π的值在区间( )内A .7, 13[]B .0, 2[]πC .11, 137⎡⎤⎢⎥⎣⎦D .22, 137⎡⎤⎢⎥⎣⎦ππ 4.函数3226187f x x x x =--+()的极大值是( )A .10B .11C .17D .9三、计算题:(本题总分64分,每小题8分) 1.求极限120lim 1xx x →+().2.若隐函数y y x =()由方程22ln arctanyx y x+=()确定,求y x '(). 3.设曲线C 的参数方程是()2e ee e t tt tx y --⎧=-⎪⎨=+⎪⎩,求曲线C 上对应于ln2t =的点的切线方程.4.求x . 5.求0x ⎰.6.求330+e e d lim2xx t x t tx-→∞⎰. 7.求2 cos d x x x ⎰.8.已知曲线22y x x =-与2g x ax =()围成的图形面积等于323,求常数a . 四、证明题:(本题总分4分,每小题4分)设f x ()在a b [,]上连续,在a b (,)可导,且0f x '≤(),记d xaf t tF x x a=-⎰()(),证明:在a b (,)内有0F x '≤().长沙理工大学考试试卷…………………………………………………………………………………………………………………一、选择题:(本题总分20分,每小题4分)1.极限201sinlimsin x x x x→的值为( ) A .1 B .∞ C .不存在 D .02.若函数e , 0sin 2, 0ax x f x b x x ⎧<=⎨+≥⎩()在0x =处可导,则a ,b 的值为( )A .21a b ==,B .12a b ==,C .21a b =-=,D .21a b ==-,3.设函数221xf x x =+(),则f x ()在( ) A .-∞+∞(,)上单调增加 B .-∞+∞(,)上单调减少 C .11-(,)上单调增加,其余区间单调减少 D .11-(,)上单调减少,其余区间单调增加4.设f x ()连续,则22d d d x tf x t t x -=⎰() ( ) A .212f x () B .2xf x () C .22xf x ()D .22xf x -() 5.设线性无关的函数123, y y y ,都是二阶非齐次线性方程y p x y q x y f x '''++=()()()的解,12C C ,是任意常数,则该非齐次方程的通解可以是( )A .11223C y C y y ++B .1122123C y C y C C y +-+() C .11221231C y C y C C y +---()D .11221231C y C y C C y ++--()二、填空题:(本题总分20分,每小题4分) 1.已知函数211f x x =+(),则0f '''=() . 2.微分方程230y y y '''++=的通解为 . 3.20ln cos limx xx →= .4.22sin d 1cos x x x x-⎛⎫+= ⎪+⎝⎭⎰ππ .5.21ln d 1xx x +∞=+⎰(). 三、解答题:(本题总分60分,每小题10分)1.求函数ln 1sin f x x a x bx x =+++()(),3g x kx =(),若f x ()与g x ()在0x →时是等价无穷小,求a ,b ,k .2.设2arctan 2e 5tx t y ty =⎧⎨-+=⎩确定了函数y y x =(),求y x '(). 3.计算1x ⎰,其中1ln 1d x t f x t t +=⎰()(). 4.证明:21arctan ln 12x x x ≥+().5.过曲线0y x =≥()上点A 做切线,使该切线与曲线及x 轴围成的平面图形D 的面积等于34. (1) 求A 点的坐标;(2) 求平面图形D 绕x 轴旋转一周所得旋转体的体积. 6.设0e d xx f x x t f t t =--⎰()()(),其中f x ()是连续函数,求f x ().长沙理工大学考试试卷…………………………………………………………………………………………………………………一、选择题:(本题总分16分,每小题4分)1.设函数 22f x x x =-<<(),,则1f x -()的值域为( )A .[0,2)B .[0,3)C .[0,2]D .[0,3] 2.当0x →时,要1cos x -与等价,则a 应等于( )A .14B .4C .12D .23.设f x ()在0x 点可导,则000limx f x x f x x∆→-∆-=∆()()( )A .0f x '-()B .0f x '-()C .0f x '()D .02f x '()4.设f x ()在[1,1]-上连续,在(1,1)-内可导,且00f x M f '≤=(),() ,则必有( ) A .f x M ≥() B .f x M >() C .f x M ≤()D .f x M <()二、填空题:(本题总分20分,每小题4分)1.设x f t y tf t f t '=⎧⎨'=-⎩(),()(),则1d d t y x == .2.设y f x y =+(),其中f 具有一阶导数,且其一阶导数不等于1,则d d yx= . 3.设ln y f x =()且f x ''()存在,则22d d yx= .4.当0a >时,反常积分0e d ax x +∞-=⎰ .5.微分方程2yy x'=的通解为 . 三、计算题:(本题总分30分,每小题6分)1.求极限11lim 1ln x x x x →⎛⎫- ⎪-⎝⎭. 2.求函数2ln x y x=的单调区间.3.求不定积分1d 1x x x -⎰().4.求定积分0a x x ⎰,其中0a >. 5.求一阶线性微分方程d 1cos d y y x x x +=满足条件21x y π==的特解. 四、解答题:(本题总分20分,每小题10分)1.已知一平面图形由曲线0, 1, x x y ===x 轴围成,求(1) 此平面图形的面积;(2) 此平面图形分别绕x 轴和y 轴旋转所成的旋转体的体积. 2.求微分方程e x y y ''+=的通解. 五、应用题:(本题9分)已知制作一个背包的成本为40元,如果一个背包的售出价为x 元,售出的背包数由8040an b x x =-+--()给出,其中a , b 为正常数,问什么样的售出价格能带来最大利润?六、证明题:(本题5分)设f x ()在[,]a b 上连续,在(,)a b 内可导,且0f x '≤(),记d xaf t t F x x a=-⎰()(),证明:在a b (,)内有0F x '≤().长沙理工大学考试试卷…………………………………………………………………………………………………………………一、选择题:(本题总分16分,每小题4分)1.极限lim 3x x →∞+的值为( )A .2B .2-C .2±D .不存在2.下列函数f x ()在12-[,]上满足罗尔中值定理条件的是( )A.f x =() B .2f x x x =() C .arccos f x x =() D .cot 2xf x π=()3.下列函数中,哪一个不是sin 2x 的原函数 ( )A .2sin xB .2cos x -C .cos2x -D .225sin 4cos x x + 4.设f x ()在a b [,]上连续,则d d d ba x f x x x ⎡⎤=⎢⎥⎣⎦⎰() ( ) A .d b af x x ⎰() B .bf b af a -()() C .[]d ba x fb f a f x x-+⎰()()()D .d baf x x xf x +⎰()()二、填空题:(本题总分16分,每小题4分) 1.函数1arcsin 3x f x -=()的定义域为 . 2.201cos 3limx xx→-= . 3.设x a y x π=+,则y '= . 4.若0a <,= .三、计算题:(本题总分50分,每小题10分)1.计算极限sin cos 30e e lim x x xx x→-. 2.设参数方程(ln sin x t y ⎧=⎪⎨⎪=⎩,求22d d y x .3.计算不定积分12ln d 1xx x x+-⎰,其中1x <. 4.计算定积分291x -⎰.5.求函数2ln xy x=的单调区间与极值.四、应用题:(本题10分)在曲线21y x =+上求一点M ,使它到点050M (,)的距离最小. 五、证明题:(本题8分)设f x ()在(,)a b 内连续,可导且f x '()单调递增,0x a b ∈(,),记00000 f x f x x x x x x f x x xϕ-⎧≠⎪-=⎨⎪'=⎩()(),()(),,证明:()x ϕ在(,)a b 内也单调递增.长沙理工大学考试试卷…………………………………………………………………………………………………………………一、填空题:(本题总分20分,每小题4分) 1.如果0x →时,1cos x -与2sin 2xa 是等价无穷小,则a = . 2.函数22132x f x x x -=-+()的可去间断点为 .3.函数e x y x -=的拐点为 .4.已知y =d x y = .5.微分方程8150y y y '''++=的通解为 . 二、求下列极限:(本题总分12分,每小题6分)1.1x →; 2.011lim ln 1x x x →⎛⎫- ⎪+⎝⎭().三、求下列导数:(本题总分12分,每小题6分)1.设e sin x y x -=,求y ''; 2.已知tan y x y =+(),求y '. 四、求下列积分:(本题总分18分,每小题6分)1.x ; 2.2e d 1e xx x x +⎰(); 3.0222d 22x x x x -+++⎰. 五、解答题:(本题总分30分,每小题10分)1.当a 为何值时,1sin sin 33y a x x =+在3x π=处有极值?求此极值,并说明是极大值还是极小值.2.求抛物线22y x =与其在点112⎛⎫⎪⎝⎭,处的法线所围成的图形的面积.3.求微分方程2ln xy y x x '+=满足条件119y =-()的解.六、证明题:(本题8分)设f x ()在[0, ]a 上连续,证明:0aaf x dx f a x dx =-⎰⎰()().。

长沙理工大学数字电子技术基础复习试卷及答案(11)

长沙理工大学数字电子技术基础复习试卷及答案(11)

长沙理⼯⼤学数字电⼦技术基础复习试卷及答案(11)长沙理⼯⼤学数字电⼦技术基础复习试卷及答案数字电⼦技术试卷(12)⼀、选择题(20分)1.⼀个四输⼊端与⾮门,使其输出为0的输⼊变量取值组合有种A.15,B.7C.3D.12.已知(111)X=(1057)10,则X=。

A.4B.8C.16D.323.当逻辑函数有n个变量时,共有个变量取值组合?A.nB.2nC.n2D.2n4.在何种输⼊情况下,“与⾮”运算的结果是逻辑0。

A.全部输⼊是0 B.任⼀输⼊是0 C.仅⼀输⼊是0 D.全部输⼊是15.⼀个触发器可记录⼀位⼆进制代码,它有个稳态。

A.0B.1C.2D.3E.46.存储8位⼆进制信息要个触发器。

A.2B.3C.4D.87.对于D触发器,欲使Q n+1=Q n,应使输⼊D=。

A.08.下列触发器中,没有约束条件的是。

A.基本R S触发器B.主从R S触发器C.同步R S触发器D.边沿D 触发器9.若在编码器中有50个编码对象,则要求输出⼆进制代码位数为位。

A.5B.6C.10D.5010.欲设计0,1,2,3,4,5,6,7这⼏个数的计数器,如果设计合理,采⽤同步⼆进制计数器,最少应使⽤级触发器。

A.2B.3C.4D.8⼆、填空题(20分)1.⼀个基本R S触发器在正常⼯作时,它的约束条件是R+S=1,则它不允许输⼊S = 且R = 的信号。

2.数字电路按照是否有记忆功能通常可分为两类:、。

3.时序逻辑电路按照其触发器是否有统⼀的时钟控制分为时序电路和时序电路。

4. 描述同步时序电路有三组⽅程,指的是、和5. 写出图2-5所⽰函数Y1和Y2的逻辑表达式。

设电路元件参数的选取满⾜逻辑要求。

Y1= Y2=6、完成数制转换(78.8)16=()10 (76543.21)8=()16 (110110111)2=()10=()16 三、(10分)⽤卡诺图法将逻辑函数化为最简与或式。

(1) Y1(ABCD )=∑m (0,1,2,3,4,6,8,9,10,11,14)(2) Y2=D C A D C A C B A D C ABD ABC +++++四、(15分)试利⽤3线-8线译码器74LS138设计⼀个多输出的组合逻辑电路。

长沙理工大学往高等数学试题及答案 (2)

长沙理工大学往高等数学试题及答案 (2)

长沙理工大学高等数学试题及答案一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x 2.()002lim 1cos t t x x e e dt x -→+-=-⎰( )A .0B .1C .-1D.∞ 3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( ).lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( )A 。

不连续B 。

连续但左、右导数不存在 C.连续但不可导 D. 可导5.设C +⎰2-x xf(x)dx=e ,则f(x)=( )2222-x -x -x -x A.xe B.-xe C.2e D.-2e二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案.错填、不填均无分。

6.设函数f(x )在区间[0,1]上有定义,则函数f(x+14)+f (x —14)的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞++++<=8.arctan lim _________x x x→∞= 9。

已知某产品产量为g时,总成本是2g C(g)=9+800,则生产100件产品时的边际成本100__g ==MC 10。

函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________。

11。

高等数学机考复习题库

高等数学机考复习题库

高等数学机考复习题库2015年一、单选题(共80题)1. 极限(D).A.1B.C.D.2. 函数的定义域为,则函数的定义域为(C).A.[0,1];B.;C.;D.3. 当时,与比较,则(A).A.是较高阶的无穷小;B.是与等价的无穷小;C.是与同阶但不等价的无穷小;D.是较低阶无穷小.4. ( C )。

A.-1B.0C.1D.不存在5. 设, 则CA.B.C.D.6. 当时,是(C ).A.无穷小量;B.无穷大量;C.有界变量;D.无界变量.7. 函数是(A)函数.A.单调B.有界C.周期D.奇8. 设则常数( C )。

A.0B.-1C.-2D.-39. 下列函数在区间上单调增加的是(B).A.B.C.D.10. 设函数,则的连续区间为(D)A.B.C.D.11. 当时,与比较,则(A).A.是较高阶的无穷小量;B.是较低阶的无穷小量;C.与是同阶无穷小量,但不是等价无穷小;D.与是等价无穷小量.12. 下列函数中(B)是奇函数A.B.C.D.13. 如果存在,则在处(C ).A.一定有定义;B.一定无定义;C.可以有定义,也可以无定义;D.有定义且有14. (A )。

A.0B.1C.2D.不存在15. 极限 ( A )。

A.1/2B.1C.0D.1/416. 设,则(B)A.B.C.D.17. 函数的复合过程为(D).A.B.C.D.18. ( B ).A.1B.C.D.19. 存在是在连续的(B).A.充分条件,但不是必要条件;B.必要条件,但不是充分条件;C.充分必要条件;D.既不是充分条件也不是必要条件.20. 已知,求(A ).A.3B.2C.1D.021. 函数是(C)函数.A.单调B.无界C.偶D.奇22. ( A ).A.0B.1C.2D.23. 下面各组函数中表示同一个函数的是(C )。

A.;B.;C.D.24. 函数是(A)函数.A.单调B.有界C.周期D.奇25. (B)A.B.C.D.26. 设求的值为 ( D )A.B.C.D.27. 当时,与无穷小量等价的无穷小量是(C ). A.B.C.D.28. ( D ).A.-1B.0C.1D.不存在29. 设,则(B )A.B.C.D.30. 设,则(A )A.B.C.D.31. 设,则DA.B.C.D.132. 极限=( A )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档