鲁教版七年级数学上下册试题及答案
鲁教版五四制七年级上册期末考试数学试题及答案
2018—2019学年度第一学期期中考试七年级数学试题一、选择题(本题有12小题,每小题4分,共48分,每小题只有一个选项是正确的,不选、多选、错选,均不得分) 题号 12345678910 11 12 答案1.下列长度的三根木棒首尾相接,不能做成三角形框架的是 A .4cm 、7cm 、3cm B .7cm 、3cm 、8cm C .5cm 、6cm 、7cm D .2cm 、4cm 、5cm2.京剧是我国的国粹,下列京剧脸谱是轴对称图形的是A .B .C .D .3.若直角三角形的两直角边长分别为5cm ,12cm ,则这个直角三角形的斜边长是 A .169cm B .12cm C .13cm D .不能确定 4.如图,△ABC ≌△ADE ,若∠B =80°,∠C =30°,则∠EAD 的度数为 A .80° B .75° C .60° D .70°第4题图 第5题图 第6题图5.如图,已知∠1=∠2,则下列条件中,不能使△ABC ≌△DBC 成立的是 A .AB =CD B .AC =BD C .∠A =∠D D .∠ABC =∠DCB6.如图,图中所有的三角形都是直角三角形,所有的四边形都是正方形,已知正方形A 、B 、C 、D 的面积分别为12、16、9、12,那么图中正方形E 的面积为 A .144 B .147 C .49 D .1487.如图△ABC 中,已知D 、E 、F 分别是BC 、AD 、CE 的中点,且S △ABC =4,那么阴影部分的面积等于A .2B .1C . 1 2D . 148.一等腰三角形的周长为20,两条边的比为1:2,那么其底边长为A .10B .4C .4或10D .5或89.在△ABC中,已知∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H 是BE和CF的交点,∠EHF的度数是A.50°B.40°C.130°D.120°第7题图第9题图第11题图10.现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为A.30厘米B.40厘米C.50厘米D.以上都不对11.如图,已知AB∥DC,AD∥BC,BE=DF,则图中全等的三角形有A.6对B.5对C.4对D.3对12.如图,在小方格中画与△ABC成轴对称的三角形(不与△ABC重合),这样的三角形能画出A.1个B.2个C.3个D.4个D EAC B第12题图第13题图第14题图二、填空题(共6小题,每小题4分,满分24分)13. 如图,CD=BD,要使△ACD≌△ABD,则还需要添加一个条件:.(不再添加其它图形和字母,只要写出一个正确答案即可)14.如图,在△ABC中,∠C=90°,线段AB的垂直平分线DE交BC于D,垂足为E,若∠CAB=65°,则∠CAD= °.15.若直角三角形的斜边长为25cm,一条直角边长为20cm,则斜边上的高为cm.16.用直尺和圆规作一个角等于已知角的示意图,如图所示,则说明∠A′O′B′=∠AOB的依据是全等三角形的相等.判定三角形全等的方法是.第16题图第17题图第18题图17.如图,在△ABC中,∠A、∠B的平分线相交于点I,若∠C=70°,则∠AIB= 度,若∠AIB=155°,则∠C= 度.18.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,按图中方法将△BCD沿BD折叠,使点C落在边AB上的点C′处,则C′D的长为.三、解答题(共8小题,共78分)19.如图,点B,D,C,F在一条直线上,AB=EF,∠ABC=∠EFD,BD=CF.请判断线段AC与DE的数量关系,并说明理由.20.如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.21.如图,小亮将升旗的绳子沿旗杆拉直,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计)22.如图,在△ABC中,AB=AC,∠C=2∠A,BD平分∠ABC.请找出图中其他的等腰三角形,并选择其中的一个说明理由.23.如图,在△ABC中,AB=AC,AD平分∠BAC.请说明:∠DBC=∠DCB.24.如图,在△ABC中,AB=AC,点D,点E分别是BC,AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.25.学校广场有一块如图所示的草坪,已知AB=3米,BC=4米,CD=12米,DA=13米;且AB⊥BC,求这块草坪的面积.26.已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D(要求:尺规作图,保留作图痕迹,不必写作法和理由);(2)作AB的中点E(要求同(1));(3)连接DE,请说明△ADE≌△BDC的理由.C2018—2019学年度第一学期期中考试七年级数学参考答案一、选择题(本题有12小题,每小题4分,共48分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 AB CDA C BB DD AC 二、填空题:(每小题4分,共24分)题号 1314 15 16 17 18 答案∠1=∠2或∠ADC =∠ADB 或AC =AB4012对应角,边边边125,1303三、解答题:(共8小题,共78分)19.答:AC =DE . 理由:……………………1分 ∵BD =CF ,∴BD +CD =CF +CD ,即BC =FD ,……………………………………3分 在△ABC 和△EFD 中,⎩⎪⎨⎪⎧AB =EF ,∠ABC =∠EFD , BC =FD .∴△ABC ≌△EFD (SAS ),∴AC =DE .………………………………………7分20.解:(1)如图所示:△ABC 的面积: 12 ×3×5=7.5;………………2分(2)如图所示:…………………………………………………………4分 (3)A 1(1,5),B 1(1,0),C 1(4,3).………………………7分21.解:设旗杆高度为x ,则AC =AD =x ,AB =(x -2)m ,BC =8m ,………………3分 在Rt △ABC 中,AB 2+BC 2=AC 2,即(x -2)2+82=x 2,…………………………………7分 解得:x =17,即旗杆的高度为17米.…………………………………………………………………10分22.解:△ABD 、△BCD .理由:∵在△ABC 中,AB =AC ,∠C =2∠A ,∴∠ABC =∠C =2∠A ,………………………………………………2分 ∵∠A +∠ABC +∠C =180°, ∴∠A +2∠A +2∠A =180°, 解得:∠A =36°,……………………………………………………5分 ∴∠ABC =∠C =72°, ∵BD 平分∠ABC , ∴∠ABD =∠DBC =36°, ∴∠A =∠ABD =36°,∠BDC =∠C =72°,∴△ABD 与△BCD 是等腰三角形.………………………………10分 23.证明:∵AD 平分∠BAC ,∴∠BAD =∠CAD .……………………………………2分 ∴在△ACD 和△ABD 中⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAD , AD =AD ., ∴△ABD ≌△ACD (SAS ),…………………………6分 ∴BD =CD ,∴∠DBC =∠DCB .……………………………………10分 24.解:∵AB =AC , ∴∠B =∠C , ∵∠B =50°, ∴∠C =50°,………………………………3分 ∴∠BAC =180°-50°-50°=80°, ∵∠BAD =55°, ∴∠DAE =25°,…………………………6分 ∵DE ⊥AD , ∴∠ADE =90°, ∴∠AED =90°-25°=65°, ∴∠DEC =180°-65°=115°.………………10分答:这块草坪的面积是36平方米.…………………………………………12分26.(1)解:如图,BD 为所作;…………………………3分 (2)解:如图,点E 为所作;………………………………6分(3)理由:∵BD 为角平分线,∴∠CBD =∠ABD = 1 2 ∠ABC = 12 ×60°=30°,∴∠CBD =∠ABD =∠A =30°,∴AD =BDRt △ABC 中,∠C =90°,∠A =30° ∴BC = 1 2AB∵E 是AB 中点,AD =BD ∴AE = 12 AB ,DE ⊥AB∴AE =BC ,∠AED =∠C =90° 在△ADE 和△BDC 中⎩⎪⎨⎪⎧∠CBD =∠A , AE =BC ,∠AED =∠C ., ∴△ADE ≌△BDC .…………………………………………12分。
鲁教版初一数学上册期末试题(2024-2025)
初一数学第一学期期末水平测试试卷一、选择题(每小题3分,共30分) 1、下面说法中正确的是( )(A)32和23是互为相反数 (B)81和-0.125是互为相反数(C )-(-18)是 负数 (D)两个正数的和肯定是正数2、一个点从数轴上的原点起先,先向右移动3个单位长度,再向左移动5个单位长度,终点表示的数是( ) (A)-1 (B)0 (C)-2 (D)23、肯定值大于2小于5的全部整数的积是( ) (A )-144 (B )144 (C )0 (D )74、一个物体由多个完全相同的小正方体组成,它从三个方向看到的形态图如图所示,那么组成这个物体的小正方体的个数为( ) (A)2个 (B)3个 (C)5个 (D)10个5、计算:4÷(-1.6)-47÷2.5的值为( )(A )-1.1 (B) -1.8 (C) -3.2 (D) -3.96、在解方程21-x -332+x =3 时,去分母正确的是( )(A)3(x -1)-2(2+3x)=3 (B) 3(x -1)-2(2x+3)=18 (C)3x -1-4x+3=3 (D) 3x -1-4x+3=18 7、计算(3a 2-2a+1)-(2a 2+3a -5)的结果是( )(A) a 2-5a+6 (B) a 2-5a -4 (C) a 2+a -4 (D) a 2+a+68、若代数式6x -5的值与-41互为倒数,则x 的值为( )(A )-61 (B) 61 (C)23 (D)879、假如代数式2a 2+3a 的值是5,则代数式6a 2+9a+5的值是( )(A)18 (B)16 (C)15 (D)2010、如图给定的是纸盒的外表面,下面能由它折叠而成的是( )二、填空题(每小题3分,共30分)11、某药品说明书上标明药品保存的温度是(20±2)℃,该药品在_________℃范围内保存才合适。
12、方程5.05.14-x =1-1.01.1-x 将小数化为整数变形得51540-x =1-()113、依据图5所示的操作步骤,若输入x 的值为-3,则给出的值为___________。
鲁教版七年级数学上下册试题及答案
七年级数学试题(时间:120分钟,满分120分)一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个是正确的)1、如图所示,将三角形绕直线l 旋转一周,可以得到图(E)所示的立体图形的是( ) l l l l lA .B .C .D . E2、若x 是6的相反数,y 比x 的相等数小2,则x -y =( )A .4 B.8 C.-10 D.-23、某班共有学生x 人,其中女生占45%,那么男生人数是( )A .45%x B.(1-45%)x C.45%x D.145%x-4、a 是一个三位数,b 是一个一位数,如果把b 放在a 的左边,那么所组成 的四位数是( )A .ba B.1000b+a C.10a+b D.b+a 5、若│a │=5,b=-2,那么│a+b │的值是( )A .7 B.3 C.-7或-3 D.+7或+3 6、下面四个图形折叠后能围成如图所示正方体的图形是()7、有一列数1a 2a 3a ……n a ,从第二个数开始,每一个数都等于1与它前面那个数的差,若1a =2,则2007a 为( ) A .-1 B.2 C.12D.2007 8.24x x k ++是一个完全平方式,k 的值为( ) A .2B . 4C .16D .-49.如右图,直线a 与直线b 互相平行,则|x y -|的值是( )A .20B .80C .120D .18010.如右图,直线EO ⊥BC 于点O ,∠BOC =3∠1,OD 平分 ∠AOC ,则∠2的度数是( ) A .30° B .40° C .60° D .以上结果都不正确11.表格列出了一项实验的统计数据,表示皮球从高度d 落下时弹跳高度b 与下落高d 的关系,试问下面的哪个式子能表示这种关系(单位cm )( )d 50 80 100 150 b 25 40 50 75A .2b d =B .2b d =C .25b d =+D .2db =12.下列图象中,哪个图象能大致刻画在太阳光的照射下,太阳能热水器里面的水的温度与时间的关系( )A. B. C. D.二、填空题(直接填写最后结果,本题共8个小题,每小题3分,共24分)13、某地气温从-1C 下降3C 后为___C 14、已知4m a 3b 与-32a n b 是同类项,则-m n =___ 15、绝对值大于1而小于5的所有整数的和是___ 16、若x +22y +5的值是7,则代数式3x +62y +4的值是___17、做拉面时,拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面的草图所示:这样捏合到第___次后可以拉出128根面条。
鲁教版五四制七年级数学上册1.5利用三角形全等测距离试题
1.5 利用三角形全等测距离1、如图, O为 AC,BD的中点,则图中全等三角形共有()对.2、如图, AB=AD, AC=AE,∠ BAD=∠ CAE,那么△ ACD≌△ AEB的依照是()3、如图,要丈量河岸相对两点A,B 的距离,能够从 AB的垂线 BF 上取两点C,D. 使 BC=CD,过 D 作 DE⊥ BF,且 A, C,E 三点在向来线上,若测得DE=15米,即可知道AB也为 15 米,请你说明原因.4、要丈量圆形工件的外径,工人师傅设计了以下图的卡钳,O 为卡钳两柄交点,且有OA=OB=OC=OD,假如圆形工件恰巧经过卡钳AB,则次工件的外径必是CD之长了,你能说明此中的道理吗?5、如图,为修公路,需丈量出被大石头阻拦的∠BAC的大小,为此,小张师傅便在直线AC上取点 D 使 AC=CD,在 BC的延伸线上取点 E,使 BC=CE,连 DE,则只需测出∠ D的度数,则知∠ A 的度数也与∠ D 的度数同样了,请说明原因 .6、有一座锥形小山,如图,要丈量锥形两头A, B 的距离,先在平川上取一个能够直接到达 A 和 B 的点 C,连结 AC并延伸到 D,使 CD=CA,连结 BC并延伸到 E,使 CE=CB,连结 DE,那么量出 DE的长,就是 A,B 的距离,你能谈谈此中的道理吗?7、以下图,要丈量湖中小岛 E 距岸边 A 和 D 的距离,作法以下:( 1)任作线段AB,取中点 0;( 2)连结 DO并延伸使 DO=CO;(3)连结 BC;( 4)用仪器丈量 E, 0 在一条线上,并交 CB于点 F,要丈量 AE, DE,只须丈量 BF, CF 即可,为何?8、如图,沿AC方向开山修路,为了加速施工进度,要在山的另一边同时施工,工人师傅在 AC上取一点B,在小山外取一点D,连结 BD,延伸,使DF=BD,过 F 点作 AB 的平行线MF,连结 MD,并延伸,在延伸线上取一点 E,使 DE=DM,在 E 点动工就能使 A,C, E 成一条直线,你知道此中道理吗?答案: 1、C 2 、 C 3 、由题意可知,∠ABC=∠ EDC=90o, BC=CD,∠ BCA=∠ DCE,进而△ ABC≌△ EDC,故 AB=DE=15米 4 、明显由 OA=OD, OB=OC,∠ AOB=∠DOC,可知△ AOB≌△ COD,进而 AB=CD. 5 、易知△ ABC≌△ DEC,故∠ A=∠ D6、由条件可知△ABC≌△ DCE,故 AB=DE7、由条件可知,△AOD≌△ BOC,∴ BC=AD,又∠ A=∠ B,∠ AOE=∠ BOF, BO=AO,故三角形△ AOE≌△ BOF,∴ BF=AE,进而 DE=CF,所以只需测出BF,CF 即可知 AE,DE的长度了 .8、由于 BD=DF,DE=DM,∠ BDE=∠ MDF,所以△ BDE≌△ FDM,故∠ BEM=∠M,所以 BE∥MF,又由于 AB∥NF,依据过直线外一点有且只有一条直线与已知直线平行,故 A, C,E 在一条直线上 .利用三角形全等测距离(总分 100 分时间40分钟)解答题 :(每题 25 分 )1.如图 ,A 、 B 两个建筑分别位于两岸,要测得它们之间的距离 ,能够从 B 出发沿河岸面一条射线 BF,在 BF 上截取 BC=CD, 过 D 作 DE∥ AB, 使 E、 C、 A 在同一条直线上 , 则 DE 的长就是 A 、之间的距离 ,请你说明道理 ,你还可以想出其余方法吗 ?AFB CE2.如图 ,有一湖的湖岸在 A 、 B 之间呈一段圆弧状,AB 间的距离不可以直接测得,你能用已学过的知识或方法来设计丈量方案,求出 A 、 B 间的距离吗 ?AB3.请利用我军战士测隔河相望的仇敌堡垒的方法,试测你校操场中旗杆底座到足球门的距离(不可以直接丈量),并考证战士的做法,你能否还有其余的方法? 并与同学们进行沟通.4.请利用课本中叔叔教小明测池塘两头距离的方法,试测花坛对角线的长度(不可以直接丈量),你能否还有其余的方法?并与同学们进行沟通.初中数学试卷。
初中数学鲁教版(五四制)七年级上册第一章 三角形4 三角形的尺规作图-章节测试习题
章节测试题1.【题文】画一个三角形,再画一个与其全等的图形.【答案】见解析【分析】作任意再作一个三角形与它全等即可.【解答】解:1,作任意 2,作射线在上截取 3,以为圆心, 为半径画圆4,以为圆心, 为半径画圆,交圆于,5,连接得,全等于2.【答题】下列尺规作图,能判断是边上的高是().A.B.C.D.【答案】B【分析】过点A作BC的垂线,垂足为D,则AD即为所求.【解答】A选项:AD为BC边上的中线,不符合题意;B选项:AD为BD边上的高;C选项:AD为∠BAC的角平分线;D选项:AD不是BC边上的高.选B.方法总结:掌握利用尺规作图作三角形的高的方法.3.【答题】已知三边作三角形时,用到所学知识是( )A. 作一个角等于已知角B. 作一个角使它等于已知角的一半C. 在射线上取一线段等于已知线段D. 作一条直线的平行线或垂线【答案】C【分析】根据三边做三角形用到作一条线段等于已知线段的基本作图方法.【解答】已知三边作三角形时,用到的三角形的判定方法是SSS定理,而第一条边的作法,需要在射线上截取一条线段等于已知的线段。
故C。
方法总结:作一个三角形等于已知的三角形,有多种方法,本题是其中的三边作图,用的是SSS判定定理。
4.【答题】已知三角形的两边及其夹角,求作这个三角形时,第一步骤应为( )A. 作一条线段等于已知线段B. 作一个角等于已知角C. 作两条线段等于已知三角形的边,并使其夹角等于已知角D. 先作一条线段等于已知线段或先作一个角等于已知角【答案】D【分析】利用基本作图先要作一个线段等于已知线段,再作一个角等于已知角或先作一个角等于已知角,然后便于作边.【解答】已知三角形的两边及其夹角,求作这个三角形,可以先A法,也可以先B法,但是都不全面,因为这两种方法都可以,故选D.。
5.【答题】利用尺规进行作图,根据下列条件作三角形,画出的三角形不是唯一的是()A. 已知三条边B. 已知三个角C. 已知两角和夹边D. 已知两边和夹角【答案】B【分析】看是否符合所学的全等的公理或定理即可.【解答】A、符合全等三角形的判定SSS,能作出唯一直角三角形;B、不正确,已知三个角可画出无数个三角形;C、正确,符合ASA判定;D、正确,符合SAS判定.选B.方法总结:此题主要考查由已知条件作三角形,可以依据三角形全等的判定来做.6.【答题】用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上就是已知的条件是()A. 三角形的两条边和它们的夹角B. 三角形的三边C. 三角形的两个角和它们的夹边D. 三角形的三个角【答案】A【分析】由已知条件可判定已知条件为两边和它们的夹角作三角形.【解答】由已知条件可判定已知条件为两边和它们的夹角作三角形.选A.7.【答题】已知∠AOB,用尺规作一个角∠A’O’B’等于已知角∠AOB的作图痕迹如图所示,则判断∠AOB=∠A’O’B’所用到的三角形全等的判断方法是()A. SASB. ASAC. AASD. SSS【答案】D【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS得到三角形全等,由全等三角形的性质,可得全等三角形的对应角相等.【解答】如图,连接CD、C’D’,∵在△COD和△C’O’D’中,∴△COD≌△C’O’D’(SSS),∴∠AOB=∠A’O’B’选D.8.【答题】用尺规作图,已知三边作三角形,用到的基本作图是( )A. 作一个角等于已知角B. 作已知直线的垂线C. 作一条线段等于已知线段D. 作角的平分线【答案】C【分析】根据三边作三角形用到的基本作图是:作一条线段等于已知线段.【解答】已知三边作三角形实质就是把三边的长度用圆规画出,选C.9.【答题】如图,小敏做试题时,不小心把题目中的三角形用墨水弄污了一部分,她想在一块白纸上作一个完全一样的三角形,然后粘贴在上面,她作图的依据是( )A. SSSB. SASC. ASAD. AAS【答案】C【分析】图中的三角形已知一条边以及两个角,利用全等三角形的判定(ASA)可作图.【解答】根据图形,可以确定两角及其夹边.选C.10.【答题】根据下列已知条件,能唯一画出△ABC的是( )A. ∠A=36°,∠B=45°,AB=4B. AB=4,BC=3,∠A=30°C. AB=3,BC=4,CA=1D. ∠C=90°,AB=6【答案】A【分析】看是否符合所学的全等的公理或定理及三角形三边关系即可.【解答】A.∠A=36°,∠B=45°,AB=4,利用原理“ASA”可以画出唯一的三角形;B、C、D都不能唯一的作出三角形.选A.11.【答题】利用基本作图方法,不能作出唯一三角形的是( )A. 已知两边及其夹角B. 已知两角及其夹边C. 已知两边及一边的对角D. 已知三边【答案】C【分析】三角形全等的判定定理有SAS,ASA,AAS,SSS,根据以上内容判断即可.【解答】A. 已知两边及其夹角,作图依据“SAS”;B. 已知两角及其夹边,作图依据“ASA”;C. 已知两边及一边的对角,不能做出唯一的三角形;D. 已知三边,作图依据“SSS”.选C.12.【答题】已知三边作三角形,用到的基本作图是( )A. 作一个角等于已知角B. 作已知直线的垂线C. 作一条线段等于已知线段D. 作一条线段等于已知线段的和【答案】C【分析】根据三边作三角形用到的基本作图是:作一条线段等于已知线段.【解答】已知三角形的三边,求作符合要求的三角形,其作图依据是“SSS”.故用到的基本作图是:作一条线段等于已知线段.选C.13.【答题】下列各条件中,能作出唯一的△ABC的是( )A. AB=4,BC=5,AC=10B. AB=5,BC=4,∠A=40°C. ∠A=90°,AB=10D. ∠A=60°,∠B=50°,AB=5【答案】D【分析】要能做出唯一三角形,则需要已知三边,两边及夹角,两角及夹边,【解答】本题中A选项中的三边不能确定三角形,B选项中不是夹角,C选项中缺少一个条件,选D.14.【答题】下列选项所给条件能画出唯一的是()A. ,,B. ,,C. ,D. ,,【答案】A【分析】要能做出唯一三角形,则需要已知三边,两边及夹角,两角及夹边,【解答】A中两角夹一边,形状固定,所以可作唯一三角形;B中∠B并不是AB,AC的夹角,所以可画出多个三角形;C中两个锐角也不确定,也可画出多个三角形;D中AC与BC两边之差大于第三边,所以不能作出三角形,选A.15.【答题】如图,根据图中作图痕迹,可以得出作三角形的依据分别是:(1)______;(2)______;(3)______(图中虚线表示最后作出的线段)【答案】SAS,SSS,ASA【分析】从作图痕迹可知是通过作两边和两边的夹角得到三角形的,作图的依据是SAS.从作图痕迹可知是通过作三边得到三角形的,作图的依据是SSS.从作图痕迹可知是通过作两角和夹边得到三角形的,作图的依据是ASA.【解答】解:答案为:16.【答题】尺规作三角形的类型:尺类型依据规作图已知两边及其夹角作三角形______已知两角一边作三角形______(或)已知三边作三角形______【答案】SAS,ASA,SSS【分析】判定三角形全等的方法有:【解答】解:已知两边及其夹角作三角形,其依据是:SAS.已知两角一边作三角形,其依据是:ASA(或).已知三边作三角形, 其依据是:故答案为:17.【答题】作三角形用到的基本作图是:(1)______;(2)______;【答案】作一个角等于已知角,作一条线段等于已知线段【分析】根据三边作三角形用到的基本作图是:作一条线段等于已知线段.【解答】解:作三角形用到的基本作图是:(1). 作一个角等于已知角(2). 作一条线段等于已知线段故答案为:(1). 作一个角等于已知角(2). 作一条线段等于已知线段.18.【答题】下列作图中:①用量角器画出;②作,使;③连接;④用直尺和三角板作的平行线,属于尺规作图的是______.(填序号)【答案】②③【分析】尺规作图的定义:只能用没有刻度的直尺和圆规作图【解答】属于尺规作图的是②、③.故答案为②③.19.【答题】已知,分别以射线、为始边,在的外部作,,则与的位置关系是______.【答案】互相垂直或重合【分析】根据题意,结合图形,利用已知条件及角的和差关系,求∠COD度数.【解答】①∵∠AOB=22.5°,∴∠AOC=22.5°,∠BOD=45°,∴∠COD=90°,此时OC⊥OD;②∵∠AOB=22.5°,∴∠AOC=22.5°,∠BOD=45°,∴∠BOC=45°,此时OC与OD 重合.故答案为互相垂直或重合.方法总结:本题关键在于考虑到两个可能性.20.【答题】利用尺规作三角形,有三种基本类型:(1)已知三角形的两边及其夹角,求作符合要求的三角形,其作图依据是“______”;(2)已知三角形的两角及其夹边,求作符合要求的三角形,其作图依据是“______”;(3)已知三角形的三边,求作符合要求的三角形,其作图依据是“______”.【答案】SAS,ASA,SSS【分析】根据三角形全等的判定定理可得答案.【解答】根据SAS—两边及其夹角分别相等的两个三角形全等;ASA—两角及其夹边分别相等的两个三角形全等;SSS—三边分别相等的两个三角形全等.故答案:(1)SAS、 (2)ASA 、(3)SSS.。
数学七上鲁教版习题答案
数学七上鲁教版习题答案数学是一门让人又爱又恨的学科,对于很多学生来说,解题是一件头疼的事情。
而对于七年级的学生来说,数学的难度也有所增加。
鲁教版七年级数学教材是一本较为常用的教材,下面将为大家提供一些习题的答案,希望能够帮助到大家。
第一章:整数1. 用整数表示以下海拔高度:a) 北京市的海拔高度是43米,用整数表示为+43。
b) 雅鲁藏布江的海拔高度是-638米,用整数表示为-638。
2. 求和:a) (-4) + 6 + (-8) + 2 = -4 + 6 - 8 + 2 = -4。
b) 5 + (-7) + 3 + (-9) = 5 - 7 + 3 - 9 = -8。
3. 求差:a) 7 - (-3) = 7 + 3 = 10。
b) (-5) - 9 = -5 + (-9) = -14。
4. 乘积和商:a) (-2) × 3 = -6。
b) (-8) ÷ (-4) = 2。
第二章:代数式1. 计算代数式的值:a) 当x = 3时,2x - 5 = 2 × 3 - 5 = 6 - 5 = 1。
b) 当y = -2时,3y + 4 = 3 × (-2) + 4 = -6 + 4 = -2。
2. 合并同类项:a) 2x + 3x - 5x = (2 + 3 - 5)x = 0x = 0。
b) 4y - 2y + 6y = (4 - 2 + 6)y = 8y。
3. 分配律:a) 3(x + 2) = 3x + 3 × 2 = 3x + 6。
b) 2(3y - 5) = 2 × 3y - 2 × 5 = 6y - 10。
第三章:图形的认识1. 判断正方形和长方形:a) 一个有四个边长相等的四边形是正方形。
b) 一个有四个角都是直角的四边形是长方形。
2. 计算图形的周长:a) 一个正方形的边长是4cm,周长是4 × 4 = 16cm。
2023—2024学年鲁教版(五四制)数学七年级上册1
拓展:如图,已知△ABC≌△DBE,点D在AC上,BC与 DE交于点P. (1)若∠ABE=160°,∠DBC=30°,求∠CBE的度数; (2)若AD=DC=3 cm,BC=4.5 cm,求△DCP与△BPE 的周长之和.
回顾
1、回忆这节课,学习了全等三角形的哪些知识? 全等三角形的概念、性质、表示方法、对应写法等
例1如图,已知△ABE≌△ACD. (1)如果BE=6,DE=2,求BC的长; (2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度数.
练习:如图,已知 △ABD≌△CAE,∠BDA=∠CEA=90°, 试说明:DE=BD+CE.
全等三角形性质的应用:
(1)求线段的长:全等三角形的对应边相等,可以 直接确定对应边的数量关系,也可以间接求相关 线段的长度. (2)求角的度数:全等三角形的对应角相等,可以 直接确定对应角的数量关系,也可以间接求相关 角的度数.
(2)请指出全等△ ABE 和△ CAF的 对应边和对应角!
公共角是对应角
(3)这两个全等三角形的对应边、对 应角呢?
A
对顶角也是对应角
C B
D
E
确定全等三角形对应元素的方法:
(1)字母顺序法:根据书写规范,按照对应顶点确定对 应边、对应角. (2)图形特征确定法:①有公共边,公共边一定是对应 边;②有公共角,公共角一定是对应角;③有对顶角,对 顶角一定是对应角;④两个全等三角形的最大边(角) 是对应边(角);最小的边(角)是对应边(角).
2、找全等三角形对应边、对应角的方法
A、大边对应大边,大角对应大角 记住哟!
B、公共边是对应边,公共角是对应角,对顶 角也是对应角。
C、对应边所对的角是对应角,对应角 所对的边是对应边
鲁教版五四制七年级上册数学全册各个单元测试卷(及答案)
鲁教版五四制七年级上册数学全册试卷(五套单元试卷+一套期末测试卷)第一章测试卷一、选择题(每题3分,共30分)1.若三角形的两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D,则△ABC中AC 边上的高是线段()A.AE B.CD C.BF D.AF3.如图,△ABC≌△EDF,AF=20,EC=8,则AE等于()A.6B.8C.10D.124.下列各条件中,能作出唯一的△ABC的是()A.AB=4,BC=5,AC=10B.AB=5,BC=4,∠A=30°C.∠A=90°,AB=10D.∠A=60°,∠B=50°,AB=55.如图,AB∥ED,CD=BF,若要说明△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充6.如图,在△ABC中,∠ABC,∠ACB的平分线分别为BE,CD,BE与CD相交于点F,∠A=60°,则∠BFC等于()A.118°B.119°C.120°D.121°7.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是()A.14B.17C.22D.268.如图,下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB =A′B′.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1B.2C.3D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC ,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF等于()A.1B.2C.3D.410.如图,△ABC 的三个顶点和它内部的点P 1,把△ABC 分成3个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成5个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成7个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成()个互不重叠的小三角形.A .2nB .2n +1C .2n -1D .2(n +1)二、填空题(每题3分,共24分)11.一个三角形的其中两个内角为88°,32°,则这个三角形的第三个内角的度数为________.12.要测量河两岸相对的两点A ,B 间的距离(AB 垂直于河岸BF ),先在BF 上取两点C ,D ,使CD =CB ,再作出BF 的垂线DE ,且使A ,C ,E 三点在同一条直线上,如图,可以得到△EDC ≌△ABC ,所以ED =AB .因此测得ED 的长就是AB 的长.判定△EDC ≌△ABC 的理由是____________.13.如图,E 点为△ABC 的边AC 的中点,∥AB ,若MB =6 cm ,=4 cm ,则AB=________.14.用直尺和圆规作一个角等于已知角,如图所示,则要说明∠A′O′B′=∠AOB,需要说明△C′O′D′≌△COD,则这两个三角形全等的依据是____________(写出全等的简写).15.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是____________;已知四边形EFMN的四边长分别为e,f,m,n,若e=3,f =4,n=10,则m的取值范围是____________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为________.17.如图是由相同的小正方形组成的网格,点A,B,C均在格点上,连接AB,AC,则∠1+∠2=________.1(AB 18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=2+AD),若∠D=115°,则∠B=________.三、解答题(19题7分,20,21题每题8分,25题13分,其余每题10分,共66分)19.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC,求∠EDC的度数.20.如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.21.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD -AB.22.如图,是一座大楼相邻的两面墙,现需测量外墙根部两点A,B之间的距离(人不能进入墙内测量).请你按以下要求设计一个方案测量A,B的距离.(1)画出测量图案;(2)写出简要的方案步骤;(3)说明理由.23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.24.如图,在R t△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,求线段AE的长.25.已知点P是R t△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B 向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(温馨提示:直角三角形斜边上的中线等于斜边的一半)答案一、1.A2.C :因为BF ⊥AC 于点F ,所以△ABC 中AC 边上的高是线段BF ,故选C.3.A :因为△ABC ≌△EDF ,所以AC =EF .所以AE =CF .因为AF =20,EC =8,所以AE =CF =6.故选A.4.D5.B :由已知条件AB ∥ED 可得,∠B =∠D ,由CD =BF 可得,BC =DF ,再补充条件AB =ED ,可得△ABC ≌△EDF ,故选B.6.C 7.C 8.B119.B :易得S △ABE =3×12=4,S △ABD =2×12=6,所以S △ADF -S △BEF =S △ABD -S △ABE =2.10.B :△ABC 的三个顶点和它内部的点P 1,把△ABC 分成的互不重叠的小三角形的个数=3+2×0;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成的互不重叠的小三角形的个数=3+2×1;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成的互不重叠的小三角形的个数=3+2(n -1)=2n +1.二、11.60°12.ASA :由题意可知,∠ECD =∠ACB ,∠EDC =∠ABC =90°,CD =CB ,故可用ASA 说明两个三角形全等.13.10 cm :由∥AB ,点E 为AC 的中点,可得∠EAM =∠E ,AE =CE .又因为∠AEM =∠CEN ,所以△AEM ≌△CEN .所以AM ==4 cm.所以AB =AM +MB =4+6=10(cm).14.SSS15.1<c <7;3<m <17:由三角形的三边关系得第三边的取值范围为4-3<c <4+3,即1<c <7.同理,得四边形EFMN 对角线EM 的取值范围为4-3<EM <4+3,即1<EM <7.所以10-7<m <10+7,即3<m <17.16.5:由已知可得,∠ADC =∠BDF =∠BEC =90°,所以∠DAC =∠DBF .又因为AC =BF ,所以△ADC ≌△BDF .所以AD =BD =8,DF =DC =3.所以AF =AD -DF =8-3=5.17.90°:如图,由题意可知,∠ADC =∠E =90°,AD =BE ,CD =AE ,所以△ADC ≌△BEA .所以∠CAD =∠2.所以∠1+∠2=∠1+∠CAD =90°.18.65°:过点C 作CF ⊥AD ,交AD 的延长线于点F .因为AC 平分∠BAD ,所以∠CAF =∠CAE .又因为CF ⊥AF ,CE ⊥AB ,所以∠AFC =∠AEC =90°.在⎧∠AFC =∠AEC ,△CAF 和△CAE 中,⎨∠CAF =∠CAE ,⎩AC =AC ,1所以△CAF ≌△CAE (AAS).所以FC =EC ,AF =AE .又因为AE =2(AB +AD ),1所以AF =2(AE +EB +AD ),即AF =BE +AD .又因为AF =AD +DF ,所以DF⎧CF =CE ,=BE .在△FDC 和△EBC 中,所⎨∠CFD =∠CEB ,所以△FDC ≌△EBC (SAS).⎩DF =BE ,以∠FDC =∠EBC .又因为∠ADC =115°,所以∠FDC =180°-115°=65°.所以∠B =65°.三、19.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°.因为AD 平分∠BAC ,所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°.所以∠ADC =180°-101°=79°.(2)因为DE ⊥AC ,所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°.20.解:能作出两个等腰三角形,如图所示.21.解:因为AB =AC ,所以AD -AB =AD -AC =CD .因为BD -BC <CD ,所以BD -BC <AD -AB .22.解:(1)如图所示.(2)延长BO 至D ,使DO =BO ,连接AD ,则AD 的长即为A ,B 间的距离.(3)因为AO =AO ,∠AOB =∠AOD =90°,BO =DO ,所以△AOB ≌△AOD .所以AD =AB .23.解:△AEM ≌△A ,△BMF ≌△DNF ,△ABN ≌△ADM .(任写其中两对即可)选择△AEM ≌△A :因为△ABC ≌△ADE ,所以AC =AE ,∠C =∠E ,∠CAB⎧∠E =∠C ,=∠EAD .所以∠EAM =∠CAN .在△AEM 和△A 中,⎨AE =AC ,所以⎩∠EAM =∠CAN ,△AEM ≌△A (ASA).选择△ABN ≌△ADM :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).选择△BMF ≌△DNF :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).所以AN =AM .所以BM =DN .又因为∠B =∠D ,∠BFM =∠DFN ,所以△BMF ≌△DNF (AAS).(任选一对进行说明即可)24.解:因为∠ACB =90°,所以∠ECF +∠BCD =90°.因为CD ⊥AB ,所以∠BCD +∠B =90°.所以∠ECF =∠B .在△ABC和△FCE中,∠B=∠ECF,BC=CE,∠ACB=∠FEC=90°,所以△ABC≌△FCE(ASA).所以AC=FE.因为EC=BC=2 cm,EF=5 cm,所以AE=AC-CE=FE-BC=5-2=3(cm).25.解:(1)AE∥BF;QE=QF(2)QE=QF.理由:如图,延长EQ交BF于点D,由题意易得AE∥BF,所以∠AEQ=∠BDQ.在△AEQ和△BDQ中,∠AQE=∠BQD,∠AEQ=∠BDQ,AQ=BQ,所以△AEQ≌△BDQ.所以EQ=DQ.因为∠DFE=90°,所以QE=QF.第二章测试卷一、选择题(每题3分,共30分)1.下面所给的图中是轴对称图形的是()2.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l 垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个3.下列说法正确的是()A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴4.如图是小明在平面镜里看到的电子钟示数,这时的实际时间是() A.12:01B.10:51C.10:21D.15:105.如图,在△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°6.如图,A,B,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.AC,BC两边高的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处7.如图,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()8.如图,已知:AB-AC=2 cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长为14 cm,则AC的长是()A.6B.7C.8D.99.如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65°,则∠BDF等于()A.65°B.50°C.60°D.57.5°10.如图,已知AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED 的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE =DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题(每题3分,共24分)11.有些字母是轴对称图形,在E,H,I,M,N这5个字母中,是轴对称图形的是__________.12.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.13.如图是一个经过改造的台球桌面示意图(该图由相同的小正方形组成),图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入________号球袋.14.等腰三角形一腰上的高与底边所夹的角为∠α,则这个等腰三角形的顶角为________.15.如图,在△ABC中,AB=AC,AD⊥BC于点D,点E,F为AD上的两点,若△ABC的面积为12,则图中阴影部分的面积是________.16.如图,在直角三角形ABC中,∠B=90°,AD平分∠BAC,交边BC于点D,如果BD=2,AC=6,那么△ADC的面积等于________.17.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O 恰好重合,则∠OEC=________.18.小威在计算时发现:11×11=121,111×111=12 321,1 111×1 111=1 234 321,…,他从中发现了一个规律.请根据他所发现的规律很快地写出111 111 111×111 111 111=________________________________________________________.三、解答题(19题8分,20~21题每题10分,24题14分,其余每题12分,共66分)19.如图,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.20.两个城镇A,B与两条公路l1,l2的位置如图所示,电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中用尺规作图找出所有符合条件的点C(不写已知、求法、作法,只保留作图痕迹).21.如图,在等边三角形ABC中,∠ABC,∠ACB的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC的三等分点.”你同意他的说法吗?请说明理由.22.如图,在△ABC中,AB=AC,AD⊥BC于点D,CE⊥AB于点E,AE=CE.试说明:(1)△AEF≌△CEB;(2)∠ABF=2∠FBD.23.操作与探究.(1)如图,分别画出①中“”和“”关于直线l的对称图形(画出示意图即可);(2)如图,②中小冬和小亮上衣上印的字母分别是什么?(3)把字母“”和“”写在薄纸上,观察纸的背面,写出你看到的字母背影;(4)小明站在三个学生的身后,这三个学生正向前方某人用手势示意一个三位数,从小明站的地方看(如图③所示),这个三位数是235.请你判断出他们示意的真实三位数是多少?24.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(不与点B,C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,是否存在△ADE是等腰三角形的情形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.答案一、1.A 2.A 3.C 4.B 5.A 6.C 7.A 8.A9.B :因为△DEF 是由△DEA 沿直线DE 翻折变换而来,所以AD =FD .因为D是AB 边的中点,所以AD =BD .所以BD =FD .所以∠B =∠BFD .因为∠B =65°,所以∠BDF =180°-∠B -∠BFD =180°-65°-65°=50°.故选B.10.A :因为BF ∥AC ,所以∠C =∠CBF .因为BC 平分∠ABF ,所以∠ABC =∠CBF .所以∠C =∠ABC .所以AB =AC .因为AD 是△ABC 的角平分线,所以⎧∠C =∠DBF ,BD =CD ,AD ⊥BC .故②③正确.在△CDE 与△BDF 中,⎨CD =BD ,⎩∠CDE =∠BDF ,所以△CDE ≌△BDF .所以DE =DF ,CE =BF .故①正确;因为AE =2BF ,所以AC =3BF .故④正确.故选A.二、11.E ,H ,I ,M12.213.1:如图,该球最后将落入1号球袋.14.2∠α15.6:因为AB =AC ,AD ⊥BC ,所以△ABC 关于直线AD 对称.所以S △BEF1=S △CEF .因为△ABC 的面积为12,所以图中阴影部分的面积=2S △ABC =6.16.6:过点D 作DE ⊥AC 于点E ,因为AD 平分∠BAC ,所以DE =BD =2.11所以S △ADC =2AC ·DE =2×6×2=6.17.108°18.12 345 678 987 654 321三、19.解:(1)如图,利用图中格点,可以直接确定出△ABC 中各顶点的对称点的位置,从而得到△ABC 关于直线MN 的对称图形,即为△A ′B ′C ′.111(2)S △ABC =4×6-2×4×1-2×3×6-2×2×4=9.20.解:如图.点C 1,C 2即为所求作的点.21.解:同意.理由如下:如图,连接OE ,OF .由题意知,BE =OE ,CF =OF ,∠OBC =∠OCB =30°,所以∠BOE =∠OBC =30°,∠COF =∠OCB =30°,∠BOC =120°.所以∠EOF =60°,∠OEF =60°,∠OFE =60°.所以△OEF 是等边三角形.所以OE =OF =EF =BE =CF .所以E ,F 是BC 的三等分点.22.解:(1)因为AD⊥BC,CE⊥AB,所以∠AEF=∠CEB=90°,∠AFE+∠EAF=90°,∠CFD+∠ECB=90°.又因为∠AFE=∠CFD,所以∠EAF=∠ECB.在△AEF和△CEB中,∠AEF=∠CEB,AE=CE,∠EAF=∠ECB,所以△AEF≌△CEB(ASA).(2)由△AEF≌△CEB,得EF=EB,所以∠EBF=∠EFB.在△ABC中,AB=AC,AD⊥BC,所以BD=CD.所以FB=FC.所以∠FBD=∠FCD.因为∠EFB=180°-∠BFC=∠FBD+∠FCD=2∠FBD,所以∠EBF=2∠FBD,即∠ABF=2∠FBD.23.解:(1)图略.(2)“”和“”.(3)“”和“”.(4)他们示意的真实三位数是235.24.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:因为DC=2,AB=2,所以DC=AB.因为AB=AC,∠B=40°,所以∠C=∠B=40°.因为∠ADB=180°-∠ADC=∠DAC+∠C,∠DEC=180°-∠AED=∠DAC+∠ADE,且∠C=40°,∠ADE=40°,所以∠ADB=∠DEC.在△ABD与△DCE中,∠ADB=∠DEC,∠B=∠C,AB=DC,所以△ABD≌△DCE(AAS).(3)存在,∠BDA=110°或∠BDA=80°.第三章测试卷一、选择题(每题3分,共30分)1.下列各组数中,能够作为直角三角形的三边长的一组是() A.1,2,3B.2,3,4C.4,5,6D.3,4,52.在Rt△ABC中,∠C=90°,若角A,B,C所对的三边分别为a,b,c,且a =7,b=24,则c的长为()A.26B.18C.25D.213.如图,阴影部分是一个正方形,此正方形的面积是()A.16B.8C.4D.24.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有()A.1个B.2个C.3个D.4个5.若△ABC的三边长分别为a,b,c,且满足(a-b)(a2+b2-c2)=0,则△ABC 是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6.如图,直线l上有三个正方形a,b,c,若a,b的面积分别为5和13,则c 的面积为()A.4B.8C.12D.187.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线上的D′处.若AB=3,AD=4,则ED的长为()3 A. 2B.3C.14D.38.如图,在△ABC中,AD是BC边上的中线,AC=17,BC=16,AD=15,则△ABC的面积为()A.128B.136C.120D.2409.如图是台阶的示意图,已知每个台阶的宽度都是30 cm,每个台阶的高度都是15 cm,则A,B两点之间的距离等于()A.195 cm B.200 cm C.205cm D.210 cm10.如图是一个圆柱形的饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一根到达底部的直吸管在罐内部分的长度a(罐壁的厚度和小圆孔的大小忽略不计)的范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13二、填空题(每题3分,共24分)11.在Rt△ABC中,a,b为直角边,c为斜边,若a2+b2=16,则c=________.12.如图,在△ABC中,AB=5 cm,BC=6 cm,BC边上的中线AD=4 cm,则∠ADB=________.13.如图,一架长为4 m的梯子,一端放在离墙脚2.4 m处,另一端靠墙,则梯子顶端离墙脚的距离是________.14.飞机在空中水平飞行,某一时刻刚好飞到一个男孩正上方4 000 m处,过了10 s,飞机距离这个男孩头顶5 000 m,则飞机平均每小时飞行__________.15.已知a,b,c是△ABC的三边长,且满足关系(c2-a2-b2)2+|a-b|=0,则△ABC 的形状为____________.16.在△ABC中,AB=13 cm,AC=20 cm,BC边上的高为12 cm,则△ABC的面积为________.17.如图,在一根长90 cm的灯管上缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4 cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为________.18.如图,在Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.如图,在△ABC中,AD⊥BC于D,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是否是直角三角形.20.如图,在△ADC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB.若AB=20,求△ABD的面积.21.如图,∠ABC=90°,AB=6 cm,AD=24 cm,BC+CD=34 cm,C是直线l 上一动点,请你探索当点C离点B多远时,△ACD是一个以CD为斜边的直角三角形.22.若△ABC的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,判断△ABC 的形状.23.如图,在△ABC中,AB:BC:CA=3:4:5,且周长为36 cm,点P从点A 开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C 以2 cm/s的速度移动,如果同时出发,过3 s时,△BPQ的面积为多少?24.如图,圆柱形玻璃容器高19 cm,底面周长为60 cm,在外侧距下底1.5 cm 的点A处有一只蜘蛛,在蜘蛛正对面的圆柱形容器的外侧,距上底1.5 cm处的点B处有一只苍蝇,蜘蛛急于捕捉苍蝇充饥,请你帮蜘蛛计算它沿容器侧面爬行的最短距离.25.如图,甲是一个直角三角形ABC,它的两条直角边长分别为a,b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.(1)由图乙、图丙,可知①是以________为边长的正方形,②是以________为边长的正方形,③的四条边长都是________,且每个角都是直角,所以③是以________为边长的正方形;(2)图乙中①的面积为________,②的面积为________,图丙中③的面积为________;(3)图乙中①②面积之和为________;(4)图乙中①②的面积之和与图丙中③的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?答案一、1.D 2.C 3.B 4.C 5.D 6.B 7.A 8.C9.A 10.A 二、11.412.90°13.3.2 m 14.1 080 km 15.等腰直角三角形16916.126 cm 2或66 cm 217.150 cm 18.24三、19.解:(1)因为AD ⊥BC ,所以△ABD 和△ACD 均为直角三角形.所以AB 2=AD 2+BD 2,AC 2=AD 2+CD 2.又因为AD =12,BD =16,CD =5,所以AB =20,AC =13.所以△ABC 的周长为20+13+16+5=54.(2)由(1)知AB =20,AC =13,BC =21,因为AB 2+AC 2=202+132=569,BC 2=212=441,所以AB 2+AC 2≠BC 2.所以△ABC 不是直角三角形.20.解:在△ADC 中,因为AD =15,AC =12,DC =9,所以AC 2+DC 2=122+92=152=AD 2.所以△ADC 是直角三角形,且∠C =90°.在Rt △ABC 中,AC 2+1BC 2=AB 2,所以BC =16.所以BD =BC -DC =16-9=7.所以S △ABD =2×7×12=42.21.解:设当BC =x cm 时,△ACD 是一个以CD 为斜边的直角三角形.因为BC+CD =34 cm ,所以CD =(34-x )cm.因为∠ABC =90°,AB =6 cm ,所以在Rt △ABC 中,由勾股定理得AC 2=AB 2+BC 2=36+x 2.在Rt △ACD 中,AD =24 cm ,由勾股定理得AC 2=CD 2-AD 2=(34-x )2-576,所以36+x 2=(34-x )2-576.解得x =8.所以当点C 离点B 8 cm 时,△ACD 是一个以CD 为斜边的直角三角形.22.解:因为a 2+b 2+c 2+50=6a +8b +10c ,所以a 2+b 2+c 2-6a -8b -10c +50=0,即(a -3)2+(b -4)2+(c -5)2=0.所以a =3,b =4,c =5.因为32+42=52,即a 2+b 2=c 2,所以根据勾股定理的逆定理可判定△ABC 是直角三角形.:本题利用配方法,先求出a ,b ,c 的值,再利用勾股定理的逆定理进行判断.23.解:设AB 为3x cm ,则BC 为4x cm ,AC 为5x cm.因为△ABC 的周长为36 cm ,所以AB +BC +AC =36 cm ,即3x +4x +5x =36.解得x =3.所以AB =9 cm ,BC =12 cm ,AC =15 cm.因为AB 2+BC 2=AC 2,所以△ABC 是直角三角形,且∠B =90°.过3 s 时,BP =9-3×1=6(cm),BQ =2×3=6(cm),11所以S △BPQ =2BP ·BQ =2×6×6=18(cm 2).故过3 s 时,△BPQ 的面积为18 cm 2.24.解:如图,将圆柱侧面展开成长方形MNQP ,过点B 作BC ⊥MN 于点C ,连接AB ,则线段AB 的长度即为所求的最短距离.在Rt △ACB 中,AC =MN -AN -CM =16 cm ,BC 的长等于底面周长的一半,即BC =30 cm.由勾股定理得,AB 2=AC 2+BC 2=162+302=1 156=342,所以AB =34 cm.故蜘蛛沿容器侧面爬行的最短距离为34 cm.25.解:(1)a ;b ;c ;c (2)a 2;b 2;c 2(3)a 2+b 2(4)图乙中①②的面积之和与图丙中③的面积相等.由大正方形的边长为a +b ,得大正方形的面积为(a +b )2,图乙中把大正方形分成了四部分,分别是边长为a 的正方形,边长为b 的正方形,还有两个长为a ,宽为b 的长方形.根12据面积相等得(a +b )2=a 2+b 2+2ab .由图丙可得(a +b )2=c 2+4×ab .所以a +2b 2=c 2.能得到关于直角三角形三边长的关系:两直角边的平方和等于斜边的平方.第四章测试卷一、选择题(每题3分,共30分)1.9的算术平方根是()A.±3B.3 C.-3 D.3222.下列4个数:9,7,π,(3)0,其中无理数是()A.922B.7C.πD.(3)03.下列各式中正确的是()A.497=±14412B.-3273-8=-2C.-9=-33D.(-8)2=44.已知a+2+|b-1|=0,那么(a+b)2 018的值为()A.1B.-1C.32 018D.-32 0185.若平行四边形的一边长为2,面积为45,则此边上的高介于() A.3与4之间B.4与5之间C.5与6之间D.6与7之间6.设边长为a的正方形的面积为2.下列关于a的四种结论:①a是2的算术平方根;②a是无理数;③a可以用数轴上的一个点来表示;④0<a<1.其中正确的是()A.①②C.①②③B.①③D.②③④7.实数a,b在数轴上对应点的位置如图所示,则化简a2-|a+b|的结果为() A.2a+b B.-2a+b C.b D.2a-b8.有一个数值转换器,原理如图所示,当输入x为64时,输出y的值是()A.4C.33B.43D.29.一个正方体木块的体积是343 cm3,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是()74949147A.2cm2B.4cm2C.8cm2D.2cm210.如图,数轴上A,B两点表示的实数分别为1和3,若点A关于点B的对称点为点C,则点C所表示的实数为()A.23-1B.1+3C.2+3D.22+1二、填空题(每题3分,共24分)11.6的相反数是________;绝对值等于2的数是________.12.一个数的平方根与这个数的立方根相等,那么这个数是________.313.估算比较大小:(1)-10________-3.2;(2)130________5.314.若2x+7=3,(4x+3y)3=-8,则x+y=________.15.点A在数轴上和表示1的点相距6个单位长度,则点A表示的数为________.16.若两个连续整数x,y满足x<5+1<y,则x+y的值是________.17.若x,y为实数,且|x-2|+y+3=0,则(x+y)2 017的值为________.18.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1.现对72第一次第二次第三次进行如下操作:72――→[72]=8――→[8]=2――→[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行________次操作后变为1;只需进行3次操作后变为1的所有正整数中,最大的是________.三、解答题(19题16分,20题12分,24、25题每题10分,其余每题6分,共66分)19.计算:(1)(-1)2 018+16-(3)-(-2)+(-2)--82;(4)2+|3-32|-(-5)2.20.求下列各式中未知数的值:(1)|a -2|=5;(2)4x 2=25;(3)(x -0.7)3=0.0272294;(2)132+0.5-8;43|a|-|a+b|+(c-a)2 21.已知a,b,c在数轴上对应点的位置如图所示,化简:+|b-c|.322.若实数a,b互为相反数,c,d互为倒数,求2(a+b)+8c d的值.23.已知a,b,c是△ABC的三边长,化简:(a+b+c)2-(b+c-a)2+(c-b-a)2.24.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;33(2)若1-2x与3x-5互为相反数,求1-x的值.25.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失后经过的时间近似地满足如下的关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失后经过的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?答案一、1.B 2.C3.D :A 中正确.4.A 5.B6.C:∵a 2=2,a >0,∴a =2≈1.414,即a >1,故④错误.37.C 8.B :64的立方根是4,4的立方根是 4.9.D 10.A二、11.-6;±212.013.(1)>(2)>14.-115.1-6或1+6:数轴上到某个点距离为a (a >0)的点有两个,易忽略左边的点而漏解.注意运用数形结合思想,利用数轴帮助分析.16.7:∵2<5<3,∴3<5+1<4.∵x <5+1<y ,且x ,y 为两个连续整数,∴x =3,y =4.∴x +y =3+4=7.17.-1:∵|x -2|+y +3=0,∴|x -2|=0,y +3=0,∴x =2,y =-3.∴(x +y )2 017=[2+(-3)]2 017=(-1)2 017=-1.18.3;255三、19.解:(1)(-1)2 018+16-(2)937=1+4-42=2.3497273=;B 中--144128=2;C 中-9无算术平方根;只有D1132+0.5-8=42+0.5-2=-1.3(3)-(-2)2+(-2)2--82=-4+2-(-4)=2.(4)2+|3-32|-(-5)2=2+(32-3)-5=2+32-3-5=32-6.20.解:(1)由|a -2|=5,得a -2=5或a -2=- 5.当a -2=5时,a =5+2;当a -2=-5时,a =-5+2.255(2)因为4x 2=25,所以x 2=4.所以x =±2.(3)因为(x -0.7)3=0.027,所以x -0.7=0.3.所以x =1.21.解:由数轴可知b <a <0<c ,所以a +b <0,c -a >0,b -c <0.所以原式=-a -[-(a +b )]+(c -a )+[-(b -c )]=-a +a +b +c -a -b +c =-a +2c .322.解:由已知得a +b =0,cd =1,所以原式=0+8=2.23.解:因为a ,b ,c 是△ABC 的三边长,所以a +b +c >0,b +c -a >0,c -b -a <0.所以原式=a +b +c -(b +c -a )+(a +b -c )=3a +b -c .24.解:(1)因为2+(-2)=0,而且23=8,(-2)3=-8,有8+(-8)=0,所以结论成立.所以“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)由(1)验证的结果知,1-2x +3x -5=0,所以x =4,所以1-x =1-2=-1.25.解:(1)当t =16时,d =7×16-12=7×2=14(厘米).答:冰川消失16年后苔藓的直径为14厘米.(2)当d =35时,t -12=5,即t -12=25,解得t =37.答:如果测得一些苔藓的直径是35厘米,冰川约是在37年前消失的.第五章测试卷一、选择题(每题3分,共30分)1.点P(4,3)所在的象限是()A.第一象限B.第二象限 C.第三象限 D.第四象限2.根据下列表述,能确定位置的是()A.红星电影院2排C.北偏东30°B.北京市四环路D.东经118°,北纬40°3.如图,在直角坐标系中,卡片盖住的点的坐标可能是() A.(2,3)B.(-2,1)C.(-2,-2.5)D.(3,-2)4.点P(-2,3)关于x轴对称的点的坐标是()A.(-3,2)B.(2,-3)C.(-2,-3)D.(2,3)5.已知点A(-1,-4),B(-1,3),则()A.点A,B关于x轴对称B.点A,B关于y轴对称C.直线AB平行于y轴D.直线AB垂直于y轴6.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点()A.(-1,1)B.(-2,-1)C.(-4,1)D.(1,2)7.如图,将长为3的长方形ABCD放在平面直角坐标系中,AD∥x轴,若点D 的坐标为(6,3),则点A的坐标为()A.(5,3)B.(4,3)C.(4,2)D.(3,3)8.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则三角形ABO的面积是()A.15B.7.5C.6D.39.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)10.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度,……以此类推,第n步的走法是:当n能被3整除时,向上走1个单位长度;当n被3除,余数为1时,向右走1个单位长度;当n被3除,余数为2时,向右走2个单位长度,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)二、填空题(每题3分,共24分)11.写出平面直角坐标系中第三象限内一个点的坐标:________.12.在直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是________.13.如图是益阳市行政区域图,图中益阳市区所在地用坐标表示为(1,0),安化县城所在地用坐标表示为(-3,-1),那么南县县城所在地用坐标表示为________.14.第二象限内的点P(x,y)满足|x|=9,y2=4,则点P的坐标是__________.15.已知点N的坐标为(a,a-1),则点N一定不在第________象限.16.如图,点A,B的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP 的面积为6,则点P的坐标为________.17.如图,长方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B′处,则点B′的坐标为________.18.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位长度,得到点A1(0,1),A2(1,1),A 3(1,0),A4(2,0),…,那么点A4n+1(n为自然数)的坐标为______(用n表示).三、解答题(19题6分,20题8分,21,23题每题9分,22题10分,其余每题12分,共66分)19.如图,如果规定北偏东30°的方向记作30°,从O点出发沿这个方向走50 m 记作50,图中点A记作(30°,50);北偏西45°的方向记作-45°,从O点出发沿着该方向的反方向走20 m记作-20,图中点B记作(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).20.春天到了,七(1)班组织同学到人民公园春游,张明、李华对着景区示意图(如图)描述牡丹园的位置(图中小正方形的边长为100 m).张明:“牡丹园的坐标是(300,300).”李华:“牡丹园在中心广场东北方向约420m处.”实际上,他们所说的位置都是正确的.根据所学的知识解答下列问题:(1)请指出张明同学是如何在景区示意图上建立平面直角坐标系的,并在图中画出所建立的平面直角坐标系;(2)李华同学是用什么来描述牡丹园的位置的?请用张明同学所用的方法,描述出公园内其他地方的位置.。
鲁教版数学七年级上第三章《勾股定理》(含答案及解析)
勾股定理时间:100分钟总分:100题号一二三四总分得分一、选择题(本大题共8小题,共32.0分)1.直角三角形的斜边为20cm,两直角边比为3:4,那这个直角三角形的周长为()A. 27cmB. 30cmC. 40cmD. 48cm2.如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为()A. 8B. 9C. 10D. 113.适合下列条件的△ABC中,直角三角形的个数为()①a=3,b=4,c=5;②a=6,∠A=45∘;③a=2,b=2,c=2√2;④∠A=38∘,∠B=52∘.A. 1个B. 2个C. 3个D. 4个4.以下列各组数为一个三角形的三边长,能构成直角三角形的是()A. 2,3,4B. 4,6,5C. 14,13,12D. 7,25,245.在直线L上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+2S2+2S3+S4=( )A. 5B. 4C. 6D. 、106.在△ABC中,已知AB=15,AC=13,BC边上的高AD=12,则△ABC的周长为()A. 14B. 42C. 32D. 42或327.△ABC的三边为a、b、c且满足a2(a−b)+b2(a−b)=c2(a−b),则△ABC是()A. 等腰三角形或直角三角形B. 等腰直角三角形C. 等腰三角形D. 直角三角形8.如图,在四边形ABCD中,AD//BC,∠ABC=90∘,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是()A. CE=√3DEB. CE=√2DEC. CE=3DED. CE=2DE二、填空题(本大题共7小题,共28.0分)9.如图,有一块田地的形状和尺寸如图所示,则它的面积为______ .10.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要______ 元钱.11.在Rt△ABC中,已知两边长为5、12,则第三边的长为______ .12.如图,有一个长为50cm,宽为30cm,高为40cm的长方体木箱,一根长70cm的木棍______放入(填“能”或“不能”).13.如图,等腰△ABC中,AB=AC,AD是底边上的高,若AB=5cm,BC=6cm,则AD=______cm.14.如图,Rt△ABC中,∠ACB=90∘,CD⊥AB于D,若AC=4,BC=3,则AD=______ .15.如图,在△ABC中,∠A=30∘,∠B=45∘,AC=2,则BC=______ .三、计算题(本大题共4小题,共24.0分)16.已知如图,四边形ABCD中,∠B=90∘,AB=4,BC=3,CD=12,AD=13,求这个四边形的面积.17.如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,求BC的长.18.公园里有一块形如四边形ABCD的草地,测得BC=CD=20米,∠A=45∘,∠B=∠C=120∘,请求出这块草地面积.19.如图,在△ABC中,AD⊥BC,垂足为D,∠B=60∘,∠C=45∘.(1)求∠BAC的度数.(2)若AC=2,求AB的长.四、解答题(本大题共2小题,共16.0分)20.如图,等腰直角△ABC中,∠ABC=90∘,点P在AC上,将△ABP绕顶点B沿顺时针方向旋转90∘后得到△CBQ.(1)求∠PCQ的度数;(2)当AB=4,AP:PC=1:3时,求PQ的大小;(3)当点P在线段AC上运动时(P不与A重合),请写出一个反映PA2,PC2,PB2之间关系的等式,并加以证明.21.如图,Rt△ABC中,∠B=90∘,AB=3cm,BC=4cm.点D在AC上,AD=1cm,点P从点A出发,沿AB匀速运动;点Q从点C出发,沿C→B→A→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了2cm,并沿B→C→A的路径匀速运动;点Q保持速度不变,并继续沿原路径匀速运动,两点在D点处再次相遇后停止运动,设点P原来的速度为xcm/s.(1)点Q的速度为______cm/s(用含x的代数式表示).(2)求点P原来的速度.答案和解析【答案】1. D2. C3. C4. D5. C6. D7. A8. B9. 2410. 61211. 13或√11912. 能13. 414. 16515. √216. 解:连接AC,如图所示:∵∠B=90∘,∴△ABC为直角三角形,又AB=4,BC=3,∴根据勾股定理得:AC=√AB2+BC2=5,又AD=13,CD=12,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90∘,则S四边形ABCD =S△ABC+S△ACD=12AB⋅BC+12AC⋅CD=12×3×4+12×12×5=36.17. 解:延长AD到E使AD=DE,连接CE,在△ABD和△ECD中{AD=DE∠ADB=∠EDC BD=DC,∴△ABD≌△ECD,∴AB=CE=5,AD=DE=6,AE=12,在△AEC中,AC=13,AE=12,CE=5,∴AC2=AE2+CE2,∴∠E=90∘,由勾股定理得:CD=√DE2+CE2=√61,∴BC=2CD=2√61,答:BC的长是2√61.18. 解:连接BD,过C作CE⊥BD于E,如图所示:∵BC=DC=20,∠ABC=∠BCD=120∘,∴∠1=∠2=30∘,∴∠ABD=90∘.∴CE=12CD=10,∴BE=10√3,∵∠A=45∘,∴AB=BD=2BE=20√3,∴S四边形ABCD =S△ABD+S△BCD=12AB⋅BD+12BD⋅CE =12×20√3×20√3+12×20√3×10=(600+100√3)m2.19. 解:(1)∠BAC=180∘−60∘−45∘=75∘.(2)∵AC=2,∴AD=AC⋅sin∠C=2×sin45∘=√2;∴AB=ADsin∠B =√2sin60∘=2√63.20. 解:(1)由题意知,△ABP≌△CQB,∴∠A=∠ACB=∠BCQ=45∘,∠ABP=∠CPQ,AP=CQ,PB=BQ,∴∠PCQ=∠ACB+∠BCQ=90∘,∠ABP+∠PBC=∠CPQ+∠PBC=90∘,∴△BPQ是等腰直角三角形,△PCQ是直角三角形.(2)当AB=4,AP:PC=1:3时,有AC=4√2,AP=√2,PC=3√2,∴PQ=√PC2+CQ2=2√5.(3)存在2PB2=PA2+PC2,由于△BPQ是等腰直角三角形,∴PQ=√2PB,∵AP=CQ,∴PQ2=PC2+CQ2=PA2+PC2,故有2PB2=PA2+PC2.21. 43x【解析】1. 解:根据题意设直角边分别为3xcm与4xcm,由斜边为20cm,根据勾股定理得:(3x)2+(4x)2=202,整理得:x2=16,解得:x=4,∴两直角边分别为12cm,16cm,则这个直角三角形的周长为12+16+20=48cm.故选D根据两直角边之比,设出两直角边,再由已知的斜边,利用勾股定理求出两直角边,即可得到三角形的周长.此题考查了勾股定理,利用了方程的思想,熟练掌握勾股定理是解本题的关键.2. 解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90∘;∵∠ACB+∠DCE=∠ACB+∠BAC=90∘,即∠BAC=∠DCE,在△ABC和△CED中,{∠ABC=∠DEC=90∘∠ACB=∠CDEAC=DC,∴△ACB≌△DCE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S b=S a+S c=1+9=10,∴b的面积为10,故选C.运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE,然后证明△ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.此题主要考查对全等三角形和勾股定理的综合运用,关键是证明△ACB≌△DCE.3. 解:①a=3,b=4,c=5,∵32+42=25=52,∴满足①的三角形为直角三角形;②a=6,∠A=45∘,只此两个条件不能断定三角形为直角三角形;③a=2,b=2,c=2√2,∵22+22=8=(2√2)2,∴满足③的三角形为直角三角形;④∵∠A=38∘,∠B=52∘,∴∠C=180∘−∠A−∠B=90∘,∴满足④的三角形为直角三角形.综上可知:满足①③④的三角形均为直角三角形.故选C.根据勾股定理的逆定理以及直角三角形的定义,验证四组条件中数据是否满足“较小两边平方的和等于最大边的平方”或“有一个角是直角”,由此即可得出结论.本题考查了勾股定理的逆定理以及直角三角形的定义,解题的关键是根据勾股定理的逆定理和直角三角形的定义验证四组条件.本题属于基础题,难度不大,解决该题型题目时,套入数据验证“较小两边平方的和是否等于最大边的平方(或寻找三角形中是否有一个角为直角)”是关键.4. 解:∵72+242=49+576=625=252.∴如果这组数为一个三角形的三边长,能构成直角三角形.故选:D.根据勾股定理的逆定理,对四个选项中的各组数据分别进行计算,如果三角形的三条边符合a2+b2=c2,则可判断是直角三角形,否则就不是直角三角形.此题主要考查学生对勾股定理的逆定理的理解和掌握.此题难度不大,属于基础题.5. 解:如图,∵图中的四边形为正方形,∴∠ABD=90∘,AB=DB,∴∠ABC+∠DBE=90∘,∵∠ABC+∠CAB=90∘,∴∠CAB=∠DBE,∵在△ABC和△BDE中,{∠ACB=∠BED ∠CAB=∠EBD AB=BD,∴△ABC≌△BDE(AAS),∴AC=BE,∵DE2+BE2=BD2,∴ED2+AC2=BD2,∵S1=AC2,S2=DE2,BD2=1,∴S1+S2=1,同理可得S2+S3=2,S3+S4=3,∴S1+2S2+2S3+S4=1+2+3=6.故选C.先根据正方形的性质得到∠ABD=90∘,AB=DB,再根据等角的余角相等得到∠CAB=∠DBE,则可根据“AAS”判断△ABC≌△BDE,于是有AC=BE,然后利用勾股定理得到DE2+BE2=BD2,代换后有ED2+AC2=BD2,根据正方形的面积公式得到S1= AC2,S2=DE2,BD2=1,所以S1+S2=1,利用同样方法可得到S2+S3=2,S3+S4= 3,通过计算可得到S1+2S2+2S3+S4=1+2+3=6.本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了勾股定理和正方形的性质.6. 解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD=√AB2−AD2=√152−122=9,在Rt△ACD中,CD=√AC2−AD2=√132−122=5,∴BC=5+9=14.∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD=√AB2−AD2=√152−122=9,在Rt△ACD中,CD=√AC2−AD2=√132−122=5,∴BC=9−5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.故选D.本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD 的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD 的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度.7. 解:∵a2(a−b)+b2(a−b)=c2(a−b),∴(a−b)(a2+b2−c2)=0,∴a=b或a2+b2=c2.当只有a−b=0成立时,是等腰三角形.当只有a2+b2−c2=0成立时,是直角三角形.当两个条件同时成立时:是等腰直角三角形.故选:A.因为a,b,c为三边,根据a2(a−b)+b2(a−b)=c2(a−b),可找到这三边的数量关系.本题考查勾股定理的逆定理的应用,以及对三角形形状的掌握.8. 解:过点D作DH⊥BC,∵AD=1,BC=2,∴CH=1,DH=AB=√CD2−CH2=√32−12=2√2,∵AD//BC,∠ABC=90∘,∴∠A=90∘,∵DE⊥CE,∴∠AED+∠BEC=90∘,∵∠AED+∠ADE=90∘,∴∠ADE=∠BEC,∴△ADE∽△BEC,∴ADBE =AEBC=DECE,设BE=x,则AE=2√2−x,即1x =2√2−x2,解得x=√2,∴ADBE =DECE=1√2,∴CE=√2DE,故选:B.过点D作DH⊥BC,利用勾股定理可得AB的长,利用相似三角形的判定定理可得△ADE∽△BEC,设BE=x,由相似三角形的性质可解得x,易得CE,DE的关系.本题主要考查了相似三角形的性质及判定,构建直角三角形,利用方程思想是解答此题的关键.9. 解:作辅助线:连接AB,因为△ABD是直角三角形,所以AB=√AD2+BD2=√32+42=5,因为52+122=132,所以△ABC是直角三角形,则要求的面积即是两个直角三角形的面积差,即12×12×5−12×3×4=30−6=24.先连接AB,求出AB的长,再判断出△ABC的形状即可解答.巧妙构造辅助线,问题即迎刃而解.综合运用勾股定理及其逆定理.10. 解:由勾股定理,AC=√AB2−BC2=√132−52=12(m).则地毯总长为12+5=17(m),则地毯的总面积为17×2=34(平方米),所以铺完这个楼道至少需要34×18=612元.故答案为:612.地毯的长是楼梯的竖直部分与水平部分的和,即AC与BC的和,在直角△ABC中,根据勾股定理即可求得BC的长,地毯的长与宽的积就是面积.本题考查了勾股定理的应用,正确理解地毯的长度的计算是解题的关键.11. 解:①若12为直角边,可得5为直角边,第三边为斜边,根据勾股定理得第三边为√52+122=13;②若12为斜边,5和第三边都为直角边,根据勾股定理得第三边为√122−52=√119,则第三边长为13或√119;故答案为:13或√119.分两种情况考虑:若12为直角边,可得出5也为直角边,第三边为斜边,利用勾股定理求出斜边,即为第三边;若12为斜边,可得5和第三边都为直角边,利用勾股定理即可求出第三边.此题主要考查了勾股定理,利用了分类讨论的思想,熟练掌握勾股定理是解本题的关键.12. 解:可设放入长方体盒子中的最大长度是xcm,根据题意,得x2=502+402+302=5000,702=4900,因为4900<5000,所以能放进去.故答案是:能.在长方体的盒子中,一角的顶点与斜对的不共面的顶点的距离最大,根据木箱的长,宽,高可求出最大距离,然后和木棒的长度进行比较.本题考查了勾股定理的应用.解题的关键是求出木箱内木棒的最大长度.13. 【分析】本题考查了等腰三角形的性质和勾股定理.关键要熟知等腰三角形的三线合一可得.先根据等腰三角形的性质求出BD的长,再根据勾股定理解答即可.【解答】解:根据等腰三角形的三线合一可得:BD=12BC=12×6=3cm,在直角△ABD中,由勾股定理得:AB2=BD2+AD2,所以,AD=√AB2−BD2=√52−32=4cm.故答案为4.14. 解:∵AC=4,BC=3,∴AB=5,∵S△ABC=12×3×4=12×5×CD,∴CD=125.∴AD=√AC2−CD2=√16−14425=165,故答案为:165.根据勾股定理求得AB的长,再根据三角形的面积公式求得CD,然后再利用勾股定理计算出AD长即可.此题主要考查了直角三角形面积及勾股定理,关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.15. 解:如图,过点C作CD⊥AB于点D,在Rt△ACD中,∵AC=2,∠A=30∘,∴CD=12AC=1,∵在Rt△BCD中,∠B=45∘,∴CD=BD=1,则BC=√CD2+BD2=√2,故答案为:√2.作CD⊥AB,由AC=2、∠A=30∘知CD=1,由∠B=45∘知CD=BD=1,最后由勾股定理可得答案.本题主要考查勾股定理、直角三角形的性质,熟练掌握直角三角形的性质和勾股定理是解题的关键.16. 连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.此题考查了勾股定理,以及勾股定理的逆定理,熟练掌握定理及逆定理是解本题的关键.17. 延长AD到E使AD=DE,连接CE,证△ABD≌△ECD,求出AE和CE的长,根据勾股定理的逆定理求出∠E=90∘,根据勾股定理求出CD即可.本题综合考查了勾股定理、勾股定理的逆定理、全等三角形的性质和判定、三角形的中线等知识点的应用,关键是正确地作辅助线,把已知条件转化成一个直角三角形,题型较好.18. 易得∠CDB的度数,连接BD可得一个等腰三角形和一个直角三角形,作出等腰三角形底边上的高,利用∠CDB的正弦值可得等腰三角形底边上的高,进而求得两个三角形的面积,让它们相加即可.本题考查解直角三角形在实际生活中的应用;把四边形问题整理为三角形问题是解决本题的突破点,作等腰三角形底边上的高,是常用的辅助性方法.19. (1)根据三角形的内角和是180∘,用180∘减去∠B、∠C的度数,求出∠BAC的度数是多少即可.(2)首先根据AC=2,AD=AC⋅sin∠C,求出AD的长度是多少;然后在Rt△ABD中,求出AB的长是多少即可.此题主要考查了勾股定理的应用,以及直角三角形的性质和应用,要熟练掌握.20. (1)由于∠PCB=∠BCQ=45∘,故有∠PCQ=90∘.(2)由等腰直角三角形的性质知,AC=4√2,根据已知条件,可求得AP,PC的值,再由勾股定理求得PQ的值.(3)由于△PBQ也是等腰直角三角形,故有PQ2=2PB2=PA2+PC2.本题利用了旋转的性质,等腰直角三角形的性质,勾股定理求解.21. 解:(1)设点Q的速度为ycm/s,由题意得3÷x=4÷y,∴y=43x,故答案为:43x;(2)AC=√AB2+BC2=√32+42=5,CD=5−1=4,在B点处首次相遇后,点P的运动速度为(x+2)cm/s,由题意得3+14x3=4+4x+2,解得:x=65(cm/s),答:点P原来的速度为65cm/s.(1)设点Q的速度为ycm/s,根据题意得方程即可得到结论;(2)根据勾股定理得到AC=√AB2+BC2=√32+42=5,求得CD=5−1=4,列方程即可得到结论.本题考查了分式方程的应用,勾股定理,正确的理解题意是解题的关键.。
【鲁教版】七年级数学上期末试题(附答案)(1)
一、选择题1.如图,∠AOB =12∠BOD ,OC 平分∠AOD ,下列四个等式中正确的是( )①∠BOC =13∠AOB ;②∠DOC =2∠BOC ;③∠COB =12∠BOA ;④∠COD =3∠COB .A .①②B .②③C .③④D .①④ 2.下列说法错误的是( )A .若直棱柱的底面边长都相等,则它的各个侧面面积相等B .n 棱柱有n 个面,n 个顶点C .长方体,正方体都是四棱柱D .三棱柱的底面是三角形3.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( ) A .B .C .D .4.已知线段AB=5,C 是直线AB 上一点,BC=2,则线段AC 长为( ) A .7B .3C .3或7D .以上都不对5.如图33⨯网格中,每一横行、每一竖列以及两条斜对角线上的三个数的和都相等,则b a -的值是( )A .3-B .2-C .2D .3 6.方程6x+12x-9x=10-12-16的解为( ) A .x=2 B .x=1 C .x=3 D .x=-2 7.若代数式4x +的值是2,则x 等于( )A .2B .2-C .6D .6-8.关于x 的方程2x m3-=1的解为2,则m 的值是( ) A .2.5B .1C .-1D .39.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( )A .2n n xB .(1)2n n n x -C .2n n x -D .1(1)2n n n x +-10.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .5511.下列计算正确的是( )A .|﹣3|=﹣3B .﹣2﹣2=0C .﹣14=1D .0.1252×(﹣8)2=112.下列有理数大小关系判断正确的是( ) A .11910⎛⎫-->- ⎪⎝⎭B .010>-C .33-<+D .10.01->-二、填空题13.从起始站A 市坐火车到终点站G 市中途共停靠5次,各站点到A 市距离如下: 站点B C D E F G 到A 市距离(千米)4458051135149518252270若火车车票的价格由路程决定,则沿途总共有不同的票价____种.14.某产品的形状是长方体,长为8cm ,它的展开图如图所示,则长方体的体积为_____cm 3.15.某区民用电的计费方式为:白天时段的单价为m 元/度,晚间时段的单价为n 元/度.某户8月份白天时段用电量比晚间时段多50%,9月份白天时段用电量比8月份白天时段用电量少60%,结果9月份的总用电量虽比8月份的总用电量多20%,但9月份的总电费却比8月份的总电费少10%,则mn=______. 16.若2a +1与212a +互为相反数,则a =_____.17.礼堂第一排有 a 个座位,后面每排都比第一排多 1 个座位,则第 n 排座位有________________.18.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n 个图形中有白色正方形__________个 (用含n 的代数式表示).19.运用加法运算律填空: (1)[(-1)+2]+(-4)=___=___; (2)117+(-44)+(-17)+14=____=____. 20.用计算器计算: (1)-5.6+20-3.6=____; (2)-6.25÷25=____; (3)-7.2×0.5×(-1.8)=____; (4)-15×(-2.4)÷(-1.2)=____; (5)4.6÷113-6×3=____; (6)42.74.23.5-≈____(精确到个位). 三、解答题21.如图,已知∠BOC =2∠AOC ,OD 平分∠AOB ,且∠COD =20°,求∠AOB 的度数.22.[阅读理解]射线OC 是AOB ∠内部的一条射线,若1,2COA BOC ∠=∠则我们称射线OC 是射线OA 的伴随线.例如,如图1,60 20AOB AOC COD BOD ∠=∠=∠=∠=,,则12AOC BOC ∠=∠,称射线OC 是射线OA 的伴随线:同时,由于12BOD AOD ∠=∠,称射线OD 是射线OB 的伴随线. [知识运用](1)如图2,120AOB ∠=,射线OM 是射线OA 的伴随线,则AOM ∠= ,若AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线,则NOC ∠的度数是 .(用含α的代数式表示)(2)如图,如180AOB ∠=,射线OC 与射线OA 重合,并绕点O 以每秒3的速度逆时针旋转,射线OD 与射线OB 重合,并绕点O 以每秒5的速度顺时针旋转,当射线OD 与射线OA 重合时,运动停止,现在两射线同时开始旋转.①是否存在某个时刻t (秒),使得COD ∠的度数是20,若存在,求出t 的值,若不存在,请说明理由;②当t 为多少秒时,射线OC OD OA 、、中恰好有一条射线是其余两条射线的伴随线. 23.检验下列方程后面小括号内的数是否为相应方程的解. (1)2x+5=10x-3(x=1); (2)2(x-1)-12(x+1)=3(x+1)-13(x-1)(x=0). 24.如图,在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB =2BC ,设点A ,B ,C 所对应数的和是m .(1)若点C 为原点,BC =1,则点A ,B 所对应的数分别为 , ,m 的值为 ;(2)若点B 为原点,AC =6,求m 的值.(3)若原点O 到点C 的距离为8,且OC =AB ,求m 的值.25.计算:(1)4222(37)2(1)-+--⨯-; (2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭.26.已知多项式234212553x x x x ++-- (1)把这个多项式按x 的降冥重新排列;(2)请指出该多项式的次数,并写出它的二次项和常规项.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C 【分析】根据∠AOB=12∠BOD,OC平分∠AOD,得到∠AOB=13∠AOD,∠AOC=∠DOC=12∠AOD,进而得到∠BOC=12∠AOB,∠DOC=3∠BOC从而判断出①②错误,③④正确.【详解】解:因为∠AOB=12∠BOD,所以∠AOB=13∠AOD,因为OC平分∠AOD,所以∠AOC=∠DOC=12∠AOD,所以∠BOC=∠AOC-∠AOB=12∠AOD-13∠AOD=16∠AOD=12∠AOB,故①错误,③正确;因为∠DOC=12∠AOD,∠BOC=16∠AOD,所以∠DOC=3∠BOC 故②错误,④正确.【点睛】本题考查了角的和差倍数关系,根据题意表示∠AOB=13∠AOD,∠AOC=∠DOC=12∠AOD,进而根据角的关系即可作出判断.2.B解析:B【解析】A、若直棱柱的底面边长都相等,则它的各个侧面面积相等,说法正确;B、n棱柱有n+2个面,n个顶点,故原题说法错误;C、长方体,正方体都是四棱柱,说法正确;D、三棱柱的底面是三角形,说法正确;故选B.3.C解析:C【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,根据看到的图形进行比较即可解答.【详解】解:A、主视图看到的是2行,3列,最下1行是3个,上面一行是1个,第2列是2个;左视图是2行,上下各1个;B.主视图看到的是3行,最下1行是2个,上面2行在下面1行的中间,各1个,左视图是3行,每行各一个;C.主视图是2行2列,下面1行是2个,上面1行1个,左面1列是2个;左视图是2行2列,下面1行是2个,上面1行1个,左面1列是2个,故主视图和左视图相同;D.主视图是2行2列,下面1行2个,上面1行1个,右面1列2个,左视图也是2行2列,下面1行2个,上面1行1个,左面1列2个.故选:C.【点睛】此题考查了从不同方向观察物体,重点是看清有几行几列,每行每列各有几个.4.C解析:C【分析】由点C在直线AB上,分别讨论点C在点B左侧和右侧两种情况,根据线段的和差关系求出AC的长即可.【详解】∵点C在直线AB上,BC=2,AB=5,∴当点C在点B左侧时,AC=AB-BC=3,当点C在点B右侧时,AC=AB+BC=7,∴AC的长为3或7,故选C.【点睛】本题考查线段的和与差,注意点C在直线AB上,要分几种情况讨论是解题关键.5.D解析:D【分析】根据题意,可以找到很多数量关系,那么选取合适的关系列出等式是关键,仔细观察网格图,可以发现第一纵行与第二橫行互相交叉,有相同的空格,同时包含了参数a与b,根据该等量关系可以列出等式解答.【详解】解:设第二橫行第一个空格为字母c,如下图,据题意得, 85a c c b ++=++, 移项可得, 3b a -=. 故选:D. 【点睛】本题以幻方形式考查等式与方程的应用,理解题意,观察图形,找到合适的等量关系列出等式是解答关键.6.D解析:D 【分析】根据合并同类项,系数化为1可得方程的解. 【详解】合并同类项,得9x=-18, 系数化为1,得x=-2, 故选D . 【点睛】此题主要考查了解一元一次方程,熟练掌握运算法则解答此题的关键.7.B解析:B 【分析】由已知可得4x +=2,解方程可得. 【详解】由已知可得4x +=2,解得x=-2. 故选B. 【点睛】本题考核知识点:列方程,解方程. 解题关键点:根据题意列出一元一次方程.8.B解析:B 【解析】 由已知得413m-= ,解得m=1;故选B. 9.B解析:B 【分析】要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n . 【详解】因为第一个单项式是1112(1)2x x -=-⨯; 第二个单项式是222222(1)2x x =-⨯;第三个单项式是333332(1)2x x -=-⨯, …,所以第n 个单项式是(1)2nnnx -. 故选:B . 【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.10.C解析:C 【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数2019的是从3开始的第1008个数,然后确定出1008所在的范围即可得解. 【详解】∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m=()()212m m +-,∵2n+1=2019,n=1009,∴奇数2019是从3开始的第1009个奇数, 当m=44时,()()4424419892+-=,当m=45时,()()4524511342+-=,∴第1009个奇数是底数为45的数的立方分裂的奇数的其中一个, 即m=45. 故选:C . 【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.11.D解析:D 【分析】根据绝对值的性质,有理数的减法法则,有理数的乘方法则即可求出答案. 【详解】A 、原式=3,故A 错误;B 、原式=﹣4,故B 错误;C 、原式=﹣1,故C 错误;D 、原式=[0.125×(﹣8)]2=1,故D 正确. 故选:D . 【点睛】本题考查了绝对值的化简,有理数的运算法则,熟练掌握有理数运算的运算法则是本题的关键,要注意符号变号问题.12.A解析:A 【分析】先化简各式,然后根据有理数大小比较的方法判断即可. 【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->--⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=,∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>, ∴10.01-<-,故选项D 不正确. 故选:A . 【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.二、填空题13.14【分析】画出图形后分别求出BCCDDEEFFG 的大小可得AB =FGBC =DECD =EF 然后根据票价是由路程决定再分别求出从ABCDEF 出发的情况相加即可【详解】解:①从A 分别到BCDEFG 共6种解析:14 【分析】画出图形后分别求出BC 、CD 、DE 、EF 、FG 的大小,可得AB =FG ,BC =DE ,CD =EF ,然后根据票价是由路程决定,再分别求出从A 、B 、C 、D 、E 、F 出发的情况,相加即可.【详解】解:①从A分别到B、C、D、E、F、G共6种票价,如图:BC=805﹣445=360,CD=1135﹣805=330,DE=1495﹣1135=360,EF=1825﹣1495=330,FG=2270﹣1825=445,即AB=FG,BC=DE,CD=EF,②∵BC=360,BD=690,BE=1050,BF=1380,BG=1825=AF,∴从B出发的有4种票价,有BC、BD、BE、BF,4种;③∵CD=330,CE=690=BD,CF=1020,CG=1465,∴从C出发的(除去路程相同的)有3种票价,有CD,CF,CG,3种;④∵DE=360=BC,DF=690=BD,DG=1135=AD,∴从D出发的(除去路程相同的)有0种票价;⑤∵EF=330=CD,EG=775,∴从E出发的(除去路程相同的)有1种票价,有EG,1种;⑥∵FG=445=AB,∴从F出发的(除去路程相同的)有0种票价;∴6+4+3+0+1+0=14.故答案为:14.【点睛】本题考查了线段知识的实际应用,正确理解题意、不重不漏的求出所有情况是解此题的关键,这是一道比较容易出错的题目,求解时注意分类全面.14.192【分析】根据已知图形得出长方体的高进而得出答案【详解】解:设长方体的高为xcm则长方形的宽为(14-2x)cm根据题意可得:14-2x+8+x+8=26解得:x=4所以长方体的高为4cm宽为6解析:192【分析】根据已知图形得出长方体的高进而得出答案.【详解】解:设长方体的高为xcm,则长方形的宽为(14-2x)cm,根据题意可得:14-2x+8+x+8=26,解得:x=4,所以长方体的高为4cm,宽为6cm,长为8cm,长方形的体积为:8×6×4=192(cm3);故答案为:192【点睛】本题考查几何体的展开图、一元一次方程的应用及几何体的体积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.15.2【分析】设8月份晚间用电量为a 度则:8月份白天用电量为(1+50)a=15a 度8月份电费为:15ma+na=(15m+n )a 元9月份白天用电量为:15a (1-60)=06a 度9月份晚间用电量为:(解析:2【分析】设8月份晚间用电量为a 度,则:8月份白天用电量为(1+50%)a=1.5a 度,8月份电费为:1.5ma+na=(1.5m+n )a 元,9月份白天用电量为:1.5a (1-60%)=0.6a 度,9月份晚间用电量为:(a+1.5a )(1+20%)-0.6a=2.4a 度,9月份电费为:0.6ma+2.4na=(0.6m+2.4n )a 元,然后根据题意即可列出方程,求出m 与n 的比值即可.【详解】解:白天的单价为每度m 元,晚间的单价为每度n 元,设8月份晚间用电量为a 度,则:8月份白天用电量为:(1+50%)a=1.5a 度,8月份电费为:1.5ma+na=(1.5m+n )a 元,9月份白天用电量为:1.5a (1-60%)=0.6a 度,9月份晚间用电量为:(a+1.5a )(1+20%)-0.6a=2.4a 度,9月份电费为:0.6ma+2.4na=(0.6m+2.4n )a 元,根据题意得:(0.6m+2.4n )a =(1.5m+n )(1-10%)a .整理得:0.75m=1.5n , ∴1.520.75m n ==. 故答案为:2.【点睛】 此题主要考查了一元一次方程的应用,分别表示出8,9月份的用电量是解决问题的关键. 16.﹣1【分析】利用相反数的性质列出方程求出方程的解即可得到a 的值【详解】根据题意得:去分母得:a+2+2a+1=0移项合并得:3a=﹣3解得:a=﹣1故答案为:﹣1【点睛】本题考查了解一元一次方程的应解析:﹣1【分析】利用相反数的性质列出方程,求出方程的解即可得到a 的值.【详解】根据题意得:a 2a 11022+++= 去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:﹣1【点睛】本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.17.【分析】有第1排的座位数看第n 排的座位数是在第1排座位数的基础上增加几个1即可【详解】解:∵第一排有个座位∴第2排的座位为a+1第3排的座位数为a+2…第n 排座位有(a+n-1)个故答案为:(a+n解析:a n 1+-【分析】有第1排的座位数,看第n 排的座位数是在第1排座位数的基础上增加几个1即可.【详解】解:∵第一排有 a 个座位,∴第2排的座位为a+1,第3排的座位数为a+2,…第n 排座位有 (a+n-1)个.故答案为:(a+n-1).【点睛】考查列代数式;得到第n 排的座位数与第1排座位数的关系式的规律是解决本题的关键. 18.【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个 解析:()31-n【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案.【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个,∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个,故答案为:(3n-1).【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键. 19.(-1)+(-4)+2-3117+(-17)+(-44)+1470【分析】(1)根据同号相加的特点利用加法的交换律先计算(-1)+(-4);(2)利用抵消的特点利用加法的交换律和结合律进行简便计算【解析:[(-1)+(-4)]+2 -3 [117+(-17)]+[(-44)+14] 70【分析】(1)根据同号相加的特点,利用加法的交换律,先计算(-1)+(-4);(2)利用抵消的特点,利用加法的交换律和结合律进行简便计算.【详解】(1)同号相加较为简单,故:[(-1)+2]+(-4)=[(-1)+(-4)]+2=-3(2)117和(-17)可通过抵消凑整,(-44)和14也可通过抵消凑整,故:117+(-44)+(-17)+14=[117+(-17)]+[(-44)+14]=70.【点睛】本题考查有理数加法的简算,解题关键是灵活利用加法交换律和结合律,凑整进行简算. 20.【分析】(1)利用计算器计算有理数的加减法即可得;(2)利用计算器计算有理数的除法即可得;(3)利用计算器计算有理数的乘法即可得;(4)利用计算器计算有理数的乘除法即可得;(5)利用计算器先计算有理 解析:10.8 0.25- 6.48 30- 14.55- 76【分析】(1)利用计算器计算有理数的加减法即可得;(2)利用计算器计算有理数的除法即可得;(3)利用计算器计算有理数的乘法即可得;(4)利用计算器计算有理数的乘除法即可得;(5)利用计算器先计算有理数的乘除法、再计算有理数的减法即可得;(6)利用计算器先计算有理数的乘方与减法、再计算有理数的除法即可得.【详解】(1)原式14.4 3.610.8=-=;(2)原式0.25=-;(3)原式 3.6 1.8() 6.48-==-⨯;(4)原式 1.236()30=÷-=-;(5)原式434.618 4.618 4.60.7518 3.451814.5534÷-=⨯-=⨯-=-=-; (6)原式53.1441760.7=≈; 故答案为:10.8,0.25-,6.48,30-,14.55-,76.【点睛】本题考查了利用计算器计算有理数的加减乘除法与乘方运算、近似数,掌握计算器的使用是解题关键.三、解答题21.120°【分析】此题可以设∠AOC=x ,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【详解】解:设∠AOC =x ,则∠BOC =2x .∴∠AOB =3x .又OD 平分∠AOB ,∴∠AOD =1.5x .∴∠COD =∠AOD ﹣∠AOC =1.5x ﹣x =20°.∴x =40°∴∠AOB =120°.【点睛】此题考查角平分线的定义及角的计算,设出适当的未知数,运用方程求出角的度数是解题的关键.22.(1)40︒,16α;(2)①存在,当20t =秒或25秒时,∠COD 的度数是20︒;②当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.【分析】(1)根据伴随线定义即可求解;(2)①利用分类讨论思想,分相遇之前和之后进行列式计算即可;②利用分类讨论思想,分相遇之前和之后四个图形进行计算即可.【详解】(1)∵120AOB ∠=,射线OM 是射线OA 的伴随线, 根据题意,12AOM BOM ∠=∠,则111204033AOM AOB ∠=∠=⨯︒=︒; ∵AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线, ∴111233BON AON AOB α∠=∠=∠=,1122BOC AOB α∠=∠=, ∴111236NOC BOC BON ααα∠=∠-∠=-=; 故答案为:40︒,16α; (2)射线OD 与OA 重合时,180365t ==(秒), ①当∠COD 的度数是20°时,有两种可能: 若在相遇之前,则1805320t t --=,∴20t =;若在相遇之后,则5318020t t +-=,∴25t =;所以,综上所述,当20t =秒或25秒时,∠COD 的度数是20°;②相遇之前:(i )如图1,OC 是OA 的伴随线时,则12AOC COD ∠=∠, 即()13180532t t t =--, ∴907t =; (ii )如图2,OC 是OD 的伴随线时,则12COD AOC ∠=∠, 即11805332t t t --=⨯, ∴36019t =; 相遇之后: (iii )如图3,OD 是OC 的伴随线时,则12COD AOD ∠=∠, 即()153********t t t +-=-, ∴1807t =;(iv )如图4,OD 是OA 的伴随线时,则12AOD COD ∠=∠, 即()118053t 5t 1802t -=+-, ∴30t =; 所以,综上所述,当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.【点睛】 本题是几何变换综合题,考查了角的计算,考查了动点问题,解题的关键是理解题意,学会用分类讨论的思想思考问题.23.(1)是;(2)否.【分析】(1)先求出一元一次方程的解,然后进行判断即可;(2)先求出一元一次方程的解,然后进行判断即可;【详解】解:(1)25103x x +=-,∴88x -=-,∴1x =,∴括号内的数是方程的解;(2)112(1)(1)3(1)(1)23x x x x --+=+--, ∴77(1)(1)32x x -=+, ∴2233x x -=+,∴5x =-;∴括号内的数不是方程的解.【点睛】本题考查了解一元一次方程,解题的关键是掌握解一元一次方程的方法和步骤. 24.(1)﹣3,﹣1,﹣4;(2)﹣2;(3)8或-40.【分析】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C 的右边先确定点C 对应的数,进而确定点B 、点A 所表示的数即可求解.【详解】解:(1)∵点C 为原点,BC =1,∴B 所对应的数为﹣1,∵AB =2BC ,∴AB =2,∴点A 所对应的数为﹣3,∴m =﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B 为原点,AC =6,AB =2BC ,AB+BC=AC ,∴AB=4,BC=2,∴点A 所对应的数为﹣4,点C 所对应的数为2,∴m =﹣4+2+0=﹣2;(3)∵原点O 到点C 的距离为8,∴点C 所对应的数为±8,∵OC =AB ,∴AB =8,当点C 对应的数为8,∵AB =8,AB =2BC ,∴BC =4,∴点B 所对应的数为4,点A 所对应的数为﹣4,∴m =4﹣4+8=8;当点C 所对应的数为﹣8,∵AB =8,AB =2BC ,∴BC =4,∴点B 所对应的数为﹣12,点A 所对应的数为﹣20,∴m =﹣20﹣12﹣8=﹣40.【点睛】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.25.(1)-2;(2)-19【分析】(1)先括号里,再计算乘方、乘法,最后相加减即可;(2)利用乘法的分配率进行计算.【详解】(1)4222(37)2(1)-+--⨯-=16162-+-=-2;(2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭=157(36)(36)(36)2912⨯--⨯-+⨯- =-18+20-21=-19【点睛】 考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.26.(1)432215253x x x x -+++-;(2)该多项式的次数为4,二次项是22x ,常数项是13-.【分析】(1)按照x 的指数从大到小的顺序把各项重新排列即可;(2)根据多项式的次数的定义找出次数最高的项即是该多项式的次数,再找出次数是2的项和不含字母的项即可得二次项和常数项.【详解】(1)按的降幂排列为原式432215253x x x x -+++-. (2)∵234212553x x x x ++--中次数最高的项是-5x 4, ∴该多项式的次数为4,它的二次项是22x ,常数项是13-. 【点睛】 本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键.。
【鲁教版】初一数学上期末试卷附答案(1)
一、选择题1.下列调查方式,你认为最合适的是()A.调查市场上某种白酒的塑化剂的含量,采用全面调查方式B.调查鞋厂生产的鞋底能承受的弯折次数,采用全面调查方式C.调查端午节期间市场上粽子的质量,采用抽样调查方式D.“长征﹣3B火箭”发射前,检查其各零部件的合格情况,采用抽样调查的方式2.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了如图的直方图.根据图中信息,下列说法错误的是()A.这栋居民楼共有居民125人B.每周使用手机支付次数为28~35次的人数最多C.有25人每周使用手机支付的次数在35~42次D.每周使用手机支付不超过21次的有15人3.希望中学七年级四个班的学生去阳光公园义务植树,已知在每小时内,5个女生种3棵树,3个男生种5棵树,各班学生人数如图所示,则植树最多的班级是()A.七(1)班B.七(2)班C.七(3)班D.七(4)班4.某校甲、乙、丙三个班为“希望工程”捐款,甲班捐的钱数是另外两个班捐款总和的一半,乙班捐的钱数是另外两个班捐款总和的13,丙班共捐了160元,求这三个班捐款数的总和()A.440 B.384 C.382 D.364 5.下列解方程过程中,变形正确的是()A .由213x -=得231x =-B .由56-=x 得56x =-C .由132x x -=得-=236x xD .由310.240.1x x +=+得310.24x x =++ 6.使得关于x 的方程44163ax x x -+-=-的解是正整数的所有整数a 的积为( ) A .21- B .12-C .6-D .12 7.下列说法正确的是( ).A .两点之间,直线最短B .连接两点间的线段,叫做这两点的距离C .两条射线组成的图形叫做角D .经过两点有一条直线,并且只有一条直线 8.下列四个图中,能用1∠、O ∠、MON ∠三种方法表示同一个角的是( ) A . B . C .D .9.如图,点C 在线段AB 上,且13AC AB =.点D 在线段AC 上,且13CD AD =.E 为AC 的中点,F 为DB 的中点,且11EF =,则CB 的长度为( )A .15B .16C .17D .1810.元旦,是公历新一年的第一天“元旦”一词最早出现于《晋书》:“颛帝以孟夏正月为元,其实正逆元旦之春”.中国古代间以腊月、十月等的月首为元旦.1949年中国华人民共和国以公历1月1日为元旦,因此元旦在中国也被称为“阳历年”.为庆祝元旦,人民商场举行促销活动,促销的方法是“消费超过100元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为x 元(100x >),则购买该商品实际付款的金额(单位:元)是( )A .80%20x -B .()80%20x -C .20%20x -D .()20%20x - 11.下列图形是正方体展开图的是( )A .B .C .D . 12.有理数p ,q ,r ,s 在数轴上的对应点的位置如图所示.若10p r -=,12p s -=,9q s -=,则q r -的值是( )A.5 B.6 C.7 D.10二、填空题13.某调查机构对某地互联网行业从业情况进行调查统计,得到当地互联网行业从业人员年龄分布统计图和当地90后从事互联网行业岗位分布统计图:互联网行业从业人员年龄分布统计图 90后从事互联网行业岗位分布图对于以下四种说法,你认为正确的是_____ (写出全部正确说法的序号).①在当地互联网行业从业人员中,90后人数占总人数的一半以上②在当地互联网行业从业人员中,80前人数占总人数的13%③在当地互联网行业中,从事技术岗位的90后人数超过总人数的20%④在当地互联网行业中,从事设计岗位的90后人数比80前人数少14.近日,广州市教育局出台《广州市教育局关于加强中小学(幼儿园)劳动教育指导意见》和《广州市中小学劳动教育指导纲要》,明确学生会抄自家的电表等.小海6月初连续几天在同一时刻记录家里电表显示的度数如下表,根据小海的记录,请你估计小海家6月(30天)的用电量约为_____千瓦·时.15.如图所示,两个天平都平衡,那么与6个球体质量相等的正方体的个数为_____.∠的平分线,且16.如图,点O是直线AB上一点,OC垂直于OD,OE是AOD∠∠=,则BOECOB AOD:3:8∠=________.17.如图,已知点D 在线段AB 上,且:7:3,6cm AD DB DB ==,若点M 是线段AD 的中点,求线段BM 的长.18.化简()33ππ---的结果为_______.19.在-1.0426中用数字3替换其中的一个非零数字后,使所得的数最大,则被替换的数字是________.20.如图是正方体的展开图,则正方体中与数字5所在面相对的面上的数字为________ .三、解答题21.为了了解某中学学生的身高情况,随机对该校男、女生的身高进行抽样调查.抽取的样本中,男、女生的人数相同,根据所得数据绘制成如图所示的统计图表. 组别男女生身高(cm ) A150155x < B155160x < C160165x < D165170x < E 170175x <根据图表中提供的信息,回答下列问题:(1)在样本中,组距是__________,女生身高在B组的有__________人;x<之间的共有__________人,人数最多的是__________(2)在样本中,身高在170175组(填组别序号);x<之间的学生有(3)已知该校共有男生500人,女生480人,请估计身高在160170多少人?22.大学生运动会将在成都召开,大批的大学生报名参与志愿者服务工作.某大学计划组织本校大学生志愿者乘车去了解比赛场馆情况,若单独调配36座(不含司机)新能源客车若干辆,则有2人没有座位;若只调配22座(不含司机)新能源客车,则用车数量将增加4辆,并空出2个座位.求计划调配36座新能源客车多少辆?该大学共有多少名大学生志愿者?23.综合与实践如图,某学校由于经常拔河,长为40米的拔河比赛专用绳AB左右两端各有一段(AC和BD)磨损了,磨损后的麻绳不再符合比赛要求,已知磨损的麻绳总长度不足20米.只利用麻绳AB和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳.=,对折BM找七年级的聪聪马上想出一个了办法:在线段CD上取一点M,使CM CA到其中点F,将AC和BF剪掉就得到一条长20米的拔河比赛专用绳CF.请你完成下列任务;(1)在图中标出点M、点F的位置;(2)判断聪聪剪出的专用绳CF是否符合要求.试说明理由.24.已知下列等式:①22﹣12=3;②32﹣22=5;③42﹣32=7,…(1)请仔细观察前三个式子的规律,写出第④个式子:;(2)请你找出规律,写出第n个式子.(3)利用(2)中发现的规律计算:1+3+5+7+…+2019+2021.25.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?26.画出如图所示几何体的主视图、左视图和俯视图.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、调查市场上某种白酒的塑化剂的含量,采用全面调查方式,适合抽样调查;B、了调查鞋厂生产的鞋底能承受的弯折次数,适合抽样调查;C、调查端午节期间市场上粽子的质量,适合采用抽样调查方式;D、“长征﹣3B火箭”发射前,检查其各零部件的合格情况,适合采用全面调查方式;故选:C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.D解析:D【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.【详解】解:A、这栋居民楼共有居民3+10+15+22+30+25+20=125(人),此结论正确;B、每周使用手机支付次数为28~35次的人数最多,这是因为从直方图上可以看出,每周使用手机支付次数为28~35次的小矩形的高度最高,所以每周使用手机支付次数为28~35次的人数最多,此结论正确,;C、有的人每周使用手机支付的次数在35~42次,此结论正确;D.每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选:D.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.3.C解析:C【分析】根据题意分别计算出各班植树的数目,于是得到结论.【详解】解:七(1)班共植树:35221843.253⨯+⨯=(棵),七(2)班共植树:3566218205315⨯+⨯=(棵),七(3)班共植树:3566713225315⨯+⨯=(棵),七(4)班共植树:3515214453⨯+⨯=(棵),∵6676624443.21515>>>,∴植树最多的班级是七(3)班,故选:C.【点睛】本题考查了条形统计图,正确的识别图形是解题的关键.4.B解析:B【分析】由甲班捐的钱数是另外两个班捐款总和的一半,可知甲班捐款数是三个班捐款数总和的1 3,由乙班捐的钱数是另外两个班捐款总和的13,可知乙班捐款数是三个班捐款数总和的14,设三个班捐款总和为x元,根据题意列方程求解.【详解】解:∵甲班捐的钱数是另外两个班捐款总和的一半,∴甲班捐款数是三个班捐款数总和的13,∵乙班捐的钱数是另外两个班捐款总和的13, ∴乙班捐款数是三个班捐款数总和的14, 设三个班捐款总和为x 元,则甲班捐款13x 元,乙班捐款14x 元,根据题意可得 1116034x x x --=,解得:x=384 ∴三个班捐款总和为384元故选:B .【点睛】本题考查了一元一次方程的应用,正确理解题意,分析部分与整体的关系,找准题目等量关系,列方程求解是解题关键.5.C解析:C【分析】根据等式的性质和分式的基本性质逐项判断即可.【详解】解:A 、移项应该改变项的符号,则可得2x =3+1,故A 不正确,不符合题意; B 、两边同时除以−5,可得x =65-,故B 不正确,不符合题意; C 、两边同时乘6,可得2x−3x =6,故C 正确,符合题意;D 、分数的分子分母同时扩大10倍,则分数的值不变,改变的只是分子和分母,与其他项无关,故D 不正确,不符合题意;故选:C .【点睛】本题主要考查等式的性质,掌握等式的基本性质是解题的关键,注意在解方程时移项需要改变项的符号.6.B解析:B【分析】先解该一元一次方程,然后根据a 是整数和x 是正整数即可得到a 的值,从而得到答案.【详解】 解:44163ax x x -+-=- 去分母得,()()64246x ax x --=+-去括号得,64286x ax x -+=+-整理得,()46a x +=∴64x a=+, 当2a =时1x =,当1a =-时2x =,当2a =-时3x =,当3a =-时6x =,这些整数a 的积为()()()212312⨯-⨯-⨯-=-,故选:B .【点睛】本题考查了一元一次方程的解法和代数式求值,熟练掌握解一元一次方程是解题的关键. 7.D解析:D【分析】根据两点之间线段最短性质,可判断选项A ;根据两点之间距离的性质,可判断选项B ;根据角的定义分析,可判断选项C ;根据直线的性质分析,可判断选项D ,即可得到答案.【详解】两点之间,线段最短,故选项A 错误;连接两点间的线段长度,叫做这两点的距离,故选项B 错误;具有公共端点的两条射线组成的图形叫做角,故选项C 错误;经过两点有一条直线,并且只有一条直线,故选项D 正确;故选:D .【点睛】本题考查了线段、直线、角的知识;解题的关键是熟练掌握线段、直线、角的性质,从而完成求解.8.C解析:C【分析】根据角的表示方法和图形选出即可.【详解】A 、图中的∠MON 不能用∠O 表示,故本选项错误;B 、图中的∠1和∠O 不是表示同一个角,故本选项错误;C 、图中的1∠、O ∠、MON ∠表示同一个角,故本选项正确;D 、图中∠1、∠MON 、∠O 不表示同一个角,故本选项错误;故选:C .【点睛】本题考查了角的表示方法的应用,主要考查学生的理解能力和观察图形的能力. 9.B解析:B【分析】设CB x =,然后根据题目中的线段比例关系用x 表示出线段EF 的长,令它等于11,解出x 的值.【详解】解:设CB x =, ∵13AC AB =,∴1122AC BC x ==, ∵13CD AD =,∴1148CD AC x ==, ∵E 是AC 中点,∴1124CE AC x ==, 111488DE CE CD x x x =-=-=,1988BD BC CD x x x =+=+=, ∵F 是BD 中点,∴19216DF BD x ==, 91111116816EF DF DE x x x =+=+==,解得16x =. 故选:B .【点睛】 本题考查线段之间和差计算,解题的关键是设未知数帮助我们理顺线段与线段之间的数量关系,然后列式求解未知数.10.A解析:A【分析】根据题意可以用相应的代数式表示购买该商品实际付款的金额;【详解】由题意得,若某商品的原价为x 元(x >100),则购买该商品实际付款的金额是:80%x-20(元)故选:A .【点睛】本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式.11.B解析:B【分析】正方体的展开图有11种情况:1-4-1型共6种,1-3-2型共3种,2-2-2型一种,3-3型一种,由此判定找出答案即可.【详解】解:A 、有田字格,不是正方体展开图,故选项错误;B、1-4-1型,是正方体展开图,故选项正确;C、不是正方体展开图,故选项错误;D、有田字格,不是正方体展开图,故选项错误.故选:B.【点睛】此题考查正方体的展开图,注意识记基本类型,更快解决实际问题.12.C解析:C【分析】根据绝对值的几何意义,将|p−r|=10,|p−s|=12,|q−s|=9转化为两点间的距离,进而可得q、r两点间的距离,即可得答案.【详解】解:根据绝对值的几何意义,由|p−r|=10,|p−s|=12,|q−s|=9得:|p−q|=|p−s|-|q−s|=3,|r−s|=|p−s|-|p−r|=2∴|q−r|=|p−s|-|p−q|-|r−s|=12-3-2=7.故选:C.【点睛】本题考查了绝对值的几何意义,解题的关键是运用数形结合的数学思想表示出数轴上两点间的距离.二、填空题13.①③【分析】观察比较扇形统计图和条形统计图获取相关信息然后再进行分析即可【详解】解:①从扇形统计图中可发现互联网行业从业人员中90后占56占一半以上即①正确;②互联网行业中从事技术岗位的80前人数占解析:①③【分析】观察、比较扇形统计图和条形统计图获取相关信息,然后再进行分析即可【详解】解:①从扇形统计图中可发现互联网行业从业人员中90后占56%,占一半以上,即①正确;②互联网行业中从事技术岗位的80前人数占总人数1-56%-41%=3%,故②错误;.③B互联网行业中从事技术岗位的90后人数占总人数的0.56×0.41=0.2296 >0.2,故③正确;④从事设计岗位的90后人数占总人数的0.56×0.08=0.0448>0.03故选④错误;故答案为①③.【点睛】本题主要考查对扇形统计图和条形统计图的观察分析能力,掌握条形统计图和扇形统计图的关联是解答本题的关键.14.270【解析】【分析】先求出一个星期内每天大概用电量然后乘以6月份的30天得出一月的大概用电量这里要注意的是前面所抄的是八个数但实际是七天的用电量电表显示是总用电量不是哪一天的用电量【详解】解:根据 解析:270【解析】【分析】先求出一个星期内每天大概用电量,然后乘以6月份的30天得出一月的大概用电量.这里要注意的是前面所抄的是八个数,但实际是七天的用电量,电表显示是总用电量,不是哪一天的用电量,【详解】解:根据题意,可得2752123093027081-⨯=⨯=-千瓦·时 答:小海家6月(30天)的用电量约为270千瓦·时.【点睛】此题主要考查用样本估计总体的实际应用,熟练掌握,即可解题.15.4【分析】设一个球体的质量为x 一个圆柱的质量为y 一个正方体的质量为m 列出关系式计算即可;【详解】设一个球体的质量为x 一个圆柱的质量为y 一个正方体的质量为m 根据第一个天平可得:根据第二个天平可得:∴∴ 解析:4【分析】设一个球体的质量为x ,一个圆柱的质量为y ,一个正方体的质量为m ,列出关系式计算即可;【详解】设一个球体的质量为x ,一个圆柱的质量为y ,一个正方体的质量为m ,根据第一个天平可得:35x y =,根据第二个天平可得:25m y =,∴32x m =, ∴23x m =, ∴26643x m m =⨯=; 故答案是4.【点睛】本题主要考查了等式的性质,准确列式计算是解题的关键.16.【分析】根据设∠COB=则∠AOD=求得∠BOD=利用∠COD=列方程即可求解【详解】∵设∠COB=则∠AOD=∴∠BOD=∵垂直于∴∠COB+∠BOD=即解得:∵是的平分线∴∠AOE=∠EOD=∴解析:108︒【分析】根据:3:8COB AOD ∠∠=,设∠COB=3x ,则∠AOD=8x ,求得∠BOD=1808x ︒-,利用∠COD=90︒列方程,即可求解.【详解】∵:3:8COB AOD ∠∠=,设∠COB=3x ,则∠AOD=8x ,∴∠BOD=1808x ︒-,∵OC 垂直于OD ,∴∠COB+∠BOD=90︒,即3180890x x +︒-=︒,解得:18x =︒,∵OE 是AOD ∠的平分线,∴∠AOE=∠EOD=472x =︒,∴∠BOE=180AOE 18072108∠︒-=︒-︒=︒,故答案为:108︒.【点睛】本题考查了余角、补角、角平分线的定义,解一元一次方程,解题的关键是灵活运用所学知识解决问题.17.13cm 【分析】根据线段的长度和比的关系求AD 的长然后利用线段中点的定义求得DM 的长度从而求解BM 【详解】解:∵∴∵点M 是线段的中点∴∴∴线段的长为13cm 【点睛】本题考查线段的和差计算及中点的定义 解析:13cm【分析】根据线段的长度和比的关系求AD 的长,然后利用线段中点的定义求得DM 的长度,从而求解BM .【详解】解:∵:7:3,6cm AD DB DB ==,∴=637=14AD cm ÷⨯∵点M 是线段AD 的中点 ∴172DM AD cm == ∴7613BM MD BD cm =+=+= ∴线段BM 的长为13cm .【点睛】本题考查线段的和差计算及中点的定义,理解题意,找准线段间数量关系正确列式计算是解题关键.18.【分析】根据去括号的法则和绝对值的化简求解即可【详解】解:=3-π-(π-3)=3-π-π+3=故答案为:【点睛】本题主要考查了去括号和绝对值的化简解题的关键是掌握去括号的法则和绝对值的化简运算解析:62π-【分析】根据去括号的法则和绝对值的化简求解即可.【详解】解:()33ππ---=3-π-(π-3)=3-π-π+3=62π-,故答案为:62π-.【点睛】本题主要考查了去括号和绝对值的化简,解题的关键是掌握去括号的法则和绝对值的化简运算.19.4【分析】根据两个负数绝对值大的其值反而小比较被替换的数的绝对值的大小得到答案【详解】解:被替换的数是-30426-10326-10436-10423|-10326|<|-10423|<|-1043解析:4【分析】根据两个负数,绝对值大的其值反而小比较被替换的数的绝对值的大小,得到答案.【详解】解:被替换的数是-3.0426,-1.0326,-1.0436,-1.0423,|-1.0326|<|-1.0423|<|-1.0436|<|-3.0426|,∴最大的数是-1.0326,∴使所得的数最大,则被替换的数字是4,故答案为:4.【点睛】本题考查的是有理数的大小比较,掌握有理数的大小比较法则:正数都大于0; 负数都小于0; 正数大于一切负数,两个负数,绝对值大的其值反而小是解题的关键. 20.4三、解答题21.(1)5、12;(2)10、C ;(3)541人【分析】(1)根据组距的定义结合表格可得组距,求出男生总人数,再用女生总人数乘以B 组的百分比可得;(2)将位于这一小组内的频数相加,分别计算出各组人数之和即可求得结果; (3)分别用男、女生的人数乘以对应的百分比,相加即可得解.【详解】解:(1)在样本中,组距是5,男生共有2+4+8+12+14=40人,∵男、女生的人数相同,女生身高在B组的人数有40×(1-35%-20%-15%-5%)=12人,故答案为:5、12;(2)在样本中,身高在170≤x<175之间的人数共有8+40×5%=10人,∵A组人数为2+40×20%=10人,B组人数为4+12=16人,C组人数为12+40×35%=26人,D 组人数为14+40×10%=18人,E组人数为8+40×5%=10人,∴C组人数最多,故答案为:10、C;(3)500×121440++480×(35%+10%)=541(人),故估计身高在160≤x<170之间的学生约有541人.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.计划调配36座新能源客车6辆,该大学共有218名志愿者.【分析】设计划调配36座新能源客车x辆,根据36座新能源客车的数量×36+2= 22座新能源客车的数量×22-2,且22座新能源客车的数量=36座新能源客车的数量+4即可列出方程求解即可.【详解】解:设计划调配36座新能源客车x辆,则该大学志愿者有(362)x+名.根据题意,得3622242()x x+=+-,解得6x=.∴362218x+=.答:计划调配36座新能源客车6辆,该大学共有218名志愿者.【点睛】本题考查一元一次方程的应用.找准题中的等量关系,能依据等量关系列出方程是解题关键.23.(1)见解析;(2)符合要求,见解析【分析】(1)根据题意可直接进行作图;(2)由题意易得12AC CM AM==,12MF FB MB==,进而可得20CF m=,然后由20AC BD m+<可进行判断.【详解】解:(1)由题意可作如图所示:(2)符合要求.理由是:∵C 为AM 的中点,F 为BM 的中点, ∴12AC CM AM ==,12MF FB MB ==, ∴CF CM MF =+1122AM MB =+()1122AM MB AB =+=, ∵40AB m =,∴20CF m =, ∵20AC BD m +<,∴20CD m >,∴CF 符合要求.【点睛】本题主要考查线段中点的性质,熟练掌握线段中点的性质是解题的关键.24.(1)52﹣42=9;(2)(n+1)2﹣n 2=2n+1;(3)10112.【分析】(1)由等式左边两数的底数可知,两底数是相邻的两个自然数,右边为两底数的和,由此得出规律;(2)等式左边减数的底数与序号相同,由此得出第n 个式子;(3)由3=22﹣12,5=32﹣22,7=42﹣32,…,将算式逐一变形,再寻找抵消规律.【详解】解:(1)依题意,得第④个算式为:52﹣42=9;故答案为:52﹣42=9;(2)根据几个等式的规律可知,第n 个式子为:(n+1)2﹣n 2=2n+1;故答案为:(n+1)2﹣n 2=2n+1;(3)由(2)的规律可知,1+3+5+7+…+2021=1+(22﹣12)+(32﹣22)+(42﹣32)+…+(10112﹣10102)=10112.【点睛】此题考查数字的变化规律,找出数字之间的联系,得出运算规律,利用规律解决问题是解决此题的关键.25.(1)回到了球门线的位置;(2)11米;(3)56米【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10)=(5+10+13)-(4+8+6+10)=28-28=0.答:守门员最后回到了球门线的位置;(2)第1次第2次第3次第4次第5次第6次第7次55-4=11+10=1111-8=33-6=﹣3-3+13=1010-10=0答:在练习过程中,守门员离开球门线最远距离是11米;(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10|=5+4+10+8+6+13+10=56(米).答:守门员全部练习结束后,他共跑了56米.【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.26.详见解析【解析】【分析】根据三视图的概念求解即可.【详解】三视图如图所示:【点睛】本题主要考查作图-三视图,解题的关键是掌握三视图的概念.。
2022-2023学年鲁教版(五四学制)七年级数学上册《第1章三角形》同步练习题(附答案)
2022-2023学年鲁教版(五四学制)七年级数学上册《第1章三角形》同步练习题(附答案)一.选择题1.已知三角形的三边长分别是3,8,x;若x的值为偶数,则x的值有()A.6个B.5个C.4个D.3个2.王老师的一块三角形教学用玻璃不小心打破了(如图),他想再到玻璃店划一块,为了方便他只要带哪一块就可以了()A.①B.②C.③D.④3.下列说法中:①三角形的角平分线、中线、高线都是线段;②直角三角形只有一条高线;③三角形的中线可能在三角形的外部;④三角形的高线可能在三角形的内部,也可能在三角形的外部,其中说法正确的有()个.A.1B.2C.3D.44.以圆周上6点中的任意3点为顶点连三角形,一共可以连成多少个不同的三角形()A.216B.120C.40D.205.如图所示,已知直线AB∥CD,∠C=125°,∠A=45°,则∠E的度数为()A.70°B.80°C.90°D.100°6.三角形三条中线的交点叫做三角形的()A.内心B.外心C.中心D.重心7.如图,已知AB=DC,需添加下列()条件后,就一定能判定△ABC≌△DCB.A.AO=BO B.∠ACB=∠DBC C.AC=DB D.BO=CO8.如图,点D为边BC的中点,AE为△ABD的中线,设△ABC的面积为S,△ABE的面积为S1,则下列结论正确的是()A.S=3S1B.S=4S1C.S=5S1D.S=6S19.如图,点D在AB上,点E在AC上,AB=AC.下列条件中不能判断△ABE≌△ACD的是()A.BD=CE B.BE=CD C.AD=AE D.∠B=∠C 10.直角三角形的两个锐角()A.互补B.相等C.不等D.互余11.下列长度的三条线段,能组成三角形的是()A.2,3,4B.3,4,8C.4,4,8D.5,5,11 12.关于三角形的三条高,下列说法正确的是()A.三条高都在三角形的内部B.三条高都在三角形的外部C.至多有一条在三角形的内部D.至少有一条在三角形的内部13.如图,在△ABC中,∠A=50°,∠C=72°,BD是△ABC的一条角平分线,则∠ABD 的度数为()A.29°B.58°C.36°D.25°14.在下列每组图形中,是全等形的是()A.B.C.D.15.伸缩门可自由伸缩,开关方便,随处可见,它凸显了四边形的()A.稳定性B.不稳定性C.对称性D.美观性二.填空题16.如图,要测量河两岸相对两点A、B间的距离,先在过点B的AB的垂线上取两点C、D,使CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC 的理由是.17.如图,在新修的小区中,有一条“Z”字形绿色长廊ABCD,其中AB∥CD,在AB,BC,CD三段绿色长廊上各修一小亭E,M,F,且BE=CF,点M是BC的中点,在凉亭M 与F之间有一池塘,不能直接到达,要想知道M与F的距离,只需要测出线段的长度.理由是依据可以证明,从而由全等三角形对应边相等得出.18.如图,在△ABD和△CDB中,AD=CB,AB、CD相交于点O,请你补充一个条件,使得△ABD≌△CDB.你补充的条件是.19.如图,在△ABC中,∠1=∠2,G为AD中点,延长BG交AC于点E,F为AB上一点,CF⊥AD于H.下面判断正确的有.(1)AD是在△ABC的角平分线(2)BE是△ABD的AD边上的中线(3)CH为△ACD边AD上的中线(4)AH是△ACF的角平分线和高线.三.解答题20.求证:有两条边和其中一条边上的中线对应相等的两个三角形全等.要求:写出已知、求证、证明并画出正确图形.21.已知,如图,AC、BD相交于点E,EA=ED,EB=EC.求证:△ABC≌△DCB.22.如图,在△ABC中,∠ACB=90°,CD是高.(1)图中有几个直角三角形?是哪几个?(2)∠1和∠A有什么关系?∠2和∠A呢?还有哪些锐角相等.23.如图,△ABC的边BC上的高为AD,且BC=9cm,AD=2cm,AB=6cm.(1)画出AB边上的高CE;(2)求CE的长.24.如图,点D在△ABC的边BA的延长线上,(1)用直尺和圆规作出∠CAD的角平分线AE(保留作图痕迹);(2)若∠B=∠C,求证:AE∥BC.25.如图,在等腰△ABC中,AB=AC,△ADE是等边三角形,且DE∥BC,AD,AE分别交BC于点M,N.求证:BM=CN.参考答案一.选择题1.解:根据题意得:5<x<11.∵x是偶数,∴可以取6,8,10这三个数.故选:D.2.解:②块,因为它只是其中不规则的一块,如果仅凭这一块不能配到与原来一样大小的三角形玻璃;③、④块,它只保留了原来的一个角,那么这样去配也有很大的难度;①块,因为它不但有两个角还有一个边,这正好符合全等三角形的判定中的ASA.所以应该带第①块去.故选:A.3.解:①三角形的角平分线、中线、高都是线段,故本小题正确;②直角三角形有三条高,故本小题错误;③三角形的中线一定在三角形的内部,一定不在三角形外部,故本小题错误;④锐角三角形的高都在三角形内部,钝角三角形有两条在三角形的外部,故本小题正确.说法正确的有2个.故选:B.4.解:根据题意得:C63=20.故选:D.5.解:∵AB∥CD,∠C=125°,∴∠BFE=125°.∴∠E=∠BFE﹣∠A=125°﹣45°=80°.故选:B.6.解:三角形的重心是三角形三条中线的交点.故选:D.7.解:A、添加AO=BO不能判定△ABC≌△DCB,故此选项不合题意;B、添加∠ACB=∠DBC不能判定△ABC≌△DCB,故此选项不合题意;C、添加AC=DB可利用SSS判定△ABC≌△DCB,故此选项符合题意;D、添加BO=CO不能判定△ABC≌△DCB,故此选项不合题意;故选:C.8.解:作AF⊥BC.∵S△ADB=BD×AF×=,S△ADC=CD×AF×=S,又∵AD为△ABC中BC边上的中线,∴BD=CD,∴S△ADB=S△ADC,同理,∴S△ABE=S△ABC,即S1=S,∴S=4S1,故选:B.9.解:若BD=CE,则依据AB=AC,可得AD=AE,由AB=AC,∠A=∠A,AE=AD,可得△ABE≌△ACD(SAS),故A选项能判断△ABE≌△ACD;若BE=CD,则不能得到△ABE≌△ACD,故B选项不能判断△ABE≌△ACD;若AD=AE,则可得△ABE≌△ACD(SAS),故C选项能判断△ABE≌△ACD;若∠B=∠C,则由∠B=∠C,AB=AC,∠A=∠A,可得△ABE≌△ACD(ASA),故D选项能判断△ABE≌△ACD;故选:B.10.解:∵∠A+∠B+∠C=180°,∠C=90°,∴∠A+∠B=180°﹣∠C=90°,∴∠A和∠B互余.故选:D.11.解:A.∵2+3>4,∴能构成三角形;B.∵3+4<8,∴不能构成三角形;C.∵4+4=8,∴不能构成三角形;D.∵5+5<11,∴不能构成三角形.故选:A.12.解:锐角三角形有三条高,高都在三角形内部;直角三角形有两条高即三角形的两条直角边,一条在内部;钝角三角形有三条高,一条高在三角形内部,另外两条高在三角形外部,所以A、B、C都错误,只有D是正确的.故选:D.13.解:∵在△ABC中,∠A=50°,∠C=72°,∴∠ABC=180°﹣50°﹣72°=58°,∵BD是△ABC的一条角平分线,∴∠ABD=29°,故选:A.14.解:A、不是全等形,故此选项错误;B、不是全等形,故此选项错误;C、是全等形,故此选项正确;D、不是全等形,故此选项错误;故选:C.15.解:伸缩门可自由伸缩,开关方便,随处可见,它凸显了四边形的不稳定性.故选:B.二.填空题16.解:∵AB⊥BD,ED⊥BD,∴∠ABD=∠EDC=90°,在△EDC和△ABC中,,∴△EDC≌△ABC(ASA).故答案为:ASA.17.解:要想知道M与F的距离,只需要测出线段EM的长度.理由是依据SAS可以证明△BEM≌△CFM,从而由全等三角形对应边相等得出.证明:连接EF∵AB∥CD,(已知)∴∠B=∠C(两线平行内错角相等).∵M是BC中点∴BM=CM,∵在△BEM和△CFM中,∴△BEM≌△CFM(SAS).∴CF=BE(对应边相等).故答案为:EM,SAS,△BEM≌△CFM.18.解:补充的条件是AB=CD,理由是:在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),故答案为:AB=CD(答案不唯一).19.解:(1)根据三角形的角平分线的概念,知AD是△ABC的角平分线,故此说法正确;(2)根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法不正确;(3)根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法不正确;(4)根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.故答案为(1)(4).三.解答题20.已知:AD和A′D′分别为△ABC和△A′B′C′中线,且AD=A′D′,AB=A′B′,BC=B′C′,如图,求证:△ABC≌△A′B′C′.证明:∵AD和A′D′分别为△ABC和△A′B′C′中线,∴BD=BC,B′D′=B′C′,而BC=B′C′,∴BD=B′D′,在△ABD和△A′B′D′中,∴△ABD≌△A′B′D′(SSS),∴∠B=∠B′,在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(SAS),即有两条边和其中一条边上的中线对应相等的两个三角形全等.21.证明:在△AEB和△DEC中,∴△AEB≌△DEC(SAS),∴∠BAE=∠CDE,AB=CD,∵EA=ED,EB=EC,∴AC=BD,在△ABC和△DCB中∴△ABC≌△DCB(SAS).22.解:(1)∠ACB=90°,∠ADC=90°,∴图中有3个直角三角形,分别是△ACD,△BCD,△ABC.(2)∵∠ADC=90°,∴∠1+∠A=90°,∵∠1+∠2=90°,∴∠2=∠A,∠1=∠B.23.解:(1)如图所示:(2)•BC•AD=•AB•CE,×9×2=×6•CE,解得:CE=3.24.解:(1)如图所示,AE即为所求:(2)∵AE平分∠CAD,∴∠DAE=∠EAC,∵∠B=∠C,∠DAC=∠B+∠C,∴∠DAE=∠B=∠C=∠EAC,∴AE∥BC.25.解:∵△ADE是等边三角形,∴∠D=∠E=60°,∵DE∥BC,∴∠AMN=∠D,∠ANM=∠E,∴∠AMN=∠ANM=60°,∴∠AMB=∠ANC=120°,∵AB=AC,∴∠B=∠C,在△ABM和△ACN中,∴△ABM≌△ACN,∴BM=CN.。
2023年鲁教版(五四制)数学七年级上册期末考试测试卷及部分答案(共三套)
2023年鲁教版(五四制)数学七年级上册期末考试测试卷及答案(一)一、选择题(共10个小题,每小题3分,共30分)1.已知实数x ,y 满足|x-4|+=0, 则以x ,y 的值为两边长的等腰三角形的周长是( )A.20或16B.20C.16 D .以上答案均不对 2.下列说法正确的是( )A .带根号的数都是无理数B .无限小数都是无理数C .两个无理数之和一定是无理数D .两个无理数之积不一定是无理数(6题图)3.设点A (a,b )是正比例函数y= - x 图像上的任意一点,则下列等式一定成立的是( )A. 2a+3b=0B.2a -3b=0C.3a -2b=0D.3a+2b=04.下列各组数分别是三角形的三边长,不是直角三角形的一组是( )A .4,5,6B .3,4,5C .5,12,13D .6,8,105.下列说法不正确的是( )①角平分线上的点到这个角两条边的距离相等②线段的垂直平分线上的点到这条线段的两个端点的距离相等③三角形三条角平分线的交点到这个三角形三个顶点的距离相等。
④三角形三条角平分线的交点到这个三角形三边的距离相等。
其中正确的结论有A .1个B .2个C .3个D .4个6.如图是一张直角三角形的纸片,两直角边AC=6cm 、BC=8cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A .4 cmB .5 cmC .6 cmD .10 cm7.△ABC 的三边分别为a 、b 、c ,其对角分别为∠A 、∠B 、∠C .下列条件不能判定△ABC 是直角三角形的是( )A .∠B=∠A ﹣∠CB . a :b :c=5:12:13C . -=D .∠A :∠B :∠C=3:4:58.如图,在5×5的正方形网格中,以AB 为边画直角△ABC ,使点C 在格点上,满足这样条件的点C 的个数( )A .6B .7C .8D .99.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )8 y a 2c 2b 223327 A .乙前4秒行驶的路程为48米 B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度10. 如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a ),(-3,2),(b ,m ),(c ,m ),则点E 的坐标是( )A.(2,-3)B.(2,3)C(3,2) d(3,-2)二.填空题(共8小题,每小题3分,共24分。
【鲁教版】初一数学上期末试题(带答案)(1)
一、选择题1.随机调查某小区10户家庭一周内使用环保方便袋的数量.得到数据如下(单位:只):6,5,7,8,7,9,10,5,6,7,利用所得的数据估计该小区1500户家庭一周内需要环保方便袋约为( ) A .1500B .10500C .14000D .150002.以下问题不适合全面调查方式的是( ) A .调查某班学生课前预习时间 B .调查全国初中生课外阅读情况 C .调查某校篮球队员的身高D .调查某中学教师的身体健康状况3.一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.设这个数是x ,根据题意列方程是( ) A .21133327x x x x +++= B .21133327x x x ++= C .21133327x x x x ++=+ D .21133327x x x x ++=- 4.按下面的程序计算:若输入100x =,输出结果是501,若输入25x =,输出结果是631,若开始输入的x 值为正整数,最后输出的结果为556,则开始输入的x 值可能有( ) A .1种 B .2种C .3种D .4种5.下列调查:①了解某批种子的发芽率 ②了解某班学生对“社会主义核心价值观”的知晓率 ③了解某地区地下水水质 ④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查的是( ) A .①③B .②④C .①②D .③④6.下列方程变形正确的是( ) A .由235x +=,得253x =+ B .由2132x x--=,得()2213x x --= C .由48x =-,得2x = D .由23x -=,得32x =+7.已知线段AB =6cm ,在直线AB 上取一点C ,使BC =2cm ,则线段AB 的中点M 与AC的中点N 的距离为( ) A .1cm B .3cmC .2cm 或3cmD .1cm 或3cm8.把一副三角板按如图所示方式拼在一起,并作ABE ∠的平分线BM ,则CBM ∠的度数是( )A .120°B .60°C .30°D .15°9.把根绳子对折成一条线段AB ,在线段AB 取一点P ,使13AP PB =,从P 处把绳子剪断,若剪断后的三段绳子中最长的一段为24cm ,则绳子的原长为( ) A .32cm B .64cm C .32cm 或64cm D .64cm 或128cm 10.列式表示“x 的3倍与y 的平方的和”正确的是( )A .223+x yB .23()x y +C .23x y +D .2(3)x y +11.一个正方体的平面展开图如图所示,将它折成正方体后,“保”字对面的字是( )A .低B .碳C .环D .色12.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻的可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A C -表示观测点A 相对观测点C 的高度),根据这次测量的数据,可得观测点A 相对观测点B 的高度是( )A C -C D -E D -F E -G F -B G -100米80米60-米50米70-米20米A .240-米B .240米C .390米D .210米二、填空题13.种菜能手王大叔种植了一批新品种黄瓜,为了了解这种黄瓜的生长情况,他随机抽查了50株黄瓜藤上长出的黄瓜根数,绘制了如图的统计图,则这组数据中黄瓜根数的中位数是__________.14.为了调查某校中学生对3月12日“植树节”是否了解,从该校全体学生1000名中,随机抽查了40名学生,结果显示有1名学生不了解,由此,估计该校全体学生中对“植树节”不了解的约有________名学生.15.如图,有一根木棒MN 放置在数轴上,它的两端M 、N 分别落在点A 、B 处.将木棒在数轴上水平移动,当MN 的中点移动到点B 时,点N 所对应的数为175.,当MN 的右三等分点移动到点A 时,点M 所对应的数为4.5,则木棒MN 的长度为_______.16.已知360a x -+=是关于x 的一元一次方程,则a =_______.17.如图,已知数轴上点A 表示的数为8,B 是数轴上一点,且14AB =,动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t (0)t >秒:(1)写出数轴上点B 表示的数为______,点P 表示的数为______ (用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长. 18.观察下列等式: 第1个等式:1111(1)1323a ==-⨯;第2个等式:21111()35235a ==-⨯; 第3个等式:31111()57257a ==-⨯;第4个等式:41111()79279a ==-⨯; …… ……用含n 的式子表示第n 个等式:n a =_____. 19.已知()2210a b -++=,则()2003a b +=______.20.如图,有两个相同的长方体纸盒,它们的长、宽、高分别是12cm , 6cm , 2cm ,现要用这两个纸盒搭成一 个大长方体,搭成的大长方体的表面积最小为___________cm 2三、解答题21.为宣传普及新冠肺炎防控知识,引导学生做好防控,某校举行了主题为“防控新冠,从我做起”的线上知识竞赛活动,测试内容为 20道判断题,每道题5分,满分 100分.为了解八、九年级学生此次竞赛成绩的情况,分别随机在八、九年级各抽取了20名参赛学生的成绩,已知抽取得到的八年级的数据如下(单位:分):80,95,75,75,90,75,80,65, 80.85.75,65,70,65,85,70,95,80,75.80.为了便于分析数据,统计员对八年级数据进行了整理,得到表1 表1:等级 分数(单位:分) 学生数 D 60<x≤70 5 C 70<x≤80 a B 80<x≤90 b A 90<x≤1002表2: 年级平均分 中位数 优秀率八年级 78分 c 分m %九年级 76分82.5分 50%22.解方程: (1)348x x -+=-; (2)231128x x --+-+=. 23.如图,已知60cm AB =,点C 为线段AB 的中点,点D 是线段AB 上的点,且AD 与DB 的长度之比2:1. (1)求BD 的长. (2)求CD 的长.24.已知:21A by ay =--,223101B y ay y =+--,且多项式2A B -的值与字母y 的取值无关,求()()2222222132a b aba b ab⎡⎤+--++⎣⎦的值.25.计算:2202013(1)(2)4(1)2-÷-⨯---+-.26.下图是由几个相同的小正方体搭成的几何体, (1)搭成这个几何体需要 个小正方体; (2)画出这个几何体的主视图和左视图;(3)在保持主视图和左视图不变的情况下,最多可以拿掉n 个小正方体,则n= ,请在备用图中画出拿掉n 个小正方体后新的几何体的俯视图.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先求出10户家庭一周内使用环保方便袋的数量总和,然后求得样本平均数,最后乘以总数1500即可解答.【详解】解:∵某小区10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,9,10,5,6,7,∴平均每户使用方便袋的数量为:1(6+5+7+8+7+9+10+5+6+7)=7(只),10∴该小区1500户家庭一周内共需要环保方便袋约:7×1500=10500(只).故选:B.【点睛】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.2.B解析:B【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.调查某班学生每周课前预习的时间适合全面调查;B. 调查全国初中生课外阅读情况适合抽样调查,不适合全面调查;C.调查某校篮球队员的身高适合全面调查;D. 调查某中学教师的身体健康状况适合全面调查;故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.A解析:A 【分析】可设这个数是x ,根据等量关系:这个数的三分之二+这个数的一半+这个数的七分之一+这个数=33,依此列出方程求解即可. 【详解】解:设这个数是x ,依题意有21133327x x x x +++=, 故选:A 【点睛】此题主要考查了由实际问题抽象出一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.4.B解析:B 【分析】分三种情况讨论,当输入x 经过一次运算即可得到输出的结果为556,当输入x 经过两次运算即可得到输出的结果为556, 当输入x 经过三次运算即可得到输出的结果为556, 再列方程,解方程即可得到答案. 【详解】解:当输入x 经过一次运算即可得到输出的结果为556,51556x ∴+=5555,x ∴=111.x ∴=当输入x 经过两次运算即可得到输出的结果为556,()5511556,x ∴++= 51111,x ∴+=22.x ∴=当输入x 经过三次运算即可得到输出的结果为556,()555111556,x ∴+++=⎡⎤⎣⎦()5511111,x ∴++= 5122,x ∴+=215x ∴=(不合题意,舍去) 综上:开始输入的x 值可能是22或111. 故选:.B【点睛】本题考查的是程序框图的含义,一元一次方程的解法,分类思想的应用,掌握以上知识是解题的关键.5.B解析:B 【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断. 【详解】①了解某批种子的发芽率适合采取抽样 调查;②了解某班学生对“社会主义核心价值观”的知晓率适合采取全面调查; ③了解某地区地下水水质适合采取抽样调查;④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查; 故选:B . 【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.D解析:D 【分析】根据解一元一次方程的每一步的注意事项对各选项分析判断后利用排除法. 【详解】解:A 、从235x +=可得到2x =5﹣3,故本选项错误; B 、去分母时﹣1没有乘以分母的最小公倍数,故本选项错误; C 、从48x =-得2x =-,故本选项错误; D 、从23x -=得32x =+,正确. 故选:D . 【点睛】本题主要考查了解一元一次方程,需要注意,移项要变号,去分母时,没有分母的项也要乘以分母的最小公倍数,去括号时,括号外面的数与括号里面的每一项都要相乘.7.A解析:A 【分析】分情况讨论,点C 在线段AB 上,或点C 在直线AB 上,根据线段中点的性质求出线段长. 【详解】解:①如图,点C 在线段AB 上,∵6AB cm =,2BC cm =, ∴624AC AB BC cm =-=-=, ∵M 是AB 的中点, ∴132AM AB cm ==, ∵N 是AC 的中点, ∴122AN AC cm ==, ∴321MN AM AN cm =-=-=; ②如图,点C 在直线AB 上,∵6AB cm =,2BC cm =, ∴628AC AB BC cm =+=+=, ∵M 是AB 的中点, ∴132AM AB cm ==, ∵N 是AC 的中点, ∴142AN AC cm ==, ∴431MN AN AM cm =-=-=. 故选:A . 【点睛】本题考查与线段中点有关的计算,解题的关键是掌握线段中点的性质.8.C解析:C 【分析】根据角平分线的定义和角的和差计算即可. 【详解】解:∵一副三角板所对应的角度是60°,45°,30°,90°, ∴∠ABE =∠ABC +∠CBE =30°+90°=120°, ∵BM 平分∠ABE , ∴∠ABM =12∠ABE =12×120°=60°, ∴∠CBM =∠ABM−∠ABC =60°−30°=30°, 故答案为:30°. 【点睛】本题考查了角平分线的定义和角的计算.解题的关键是掌握角平分线的定义,明确一副三角板所对应的角度是60°,45°,30°,90°.9.C解析:C 【分析】由于题目中的对折没有明确对折点,所以要分A 为对折点与B 为对折点两种情况讨论,讨论中抓住最长线段即可解决问题. 【详解】 解:如图∵13AP PB =, ∴2AP=23PB <PB ①若绳子是关于A 点对折, ∵2AP <PB∴剪断后的三段绳子中最长的一段为PB=30cm , ∴绳子全长=2PB+2AP=24×2+23×24=64cm ; ②若绳子是关于B 点对折, ∵AP <2PB∴剪断后的三段绳子中最长的一段为2PB=24cm ∴PB=12 cm ∴AP=12×143=cm ∴绳子全长=2PB+2AP=12×2+4×2=32 cm ; 故选:C . 【点睛】本题考查的是线段的对折与长度比较,解题中渗透了分类讨论的思想,体现思维的严密性,在今后解决类似的问题时,要防止漏解.10.C解析:C 【分析】认真阅读,列式分三步:第一步计算x 的3倍,第二步计算y 的平方,第三步计算前两步的和即可. 【详解】∵x 的3倍为3x ,y 的平方为2y , ∴x 的3倍与y 的平方的和为:23x y +,故选C . 【点睛】本题考查了代数式的布列,准确理解题意,找准分布计算与整体计算是解题的关键.11.B解析:B 【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答. 【详解】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形, ∴在此正方体上与“保”字相对的面上的汉字是“碳”. 故选:B . 【点睛】本题考查了正方体的展开图形,熟练掌握是解题的关键.12.B解析:B 【分析】根据表格信息,利用有理数的加法运算法则进行计算. 【详解】解:由表可知:100A C -=(米),80C D (米),60D E(米),50E F(米),70F G(米),20G B -=-(米),∴()()()()()()()()1008060507020240A C C D D E E F F G GB A B -+-+-+-+-+-=-=+++-++-=(米). 故选:B . 【点睛】本题考查有理数加法的应用,解题的关键是掌握有理数的加法运算法则.二、填空题13.【分析】根据直方图和中位数的定义即可得到答案【详解】解:∵他随机抽查了50株黄瓜藤上长出的黄瓜根数∴中位数落在第25株和第26株上分别为10根10根;∴中位数为10;故答案为:10【点睛】本题考查了 解析:10【分析】根据直方图和中位数的定义,即可得到答案. 【详解】解:∵他随机抽查了50株黄瓜藤上长出的黄瓜根数, ∴中位数落在第25株和第26株上,分别为10根、10根; ∴中位数为10; 故答案为:10. 【点睛】本题考查了中位数及条形统计图的知识,解答本题的关键是理解中位数的定义,能看懂统计图.14.【分析】先通过样本计算对植树节不了解的所占比例然后估计整体中对植树节不了解的人数【详解】解:随机抽查了40名学生中不了解人数占的百分比为×100=25则估计该校全体学生中对植树节不了解的学生人数为1解析:25【分析】先通过样本计算对“植树节”不了解的所占比例,然后估计整体中对“植树节”不了解的人数.【详解】解:随机抽查了40名学生中“不了解”人数占的百分比为140×100%=2.5%,则估计该校全体学生中对“植树节”不了解的学生人数为1000×2.5%=25人.故答案是:25.【点睛】 本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.15.【分析】如图为的中点为的三等分点设再利用线段的和差关系表示结合题意可得对应的数为对应的数为再求解从而可列方程求解于是可得的长【详解】解:如图为的中点为的三等分点设由题意得:对应的数为对应的数为故答案 解析:6.【分析】如图,G 为AB 的中点,,F P 为AB 的三等分点,设3,MN AB x == 再利用线段的和差关系表示11AM BN ,,结合题意可得1M 对应的数为4.5,1N 对应的数为17.5, 再求解11M N , 从而可列方程求解x ,于是可得MN 的长.【详解】解:如图,G 为AB 的中点,,F P 为AB 的三等分点,设3,MN AB x ==由题意得:1 1.5,AG BG BN x === ,AF FP PB x === 12,AM x =1123 1.5 6.5,M N x x x x ∴=++=1M 对应的数为4.5,1N 对应的数为17.5,1117.5 4.513M N ∴=-=,6.513,x ∴=2,x ∴=3 6.MN x ∴==故答案为:6.【点睛】本题考查的是线段的中点,线段的三等分点的含义,数轴上两点之间的距离,数轴上动点问题,一元一次方程的应用,掌握以上知识是解题的关键.16.4【分析】含有一个未知数并且未知数的次数是1的方程是一元一次方程根据定义列得a-3=1计算即可【详解】由题意得a-3=1解得a=4故答案为:4【点睛】此题考查一元一次方程的定义熟记定义是解题的关键解析:4【分析】含有一个未知数,并且未知数的次数是1的方程是一元一次方程,根据定义列得a-3=1,计算即可.【详解】由题意得a-3=1,解得a=4,故答案为:4.【点睛】此题考查一元一次方程的定义,熟记定义是解题的关键.17.(1)-6;(2)点运动7秒时追上点;(3)线段的长度不发生变化其值为7【分析】(1)根据点表示的数和AB 的长度即可求解;(2)根据题意列出方程求解即可;(3)分类讨论即可:①当点在点两点之间运动时解析:(1)-6,84t -;(2)点P 运动7秒时追上点Q ;(3)线段MN 的长度不发生变化,其值为7【分析】(1)根据点A 表示的数和AB 的长度即可求解;(2)根据题意列出方程4214t t =+,求解即可;(3)分类讨论即可:①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,根据中点的定义即可求解.【详解】(1)解:∵数轴上点A 表示的数为8,且14AB =,∴点B 表示的数为6-,点P 表示的数为84t -,故答案为:-6,84t -;(2)设点P 、Q 同时出发,点P 运动时间t 秒追上Q ,依题意得,4214t t =+,解得7t =,∴点P 运动7秒时追上点Q ;(3)线段MN 的长度没有发生变化都等于7;理由如下:①当点P 在点A 、B 两点之间运动时:MN MP NP =+1122AP BP =+1()2AP BP =+12AB =1142=⨯7=, ②当点P 运动到点B 的左侧时:MN MP NP =-1122AP BP =-1()2AP BP =-12AB =7=, ∴线段MN 的长度不发生变化,其值为7.【点睛】本题考查数轴上的动点问题,掌握中点的定义、一元一次方程的应用是解题的关键. 18.【分析】观察可知找第一个等号后面的式子规律是关键:分子不变1;分母是两个连续奇数的乘积它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1的关系即可求解【详解】第n 个式子为:故答案为:【点睛】此解析:111()22121n n --+ 【分析】观察可知,找第一个等号后面的式子规律是关键:分子不变1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1的关系即可求解【详解】第n 个式子为:()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭, 故答案为:11122121n n ⎛⎫- ⎪-+⎝⎭. 【点睛】此题考查寻找数字的规律及运用规律计算,寻找规律大致可分为2个步骤:不变的和变化的;变化的部分与序号的关系; 19.1【分析】首先利用非负数的性质得出a =2b =﹣1进一步代入按照混合运算的运算顺序计算得出答案即可【详解】解:∵|a ﹣2|+(b+1)2=0∴a ﹣2=0b+1=0解得a =2b =﹣1∴(a+b )2003解析:1【分析】首先利用非负数的性质得出a =2,b =﹣1,进一步代入按照混合运算的运算顺序计算得出答案即可.【详解】解:∵|a ﹣2|+(b +1)2=0,∴a ﹣2=0,b +1=0,解得a =2,b =﹣1,∴(a +b )2003=12003=1故答案:1【点睛】此题考查代数式求值,非负数的性质,有理数的乘方,根据非负数的性质求得字母的数值是解决问题的前提.20.288三、解答题21.无22.(1)3x =;(2)177x =【分析】(1)先移项,再合并同类项,然后化系数为1解方程即可;(2)先方程两边同乘以8去分母,再去括号,然后根据(1)中方法解方程即可.【详解】解:(1)移项,得384x x --=--合并同类项,得412x -=-系数化为1,将3x =所以,原方程的解为x=3;(2)去分母,得()84231x x -+-=-+去括号,得84831x x -+-=-+移项,得43188x x +=++合并同类项,得717x =系数化为1,得177x = 所以,原方程的解为177x =. 【点睛】本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键,注意不要漏乘.23.(1)20cm ;(2)10cm【分析】(1)根据AD 与DB 的长度之比2:1列式求解即可;(2)根据中点的定义求出BC ,再由CD=BC-BD ,可得出答案.【详解】解:(1)∵60cm AB =,AD 与DB 的长度之比2:1, ∴16020cm 3BD =⨯= (2)∵60cm AB =,点C 为线段AB 的中点, ∴130cm 2BC AB ==, ∴CD BC BD =- 3020=-10cm =【点睛】本题考查了两点间的距离,解答本题的关键是掌握线段中点的定义,注意数形结合思想的运用.24.-2【分析】先表示出2A B -,根据已知条件得到a ,b 的值,在进行化简求值即可;【详解】解:()()2222123101A B by ay y ay y -=---+-- 2222223101by ay y ay y ----++=()()2221051b y a y =-+--因为多项式2A B -的值与字母y 无关,所以220b -=,1050a -=,解得1,2b a ==,()()2222222132a ab a b ab ⎡⎤+--++⎣⎦2222222232a b ab a b ab =+-+--2ab =-221=-⨯2=-;【点睛】本题主要考查了整式化简求值,准确计算是解题的关键.25.33【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:2202013(1)(2)4(1)2-÷-⨯---+- =1(2)4192-÷⨯--+ =192(2)4-⨯⨯--+=3641-+=33.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.26.(1)10;(2)见解析;(3)1【解析】试题分析:(1)观察可知共有三层,最下面一层有6个,中间一层有3个,最上一层有1个,加起来即可得总个数;(2)观察即可得,主视图可得到从左往右3列的正方形的个数依次为3,1,2;左视图得到从左往右3列的正方形的个数依次为3,2,1,据此可画出图形;(3)如图,要想保证主视图和左视图不变的情况下,只能拿掉图中标涂红色的两个小正方体中的一个.试题(1)观察可知共有三层,最下面一层有6个,中间一层有3个,最上一层有1个, 6+3+1=10,故答案为:10;(2)如图所示;(3)如图,要想保持主视图和左视图不变,只能拿掉图中涂红色的两块中的一块,故n=1,新几何体的俯视图如下.。
鲁教版七年级数学上册期末考试试卷-附带答案
鲁教版七年级数学上册期末考试试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、单选题(共10小题,满分40分)1.下列说法中错误的是( ) A .三角形的三个内角中至少有两个角是锐角B .有一个角是锐角的三角形是锐角三角形C .一个三角形的三个内角中至少有一个内角不大于60︒D .如果三角形的两个内角之和小于90︒,那么这个三角形是钝角三角形2.下列货币符号图案是轴对称图形的有( )个.A .0B .1C .2D .33.已知一次函数6y kx =+的图象经过()3,3A -,则k 的值为( )A .3-B .2-C .1D .24.在平面直角坐标系中,平行于坐标轴的线段5PQ =,若点P 坐标是(2,1)-,则点Q 不在第( )象限. A .一 B .二 C .三 D .四5.下列语句正确的是( )A .3.78788788878888是无理数B .无理数分正无理数、零、负无理数C .无限小数不能化成分数D .无限不循环小数是无理数6.小明同学把一张长方形纸折了两次,如图,使点A B 、都落在DG 上,折痕分别是DE DF 、,则EDF ∠的度数为( )A .60︒B .75︒C .90︒D .120︒7.如图,菱形ABCD 中,点M 是AD 的中点,点P 由点A 出发,沿A→B→C→D 作匀速运动,到达点D 停止,则△APM 的面积y 与点P 经过的路程x 之间的函数关系的图象大致是( )A.B.C.D.8.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米分;①乙走完全程用了32分钟;①乙用16分钟追上甲;①乙到达终点时,甲离终点还有320米.其中正确的结论有()A.1个B.2个C.3个D.4个9.正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN+MN的最小值为()A .6B .8C .10D .910.点P(3,4)关于y 轴对称的点的坐标是( )A .(3,﹣4)B .(﹣3,4)C .(﹣4,﹣3)D .(﹣4,3)二、填空题(共8小题,满分32分)11.如果正比例函数y kx =的图象经过点()8,2-,那么k 的值为 .12.已知点(a +1,2a +5)在y 轴上,则该点坐标为 .13.如图,过点()2,0A 作x 轴的垂线与正比例函数y x =和3y x =的图象分别相交于点B ,C ,则OCB 的面积为 .14.平面直角坐标系中,点()3,2A -,点B 在y 轴上,则当线段AB 取最小值时,点B 的坐标为 . 15.一次函数()0y kx b k =+≠的图象如图所示,当0x >时,y 的取值范围为 .16.在平面坐标系内,A (﹣1,﹣1)、B (2,3),M 是x 轴上一点,使MB +MA 的值最小,则M 的坐标为 . 17.给出依次排列的一列数:按照此规律,第n个数为.三、解答题(共6小题,每题8分,满分48分)(1)A ,B 两点关于 ___________轴对称;(2)A ,D 两点横坐标相等,线段AD ___________y 轴,线段AD ___________x 轴;若点P 是直线AD 上任意一点,则点P 的横坐标为___________.(3)线段AB 与CD 的位置关系是___________;若点Q 是直线AB 上任意一点,则点Q 的纵坐标为 ___________.22.已知一直角三角形纸片OAB ,其中90AOB ∠=︒,OA=2,OB=4,将该纸片放置在平面直角坐标系中,如图1所示.(1)求经过A ,B 两点的直线的函数表达式.(2)折叠该纸片,使点B 与点A 重合,折痕与边OB 交于点C ,与边AB 交于点D (如图2所示),求点C 的坐标.(3)①若P 为OAB 内一点,其坐标为()0.5,1P ,过点P 作x 轴的平行线交AB 于点M ,作y 轴的平行线交AB 于点N (如图3所示),求点M ,N 的坐标并求PM PN +的长.①若P 为OB 上一动点,设OA 的中点为点E ,AB 的中点为点()1,2F (如图4所示)求PM PN +的最小值,并求取得最小值时点P 的坐标.23.加油啊!小朋友!春节快到了,移动公司为了方便学生上网查资料,提供了两种上网优惠方法:A .计时制:0.05元/分钟,B .包月制:50元/月(只限一台电脑上网),另外,不管哪种收费方式,上网时都得加收通讯费0.02元/分.(1)设小明某月上网时间为x分,请写出两种付费方式下小明应该支付的费用.(2)什么时候两种方式付费一样多?(3)如果你一个月只上网15小时,你会选择哪种方案呢?24.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s(千米)与时间t(分)之间的关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)王老师吃早餐用了多少时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?参考答案: 1.B2.C3.A4.D5.D6.C7.D8.A9.C10.B11.14-/0.25- 12.(0,3)13.4.14.()0,215.3y < 16.(﹣14,0) 17.22(1)1nnn -+ 18.4043219.22±20.(1)这个一次函数的解析式为21y x =-(2)点C (12,0)在这个一次函数的图像上 (3)12x =21.(1)y(2),⊥,-2(3)ABCD ,3。
鲁教版五四学制:七年级第一学期上册数学第5章单元测试和答案(2024年)新版教材
七年级数学第五章《位置与坐标》单元测试题(时间60分钟 满分100分)一、选择题(本大题共12小题,每小题3分,共36分) 1.下列数据中不能确定物体位置的是( )A.小明家在学校北偏东30°方向2km 处B.看电影时的座位是5排19号C.A 地距B 地50kmD.某城市在东经130°,北纬54° 2.点()3,1P a a ++在y 轴上,则点P 的坐标为( ) A .()2,0 B .()0,2- C .()0,2 D .()2,0-3.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限4.点M 位于第二象限,x 轴上方,到x 轴的距离为2,到y 轴的距离为1,则点M 的坐标为( ) A .(1,2)B .(1,2)-C .(2,1)--D .(2,1)-5.在平面直角坐标系中,将点A (1,2)的横坐标乘以-1,纵坐标不变,得到点A ´,则点A 与点A ´的关系是( )A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.不确定 6.若点A (﹣4,m ﹣3),B (2n ,1)关于x 轴对称,则( ) A .m =2,n =0B .m =2,n =﹣2C .m =4,n =2D .m =4,n =﹣27.如果长方形ABCD 的中心与平面直角坐标系的原点重合,且点A 和点B 的坐标分别为(-2,3)和(2,3),则矩形ABCD 的面积为( ) A .32B .24C .16D .88.如果P (a+b, ab )在第二象限,那么点Q (a,b) 在第( )象限. A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如图,()8,0A ,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( ) A .()0,5B .()5,0C .()6,0D .()0,610.已知直角坐标系中,点P (x ,y )满足42-x +(y+3)2=0,则点P 坐标为( ) A .(2,-3) B .(-2,3) C .(2,3) D .(2,-3)或(-2,-3)11.如图,在方格纸中每个小方格都是边长为1的正方形,A 、B 两点在小方格的顶点上,点C 也在小方格的顶点上,且以A 、B 、C 为顶点的三角形的面积为1个平方单位,则点C 的个数为( )B A第11题图A BCD第17题图A.3个B.4个C.5个D.6个12.一个动点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)…],且每秒移 动一个单位,那么第35秒时动点所在位置的坐标是( )A.(4,0)B.(5,0)C.(0,5)D.(5,5) 二、填空题(每题3分,共12分)13下列语句:①11排6号;②解放路112号;③南偏东36︒;④东经118︒,北纬40︒,其中能确定物体具体位置的是 (填序号).14.如图,如果士所在位置的坐标为(-2,-2),相所在位置的坐标为(1,-2),那么炮所在位置的坐标为___________15.已知点P 的坐标为()2,36a a +-,且点P 到两坐标轴的距离相等,则a = . 16.已知点P (5a -7,-6a -2)在二、四象限的角平分线上,则a=三、解答题(共5个小题,共52分)17.(10分)等腰梯形ABCD 的上底AD=2,下底BC=4,底角B=45°,建立适当的直角坐标系,求各顶点的坐标。
【鲁教版】七年级数学上期末试题(附答案)(2)
一、选择题1.下列语句正确的有( )(1)线段AB 就是A 、B 两点间的距离; (2)画射线10AB cm =;(3)A ,B 两点之间的所有连线中,最短的是线段AB ;(4)在直线上取A ,B ,C 三点,若5AB cm =,2BC cm =,则7AC cm =. A .1个B .2个C .3个D .4个2.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =m ,CD =n ,则AB =( )A .m ﹣nB .m +nC .2m ﹣nD .2m +n3.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n +4.如图,点O 在直线AB 上,图中小于180°的角共有( )A .10个B .9个C .11个D .12个5.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( ) A .5袋 B .6袋 C .7袋 D .8袋 6.若三个连续偶数的和是24,则它们的积为( ) A .48B .240C .480D .1207.甲、乙两个工程队,甲队人,乙队人,现在从乙队抽调人到甲队,使甲队人数为乙队人数的倍.则根据题意列出的方程是( )A .B .C .D .8.某工厂一、二月份共完成生产任务吨,其中二月份比一月份的多吨,设一月份完成吨,则下列所列方程正确的是( )A .B .C .D .9.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++10.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67 D .011.下列四个式子,正确的是( )①33.834⎛⎫->-+ ⎪⎝⎭;②3345⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+ ⎪⎝⎭. A .③④B .①C .①②D .②③12.下列说法中正确的是( ) A .a -表示的数一定是负数 B .a -表示的数一定是正数 C .a -表示的数一定是正数或负数D .a -可以表示任何有理数二、填空题13.长方体、四面体、圆柱、圆锥、球等都是_____,简称____.包围着体的是______.面有____的面与______的面两种.14.下面的图形是某些几何体的表面展开图,写出这些几何体的名称.15.某公司销售,,A B C 三种电子产品,在去年的销售中,产品C 的销售额占总的销售额的60%,由于受新冠肺炎疫情的影响,估计今年,A B 两种产品的销售额都将比去年减少45%,公司将产品C定为今年销售的重点,要使今年的总销售额与去年持平,那么今年产品C的销售额应比去年增加__________.16.对任意四个有理数a,b,c,d,定义:a bad bcc d=-,已知24181-=xx,则x=_____.17.如图,图1是“杨辉三角”数阵;图2是(a+b)n的展开式(按b的升幂排列).若(1+x)45的展开式按x的升幂排列得:(1+x)45=a0+a1x+a2x2+…+a45x45,则a2=_____.18.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n个图形中有白色正方形__________个 (用含n 的代数式表示).19.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.20.等边三角形ABC(三条边都相等的三角形是等边三角形)在数轴上的位置如图所示,点A,B对应的数分别为0和1-,若ABC绕着顶点顺时针方向在数轴上翻转1次后,点C所对应的数为1,则再翻转3次后,点C所对应的数是________.三、解答题21.已知线段10cmAB=,在直线AB上取一点C,使16cmAC=,求线段AB的中点与AC的中点的距离.22.已知点C是线段AB的中点(1)如图,若点D在线段CB上,且BD=1.5厘米,AD=6.5厘米,求线段CD的长度;(2)若将(1)中的“点D 在线段CB 上”改为“点D 在线段CB 的延长线上”,其他条件不变,请画出相应的示意图,并求出此时线段CD 的长度.23.程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人? 24.解方程: (1)3x ﹣4=2x +5; (2)253164x x--+=. 25.计算:2334[28(2)]--⨯-÷- 26.观察由“※”组成的图案和算式,解答问题(1)请猜想1+3+5+7+9+…+19= ;(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)= ; (3)请用上述计算103+105+107+…+2015+2017的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据两点之间距离的定义可以判断A 、C ,根据射线的定义可以判断B ,据题意画图可以判断D . 【详解】∵线段AB 的长度是A 、 B 两点间的距离, ∴(1)错误; ∵射线没有长度, ∴(2)错误; ∵两点之间,线段最短∴(3)正确;∵在直线上取A,B,C三点,使得AB=5cm,BC=2cm,当C在B的右侧时,如图,AC=5+2=7cm当C在B的左侧时,如图,AC=5-2=3cm,综上可得AC=3cm或7cm,∴(4)错误;正确的只有1个,故选:A.【点睛】本题考查了线段与射线的定义,线段的和差,熟记基本定义,以及两点之间线段最短是解题的关键.2.C解析:C【分析】由已知条件可知,EC+FD=m-n,又因为E是AC的中点,F是BD的中点,则AE+FB=EC+FD,故AB=AE+FB+EF可求.【详解】解:由题意得,EC+FD=m-n∵E是AC的中点,F是BD的中点,∴AE+FB=EC+FD=EF-CD=m-n又∵AB=AE+FB+EF∴AB=m-n+m=2m-n故选:C.【点睛】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.3.C解析:C【分析】由条件可知EC+DF=m-n,又因为E,F分别是AC,BD的中点,所以AE+BF=EC+DF=m-n,利用线段和差AB=AE+BF+EF求解.【详解】解:由题意得,EC+DF=EF-CD=m-n∵E是AC的中点,F是BD的中点,∴AE=EC,DF=BF,∴AE+BF=EC+DF=m-n,∵AB=AE+EF+FB,∴AB=m-n+m=2m-n故选:C【点睛】本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.4.B解析:B【解析】【分析】利用公式:()21n n-来计算即可.【详解】根据公式:()21n n-来计算,其中,n指从点O发出的射线的条数.图中角共有4+3+2+1=10个,根据题意要去掉平角,所以图中小于180°的角共有10−1=9个.故选B.【点睛】此题考查角的的定义,解题关键在于掌握其定义性质.5.A解析:A【解析】【分析】要求驴子原来所托货物的袋数,要先设出未知数,通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,才恰好驮的一样多)=驴子原来所托货物的袋数加上1,据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得到方程:2(x-1)-1-1=x+1,解得:x=5, 答:驴子原来所托货物的袋数是5, 故选A.【点睛】本题主要考查列方程解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.6.C【分析】设出一个偶数,表示出另外两个数,列出方程解出这三个数,再计算它们的积.【详解】解:设中间的偶数为m,则(m-2)+m+(m+2)=24,解得m=8.故三个偶数分别为6,8,10.故它们的积为:6×8×10=480.故选:C.【点睛】本题考查了一元一次方程的应用.找到三个连续偶数间的数量关系是解题的关键.7.A解析:A【解析】【分析】分析本题题意,找到等量关系:32+甲队添加人数=2×(28-乙队减少人数),列出式子即可.【详解】解:列出的方程是32+x=2×(28-x).故答案为:32+x=2×(28-x),答案选A..【点睛】列方程解应用题的关键是找出题目中的相等关系.注意本题中甲增加的人数就是乙减少的人数.8.B解析:B【解析】【分析】由题意可知:一月份完成吨,二月份完成()吨,一、二月份共完成生产任务吨,列出方程解答即可.【详解】由题意可知:.故选:B【点睛】此题考查从实际问题中抽象出一元一次方程,找出题目蕴含的数量关系是解决问题的关键.9.B【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案. 【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形; ()232S S x x +=++正方形小矩形;()36S S x x +=++小矩形小矩形.故选:B. 【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握.10.B解析:B 【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题. 【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项, ∴6﹣7m =0,解得m =67. 故选:B . 【点睛】本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0.11.D解析:D 【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案. 【详解】①∵33 3.754⎛⎫-+=- ⎪⎝⎭,33.83 3.754>=,∴33.834⎛⎫-<-+⎪⎝⎭,故①错误;②∵33154420⎛⎫--==⎪⎝⎭,21335502⎛⎫--==⎪⎝⎭,1512 2020>,∴3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭,故②正确;③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确;④∵111523623⎛⎫--==⎪⎝⎭,217533346+==,3334 66<,∴125523⎛⎫-->+⎪⎝⎭,故④错误.综上,正确的有:②③.故选:D.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.12.D解析:D【分析】直接根据有理数的概念逐项判断即可.【详解】解:A. a-表示的数不一定是负数,当a为负数时,-a就是正数,故该选项错误;B. a-表示的数不一定是正数,当a为正数时,-a就是负数,故该选项错误;C. a-表示的数不一定是正数或负数,当a为0时,-a也为0,故该选项错误;D. a-可以表示任何有理数,故该选项正确.故选:D.【点睛】此题主要考查有理数的概念,熟练掌握有理数的概念是解题关键.二、填空题13.几何体体面平曲【解析】【分析】几何体又称为体包围着体的是面分为平的面和曲的面两种【详解】长方体四面体圆柱圆锥球等都是几何体几何体也简称为体包围着体的是面面有平面和曲面两种故答案为:(1)几何体(2)解析:几何体 体 面 平 曲 【解析】 【分析】几何体又称为体,包围着体的是面,分为平的面和曲的面两种 【详解】长方体、四面体、圆柱、圆锥、球等都是几何体,几何体也简称为体,包围着体的是面,面有平面和曲面两种.故答案为:(1). 几何体(2). 体 (3). 面(4). 平(5). 曲 【点睛】此题考查认识立体图形,解题关键在于掌握其性质定义.14.正方体四棱锥三棱柱【解析】【分析】根据常见的几何体的展开图进行判断【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体四棱锥三棱柱;解析:正方体 四棱锥 三棱柱 【解析】 【分析】根据常见的几何体的展开图进行判断. 【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体 ,四棱锥 , 三棱柱; 【点睛】此题考查几何体的展开图,解题关键在于掌握其展开图.15.【分析】把去年的总销售金额看作整体1设今年产品C 的销售金额应比去年增加x 根据今年的销售总金额和去年的销售总金额相等列出方程再求解即可【详解】解:设今年产品的销售金额应比去年增加由题意得解得:答:今年 解析:30%【分析】把去年的总销售金额看作整体1.设今年产品C 的销售金额应比去年增加x ,根据今年的销售总金额和去年的销售总金额相等,列出方程,再求解即可. 【详解】解:设今年产品C 的销售金额应比去年增加x , 由题意得,60%(1)(160%)(145%)1x ++--=, 解得:30%x =.答:今年产品C 的销售金额应比去年增加30%. 故答案为:30%.【点睛】本题考查了一元一次方程的应用,关键在于设未知数,列方程,难点在于涉及百分数,运算易出错.此题注意把去年的总销售额看作整体1,即可分别表示出去年A和B的销售金额和C的销售金额.根据今年的销售总金额和去年的销售总金额相等即可列方程.16.3【分析】首先看清这种运算规则将转化为一元一次方程2x-(﹣4x)=18然后通过去括号移项合并同类项系数化为1解方程即可【详解】由题意得2x-(﹣4x)=186x=18解得:x=3故答案为:3【点睛解析:3【分析】首先看清这种运算规则,将24181-=xx转化为一元一次方程2x-(﹣4x) =18,然后通过去括号、移项、合并同类项、系数化为1,解方程即可.【详解】由题意得,2x-(﹣4x) =186x=18解得:x=3故答案为:3【点睛】本题主要考查解一元一次方程,关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.17.990【分析】根据图形中的规律即可求出(1+x)45的展开式中第三项的系数为前44个数的和计算得到结论【详解】解:由图2知:(a+b)1的第三项系数为0(a+b)2的第三项的系数为:1(a+b)3的解析:990【分析】根据图形中的规律即可求出(1+x)45的展开式中第三项的系数为前44个数的和,计算得到结论.【详解】解:由图2知:(a+b)1的第三项系数为0,(a+b)2的第三项的系数为:1,(a+b)3的第三项的系数为:3=1+2,(a+b)4的第三项的系数为:6=1+2+3,…∴发现(1+x)3的第三项系数为:3=1+2;(1+x)4的第三项系数为6=1+2+3;(1+x)5的第三项系数为10=1+2+3+4;不难发现(1+x)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(1+x )45=a 0+a 1x+a 2x 2+...+a 45x 45,则a 2=1+2+3+ (44)44(441)2⨯+=990; 故答案为:990.【点睛】 本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.18.【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个 解析:()31-n【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案.【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个,∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个,故答案为:(3n-1).【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键. 19.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a 由题意得:-1<a <3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a ,由题意得:-1<a <3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念. 20.4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C 在数轴上∴点C 对应的数是故答案为:4【点睛】本题考查了数轴及数的【分析】结合数轴不难发现,每3次翻转为一个循环组依次循环,然后进行计算即可得解.【详解】根据题意可知每3次翻转为一个循环,∴再翻转3次后,点C 在数轴上,∴点C 对应的数是1134+⨯=.故答案为:4.【点睛】本题考查了数轴及数的变化规律,根据翻转的变化规律确定出每3次翻转为一个循环组依次循环是解题的关键.三、解答题21.13cm 或3cm .【分析】结合题意画出简单的图形,再结合图形进行分类讨论:当C 在BA 延长线上时,当C 在AB 延长线上时,分别依据线段的和差关系求解.【详解】解:①如图,当C 在BA 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点, 所以15cm 2AD AB ==,18cm 2AE AC ==, 所以81513(cm)DE AE AD =+=+=. ②如图,当C 在AB 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以853(cm)DE AE AD =-=-=. 综上,线段AB 的中点与AC 的中点的距离为13cm 或3cm .【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论. 22.(1)CD=2.5厘米;(2)CD=4厘米.【分析】根据BD+AD=AB 可求出AB 的长,利用中点的定义可求出BC 的长,根据CD=BC-BD 求出CD 的长即可;(2)根据题意画出图形,利用线段中点的定义及线段的和差关系求出CD 的长【详解】(1)∵BD=1.5厘米,AD=6.5厘米,∴AB=BD+AD=8(厘米),∵点C 是线段AB 的中点,∴BC=12AB=4(厘米) ∴CD=BC-BD=2.5(厘米).(2)当点D 在线段CB 的延长线上时,如图所示:∵BD=1.5厘米,AD=6.5厘米,∴AB=AD-BD=5(厘米),∵点C 是线段AB 的中点,∴BC=12AB=2.5(厘米) ∴CD=BC+BD=4(厘米)【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.23.大和尚有25人,小和尚有75人【分析】设大和尚有x 人,则小和尚有(100x -)人,根据“3×大和尚人数+小和尚人数÷3=100”,即可得出关于x 的一元一次方程,此题得解.【详解】设大和尚有x 人,则小和尚有(100x -)人,根据题意得:10031003x x -+= 解得:25x =,则10075x -=,答:大和尚有25人,小和尚有75人.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 24.(1)9x = ;(2)13x =【分析】(1)通过移项,合并同类项,便可得解;(2)通过去分母,去括号,移项,合并同类项,进行解答便可.【详解】(1)3x ﹣2x =5+4,解得:x =9;(2)去分母得:2(2x ﹣5)+3(3﹣x )=12,去括号得:4x ﹣10+9﹣3x =12,移项得:4x ﹣3x =12+10﹣9,合并同类项得:x =13.【点睛】本题主要考查了解一元一次方程,熟记解一元一次方程的一般步骤是解题的关键. 25.21-.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.26.(1)102;(2)()22n + ;(3)1015480.【分析】(1)由等式可知左边是连续奇数的和,右边是数的个数的平方,由此规律解答即可,此题中一共有10个连续奇数相加,所以结果应为102;(2)一共有(n+2)个连续奇数相加,所以结果应为n 2;(3)让从1加到2005这些连续奇数的和,减去从1加到101这些连续奇数的和即可.【详解】(1)由图片知:第1个图案所代表的算式为:1=21;第2个图案所代表的算式为:1+3=4=22;第3个图案所代表的算式为:1+3+5=9=23;…依次类推:第n 个图案所代表的算式为:1+3+5+…+(2n-1)=2n ;1+3+5+…+19的个数为:191102+=, ∴1+3+5+…+19=210;故答案为:210;(2)1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)的个数为:23122n n ++=+,∴1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=()22n+,n+;故答案为:()22(3)103+105+107+…+2015+2017=(1+3+…+2015+2017)-(1+3+…+99+101)=2511009-2=1015480.【点睛】本题考查了数字的变化规律的应用;判断出有几个奇数相加是解决本题的易错点;得到从1开始连续奇数的和的规律是解决本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学试题
(时间:120分钟,满分120分)
一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选
项中,只有一个是正确的)
1、如图所示,将三角形绕直线l 旋转一周,可以得到图(E)所示的立体图形的是( ) l l l l l
A .
B .
C .
D . E
2、若x 是6的相反数,y 比x 的相等数小2,则x -y =( )
A .4 B.8 C.-10 D.-2
3、某班共有学生x 人,其中女生占45%,那么男生人数是( )
A .45%x B.(1-45%)x C.45%x D.145%
x
-
4、a 是一个三位数,b 是一个一位数,如果把b 放在a 的左边,那么所组成 的四位数是( )
A .ba B.1000b+a C.10a+b D.b+a 5、若│a │=5,b=-2,那么│a+b │的值是( )
A .7 B.3 C.-7或-3 D.+7或+3 6、下面四个图形折叠后能围成如图所示正方体的图形是()
7、有一列数1a 2a 3a ……n a ,从第二个数开始,每一个数都等于1与它前面那个
数的差,若1a =2,则2007a 为( ) A .-1 B.2 C.
1
2
D.2007 8.24x x k ++是一个完全平方式,k 的值为( ) A .2
B . 4
C .16
D .-4
9.如右图,直线a 与直线b 互相平行,则|x y -|的值是( )
A .20
B .80
C .120
D .180
10.如右图,直线EO ⊥BC 于点O ,∠BOC =3∠1,OD 平分 ∠AOC ,则∠2的度数是( ) A .30° B .40° C .60° D .以上结果都不正确
11.表格列出了一项实验的统计数据,表示皮球从高度d 落下时弹跳高度b 与下d 50 80 100 150 b 25 40 50 75
A .2b d =
B .2b d =
C .25b d =+
D .2
b =
12.下列图象中,哪个图象能大致刻画在太阳光的照射下,太阳能热水器里面的水的温度与时间的关系( )
A. B. C. D.
二、填空题(直接填写最后结果,本题共8个小题,每小题3分,共24分) 13、某地气温从-1C 下降3C 后为___C 14、已知4m a 3b 与-32a n b 是同类项,则-m n =___ 15、绝对值大于1而小于5的所有整数的和是___ 16、若x +22y +5的值是7,则代数式3x +62y +4的值是___
17、做拉面时,拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面的草图所示:这样捏合到第___次后可以拉出128根面条。
18、下列图案由边长相等的黑白两色正方形按一定规律拼接而成,依此规律,第
n 个图案中白色正方形的个数为___
19.如下图,在△ABC 中,两条角平分线BD 和CE 相交于点O ,若∠BOC =116°,那么∠A 的度数是 .
20.请你认真观察和分析图中数字变化的规律,由此得到下图中所缺的数字应为 .
三、解答题(本题共5个小题,共60分,解答应写出必要的计算过程,推演步骤
或文字说明)
21、计算题(每小题4分,共20分)
(1) 3×2(2)--25-6÷ (3-)
(2)-32×[-23×(-2
3
)2 + 3(2)-]
(3)2(2)(2)3(2)a b a b a b +-+-,其中12a b =-=,;
(4)2[()()()2(2)](2)x y x y x y y x y y +--+--÷-,其中52003x y ==,.
22、(本题10分)
一辆汽车行驶时油箱中的余油量Q(千克)与行驶时间t(时)之间的关系
⑴写出用时间t表示余油量Q的关系式。
⑵当t=2.5时,求余油量Q的值。
⑶油箱中原有汽油可供该汽车行驶多少小时?
23、(本题10分)
某公园的门票价格是:成人票每张10元,学生票是成人票的一半。
一个旅游团共有50人,其中学生x人。
⑴该旅游团需共支付门票多少元?
⑵若其中一共有学生12人,那么他们共支付门票多少元?
24.((本题10分)
如图,已知DE∥AC,DF∥AB.
(1)∠1=∠C吗?∠3=∠B吗?说明理由;
(2)由图中知道,∠1+∠2+∠3=180°,你能否由此说明
∠A+∠B+∠C也等于180°吗?
25.(10分)某农机公司为更好地服务于麦收工作,按左图给出的比例,从甲、乙、丙三个工厂共购买了150台同种农机,公司技术人员对购买的这批农机全部进行了检验,绘制了如右图所示的统计图.
请你根据图中提供的信息,解答以下问题:
(1)求该农机公司从丙厂购买农机的台数;
(2)求该农机公司购买的150台农机中优等品的台数;
(3)如果购买的这批产品质量能代表各厂的产品质量状况,那么:
①从优等品的角度考虑,哪个工厂的产品质量较好些?为什么?
②甲厂2007年生产的360台产品中的优等品有多少台?
七年级数学参考答案
一、选择题:
1. B
2.C
3.B
4.B
5.D
6.C
7.A
8. B
9. A 10.A 11.D 12.B
二、填空题:
13、-4 14、-9 15、0 16、10
17、7 18、5n+3 19、52°20、29
三、解答:
21. (1)-11
·(2)18
(3)化简得22
a a
b b
-+,值为48;
16122
-.
(4)化简得2
-+,值为1993
y x
22. ⑴Q=48-6t
⑵当t=2.5时,Q=48-6×2.5=33
⑶由题意可知油箱中原有油48千克,每小时耗油6千克,
48÷6=8(小时)
因此可供汽车行驶8小时
23. ⑴(500-5x)元
⑵当x=12时,500-5x=500-5×12=440元
24.(1)∠1=∠C,∠3=∠B.理由是两直线平行,同位角相等.
(2)略.
25.(1)30(台);(2)127(台);(3)丙厂.②300(台).。