有限元分析的概念和理论
有限元分析及应用课件
设置材料属性、单元类型等参数。
求解过程
刚度矩阵组装
根据每个小单元的刚度,组装成全局的刚度矩阵。
载荷向量构建
根据每个节点的外载荷,构建全局的载荷向量。
求解线性方程组
使用求解器(如雅可比法、高斯消元法等)求解线性方程组,得到节点的位移。
后处理
01
结果输出
将计算结果以图形、表格等形式输 出,便于观察和分析。
有限元分析广泛应用于工程领域,如结构力学、流体动力学、电磁场等领域,用于预测和优化结构的 性能。
有限元分析的基本原理
离散化
将连续的求解域离散化为有限 个小的单元,每个单元具有特
定的形状和属性。
数学建模
根据物理问题的性质,建立每 个单元的数学模型,包括节点 力和位移的关系、能量平衡等。
求解方程
通过建立和求解线性或非线性 方程组,得到每个节点的位移 和应力分布。
PART 05
有限元分析的工程应用实 例
桥梁结构分析
总结词
桥梁结构分析是有限元分析的重要应用之一,通过模拟桥梁在不同载荷下的响应,评估 其安全性和稳定性。
详细描述
桥梁结构分析主要关注桥梁在不同载荷(如车辆、风、地震等)下的应力、应变和位移 分布。通过有限元模型,工程师可以预测桥梁在不同工况下的行为,从而优化设计或进
刚性问题
刚性问题是有限元分析中的一种 特殊问题,主要表现在模型中某 些部分刚度过大,导致分析结果 失真
刚性问题通常出现在大变形或冲 击等动态分析中,由于模型中某 些部分刚度过高,导致变形量被 忽略或被放大。这可能导致分析 结果与实际情况严重不符。
解决方案:为避免刚性问题,可 以采用多种方法进行优化,如采 用更合适的材料模型、调整模型 中的参数设置、采用更精细的网 格等。同时,可以采用多种方法 对分析结果进行验证和校核,以 确保其准确性。
有限元分析方法
有限元分析方法有限元分析(Finite Element Analysis, FEA)是一种数值分析方法,用于解决物理问题的近似解。
它基于将有限元区域(即解释对象)分解成许多简单的几何形状(有限元)并对其进行数值计算的原理。
本文将深入探讨有限元分析的原理、应用和优点。
有限元分析的原理基于弹性力学理论和数值计算方法。
它通过将解释对象分解为有限个简单的几何区域(有限元)和节点,通过节点之间的连接来建立模型。
这些节点周围的解释对象区域称为“单元”,并且通过使用单元的形状函数近似解释对象的形状。
每个单元都有一个与之相连的节点,通过对每个单元的受力进行计算,可以得到整个解释对象的受力分布。
然后,利用一系列运算和迭代,可以计算出解释对象的位移、应力和变形等相关参数。
有限元分析的应用范围广泛,从结构力学、热传导、电磁场分析到流体力学等各个领域。
在结构力学中,它被用于分析各种结构的静力学、动力学和疲劳等性能。
在热传导领域,它可以用于研究物体内部的温度分布和传热性能。
在电磁场分析中,它可用于计算复杂电磁场下的电场、磁场和电磁场耦合问题。
在流体力学中,有限元方法可以解决各种流体流动、热传递和质量转移问题。
有限元分析的优点之一是可以处理各种复杂边界条件和非线性材料特性。
它可以考虑到不同材料的非线性本质,例如弹塑性和接触等问题。
另外,有限元方法还可以适应任意形状和尺寸的几何模型,因此非常适用于复杂工程问题的建模与分析。
有限元分析的使用需要一定的专业知识和经验。
首先,需要将解释对象抽象成几何模型,并进行细分和离散化。
其次,需要选择适当的几何元素和材料模型,以及合适的边界条件和加载方式。
然后,需要定义求解器和数值方法,并使用计算机程序对模型进行计算。
最后,需要对结果进行后处理和验证,以确保其准确性和可靠性。
总的来说,有限元分析是一种强大的工程分析工具,在解决各种物理问题方面有广泛的应用。
它通过将复杂的问题简化为简单的有限元模型,通过数值计算的方法获得近似解。
有限元分析方法
有限元分析方法有限元分析方法是一种在数字计算机上定量分析变形、弹性以及现代结构的受力情况的方法。
有限元分析方法的发展日趋完善,是加强建筑物结构抗震能力的有力工具。
一、有限元分析方法的概念有限元分析方法是一种基于有限元分析原理的数学方法,它是一种用于计算低维受力系统的通用数值方法,尤其是用于非线性力学系统的数值分析方法。
在有限元数值分析中,计算对象由许多有限个结构物构成,这些结构物称为有限元。
每个有限元都有一定的体积和形状,如线元、面元和体元。
有限元分析的基本思想就是将复杂的物理结构模型分解为若干较小的有限元模型,再将这些小的有限元模型组合成一个完整的物理模型,并对其进行连续性研究,从而精确地确定受力构件的变形、位移、应力、变形能量等物理参数。
二、有限元分析方法在工程中的应用有限元分析方法可以用于结构分析、计算机辅助设计和工程校核。
有限元分析方法可以用于预测结构的受力情况、拓扑设计和优化,这对于重要的结构失效的防护和抗震性能的提高有重要意义。
在计算机辅助设计领域,有限元分析方法可以用于几何形状优化,减轻材料重量并提高刚度,这是一种非常有效的技术。
在建筑工程中,有限元分析方法可以用于计算建筑物的受力情况,确定其最大荷载量,为建筑物的改造和重建提供参考。
三、有限元分析方法的发展趋势随着计算机技术的发展,有限元分析方法的发展也在不断推进。
近年来,以网格化数值计算为基础的有限元分析方法已经取得了巨大的进展,如实施大型网格化分析、更加准确和可靠的模型细分、更准确的网格分解技术、更有效的数值求解技术等。
这些技术将使有限元分析技术更容易、更有效地应用于计算机辅助设计、工程校核和抗震分析等领域。
总之,有限元分析方法是一种重要的力学分析方法,它在结构分析、计算机辅助设计以及建筑物抗震性能的研究中都起着重要作用。
随着计算机技术的发展,有限元分析方法的发展也在不断发展,为实现地震安全建筑的建设做出贡献。
第7章 有限元分析概述
3、变形体及受力情况的描述:
基本变量:
u
(位移)
ε
(应变)
ζ
(应力)
(如果考虑三个方向(xyz)的情况,则有对应的向量、张量描述:
ε ij
ζ ij
ui
)
基本方程: ①力的平衡方面 三大类变量 ②几何方面 三大类方程 ③材料方面
求解方法: ①经典解析 ②半解析法 ③传统数值求解 ④现代数值求解(计算机软硬件,规范化,标准化, 规模化,计算机化)
几个概念: 单元:把弹性体假想地分割成有限个离散体,这些离
散体称为单元。 节点:离散单元仅在其顶点处相互连接,连接点成为节点。 要求:这种连接必须满足变形协调条件, 既:不能出现裂缝,不能发生重叠。 节点力:单元之间只能通过节点传递内力,通过节点 传递的内力成为节点力。 节点载荷:作用在节点上的载荷为节点载荷。 节点位移:当弹性体受到外力作用发生变形时,组成它的 各个单元也将发生变形,因而各个节点将产生
在工程技术领域内,经常会遇到两类典型的问题。 第一类问题,可以归结为有限个已知单元体的组合。把这类 问题称为离散系统。
例如,材料力学中的连续梁、建筑结构框架和桁架结构。
平面桁架结构
ቤተ መጻሕፍቲ ባይዱ
双向拉索悬索桥
第二类问题,通常可以建立它们应遵循的基本方程,即微分方 程和相应的边界条件。这类问题称为连续系统。
例如弹性力学问题,热传导问题,电磁场问题等。
目前应用较多的通用有限元软件如下表所列:
软件名称 简介
MSC/Nastran
MSC/Dytran MSC/Marc ANSYS ADINA ABAQUS
著名结构分析程序,最初 由NASA研制 动力学分析程序 非线性分析软件 通用结构分析软件 非线性分析软件 非线性分析软件
有限元分析法
2个移动自由度 1个转动自由度
3个移动自由度 (平面杆单元2个) 3个移动自由度(平面梁2个) 3个转动自由度(平面梁1个) 3个移动自由度(平面2个) 3个转动自由度(平面1个)
梁结构
弹簧结构
网格划分方法
. . .. . ..
线性
体(三维实体)
. . . . . ... .. .. . ..
二次
低阶单 元
更高阶单元
线单元
• 线单元: 用于螺栓(杆),弹簧,桁架或细长构件
面单元
• 壳单元: –Shell (壳)单元 每块面板的主尺寸不低于其厚度的10倍。
面单元
-平面应力 分析是用来分析诸如承受面内载荷的平 板、承受压力或远离中心载荷的薄圆盘等结构。
details ignored
Geometric model for FEA
单元类型选择
Element type:
3节点三角形平面应力单元
单元特性定义
Element properties:
材料特性:E, µ 单元厚度:t
网格划分
模型检查 • • • • 低质量单元 畸形单元 重合节点 重合单元
2 nodes
. .
A
. .
..
B
1 node
. .
. .
A
. .
B
具有公共节点的单元 之间存在信息传递
. .
分离但节点重叠的单元 A和B之间没有信息传递 (需进行节点合并处理)
第2节 有限元建模方法
Finite element model
Input data
有限元理论
有限元理论
有限元理论(finite element theory)是一种数值分析方法,它的核心思想是将实体的几何形状分解为若干有限的元素,以及在这些元素上建立一系列的数学方程,从而确定这些元素的性质。
有限元理论主要用于分析复杂几何形状实体的力学、热力学等性质。
有限元理论的应用覆盖面很广,可用于分析各种结构物的变形、振动、强度和稳定性,还可以用于分析流体的流动特性,从而提高设计的效率和准确性。
在有限元理论中,实体的几何形状被划分为几何单元,比如点、线、面和体,每个单元又由若干个有限元素构成。
为了求解几何形状实体的变形、振动、强度和稳定性,需要建立若干个有限元素的数学方程,从而确定各有限元素的性质,从而求解实体的整体性能。
有限元理论可以使用计算机求解,其优点是准确、快速。
另外,有限元理论还可以用来分析复杂的材料性质,比如金属、塑料等,从而更好地了解这些材料的性能,提高设计的效率和准确性。
总之,有限元理论是一种有效的数值分析方法,它可以用来分析复杂的几何形状实体的力学、热力学等性质,并可以用于分析各种材料的性质,从而提高设计的效率和准确性,因此在工程设计中受到了广泛的应用。
CAE课有限元分析理论基础
类型。
精度要求
03
根据问题对精度的要求,选择足够高阶的有限元以保证求解精
度。
常用有限元的介绍
四面体有限元
适用于解决三维问题,具有较高的计算效率 和适应性。
壳体有限元
适用于解决薄壁结构问题,能够模拟结构的 弯曲和变形。
六面体有限元
适用于解决二维和三维问题,精度较高但计 算效率较低。
梁有限元
适用于解决细长结构问题,能够模拟结构的 轴向拉伸和弯曲。
CAE课有限元分析理论基础
目 录
• 引言 • 有限元分析的基本原理 • 有限元的分类和选择 • 有限元分析的实现过程 • 有限元分析的应用实例 • 结论与展望
01 引言
目的和背景
目的
有限元分析(FEA)是一种数值分析方法,用于解决复杂的工程问题,如结构 分析、热传导、流体动力学等。本课程旨在使学生掌握有限元分析的基本原理 和应用。
弯曲有限元
适用于解决大变形问题,如结 构动力学、流体动力学等。
非线性有限元
适用于解决非线性问题,如塑 性力学、断裂力学等。
耦合有限元
适用于解决多物理场耦合问题 ,如流体-结构耦合、电磁-热
耦合等。
有限元的选择
问题特性
01
根据问题的物理特性、边界条件和求解精度要求选择合适的有
限元类型。
计算资源
02
考虑计算资源的限制,选择计算效率高、内存占用小的有限元
04 有限元分析的实现过程
建立模型
确定分析对象和边界条件
首先需要明确分析的对象和所受的边界条件, 这是建立有限元模型的基础。
几何建模
根据分析对象的特点,利用CAD软件建立几何 模型。
模型简化
有限元分析及医学应用
有限元分析在医学中主要应用于生物力学方 面及医学辅助器材应用方面
• • • • • • 假足领域 上颌窦内提升术的应用 口腔医学中的应用 骨盆有限元模型应用 人上颌中切牙桩冠修复三维有限元模型应用 股骨颈有限元分析的赋材料应用
• 有限元模型的踝关节生物力学分析
人体肩部区域的骨骼有限元分析模型及计算结果
有限元分析及在 医学中的应用
主要内容
• • • • • • • • • 1有限元方法的概念 2有限元分析的发展 3有限元分析的理论基础 4有限元分析的详解 5有限元分析的思路 6有限元分析的优越性 7有限元分析的概念实例 8有限元分析的商业软件 9有限元分析的医学应用
有限元分析
• 概念:有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理 系统(几何和载荷工况)进行模拟。还利 用简单而又相互作用的元素,即单元,就 可以用有限数量的未知量去逼近无限未知 量的真实系统。
• 有限元法的理论基础:
基础力学 对象:质点 特征:无变形 无形状的点 变量:(1)质心描述 (2)运动状态描述 (3)力的平衡描述 理论力学 对象:质点系及刚体 特征:无变形 复杂形状的体 变量:(1) 刚体描述 (2) 运动状态描述 (3) 力的平衡描述
方程:质点的牛顿三大定律
方程:质点和刚体的 牛顿三大定律
非变形体 (刚体)
材料力学
对象:简单变形体 特征:变形(小) 简单形状的体 变量:(1)材料物性描述 (2)变形方面描述 (3)力的平衡描述 方程:(1)物理本构方程 (2)几何变形方程 (3)力的平衡方程 三大变量→三大方程 变形体
结构力学
对象:数量众多的简单变形体 特征:变形(小) 简单形状的体(数量众多) 变量:(1)材料物性描述 (2)变形方面描述 (3)力的平衡描述 方程:(1)物理本构方程 (2)几何变形方程 (3)力的平衡方程 三大变量→三大方程
4-有限元分析PPT模板
有限元分析
1.1 有限元法的基本概念和特点
1.有限元法基本概念
有限元法(Finite Element Method,FEM) 也称为有限单元法或有限元素法,其基本思想是 将物体(即连续求解域)离散成有限个且按一定 方式相互连接在一起的单元组合,来模拟或逼近 原来的物体,从而将一个连续的无限自由度问题 简化为离散的有限自由度问题进行求解。物体被 离散以后,通过对其中的各个单元进行单元分析, 最终得到对整个物体的分析。网络划分中每个小 的块体称为单元。确定单元形状、单元之间相互 连接的点称为节点。单元上节点处的结构内力为 节点力,外力为节点载荷。
提高自动化的
展到求解非线性问题
网格处理能力
现代设计技术
— 7—
先进制造技术
选择位移模式
分析单元的力学性质
计算等效节点力
根据单元的材料性质、形状、尺寸、节点数目、位置及其含义等,
找出单元节点力和节点位移的关系式,根据弹性力学的几何方程和物理
方程确定单元的刚度矩阵,形成如下所示的线性方程:
F=Kδ
①
式中:F——节点力向量;
K——单元刚度矩阵;
δ ——节点位移向量。
现代设计技术
04
这是有限元分析的后处理部分,在该步骤中,对
05
计算出来的结果进行加工处理,并以各种形式将计算结 果显示出来。
现代设计技术
— 6—
有限元分析
1.3 有限元分析的发展趋势
由单一场计算向多 物理耦合场问题的求解 方向发展
与CAD/CAM 等软件的集成
软件面向专业 用户的开放性
1
2
3
4
5
由求解线性问题发
现代设计技术
有限元分析法概述
第十一章 有限元分析方法概述1、基本概念有限元分析方法是随着电子计算机的发展而迅速发展起来的一种现代没计计算方法。
它是20世纪50年代首先在连续体力学领域—飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快就广泛地应用于求解热传导、电磁场、流体力学等连续性问题。
在工程分析和科学研究中,常常会遇到大量的由常微分方程、偏微分方程及相应的边界条件描述的场问题,如位移场、应力场和温度场等问题。
求解这类场问题的方法主要有两种:用解析法求得精确解;用数值解法求其近似解。
应该指出,能用解析法求出精确解的只是方程性质比较简单且几何边界相当规则的少数问题。
而对于绝大多数问题,则很少能得出解析解。
这就需要研究它的数值解法,以求出近似解。
目前工程中实用的数值解法主要有三种:有限差分法、有限元法和边界元法。
其中,以有限元法通用性最好,解题效率高,目前在工程中的应用最为广泛。
下面通过一个具体例子,分别采用解析法和数值解法进行求解,从而体会一下有限元分析方法的含义及其相关的一些基本概念。
如下图所示为一变横截面杆,杆的一端固定,另一端承受负荷P ,试求杆沿长度方向任一截面的变形大小。
其中,杆的上边宽度为1w ,下边宽度为2w ,厚度为t ,长度为L ,杆的材料弹性模量为E 。
已知P =4450N ,1w =50mm ,2w =25mm ,t =3mm ,L =250mm ,E =72GPa 。
① 采用解析法精确求解假设杆任一横截面面积为)(y A ,其上平均应力为σ,应变为ε。
根据静力平衡条件有:0)(=-y A P σ根据虎克定律有:εσE =而任一横截面面积为:t y L w w w y A )()(121-+= 任一横截面产生的应变为:dydu=ε将上述方程代入静力平衡条件,进行变换后有:dy y EA Pdu )(=沿杆的长度方向对上式两边进行积分,可得:⎰⎰⎰-+==y yudy y Lw w w Et P dy y EA P du 01210)()(将)(y A 表达式代入上式,并对两边进行积分,得杆沿长度方向任一横截面的变形量:]ln )[ln()()(112112w y Lw w w w w Et PL y u --+-=当y 分别取0、62.5、125、187.5、250值时,变截面杆相应横截面处的沿杆长方向的变形量分别为:m u m u m u m u m u 6564636211080.142 ;1083.96 ;1027.59 ;1051.27 ;0----⨯=⨯=⨯=⨯==② 采用数值解法近似求解将变横截面杆沿长度方向分成独立的4小段,每一小段采用等截面直杆近似,等截面直杆的横截面面积为相应的变截面杆横截面面积的平均面积表示,每一小段称为一个单元,小段之间通过节点连接起来。
第二章有限元分析基本理论
第二章有限元分析基本理论有限元分析是一种数值计算方法,广泛应用于结构分析、流体力学、热传导等工程领域。
它通过将连续的物理问题离散化为有限个简单的子问题,再通过数值方法求解这些子问题,最终得到原始问题的近似解。
有限元分析的基本理论包括三个方面:离散化、加权残差和求解方法。
首先是离散化。
离散化是指将原始的连续问题转化为离散的子问题。
有限元分析中常用的离散化方法是将求解区域分割成有限的子域,称为单元。
每个单元内部的场量(如位移、温度等)可以用其中一种函数近似表示。
离散化的关键是选择适当的单元形状和适量的节点,使得子问题的离散解能够较好地近似原问题的解。
接下来是加权残差方法。
加权残差方法是有限元分析的核心思想,用于构造子问题的弱型方程。
弱型方程是原始问题的一种积分形式,由应力平衡和边界条件推导而来。
在加权残差方法中,我们引入加权函数,将弱型方程乘以权函数,再对整个求解区域进行积分,从而将连续问题转化为离散问题。
通过选择合适的权函数,可以使得该离散问题具有良好的数学特性,比如对称、正定等。
最后是求解方法。
有限元分析的求解方法主要包括直接法和迭代法。
直接法适用于小型问题,通过对离散问题的系数矩阵进行直接求解,得到场量的离散解。
而迭代法适用于大型问题,通过迭代求解线性代数方程组,得到场量的近似解。
迭代法的常用算法有雅可比法、高斯-赛德尔法、共轭梯度法等。
在求解中还需要注意计算误差的控制和收敛性的判定。
除了这三个基本理论,有限元分析还有一些相关的概念和技术。
例如,网格生成用于生成离散化的单元网格;后处理用于对离散解进行可视化和数据分析;材料模型用于描述材料的本构关系。
这些概念和技术在具体的有限元分析应用中,有着重要的作用。
综上所述,有限元分析的基本理论包括离散化、加权残差和求解方法。
离散化将连续问题转化为离散子问题,加权残差方法用于构造子问题的弱型方程,求解方法用于求解离散问题。
掌握这些基本理论,对于理解和应用有限元分析方法具有重要意义。
有限元分析的力学基础
应用场景:流体 动力学分析广泛 应用于航空航天、 汽车、船舶、能 源等领域如飞机 机翼的气动性能 分析、汽车发动 机的流体动力学 分析等。
优势:有限元分 析能够处理复杂 的几何形状和边 界条件提供高精 度和可靠的分析 结果有助于优化 设计和改进产品 性能。
未来发展:随着 计算技术和数值 方法的不断进步 有限元分析在流 体动力学分析中 的应用将更加广 泛和深入有望在 解决复杂流体动 力学问题方面发 挥更大的作用。
特点:适用于大规模复杂问题的求解但需要设置合适的初值和解的精度要求。
有限元分析的精度与收敛性
精度:有限元分析的精度取决于网格划分的大小和形状以及所选择的近似函数。 收斂性:有限元分析的收敛性是指随着网格的细化解的近似值将逐渐接近真实解。 收敛速度:收敛速度取决于所选择的有限元类型和边界条件。 误差估计:通过误差估计可以确定所需的网格细化程度以确保解的精度。
弹性力学的 应用实例
塑性力学基础
定义:塑性力学是研究材料在达到屈服点后发生不可逆变形时行为规律的学科。 特点:塑性变形过程中外力的大小和方向可以发生变化而材料的内部结构保持不变。 塑性力学的基本方程:包括应力-应变关系、屈服准则、流动法则等。 应用:塑性力学在工程领域中广泛应用于金属成型、压力容器设计等领域。
局限性:塑性力 学模型忽略了材 料在塑性变形过 程中的微观结构 和相变行为因此 对于某些特定材 料或极端条件下 的应用可能存在 局限性。
流体动力学模型
简介:流体动力 学模型是有限元 分析中用于描述 流体运动的数学 模型包括流体压 力、速度、密度
等参数。
方程形式:流体 动力学模型通常 由一组偏微分方 程表示如NvierSkes方程描述了 流体的运动规律。
单元分析: 对每个单元 进行力学分 析包括内力、 外力、位移 等
《有限元分析概述》课件
如何生成适合于有限元分析的网格,并优 化网格结构。
如何进行杆件的有限元分析,包括轴力、 弯曲和扭转。
3 二维和三维模型的分析
4 不同单元的选择及其特点
如何进行二维和三维模型的有限元分析, 包括平面应力、平面应变和轴对称。
不同类型的有限元单元的选择和应用,以 及它们的特点和限制。
有限元分析软件
ANSYS
有限元分析的应用领域
工程结构分析
有限元分析广泛应用于工程领域,包括建筑、桥梁、船舶、管线等结构的设计和分析。
汽车、航空航天、机械等领域应用
有限元分析在汽车、航空航天、机械等行业中被广泛应用于产品设计和优化。
地震、爆炸等自然灾害分析
有限元分析可以用于模拟和预测地震、爆炸等自然灾害对结构的影响,进而提高结构的抗震 和防爆性能。
COMSOL Multiphysics是一款多物理场耦合的 有限元分析软件,适用于多领域的工程分析。
有限元分析的未来发展
1 超级计算机的运用 2 多物理场耦合
随着计算机性能的提升, 有限元分析可以应用于 更大规模、更复杂的问 题。
有限元分析将更多的物 理场耦合在一起,进行 更全面的分析。
3 计算效率的提高
有限元分析的基本流程
1
,将结构进行建模。
2
离散
将结构分割成小的、简单的单元。
3
材料定义
定义每个单元的材料性质和力学行为。
4
载荷约束条件
对结构施加边界条件和加载条件。
5
求解
通过数值计算方法求解结构的行为特性。
有限元分析的相关问题
1 网格生成及其优化
2 杆件的分析
随着算法和计算技术的 进步,有限元分析的计 算效率将得到提高。
有限元法基础理论
为了表明这个正应力的作用面和作用方向,加上一个角码,例如,正应力σ x 是作用在垂直于 x
轴的面上同时也沿着 X 轴方向作用的。 (2)剪应力τ 加上两个角码,前一个角码表明作用面垂直于哪一个坐标轴,后一个角码表明作用方向沿着哪
一个坐标轴。例如,剪应力τ xy 是作用在垂直于 X 轴的面上而沿着 y 轴方向作用的。
如图 2 所示,将直杆划分成 n 个有限段,有限段之间通过一个铰接点连接。称两段之间的连接
1
点为结点,称每个有限段为单元。 第i个单元的长度为Li,包含第i,i+1 个结点。
2)用单元节点位移表示单元内部位移。我们假设单元内部位移为线性函数。
u(x)
=
ui
+
ui+1 − ui Li
(x
−
xi )
其中 ui 为第 i 结点的位移, xi 为第 i 结点的坐标。第 i 个单元的应变为 ε i ,应力为σ i ,内力为 Ni :
5
或乘积项都可以略去不计,这就使得弹性力学中的微分方程都成为线性方程。 三、基本变量
1.应力的概念 1)外力:面力和体力 作用于弹性体的外力(或称荷载)可能有两种: 表面力,是分布于物体表面的力,如静水压力,一物体与另一物体之间的接触压力等。单位面
积上的表面力通常分解为平行于坐标轴的三个成分,用记号 Χ、Υ、Ζ
结点 位移
(1)
内部各 点位移
(2)
(3)
(4)
应变
应力
结点力
单元分析
以平面问题的三角形 3 结点单元为例。如图 1-15 所示,单元有三个结点 I、J、M,每个结点有 两个位移 u、v 和两个结点力 U、V。
3
有限元基本原理与概念
有限元基本原理与概念有限元分析是一种数值计算方法,用于求解连续体力学中的边界值问题。
它是通过将连续体划分为有限数量的离散单元,然后在每个单元内进行力学行为的近似计算来实现的。
有限元基本原理和概念是进行有限元分析的关键。
有限元方法的基本原理包括以下几个方面:1.连续体离散化:连续体被分割为许多有限数量的小单元,例如三角形或四边形,这些小单元被称为有限元。
离散化的目的是将大问题转化为小问题,简化求解过程。
2.描述形函数:在每个有限元内,通过选择适当的形函数来描述位移、应力和应变之间的关系。
它们通常是基于其中一种插值函数,用于近似描述连续体内的位移场。
3.线性方程系统:通过应力和位移之间的平衡关系,可以得到与每个有限元相关的线性方程系统。
该方程系统可以通过组装所有单元的贡献来得到,其中每个单元内的节点位移被认为是未知数。
4.边界条件:为了解决线性方程系统,必须定义适当的边界条件。
这些条件通常包括位移或力的给定值,并且用于将无法由方程系统唯一解决的自由度限制为已知值。
5.求解方程系统:通过解决线性方程系统,可以得到每个节点的位移。
这可以使用各种求解线性方程系统的方法,如直接法(例如高斯消元法)或迭代法(例如共轭梯度法)来实现。
有限元方法的基本概念包括以下几个方面:1.单元:连续体被划分为有限数量的单元,在每个单元内进行近似计算。
常见的单元类型包括一维线元、二维三角形和四边形元,以及三维四面体和六面体元。
2.节点:单元的连接点被称为节点,每个节点在有限元分析中是一个自由度。
节点的数量与单元的选择密切相关,节点的位置和数量会影响结果的精确度。
3.局部坐标系:为了描述单元内的位移和应力,通常引入局部坐标系。
在局部坐标系中,单元的尺寸和形状可以更容易地进行描述和计算。
4.材料特性:有限元分析中需要定义材料的特性参数,例如弹性模量、泊松比、屈服强度等。
这些参数用于描述材料的力学行为和应力-应变关系。
5.后处理:通过有限元分析所得到的结果通常以节点或单元的形式给出,这些结果还需要进行后处理以得到更有意义的结果,如应变、应力分布或变形情况。
有限元分析理论基础
2 有限元法的基本原理2.1有限元简介有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件有限元模型:它是真实系统理想化的数学抽象。
由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。
有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。
并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。
线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。
在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。
如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。
线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。
非线性问题与线弹性问题的区别:1)非线性问题的方程是非线性的,一般需要迭代求解;2)非线性问题不能采用叠加原理;3)非线性问题不总有一致解,有时甚至没有解。
有限元求解非线性问题可分为以下三类:1)材料非线性问题材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。
由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。
在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。
2)几何非线性问题几何非线性问题是由于位移之间存在非线性关系引起的。
当物体的位移较大时,应变与位移的关系是非线性关系。
研究这类问题一般都是假定材料的应力和应变呈线性关系。
第四讲 有限元分析
单元形函数(续)
二次曲线的线性近 (不理想结果) DOF值二次分布
.
1
节点 单元 线性近似 (更理想的结果)
.
2
真实的二次曲线
.
节点 单元
真实的二次曲线
.
二次近似 (接近于真实的二次近似拟合) (最理想结果)
.. . . .
3
节点 单元
.
4
节点 单元
.
单元形函数
遵循: • DOF值可以精确或不太精确地等于在节点处的真实解,但单元内的平 均值与实际情况吻合得很好。 • 这些平均意义上的典型解是从单元DOFs推导出来的(如,结构应力 ,热梯度)。 • 如果单元形函数不能精确描述单元内部的DOFs,就不能很好地得到 导出数据,因为这些导出数据是通过单元形函数推导出来的。
...映射网格划分
Байду номын сангаас
切割 (divide)可以通过布尔减运算实现.
您可以使用工作平面, 一个面, 或一条线 作为切割工具. 有时, 生成一条新的线或面会比移动或定向工作平面到正确的
方向容易得多.
...映射网格划分
连接 操作是生成一条新线 (为网格划分) , 它通过连接两条或多
条线以减少构成面的线数. 使用 LCCAT 命令或 Preprocessor > -MeshingConcatenate > Lines, 然后拾取须连接的线. 对面进行连接, 使用 ACCAT 命令或Preprocessor > Meshing- Concatenate > Areas 若两条线或两个面 相切交汇可考虑用加 (布尔) 运算
每条初始线上指定6份分割.
此线上将自动使用12 份分 割 (合成线的对边).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章有限元素方法
§5.1有限元素方法的基本思想
有限元素法是一套求解微分方程的系统化数值计算方法。
它比传统解法具有理论完整可靠,物理意义直观明确,适应性强,形式单纯、规范,解题效能强等优点。
从数学上来说, 有限元素方法是基于变分原理。
它不象差分法那样直接去解偏微分方程, 而是求解一个泛函取极小值的变分问题。
有限元素法是在变分原理的基础上吸收差分格式的思想发展起来的。
采用有限元素法还能使物理特性基本上被保持, 计算精度和收敛性进一步得到保证。
有限元素法优点:
- 降低实验所需成本
- 減少試验对象的变异困难
- 方便参数控制
- 可获得实验无法获得的信息
有限元素法基本概念:
元素(element),节点(node),连結元素
有限元素法的基本思想:
•实际的物理問題很难利用单一的微分方程式描述,更无法順利求其解析解.
•有限元素法是将复杂的几何外型結构的物体切割成许多简单的几何形状称之为元素.
•元素与与元素间以“节点”相连.
•由于元素是简单的几何形状,故可以順利地写出元素的物理方程式,並求得节点上的物理量.
•采用內插法求得元素內任意点的物理量.
§5.2二维场的有限元素方法
1. 场域划分的约定
三角形元素。
三角形元素越小,场域的分割就越细,计算的精度就会越高。
因而在实际应用中是按精度的要求来决定场域内各处三角形元素的大小。
一般规定每个三角形元素的三个边的边长尽量地接近,尽量避免三角形元素具有大的钝角,一般最长的一条边不得大于最短边的三倍。
在分割场域时要求各三角形元素之间只能以顶点相交,即两相邻的三角形元素有两个公共的顶点及一条等长的公共边。
不能把一个三角形的顶点取在另一个三角形的边上。
划分时还应当注意要尽量地使由相邻边界节点之间的线段所近似构成的曲线足够光滑。
如果在场域D内有不同的介质,则需要将介质的交面线选为分割线。
它的第一个方程为:
()()()()()2121111Φ−=ΦK P K . (5.2.38) 根据边界条件,我们可以强制性地命令上式中()()02Φ=Φ,得到了强加边界条件处理后的有限元方程:
()()()()()()()⎭
⎬⎫
Φ=ΦΦ−=Φ022121111K P K , (5.2.39) 显式地写出公式(5.2.39)的第一个方程为
⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜
⎜⎜⎜
⎝⎛⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛00000
002121222
21112
11
.......................................................n n n n n n n K K K K K K K K K ϕϕϕM M =⎟⎟⎟⎟
⎟⎟⎠
⎞⎜⎜⎜⎜
⎜⎜⎝⎛−−−−−−−−−−−−−++−++−++)(002)2(01)1()()
(0202)2(201)1(2)2()
(0102)2(101)1(1)1(00
......
.................................n n n n n n n n n n n n n n n n n n n K K K P K K K P K K K P ϕϕϕϕϕϕϕϕϕ, (5.2.40)
公式(5.2.40)还可以简单地记为
()()()111P K ′=Φ . (5.2.41)
5.有限元素法的一般步骤
总结有限元素法计算步骤:
推导出与给定边界条件的偏微分方程等价的泛函表示; 把求解的区域用三角形元素划分为小的单元。
然后对每个节点和三角形元素按照约定的规则分别进行编号。
利用公式(5.2.14-15)和(5.2.18-21),计算出各个三角形元素的系数矩阵。
将各个三角形单元的系数矩阵装配成总矩阵,形成有限元方程组,然后利用强加边界条件法对有限元方程组进行修正。
利用超松弛迭代法求解有限元方程组,则得到域内各个节点上的函数值。
§5.3有限元素法与有限差分法的比较
有限元素法实际上是基于数学上的变分原理
这两种方法在处理物理问题的求解时,在处理问题的数
学方法上有较大的差别。
有限差分法和有限元素法在对区域的离散化方法上也有
明显差别。
有限元素法的节点配置比较任意,计算格式就要复杂得
多。
但这并不会影响它的实际应用。
有限差分法则是孤立地对微分方程及定解条件分别列差
分方程,因而各节点精度总体上不够一致。
有限元素法要求的计算机内存量比较大。
有限差分法的适用范围要比有限元素法广泛得多。
有很
多物理问题不能用有限元素法求解,但总是可以采用有
限差分法。
The End。