北师大版七年级数学上学期期末试卷及答案完整版

合集下载

北师大版(完整版)七年级数学上册期末试卷及答案

北师大版(完整版)七年级数学上册期末试卷及答案

北师大版(完整版)七年级数学上册期末试卷及答案一、选择题1.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a >﹣bC .a >bD .|a |>|b |2.a ,b 在数轴上位置如图所示,则a ,b ,a -,b -的大小顺序是( )A .a b a b -<<<-B .b a b a <-<-<C .a b b a -<-<<D .b a a b <-<<-3.在方程3x ﹣y =2,x+1=0,12x =12,x 2﹣2x ﹣3=0中一元一次方程的个数为( ) A .1个B .2个C .3个D .4个4.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了如图的直方图.根据图中信息,下列说法错误的是( )A .这栋居民楼共有居民125人B .每周使用手机支付次数为28~35次的人数最多C .有25人每周使用手机支付的次数在35~42次D .每周使用手机支付不超过21次的有15人5.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是( )A .第80个图形B .第82个图形C .第84个图形D .第86个图形6.下列四个选项中,不是正方体展开图形的是( )A .B .C .D .7.如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72°8.下列解方程的步骤正确的是( ) A .由2x +4=3x +1,得2x +3x =1+4 B .由3(x ﹣2)=2(x +3),得3x ﹣6=2x +6 C .由0.5x ﹣0.7x =5﹣1.3x ,得5x ﹣7=5﹣13x D .由1226x x -+-=2,得3x ﹣3﹣x +2=12 9.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5 B .6C .7D .810.如图,在数轴上,若A 、B 、C 三点表示的数为a 、b 、c ,则下列结论正确的是( )A .c >a >bB .1b >1cC .|a |<|b |D .abc >011.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…….根据上述算式中的规律,你认为20192的个位数字是( ) A .2 B .4 C .6 D .812.按照如图所示的计算程序,若输入的x =﹣3,则输出的值为﹣1:若输入的x =3,则输出的结果为( )A .12B .112C .2D .313.已知线段AB ,C 是直线AB 上的一点,AB=8,BC=4,点M 是线段AC 的中点,则线段AM 的长为( ) A .2cmB .4cmC .2cm 或6cmD .4cm 或6cm14.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第9个图形圆的个数为( )A .94B .85C .84D .76 15.已知线段AB=m ,BC=n ,且m 2﹣mn=28,mn ﹣n 2=12,则m 2﹣2mn+n 2等于( )A .49B .40C .16D .916.下列各组数中,数值相等的是( ) A .﹣22和(﹣2)2 B .23和 32C .﹣33和(﹣3)3D .(﹣3×2)2和﹣32×22 17.下列方程中,属于一元一次方程的是( ).A .23x y +=B .21x >C .720222020x +=D .241x =18.甲、乙两人分别从A B 、两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达地后立刻以原路和提高后的速度向地返行,乙到达A 地后也立刻以原路和提高后的速度向B 地返行.甲、乙两人在开始 出发后的5小时36分钟又再次相遇,则A B 、两地的距离是( ) A .24千米B .30千米C .32千米D .36千米19.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是( )A .183B .157C .133D .9120.某商场周年庆期间,对销售的某种商品按成本价提高30%后标价,又以9折(即按标价的90%)优惠卖出,结果每件商品仍可获利85元,设这种商品每件的成本是x 元,根据题意,可得到的方程是( ) A .()130%90%85x x +⋅=- B .()130%90%85x x +⋅=+ C .()130%90%85x x +⋅=-D .()130%90%85x x +⋅=+21.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n ,则n =( )A .9B .11C .13D .1522.2018年电影《我不是药神》反映了进口药用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行改革,看病贵将成为历史.某药厂对售价为m 元的药品进行了降价,现在有三种方案.方案一:第一次降价10%,第二次降价30%; 方案二:第一次降价20%,第二次降价15%;方案三:第一、二次降价均为20%.三种方案哪种降价最多( ) A .方案一B .方案二C .方案三D .不能确定23.将1,2,3,...,30,这30个整数,任意分为15组,每组2个数.现将每组数中的一个数记为x ,另一个数记为y ,计算代数式()1||||2x y x y -++的值,15组数代入后可得到15个值,则这15个值之和的最小值为( )A .2252B .120C .225D .24024.有两个正数a ,b ,且a b <,把大于等于a 且小于等于b 所有数记作[a ,b ],例如大于等于1且小于等于4的所有数记作[1,4] .如果m 在[5,15]内,n 在[20,30]内,那么n m的一切值中属于整数的有( ) A .1,2,3,4,5B .2,3,4,5,6C .2,3,4D .4,5,625.根据等式性质,下列结论正确的是( ) A .如果22a b -=,那么=-a b B .如果22a b -=-,那么=-a b C .如果22a b =-,那么a b =D .如果122a b =,那么a b = 26.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a ﹣b >0B .a +b >0C .b a>0 D .ab >027.下列各式中运算正确的是( ) A .2222a a a +=B .220a b ab -=C .2(1)21a a -=-D .33323a a a -=28.下列说法错误的是( ) A .25mn -的系数是25-,次数是2 B .数字0是单项式 C .14ab 是二次单项式D .23xy π的系数是13,次数是4 29.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( ) A .a b b a -<<-< B .a b b a >->>- C .b a b a <-<-<D .a b b a -<-<<30.骰子是一种特别的数字立方体(见下图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )A .B .C .D .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】分析:根据数轴上a、b的位置,判断出a、b的范围,然后根据有理数的大小比较和绝对值的性质进行比较即可.详解:根据数轴上点的位置得:﹣3<a<﹣2,1<b<2,∴|a|>|b|,a<﹣b,b>a,a<﹣2,故选D.点睛:本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.2.D解析:D【解析】【分析】从数轴上a b的位置得出b<0<a,|b|>|a|,推出-a<0,-a>b,-b>0,-b>a,根据以上结论即可得出答案.【详解】从数轴上可以看出b<0<a,|b|>|a |,∴-a<0,-a>b,-b>0,-b>a,即b<-a<a<-b,故选D.【点睛】本题考查了数轴和有理数的大小比较,关键是能根据a、b的值得出结论-a<0,-a>b,-b >0,-b>a,题目比较好,是一道比较容易出错的题目.3.B解析:B【解析】【分析】根据一元一次方程的定义逐个判断即可.【详解】一元一次方程有x+1=0,12x=12,共2个,故选:B.【点睛】本题考查了一元一次方程的定义,能熟记一元一次方程的定义的内容是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.4.D解析:D【解析】【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.【详解】解:A、这栋居民楼共有居民3+10+15+22+30+25+20=125(人),此结论正确;B、每周使用手机支付次数为28~35次的人数最多,这是因为从直方图上可以看出,每周使用手机支付次数为28~35次的小矩形的高度最高,所以每周使用手机支付次数为28~35次的人数最多,此结论正确,;C、有的人每周使用手机支付的次数在35~42次,此结论正确;D.每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选:D.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.5.C解析:C【解析】【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题.【详解】解:根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,若5+7(n-1)×12=295,没有整数解,若8+7(n-2)×12=295,解得n=84,即用295根火柴搭成的图形是第84个图形,故选:C.【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.6.A解析:A【解析】【分析】根据平面图形的折叠及正方体的展开图解答,中间四联方,上下各一个,可以围成正方体.【详解】正方体共有11种表面展开图,B、C、D能围成正方体;A、不能,折叠后有两个面重合,不能折成正方体.故选:A.【点睛】本题考查的是学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.7.B解析:B【解析】∵OC⊥OD,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B.8.B解析:B【解析】【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C选项利用等式的性质进行化简.【详解】解:A、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误;B、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C、0.5x-0.7x=5-1.3x,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x,故本选项错误;D、1226x x-+-=2,去分母得:3x-3-x-2=12,故本选项错误;故选:B.【点睛】本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.9.B解析:B【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵-2a m b2与12a5b n+1是同类项,∴m=5,n+1=2,解得:m=1,∴m+n=6.故选B.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.10.B解析:B【解析】【分析】先确定出a、b、c的取值范围,然后根据有理数的运算法则解答即可.【详解】解:观察数轴,可知:﹣2<a<﹣1,0<b<1,1<c<2,∴c>b>a,1b >1c,|a|>|b|,abc<0.故选:B.【点睛】本题考查了利用数轴比较有理数的大小,以及有理数的运算法则,熟练掌握有理数的运算法则是解答本题的关键.11.D解析:D【解析】【分析】根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8.【详解】解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,∵2019÷4=504…3,∴22019的末位数字是8.故选:D【点睛】本题考查有理数的乘方运算,属于规律型试题,弄清本题的规律是解题关键.12.D解析:D【解析】【分析】直接利用已知代入得出b的值,进而求出输入﹣3时,得出y的值.【详解】∵当输入x的值是﹣3,输出y的值是﹣1,∴﹣1=32b -+,解得:b=1,故输入x的值是3时,y=2331⨯-=3.故选:D.【点睛】本题主要考查了代数式求值,正确得出b的值是解题关键.13.C解析:C【解析】【分析】分类讨论:点C在线段AB上,点C在线段BC的延长线上,根据线段的和差,可得AC的长,根据线段中点的性质,可得AM的长.【详解】解:①当点C在线段AB上时,由线段的和差,得AC=AB-BC=8-4=4(cm),由线段中点的定义,得AM=12AC=12×4=2(cm);②点C在线段BC的延长线上,由线段的和差,得AC=AB+BC=8+4=12(cm),由线段中点的定义,得AM=12AC=12×12=6(cm);故选C.【点睛】本题考查两点间的距离,利用了线段的和差,线段中点的定义;解题关键是进行分类讨论.14.A解析:A【解析】【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;可以推出第n 个图形中小圆的个数为n (n+1) +4.将9代入即可.【详解】第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,因为6= 4+1×2,10=4+2×3,16=4+3×4,24=4+4×5...,所以第n 个图形中小圆的个数为4+n (n+1)所以第9个图形有: 4 +9×10=94个小圆,故选: A【点睛】本题是一道找规律题,利用题目中给出的条件观察计算的出关于第n个图形的代数表达式将所求的代入.15.C解析:C【解析】【分析】将两个式子相减后即可求解.【详解】两式相减得:m2﹣mn-mn+ n2=28-12,即 m2﹣2mn+n2=16,故选C.【点睛】本题考查了整式加减的应用,正确进行整式的加减是解题的关键..16.C解析:C【解析】【分析】将原式各项运用有理数的运算法则计算得到结果,比较即可.【详解】解:A、-22=-4,(-2)2=4,不相等,故A错误;B、23=8,32=9,不相等,故B错误;C、-33=(-3)3=-27,相等,故C正确;D、(-3×2)2=36,-32×22=-36,不相等,故D错误.故选C【点睛】此题考查了有理数的乘方,以及有理数的乘法,熟练掌握运算法则是解本题的关键.17.C解析:C【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【详解】解:A、含有两个未知数,不是一元一次方程,选项错误;B、不是方程是不等式,选项错误;C、符合一元一次方程定义,是一元一次方程,正确;D、未知项的最高次数为2,不是一元一次方程,选项错误.故选:C.【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.18.D解析:D【解析】【分析】第一次相遇时,甲、乙的速度和为xkm/h,由第一次到第二次相遇的过程中,甲,乙的路程和是第一次相遇时甲,乙路程和的两倍.可列方程,即可求解.【详解】解:设第一次相遇时,甲、乙的速度和为xkm/h,5小时36分钟=535(小时)由题意可得:2×2x=(535-2)(x+2),解得:x=18,∴A、B两地的距离=2×18=36(km),故选:D.【点睛】本题考查了一元一次方程的应用,理解题意,找到正确的等量关系是本题的关键.19.B解析:B【解析】【分析】观察根据排列的规律得到:所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数比上次增加连续的三个偶数.依次计算即可得到结论.【详解】所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数每次增加连续的三个偶数.第一行数字为1第二行数字为1+(2+4+6)=1+2(1+2+3)=1+3×4=13第三行数字为1+(2+4+6)+(8+10+12)=1+2(1+2+3+4+5+6)=1+6×7=43第四行数字为1+(2+4+6)+(8+10+12)+(14+16+18)=1+2(1+2+3+4+5+6+7+8+9)=1+9×10=91第五行数字为1+(2+4+6)+(8+10+12)+(14+16+18)+(20+22+24)=1+2(1+2+3+4+5+6+7+8+9+10+11+12)=1+12×13=157.故选B .【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.20.B解析:B【解析】【分析】由题意可知:成本+利润=售价,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +,列出方程即可.【详解】由题意可知:售价=成本+利润,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +;根据:售价=成本+利润,列出方程:()130%90%85x x +⋅=+故选B【点睛】本题考查了一元一次方程的应用,熟练掌握等量关系:“成本+利润=售价”是解答本题的关键.21.B解析:B【解析】【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n =1,n =2和n =3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可.【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况,当盘子数量n =1时,游戏结束需要移动的最少次数为1;当盘子数量n =2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n =3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n =2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n =2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11, 故选B .【点睛】本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.22.A解析:A【解析】【分析】先用代数式分别表示出三种方案降价前后的价格,然后进行比较即可.【详解】解:由题意可得:方案一降价0.1m+m(1-10%)30%=0.37m;方案二降价0.2m+m(1-20%)15%=0.32m;方案三降价0.2m+m(1-20%)20%=0.36m;故答案为A.【点睛】本题考查列代数式,解答本题的关键是明确题意、列出相应的代数式并进行比较.. 23.D解析:D【解析】【分析】先分别讨论x和y的大小关系,分别得出代数式的值,进而得出规律,然后以此规律可得出符合题意的组合,求解即可.【详解】①若x>y,则代数式中绝对值符号可直接去掉,∴代数式等于x,②若y>x则绝对值内符号相反,∴代数式等于y,由此可知,原式等于一组中较大的那个数,当相邻2个数为一组时,这样求出的和最小= 2+4+6+…+30=240.故选:D.【点睛】本题考查了绝对值、有理数的加减混合运算,通过假设,把所给代数式化简,然后把满足条件的字母的值代入计算.24.B解析:B【解析】【分析】根据m在[5,15]内,n在[20,30]内,可得nm的一切值中属于整数的有2010,248,205,25 5,305,依此即可求解.【详解】∵m在[5,15]内,n在[20,30]内,∴5≤m≤15,20≤n≤30,∴nm的一切值中属于整数的有20210=,2438=,2045=,2555=,3065=,综上,那么nm的一切值中属于整数的有2,3,4,5,6.故选:B.【点睛】本题考查了有理数、整数,关键是得到5≤m≤15,20≤n≤30.25.A解析:A【解析】【分析】根据等式的性质,可得答案.【详解】A.两边都除以-2,故A正确;B.左边加2,右边加-2,故B错误;C.左边除以2,右边加2,故C错误;D.左边除以2,右边乘以2,故D错误;故选A.【点睛】本题考查了等式的性质,熟记等式的性质是解题的关键.26.A解析:A【解析】【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,再根据有理数的加减法法则以及乘除法法则对各选项分析判断后利用排除法求解.【详解】由图可知,b<0,a>0,且|b|>|a|,A、a-b>0,故本选项符合题意;B、a+b<0,故本选项不合题意;C、ba<0,故本选项不合题意;D、ab<0,故本选项不合题意.故选:A.本题考查了数轴,熟练掌握数轴的特点并判断出a 、b 的正负情况以及绝对值的大小是解题的关键.27.A解析:A【解析】【分析】各项计算得到结果,即可作出判断.【详解】A 、2222a a a +=,符合题意;B 、2a b 和2ab 不是同类项,不能合并,不符合题意;C 、2(1)22a a -=-,不符合题意;D 、33323a a a -=-,不符合题意,故选:A .【点睛】本题考查了整式的加减,熟练掌握运算法则是解本题的关键.28.D解析:D【解析】【分析】根据单项式系数、次数的定义逐一判断即可得答案.【详解】 A.25mn -的系数是25-,次数是2,正确,故该选项不符合题意, B.数字0是单项式,正确,故该选项不符合题意, C.14ab 是二次单项式,正确,故该选项不符合题意, D.23xy π的系数是3π,次数是3,故该选项说法错误,符合题意, 故选:D .【点睛】本题考查单项式系数、次数的定义,单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.熟练掌握定义是解题关键.29.A解析:A【解析】【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可.解:0a >,0b <,0a b +>,||||a b ∴>,如图,, a b b a ∴-<<-<.故选:A .【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.30.C解析:C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【详解】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A 、1点与3点是向对面,4点与6点是向对面,2点与5点是向对面,所以不可以折成符合规则的骰子,故本选项错误;B 、3点与4点是向对面,1点与5点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误;C 、4点与3点是向对面,5点与2点是向对面,1点与6点是向对面,所以可以折成符合规则的骰子,故本选项正确;D 、1点与5点是向对面,3点与4点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误.故选C .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.。

北师大版七年级上册数学期末试卷及答案完整版 3套

北师大版七年级上册数学期末试卷及答案完整版 3套

七年级数学上册期末试卷及答案(考试时间100分钟,试卷满分100分)一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号直接填写在试卷相应位置上) 1.下列四个算式中,有一个算式与其他三个算式的计算结果不同,则该算式是 A .()21-B .21-C .()31- D .1--2.已知水星的半径约为24400000米,用科学记数法表示为( )米A .80.24410⨯ B .61044.2⨯ C .71044.2⨯ D .624.410⨯ 3.下列各式中,运算正确的是A .3a 2+2a 2=5a 4B .a 2+a 2=a 4C .6a -5a =1D .3a 2b -4ba 2=-a 2b4.如图所示几何体的左视图是5.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°-∠β;②∠α-90°;③180°-∠α;④12(∠α-∠β).正确的是: A .①②③④B .①②④C .①②③D .①②6.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m 3分裂后,其中有一个奇数是103,则m 的值是 A .9B .10C .11D .12二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在试卷相应位置上)7.已知∠A =30°36′,它的余角 = . 8.如果a -3与a +1互为相反数,那么a = . 9.写出所有在652- 和1之间的负整数: . 10.如果关于x 的方程2x +1=3和方程032=--xk 的解相同,那么k 的值为________.11.点C 在直线AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点, 则线段MN 的长为 .12.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“0cm”和“8cm”分别对应数轴上的-3和x ,那么x 的值为 .13.|x -3|+(y +2)2=0,则y x 为 .14.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为 .15.一个正方体的平面展开图如图,已知正方体相对两个面上的数之和为零,则a+b = .16.小明同学在某月的日历上圈出2×2个数(如图),正方形方框内的4个数的和是28,那么这4个数是三、解答题(本大题共9小题,共68分.请在试卷指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本题8分)计算: (1)9+5×(-3)-(-2)2 ÷ 4; (2)()()14-2-61-31-212⨯+⎪⎭⎫ ⎝⎛÷⎪⎭⎫⎝⎛ 18.(本题8分)解下列方程: (1)13421+=+x x ; (2)1612312-+=-x x . 19.(本题5分)先化简,再求值:)]2(23[25222b a ab abc b a abc -+--,其中a =21-,b =-1,c =3. 20.(本题6分)作图与推理:如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有块小正方体;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.21.(本题6分)在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为xcm,请用x来表示这个无盖长方体的容积;(2)当剪去的小正方体的边长x的值分别为3cm和3.5cm时,比较折成的无盖长方体的容积的大小.22.(本题7分)如图,在三角形ABC中,先按要求画图,再回答问题:(1)过点A画∠BAC的平分线交BC于点D;过点D画AC的平行线交AB于点E;过点D画AB的垂线,垂足为F.(画图时保留痕迹)(2)度量AE、ED的长度,它们有怎样的数量关系?(3)比较DF、DE的大小,并说明理由.23.(本题8分)如图,已知同一平面内∠AOB=90o,∠AOC=60o,(1)填空∠AOC= ;(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为°;(3)试问在(2)的条件下,如果将题目中∠AOC=60o改成∠AOC=2α(α<45o),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.24.(本题8分)我市为打造八圩港风光带,现有一段河道整治任务由A B 、两工程队完成.A 工程队单独整治该河道要16天才能完成;B 工程队单独整治该河道要24天才能完成.现在A 工程队单独做6天后,B 工程队加入合做完成剩下的工程,问A 工程队一共做了多少天? (1)根据题意,万颖、刘寅两名同学分别列出尚不完整的方程如下: 万颖:=++⨯x )241161(6161________ ; 刘寅:()1241161=⨯+y根据万颖、刘寅两名同学所列的方程,请你分别指出未知数x y 、表示的意义,然后在,然后在方框中补全万颖、刘寅同学所列的方程:万颖:x 表示 ,刘寅:y 表示 ,万颖同学所列不完整的方程中的方框内该填 ,刘寅同学所列不完整的方程中的方框内该填 . (2)求A 工程队一共做了多少天.(写出完整的解答过程) 25.(本题10分)已知:线段AB=20 cm .(1)如图1,点P 沿线段AB 自A 点向B 点以2厘米/秒运动,点P 出发2秒后,点Q 沿线段BA 自B 点向A 点以3厘米/秒运动,问再经过几秒后P 、Q 相距5cm?(2)如图2:AO=4 cm , PO=2 cm , ∠POB=60o ,点P 绕着点O 以60度/秒的速度逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P 、Q 两点能相遇,求点Q 运动的速度 .参考答案一、选择题 ACDD BB 二、填空题7.59o 24′ 8.1 9.-2,-1 10.7 11.7cm 戓1cm 12.5 13.-8 14.870 15.-1 16.3,4,10,11 三、解答题17.(1)解:原式=9+(-15)-1 (2分)= -7(4分) (2)解:原式=()()()14-46-31-6-21⨯+⨯⨯=-3+2-56…………………3分 =-57 …………………4分 或原式=()()14-46-61⨯+⨯= -1-56=-57…………………4分 18.(1)解:去分母得 3(x+1)=8x+6………………………………1分 去括号、移项、合并同类项,得 -5x=3………………………………2分 系数化为1,得 x=53-. ………………………………4分 (2)解:去分母得 2(2x-1)=(2x+1)-6………………………………1分 去括号、移项、合并同类项,得 2x=-3………………………………2分 系数化为1,得 x=23-. ………………………………4分 19.解:原式=]243[25222b a ab abc b a abc -+-- (1分) = b a ab abc b a abc 22224325+--- (2分) = 242ab abc - (3分) 当a =21-,b =-1,c =3时. 原式= 2)1()21(43)1()21(2-⨯-⨯-⨯-⨯-⨯ (4分) =23+ =5 (5分) 20.(各2分)1121.(1)容积:2)216(x x - ……………3分(2)当x=3时,容积为300cm 3……………4分 当x=3.5时,容积为283.5 cm 3……………5分答 当剪去的小正方形的边长为3cm 时,无盖长方体的容积大些.……………6分 22.(1)画角平分线(2分),画平行线(3分),画垂线 (4分) (2)AE=ED (5分) (3)DF<DE , (6分)理由:直线外一点和直线上各点连接的所有线段中,垂线段最短.(7分) 23.(1)150° ………………………1分 (2)45° ………………………3分 (3)解:因为∠AOB =90°,∠AOC =2α 所以∠BOC =900+2α因为OD 、OE 平分∠BOC ,∠AOC 所以∠DOC =21∠BOC =45o +α,∠CO E=21∠AOC =α ……6分 所以∠DO E=∠DOC -∠CO E=450 ……8分 说明:其他解法参照给分.24.(1)x 表示A 、B 合做的天数(或者B 完成的天数);y 表示A 工程队一共做的天数; 1 ; y-6 . (每空1分共4分) (2)解:设A 工程队一共做的天数为y 天,由题意得:=-+)6(241161y y 1 …………………6分 解得y=12答:A 工程队一共做的天数为12天. ……8分 用另一种方法类似得分.(2)解答不完整只有答案扣2分. 25.解:(1)设再经过t s 后,点P 、Q 相距5cm , ①P 、Q 未相遇前相距5cm ,依题意可列223205t t +-()+=, 解得,t =115……2分 ②P 、Q 相遇后相距5cm ,依题意可列223205t t ++()+=, 解得,t =215……4分 答:经过115s 或215s 后,点P 、Q 相距5cm . 解:(2)点P ,Q 只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为12060=2s或120180560s += ……6分设点Q 的速度为y m/s ,当2秒时相遇,依题意得,2y 20218-==,解得y =9 当5秒时相遇,依题意得,5y 20614-==,解得y 2.8= 答:点Q 的速度为9m /s 2.8m /s 或. …………8 分 若只有一解得5分.数 学 试 卷 北 师 大 版 七 年 级 上 册一、精心选一选(每小题3分,共30分) 1.-21的相反数是( )A .2B .-2C .21 D .-212.下列式子正确的是( )A .-0.1>-0.01B .—1>0C .21<31D .-5<3 3. 沿图1中虚线旋转一周,能围成的几何体是下面几何体中的 ( )A B C D 图1 4.多项式12++xy xy 是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式5.桌上放着一个茶壶,4个同学从各自的方向观察,请指出图3右边的四幅图,从左至右分别是由哪个同学看到的( )A .①②③④B .①③②④C .②④①③D .④③①②6.数a ,b 在数轴上的位置如图2所示,则b a +是( )A .正数B .零C .负数D .都有可能7. 每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米 B .1.5×810千米 C .15×710千米 D .1.5×710千米 8.图5是某市一天的温度变化曲线图,通过该图可知,下列说法错误的是( ) A .这天15点时的温度最高B .这天3点时的温度最低C .这天最高温度与最低温度的差是13℃D .这天21点时的温度是30℃9.一个正方体的侧面展开图如图4所示,用它围成的正方体只可能是( )温度/℃383430 26 22 15 18 21 24图3 O O O O A B C D 图4图210.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( )A .3瓶B .4瓶C .5瓶D .6瓶 二、细心填一填(每空3分,共30分)11.52xy -的系数是 。

北师大版七年级上册数学期末试卷(含答案)

北师大版七年级上册数学期末试卷(含答案)

北师大版七年级上册数学期末试卷(含答案)北师大版七年级上册数学期末试卷(含答案)第一部分:选择题(共50题,每题1分;共50分)1. 以下哪个数是无理数?A. √2B. 1C. 3/4D. 0答案:A解析:无理数是不能表示为有限小数或循环小数的实数。

√2 是一个无理数。

2. 在多项式 4x^3 + 3x – 2 中,x 的次数为:A. 2B. 3C. 1D. 0答案:B解析:多项式中最高次数的项决定了整个多项式的次数,所以 x 的次数为 3。

3. 下面哪个图形中的三角形是锐角三角形?A. B. C. D.答案:A解析:锐角是指小于90度的角,只有图形 A 中的三角形是锐角三角形。

4. 决算表中列出了一个公司在一年中的所有收入和支出。

决算表的目的是:A. 记录公司的股东信息B. 衡量公司盈利能力C. 统计员工的工资D. 呈现公司的年度计划答案:B解析:决算表用于衡量公司在一年中的盈利能力和财务状况。

5. 以下哪个数字是一个素数?A. 1B. 4C. 7D. 9答案:C解析:素数是指只能被 1 和自身整除的正整数,而 7 是一个素数。

6. 对于以下方程 4x + 12 = 20 ,解为:A. x = -2B. x = 2C. x = -8D. x = 8答案:B解析:通过变换方程,我们可以得到 x = 2。

7. 将一个正方形的边长增加 20%,那么面积将变为原来的:A. 100%B. 120%C. 140%D. 144%答案:D解析:边长增加 20% 相当于乘以 1.2,而面积是边长的平方,所以面积将变为原来的 1.2^2 = 1.44,即 144%。

8. 下图中,三角形 ABC 中,∠ACB 的度数为:A. 45°B. 60°C. 90°D. 180°答案:B解析:三角形的内角和为180度,而∠ABC = 90度,因此∠ACB = 180度 - 90度 - 30度 = 60度。

北师大版(完整版)七年级数学上册期末试卷及答案

北师大版(完整版)七年级数学上册期末试卷及答案

北师大版(完整版)七年级数学上册期末试卷及答案一、选择题1.下列生活、生产现象:①用两颗钉子就可以把木条固定在墙上;②从甲地到乙地架设电线,总是沿线段架设;③把弯曲的公路改直就能缩短路程;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线.其中能用“两点之间线段最短”来解释的现象是( ) A .①②B .②③C .①④D .③④2.下列说法错误的是( ) A .25mn -的系数是25-,次数是2 B .数字0是单项式 C .14ab 是二次单项式D .23xy π的系数是13,次数是4 3.一辆客车和一辆卡车同时从A 地出发沿同一公路同向行驶,客车的行驶速度是70km /h ,卡车的行驶速度是60km /h ,客车经过x 小时到达B 地,卡车比客车晚到1h .根据题意列出关于x 的方程,正确的是( ) A .16070x x -= B .106070x x+-= C .70x =60x+60 D .60x =70x-704.甲、乙两人分别从A B 、两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达地后立刻以原路和提高后的速度向地返行,乙到达A 地后也立刻以原路和提高后的速度向B 地返行.甲、乙两人在开始 出发后的5小时36分钟又再次相遇,则A B 、两地的距离是( ) A .24千米B .30千米C .32千米D .36千米5.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a >﹣bC .a >bD .|a |>|b |6.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+7.已知线段AB ,C 是直线AB 上的一点,AB=8,BC=4,点M 是线段AC 的中点,则线段AM 的长为( ) A .2cmB .4cmC .2cm 或6cmD .4cm 或6cm8.下列运算正确的是( ) A .()a b c a b c -+=-+ B .2(1)21x y x y --=-+ C .22223m n nm m n -=- D .532x x -= 9.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为( )A .4B .5C .6D .710.计算22221111 (11223320152015)++++++++的结果为( ) A .1B .20142015C .20152016D .2016201511.已知一组数:1,-2,3,-4,5,-6,7,…,将这组数排成下列形式: 第1行 1 第2行 -2,3 第3行 -4,5,-6 第4行 7,-8,9,-10 第5行 11,-12,13,-14,15 ……按照上述规律排列下去,那么第10行从左边数第5个数是( ) A .-50B .50C .-55D .5512.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为()A .-1009B .-2019C .-1010D .-2020二、填空题13.一个农场的工人们要把两片草地的草锄掉,大的一片草地的锄草量是小的一片的两倍.上午半天工人们都在大的一片上锄草,中午后工人们对半分开,一半人留在大的草地上,刚好下午半天就把草锄完了;另一半人到小的草地上去锄草,下午半天锄草后还剩一小块,第二天由一个工人去锄,恰好用了一天时间将草锄完成.如果每一个工人每天锄草量相同,那么这个农场有_______个工人.14.计算(0.04)2018×[(﹣5)]2018的结果是_____.15.如图所示,O 是直线AB 与CD 的交点,∠BOM :∠DOM =1:2,∠CON =90°,∠NOM =68°,则∠BOD =_____°.16.如图,90AOC BOD ∠=∠=︒,70AOB ∠=︒,在∠AOB 内画一条射线OP 得到的图中有m 对互余的角,其中AOP x ∠=︒,且满足050x <<,则m =_______.17.如图,将ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1处,称为第1次操作,折痕DE 到BC 的距离记为h 1,还原纸片后,再将ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为h 2,按上述方法不断操作下去…经过第2020次操作后得到的折痕D 2020E 2020到BC 的距离记为h 2020,若h 1=1,则h 2020的值为_____.18.观察下列等式: ① 32 - 12 = 2 × 4 ② 52 - 32 = 2 × 8 ③ 72 - 52 = 2 × 12 ......那么第n (n 为正整数)个等式为___________19.若25m n a b 与569a b -是同类项,则m n +的值是____.20.如图,用大小相等的小正方形拼成有规律的图形,第1个图中有1个正方形,第2个图中含有5个正方形,第3个图中含有14个正方形…,按此规律拼下去,第6个图中含正方形的个数是___________个.21.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________. 22.如图所示,一动点从半径为2的O 上的0A 点出发,沿着射线0A O 方向运动到O上的点1A 处,再向左沿着与射线1A O 夹角为60°的方向运动到O 上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O 上的点3A 处,再向左沿着与射线3A O 夹角为60°的方向运动到O 上的点4A 处.……按此规律运动到点2020A 处,则点2020A 与点0A 间的距离是___________.三、解答题23.下表是某年篮球世界杯小组赛C 组积分表: 排名 国家 比赛场数 胜场 负场 总积分 1 美国 5 5 0 10 2 土耳其 5 3 2 8 3 乌克兰52 3 7 4 多米尼加 5 2 3 7 5 新西兰 5 2 3 7 6芬兰51mn(2)m = ;n = ;(3)若删掉美国队那一行,你还能求出胜一场、负一场的积分吗?怎样求? (4)能否出现某队的胜场积分与负场积分相同的情况,为什么?24.(1)已知:2(2)30m n -++=.线段AB=4()m n -cm ,则线段AB= cm .(此空直接填答案,不必写过程.)(2)如图,线段AB 的长度为(1)中所求的值,点P 沿线段AB 自点A 向点B 以2cm/s 的速度运动,同时点Q 沿线段BA 自点B 向点A 以3cm/s 的速度运动.①当P 、Q 两点相遇时,点P 到点B 的距离是多少? ②经过多长时间,P 、Q 两点相距5cm ?25.如图,是由A 、B 、E 、F 四个正方形和C 、D 两个长方形拼成的大长方形.已知正方形F 的边长为8,求拼成的大长方形周长.26.化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =227.(2+3+3分)阅读材料:我们知道,4x ﹣2x+x=(4﹣2+1)x=3x ,类似地,我们把(a+b )看成一个整体,则4(a+b )﹣2(a+b )+(a+b )=(4﹣2+1)(a+b )=3(a+b ).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用整体思想解决下列问题:(1)把()2a b -看成一个整体,合并()()()222362a b a b a b ---+-.(2)已知224x y -=,求23621x y --的值;(3)已知a ﹣2b=3,2b ﹣c=﹣5,c ﹣d=10,求(a ﹣c )+(2b ﹣d )﹣(2b ﹣c )的值. 28.如图,相距10千米的A B 、两地间有一条笔直的马路,C 地位于A B 、两地之间且距A 地4千米,小明同学骑自行车从A 地出发沿马路以每小时5千米的速度向B 地匀速运动,当到达B 地后立即以原来的速度返回,到达A 地停止运动,设运动时间为(时),小明的位置为点P .(1)当0.5=t 时,求点P C 、间的距离(2)当小明距离C 地1千米时,直接写出所有满足条件的t 值 (3)在整个运动过程中,求点P 与点A 的距离(用含的代数式表示)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据两点确定一条直线,两点之间线段最短的性质对各选项分析判断即可得出结果. 【详解】解:①用两颗钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故错误;②从甲地到乙地架设电线,总是沿线段架设是利用了“两点之间线段最短”,故正确; ③把弯曲的公路改直就能缩短路程是利用了“两点之间线段最短”,故正确; ④植树时只要确定两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故错误. 故选:B 【点睛】本题主要考查的是线段的性质和直线的性质,正确的掌握这两个性质是解题的关键.2.D解析:D 【解析】 【分析】根据单项式系数、次数的定义逐一判断即可得答案. 【详解】A.25mn -的系数是25-,次数是2,正确,故该选项不符合题意, B.数字0是单项式,正确,故该选项不符合题意,C.14ab 是二次单项式,正确,故该选项不符合题意, D.23xy π的系数是3π,次数是3,故该选项说法错误,符合题意, 故选:D . 【点睛】本题考查单项式系数、次数的定义,单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.熟练掌握定义是解题关键.3.C解析:C 【解析】 【分析】根据A 地到B 地的路程相等,可构造等量关系7060(1)x x =+,即可得出答案. 【详解】解:根据题意,客车从A 地到B 地的路程为:70S x = 卡车从A 地到B 地的路程为:60(1)S x =+ 则7060(1)x x =+ 故答案为:C . 【点睛】本题考查一元一次方程路程的应用题,注意设未知数后等量关系构成的条件,属于一般题型.4.D【解析】 【分析】第一次相遇时,甲、乙的速度和为xkm/h ,由第一次到第二次相遇的过程中,甲,乙的路程和是第一次相遇时甲,乙路程和的两倍.可列方程,即可求解. 【详解】解:设第一次相遇时,甲、乙的速度和为xkm/h , 5小时36分钟=535(小时) 由题意可得:2×2x=(535-2)(x+2), 解得:x=18,∴A 、B 两地的距离=2×18=36(km ), 故选:D . 【点睛】本题考查了一元一次方程的应用,理解题意,找到正确的等量关系是本题的关键.5.D解析:D 【解析】分析:根据数轴上a 、b 的位置,判断出a 、b 的范围,然后根据有理数的大小比较和绝对值的性质进行比较即可.详解:根据数轴上点的位置得:﹣3<a <﹣2,1<b <2, ∴|a|>|b|,a <﹣b ,b >a ,a <﹣2, 故选D .点睛:本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.6.D解析:D 【解析】 【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解. 【详解】等式两边同乘4得:2(1)4(3)x x -=-+, 故选:D. 【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.7.C【解析】 【分析】分类讨论:点C 在线段AB 上,点C 在线段BC 的延长线上,根据线段的和差,可得AC 的长,根据线段中点的性质,可得AM 的长. 【详解】解:①当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8-4=4(cm ), 由线段中点的定义,得AM=12AC=12×4=2(cm ); ②点C 在线段BC 的延长线上,由线段的和差,得AC=AB+BC=8+4=12(cm ), 由线段中点的定义,得AM=12AC=12×12=6(cm ); 故选C . 【点睛】本题考查两点间的距离,利用了线段的和差,线段中点的定义;解题关键是进行分类讨论.8.C解析:C 【解析】 【分析】分别判断各选项是否正确. 【详解】A 中,a b +c a b c -=--(),错误;B 中,2(1)22x y x y --=-+,错误;C 中,22223m n nm m n -=-,正确;D 中,532x x x -=,错误 故选:C . 【点睛】本题考查整式的加减法,需要注意合并同类项时,仅是系数的加减.9.B解析:B 【解析】 【分析】用极差除以组距,如果商是整数,组数=这个整数加1,如果商不是整数,用进一法,确定组数; 【详解】∵296234.655-==, ∴分成的组数是5组.故答案选B . 【点睛】本题主要考查了频数分布直方图,准确计算是解题的关键.10.C解析:C 【解析】 【分析】根据数字的变化寻找规律,再根据有理数的混合运算即可求解. 【详解】解:22221111···11223320152015++++++++ =21111261220152015+++++=111111112233420152016-+-+-++-= 112016-=20152016 故选:C . 【点睛】本题考查了数字的变化规律、有理数的混合运算,解决本题的关键是寻找数字的变化规律.11.A解析:A 【解析】 【分析】分析可得,第n 行有n 个数,此行第一个数的绝对值为(1)12n n -+,且式子的奇偶,决定它的正负,奇数为正,偶数为负,依此即可得出第10行从左边数第5个数. 【详解】解:第n 行有n 个数,此行第一个数的绝对值为(1)12n n -+,且式子的奇偶,决定它的正负,奇数为正,偶数为负. 所以第10行第5个数的绝对值为:1095502⨯+=, 50为偶数,故这个数为:-50. 故选:A . 【点睛】本题考查探索与表达规律,能依据已给数据分析得出每行第一个数与行数之间的规律是解决此题的关键.12.C解析:C 【解析】 【分析】依次计算1a 、2a 、3a 、4a 、…,得到规律性答案,即可得到2020a 的值. 【详解】11a =-,212a a =-+=-1,323a a =-+=-2, 434a a =-+=-2,5453a a =-+=-, 6563a a =-+=-,,由此可得:每两个数的答案是相同的,结果为-2n(n 为偶数), ∴202010102=, ∴2020a 的值为-1010, 故选:C. 【点睛】此题考查代数式规律探究,计算此类题的关键是依次计算得出答案的规律并总结出答案与序数间的关系式,由此来解答问题.二、填空题 13.8 【解析】 【分析】设这个农场有个工人,每个工人一天的锄草量为1,根据大的一片草地的锄草量是小的一片的两倍,即可得出关于的一元一次方程,解之即可得出结论. 【详解】解:设这个农场有个工人,每个解析:8 【解析】 【分析】设这个农场有x 个工人,每个工人一天的锄草量为1,根据大的一片草地的锄草量是小的一片的两倍,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设这个农场有x 个工人,每个工人一天的锄草量为1, 依题意,得:111112(1)22222x x x +⨯=⨯+, 解得:8x =.故答案为:8.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.14..【解析】【分析】先将原式变形为[0.04×(﹣5)]2018,再根据乘方的定义计算可得.【详解】原式=[0.04×(﹣5)]2018=(﹣0.2)2018.故答案为.【点睛】本题考 解析:201815.【解析】【分析】先将原式变形为[0.04×(﹣5)]2018,再根据乘方的定义计算可得.【详解】原式=[0.04×(﹣5)]2018=(﹣0.2)2018201815=. 故答案为201815.【点睛】 本题考查了有理数的乘方,解题的关键是掌握有理数的乘方的定义和运算法则.15.【解析】【分析】根据角的和差关系可得∠DOM =∠DON ﹣∠NOM =22°,再根据∠BOM :∠DO M =1:2可得∠BOM =∠DOM =11°,据此即可得出∠BOD 的度数.【详解】∵∠CON =9解析:【解析】根据角的和差关系可得∠DOM=∠DON﹣∠NOM=22°,再根据∠BOM:∠DOM=1:2可得∠BOM=12∠DOM=11°,据此即可得出∠BOD的度数.【详解】∵∠CON=90°,∴∠DON=∠CON=90°,∴∠DOM=∠DON﹣∠NOM=90°﹣68°=22°,∵∠BOM:∠DOM=1:2,∴∠BOM=12∠DOM=11°,∴∠BOD=3∠BOM=33°.故答案为:33.【点睛】本题考查了余角的定义,角的和差的关系,掌握角的和差的关系是解题的关键.16.3或4或6【解析】【分析】分三种情况下:①∠AOP=35°,②∠AOP=20°,③0<x<50中的其余角,根据互余的定义找出图中互余的角即可求解.【详解】①∠AOP=∠AOB =35°时,解析:3或4或6【解析】【分析】分三种情况下:①∠AOP=35°,②∠AOP=20°,③0<x<50中的其余角,根据互余的定义找出图中互余的角即可求解.【详解】①∠AOP=12∠AOB =35°时,∠BOP=35°∴互余的角有∠AOP与∠COP,∠BOP与∠COP,∠AOB与∠COB,∠COD与∠COB,一共4对;②∠AOP=90°-∠AOB =20°时,∴互余的角有∠AOP与∠COP,∠AOP与∠AOB,∠AOP与∠COD,∠COD与∠COB,∠AOB与∠COB,∠COP与∠COB,一共6对;③0<x<50中35°与20°的其余角,互余的角有∠AOP与∠COP,∠AOB与∠COB,∠COD与∠COB,一共3对.则m=3或4或6.故答案为:3或4或6.本题考查了余角和补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.17.2﹣()2019【解析】【分析】根据题意和图形,可以写出前几次操作后h对应的值,从而可以发现变化特点,从而可以写出h2020的值.【详解】解:由题意可知,h1=2﹣1=1,h2=2﹣=解析:2﹣(12)2019【解析】【分析】根据题意和图形,可以写出前几次操作后h对应的值,从而可以发现变化特点,从而可以写出h2020的值.【详解】解:由题意可知,h1=2﹣1=1,h2=2﹣12=32,h3=2﹣(12)2,…,则h2020=2﹣(12)2019,故答案为:2﹣(12)2019.【点睛】此题主要考查图形的规律探索,解题的关键是根据题意先求出前几次变换的距离,再发现规律进行求解.18.【解析】【分析】通过观察可发现等式左边是两个连续奇数的平方差,右边是这两个奇数和的2倍,进而求出第n个等式.【详解】通过观察发现:等式左边是两个连续奇数的平方差,右边是这两个奇数和的2倍,解析:()()22212124n n n +--=⨯【解析】【分析】通过观察可发现等式左边是两个连续奇数的平方差,右边是这两个奇数和的2倍,进而求出第n 个等式.【详解】通过观察发现:等式左边是两个连续奇数的平方差,右边是这两个奇数和的2倍, ()()()2221212212124n n n n n +--=++-=⨯. 故答案为:()()22212124n n n +--=⨯. 【点睛】 本题考查了数字类的变化规律,通过观察,分析、归纳并发现其中的规律,本题的关键规律是左边是两个连续奇数的平方差,右边是这两个奇数和的2倍.19.8【解析】【分析】根据同类项的定义即可求出答案.【详解】由题意可知:m =5,2n =6,∴m=5,n =3,∴m+n =8,故答案为:8【点睛】本题考查同类项,解题的关键是正确理解同类解析:8【解析】【分析】根据同类项的定义即可求出答案.【详解】由题意可知:m =5,2n =6,∴m =5,n =3,∴m +n =8,故答案为:8【点睛】本题考查同类项,解题的关键是正确理解同类项的定义,本题属于基础题型.20.91【解析】【分析】根据题意分析可得出规律即是后一个图在前一个图的基础上添加这个图的序号的平方即可得出.【详解】解:第1个图中有1个正方形;第2个图中共有2×2+1=5个正方形;第3个解析:91【解析】【分析】根据题意分析可得出规律即是后一个图在前一个图的基础上添加这个图的序号的平方即可得出.【详解】解:第1个图中有1个正方形;第2个图中共有2×2+1=5个正方形;第3个图中共有3×3+5=14个正方形;第4个图形共有4×4+14=30个正方形;按照这种规律下去的第5个图形共有5×5+30=55个正方形.∴第6个图形共有6×6+55=91个正方形.故第6个图形共有91个正方形.故答案为:91.【点睛】此题主要考查了图形的变化类,此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.21.【解析】【分析】根据题意分别表示P,Q的数为-8+2t和10-3t,并分到A前和到A后进行分析求值.【详解】解:由题意表示P,Q的数为-8+2t()和10-3t(),-8+3(t-6)()解析:12 5【解析】【分析】根据题意分别表示P,Q的数为-8+2t和10-3t,并分Q到A前和Q到A后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.22.【解析】【分析】连接A4A5、A0A5,,,分别求出,,,,,,,根据图形的运动得到按此规律6次一循环,即可求出点与点间的距离.【详解】如图,连接A4A5、A0A5,,,∵的半径为2,解析:【解析】【分析】连接A 4A 5、A 0A 5,04A A ,02A A ,分别求出014A A =,02A A =032A A =,04A A =052A A =,060A A =,,根据图形的运动得到按此规律6次一循环,即可求出点2020A 与点0A 间的距离.【详解】如图,连接A 4A 5、A 0A 5,04A A ,02A A ,∵O 的半径为2,∴014A A =,02A A =,032A A =,04A A =052A A =,060A A =,按此规律6次一循环,∵202063364÷=,∴02020A A =故答案为:【点睛】此题考查图形类规律的探究,根据图形的变化得到运动的规律是解题的关键.三、解答题23.(1)胜一场积2分,理由见解析;(2)m=4,n=6;(3)胜一场积2分,负一场积1分;(4)不可能,理由见解析【解析】【分析】(1)由美国5场全胜积10分,即可得到答案;(2)由比赛场数减去胜场,然后计算m、n的值;(3)由题意,设胜一场积x分,然后列出方程组,即可求出胜一场、负一场的积分;(4)由题意,列出方程,解方程即可得到答案.【详解】解:(1)根据题意,则∵美国5场全胜积10分,∴1052÷=,∴胜一场积2分;(2)由题意,514m=-=;设负一场得x分,则3228x⨯+=;∴1x=;∴12416n=⨯+⨯=;故答案为:6;4;(3)设胜一场积x分,由土耳其队积分可知负一场积分832x-,根据乌克兰队积分可列方程:8323()72xx-+=,解得:2x=,此时831 2x-=;即胜一场积2分,负一场积1分;(4)设某球队胜y场,则21(5)y y =⨯-, 解得:53y =; ∴不可能出现某队的胜场积分与负场积分相同的情况.【点睛】本题考查了一元一次方程的应用,根据数量关系列出一元一次方程是解题的关键.24.(1)20;(2)①P 、Q 两点相遇时,点P 到点B 的距离是12cm ;②经过3s 或5s ,P 、Q 两点相距5cm .【解析】【分析】(1)根据绝对值和平方的非负数求出m 、n 的值,即可求解;(2)①根据相遇问题求出P 、Q 两点的相遇时间,就可以求出结论;②设经过xs ,P 、Q 两点相距5cm ,分相遇前和相遇后两种情况建立方程求出其解即可.【详解】解:(1)因为2(2)30m n -++=,所以m-2=0,n+3=0,解得:m=2,n=-3,所以AB=4()m n -=4×[2-(-3)]=20,即20AB =cm ,故答案为:20(2)①设经过t 秒时,P 、Q 两点相遇,根据题意得, 2320t t +=4t =∴P 、Q 两点相遇时,点P 到点B 的距离是:4×3=12cm ;②设经过x 秒,P 、Q 两点相距5cm ,由题意得2x+3x+5=20,解得:x=3或2x+3x-5=20,解得:x=5答:经过3s 或5s ,P 、Q 两点相距5cm .【点睛】本题考查平方和绝对值的非负性以及相遇问题的数量关系在实际问题中的运用,行程问题的数量关系的运用,分类讨论思想的运用,解答时根据行程问题的数量关系建立方程是解题关键.25.【解析】【分析】直接表示出大长方形的周长进而计算得出答案.【详解】设A 正方形边长为a ,∵正方形F 的边长为8,∴正方形E 的边长为8-a ,正方形B 的边长为8+a ,大长方形长为8+8+a=16+ a ,宽为8+8-a=16- a ,则大长方形周长为2(16+ a+16- a)=64.【点睛】本题考查了列代数式,整式的加减,正确合并同类项是解题关键.26.ab 2,-12.【解析】【分析】先去括号,再合并,最后再把a 、b 的值代入化简后的式子计算即可.【详解】解:原式=2a 2b+4b 3-2ab 2+3a 3-2a 2b+3ab 2-3a 3-4b 3=ab 2,当a=-3,b=2时,原式=-3×22=-12.【点睛】本题考查了整式的化简求值,解题的关键是掌握去括号法则和合并同类项的法则.27.(1)2()a b --;(2)-9;(3)8【解析】【分析】(1)利用整体思想,把2()a b -看成一个整体,进行合并即可得到结果; (2)原式可化为3(x 2-2y )-21,把x 2-2y=4整体代入即可;(3)依据a-2b=3,2b-c=-5,c-d=10,即可得到a-c=-2,2b-d=5,整体代入进行计算即可.【详解】(1)∵()()()()2222236236((2))a b a b a a b a b b ---+-=---=-+; 故答案为:2()a b --;(2)∵224x y -=, ∴原式=3(x 2-2y )-21=12-21= -9;(3)∵a-2b=3,2b-c=-5,c-d=10,∴()()222a b b c a c -+-=-=-,()()225c d b c b d -+-=-=∴原式=-2+5-(-5)=8.故答案为(1)2()a b --;(2)-9;(3)8.【点睛】本题主要考查了整式的加减,解决问题的关键是运用整体思想;给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.28.(1)1.5k ;(2)317,1,3,55h h h h ;(3)5,20-5t 【解析】【分析】(1)根据速度,求出t=0.5时的路程,即可得到P 、C 间的距离;(2)分由A 去B ,B 返回A 两种情况,各自又分在点C 的左右两侧,分别求值即可;(3)PA 的距离为由A 去B ,B 返回A 两种情况求值.【详解】(1)由题知: 5/,4, 10v km h AC km AB km ===当0.5t h =时,50.5 2.5s vt kom ==⨯=,即 2.5AP km =425 1.5PC AC AP k ∴=-=-=()2当小明由A 地去B 地过程中:在AC 之间时, 41355t -==(小时), 在BC 之间时, 4115t +==(小时), 当小明由B 地返回A 地过程中:在BC 之间时, 1024135t ⨯--==(小时), 在AC 之间时, 102(41)1755t ⨯--==(小时), 故满足条件的t 值为:317,1,3,55h h h h (3)当小明从A 运动到B 的过程中,AP=vt= 5,当小明从B 运动到A 的过程中,AP= 20-vt= 20- 5t.【点睛】此题考查线段的和差的实际应用,掌握题中运用的行程题的公式,正确理解题意即可正确解题.。

北师大版(完整版)七年级数学上册期末试卷及答案doc

北师大版(完整版)七年级数学上册期末试卷及答案doc

北师大版(完整版)七年级数学上册期末试卷及答案doc一、选择题1.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( ) A .a b b a -<<-< B .a b b a >->>- C .b a b a <-<-< D .a b b a -<-<<2.下列说法错误的是( ) A .25mn -的系数是25-,次数是2 B .数字0是单项式 C .14ab 是二次单项式D .23xy π的系数是13,次数是4 3.如图所示是一个自行设计的计算程序,若输入x 的值为1,那么执行此程序后,输出的数y 是( )A .﹣2B .2C .3D .44.在数轴上有一个动点从原点出发,每次向正方向或负方向移1个单位长度,经过5次移动后,动点落在表示数3的点上,则动点的不同运动方案共有( ) A .2种B .3种C .4种D .5种5.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形数阵解释二项式()na b +的展开式的各项系数,此三角形数阵称为“杨辉三角”. 第一行 ()0a b + 1 第二行 ()1a b + 1 1 第三行 ()2a b + 1 2 1 第四行 ()3a b + 1 3 3 1 第五行 ()4a b + 1 4 6 4 1根据此规律,请你写出第22行第三个数是( ) A .190B .210C .231D .2536.甲、乙两人分别从A B 、两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达地后立刻以原路和提高后的速度向地返行,乙到达A 地后也立刻以原路和提高后的速度向B 地返行.甲、乙两人在开始 出发后的5小时36分钟又再次相遇,则A B 、两地的距离是( ) A .24千米 B .30千米 C .32千米 D .36千米 7.在上午八点半钟的时候,时针和分针所夹的角度是( )A .85°B .75°C .65°D .55°8.如图,在数轴上,若A 、B 、C 三点表示的数为a 、b 、c ,则下列结论正确的是( )A .c >a >bB .1b >1cC .|a |<|b |D .abc >09.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y -B .1019x y +C .1021x y -D .1017x y -10.如果有理数,a b ,满足0,0ab a b >+<,则下列说法正确的是( ) A .0,0a b >>B .0,0a b <>C .0,0a b <<D .0,0a b ><11.a ,b 在数轴上位置如图所示,则a ,b ,a -,b -的大小顺序是( )A .a b a b -<<<-B .b a b a <-<-<C .a b b a -<-<<D .b a a b <-<<-12.已知a ,b ,c 为有理数,且0a b c ++=,0abc <,则a b ca b c++的值为( ) A .1B .1-或3-C .1或3-D .1-或3二、填空题13.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是-16、9,现以点C 为折点,将数轴向右对折,若点A 对应的点A ’落在点B 的右边,并且A ’B =3,则C 点表示的数是_______.14.如图,若D 是AB 的中点,E 是BC 的中点,若AC =8,BC =5,则AD =______.15.若式子2x 2+3y+7的值为8,那么式子6x 2+9y+2的值为_________.16.如图,点D 为线段AB 上一点,C 为AB 的中点,且AB =8m ,BD =2cm ,则CD 的长度为_____cm .17.如图,将ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1处,称为第1次操作,折痕DE 到BC 的距离记为h 1,还原纸片后,再将ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为h 2,按上述方法不断操作下去…经过第2020次操作后得到的折痕D 2020E 2020到BC 的距离记为h 2020,若h 1=1,则h 2020的值为_____.18.一个角的余角为50°,则这个角的补角等于_____. 19.若25m n a b 与569a b -是同类项,则m n +的值是____.20.在数轴上,点A (表示整数a )在原点O 的左侧,点B (表示整数b )在原点O 的右侧,若a b -=2019,且AO =2BO ,则a +b 的值为_________ 21.一列数按某规律排列如下:11,12,21,13,22,31,14,23,32,41,⋯,若第n 个数为56,则n =_______.22.观察下列式子:13111414a ==-⨯;23114747a ==-⨯;3311710710a ==-⨯;431110131013a ==-⨯,按此规律,则n a =_____________=______________(用含n的代数式表示,其中n 为正整数),并计算123100a a a a +++⋯+=________________.三、解答题23.元旦假期,甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市当日累计购物超出了200元以后,超出部分按原价8折优惠;在乙超市当日累计购物超出100元之后,超出部分按原价9折优惠.设某位顾客在元旦这天预计累计购物x 元(其中200x >). (1)当350x =时,顾客到哪家超市购物优惠;(2)当x 为何值时,顾客到这两家超市购物实际支付的钱数相同. 24.先化简再求值:222226(35)2(53)a b a b ab a b ab --+--其中12,2a b =-=25.已知数轴上,点A 和点B 分别位于原点O 两侧,点A 对应的数为a ,点B 对应的数为b ,且|a-b|=15.(1)若b =-6,则a 的值为 ;(2)若OA =2OB ,求a 的值;(3)点C 为数轴上一点,对应的数为c ,若A 点在原点的左侧,O 为AC 的中点,OB =3BC ,请画出图形并求出满足条件的c 的值. 26.观察下面的三行单项式 x ,2x 2,4x 3,8x 4,16x 5…① ﹣2x ,4x 2,﹣8x 3,16x 4,﹣32x 5…② 2x ,﹣3x 2,5x 3,﹣9x 4,17x 5…③ 根据你发现的规律,完成以下各题:(1)第①行第8个单项式为 ;第②行第2020个单项式为 . (2)第③行第n 个单项式为 .(3)取每行的第9个单项式,令这三个单项式的和为A .计算当x =12时,256(A +14)的值.27.如图,数轴上点A 表示的数为-2,点B 表示的数为8.点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,设运动时间为t 秒(0t >).(1)填空:①A 、B 两点间的距离AB =________,线段AB 的中点表示的数为________;②用含t 的代数式表示:t 秒后,点P 表示的数为________;点Q 表示的数为________; (2)求当t 为何值时,1||||2PQ AB =; (3)当点P 运动到点B 的右侧时,线段PA 的中点为M ,N 为线段PB 的三等分点且靠近于P 点,求3||||4PM BN -的值. 28.(1)请你在下列数轴中标出点:3A ,点: 2.5B -,点:|2|C --;(2)观察数轴,与点A 的距离为6的点表示的数是____________;(3)若将数轴折叠,使得点A 与4-表示的点重合,则点B 与数_________表示的点重合;(4)若数轴上M 、N 两点之间的距离为2015(M 在N 的左侧),且M 、N 两点经过③中折叠后互相重合,则M 、N 两点表示的数分别是什么?(5)问:| 2.5||1|x x ++-的最小值为________;符合条件的整数x 有哪些?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可. 【详解】 解:0a >,0b <,0a b +>,||||a b ∴>,如图,,a b b a ∴-<<-<.故选:A . 【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.2.D解析:D 【解析】 【分析】根据单项式系数、次数的定义逐一判断即可得答案. 【详解】 A.25mn -的系数是25-,次数是2,正确,故该选项不符合题意, B.数字0是单项式,正确,故该选项不符合题意, C.14ab 是二次单项式,正确,故该选项不符合题意, D.23xy π的系数是3π,次数是3,故该选项说法错误,符合题意, 故选:D . 【点睛】本题考查单项式系数、次数的定义,单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.熟练掌握定义是解题关键.3.D解析:D 【解析】 【分析】按照程序的流程,写出前几次循环的结果,并同时判断各个结果是否满足判断框中的条件,直到满足条件,执行输出y.【详解】解:由已知计算程序可得到代数式:2x2﹣4,当x=1时,2x2﹣4=2×12﹣4=﹣2<0,所以继续输入,即x=﹣2,则:2x2﹣4=2×(﹣2)2﹣4=4>0,即y=4,故选D.【点睛】本题考查解决程序框图中的循环结构时常采用写出前几次循环的结果,找规律.4.D解析:D【解析】【分析】根据题意可以用列举法把符合要求的方案写出来,从而得到问题的答案.【详解】解:∵数轴上有一个动点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,动点落在表示数3的点上,∴动点的不同运动方案为:方案一:0→-1→0→1→2→3;方案二:0→1→0→1→2→3;方案三:0→1→2→1→2→3;方案四:0→1→2→3→2→3;方案五:0→1→2→3→4→3;共计5种.故选:D.【点睛】本题考查数轴,解题的关键是可以根据题目中的信息,把符合要求的方案列举出来.5.B解析:B【解析】【分析】根据题目中的规律,即可求出第22行(a+b)21的展开式中第三项的系数.【详解】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n-2)+(n-1),∴第22行(a+b)21第三项系数为1+2+3+…+19+20=210;故选:B.【点睛】本题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.6.D解析:D【解析】【分析】第一次相遇时,甲、乙的速度和为xkm/h,由第一次到第二次相遇的过程中,甲,乙的路程和是第一次相遇时甲,乙路程和的两倍.可列方程,即可求解.【详解】解:设第一次相遇时,甲、乙的速度和为xkm/h,5小时36分钟=535(小时)由题意可得:2×2x=(535-2)(x+2),解得:x=18,∴A、B两地的距离=2×18=36(km),故选:D.【点睛】本题考查了一元一次方程的应用,理解题意,找到正确的等量关系是本题的关键.7.B解析:B【解析】【分析】根据钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:如图,上午八点半钟时,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午八点半钟的时候,时钟的时针和分针所夹的角度是2.5×30°=75°.故选:B.【点睛】本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.8.B解析:B【解析】【分析】先确定出a、b、c的取值范围,然后根据有理数的运算法则解答即可.【详解】解:观察数轴,可知:﹣2<a<﹣1,0<b<1,1<c<2,∴c>b>a,1b >1c,|a|>|b|,abc<0.故选:B.【点睛】本题考查了利用数轴比较有理数的大小,以及有理数的运算法则,熟练掌握有理数的运算法则是解答本题的关键.9.A解析:A【解析】【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【详解】多项式的第一项依次是x,x2,x3,x4,…,x n,第二项依次是y,-y3,y5,-y7,…,(-1)n+1y2n-1,所以第10个式子即当n=10时,代入到得到x n+(-1)n+1y2n-1=x10-y19.故选:A.【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.10.C解析:C【解析】【分析】此题首先利用同号两数相乘得正判定a,b同号,然后根据同号两数相加,符号取原来加数的符号.即可判定a,b的符号.【详解】解:∵ab>0,∴a,b同号,∵a+b <0, ∴a <0,b <0. 故选:C . 【点睛】此题比较简单,主要利用了有理数的加法法则和乘法法则解决问题.11.D解析:D 【解析】 【分析】从数轴上a b 的位置得出b <0<a ,|b|>|a|,推出-a <0,-a >b ,-b >0,-b >a ,根据以上结论即可得出答案. 【详解】从数轴上可以看出b <0<a ,|b|>|a |, ∴-a <0,-a >b ,-b >0,-b >a , 即b <-a <a <-b , 故选D . 【点睛】本题考查了数轴和有理数的大小比较,关键是能根据a 、b 的值得出结论-a <0,-a >b ,-b >0,-b >a ,题目比较好,是一道比较容易出错的题目.12.A解析:A 【解析】 【分析】先根据有理数的乘法法则推出:要使三个数的乘积为负,a ,b ,c 中应有奇数个负数,进而可将a ,b ,c 的符号分两种情况:1负2正或3负;再根据加法法则:要使三个数的和为0,a ,b ,c 的符号只能为1负2正,然后化简即得. 【详解】 ∵0abc <∴a ,b ,c 中应有奇数个负数∴a ,b ,c 的符号可以为:1负2正或3负 ∵0a b c ++=∴a ,b ,c 的符号为1负2正 令0a <,0b >,0c > ∴a a =-,b b =,c c = ∴a b ca b c++1111=-++= 故选:A . 【点睛】本题考查了绝对值的性质、乘法法则及加法法则,利用加法法则和乘法法则确定数的符号是解题关键.二、填空题13.-2【解析】【分析】将数轴向右对折后,则AC=A´B+BC,设点C表示的数为x,根据等量关系列方程解答即可.【详解】设点C表示的数为x,根据题意可得,,解得x=-2.【点睛】本题考查解析:-2【解析】【分析】将数轴向右对折后,则AC=A´B+BC,设点C表示的数为x,根据等量关系列方程解答即可.【详解】设点C表示的数为x,根据题意可得,--=+-,解得x=-2.x x(16)39【点睛】本题考查一元一次方程的应用,解题的关键是根据数轴表示的距离得到AC=A´B+BC. 14.5【解析】【分析】根据AC=8,BC=5得出BC的长,再由D是AB的中点,即可求出AD的长.【详解】∵AC=8,BC=5,∴AB= AC-BC=3,又∵D是AB的中点,∴AD=1.5,故答解析:5【解析】【分析】根据AC=8,BC=5得出BC的长,再由D是AB的中点,即可求出AD的长.【详解】∵AC=8,BC=5,∴AB= AC-BC=3,又∵D是AB的中点,∴AD=1.5,故答案为1.5.【点睛】此题主要考查了两点之间的距离以及线段中点的性质,根据已知得出AB,的长是解题关键.15.5【解析】【分析】根据题意得出2x2+3y的值,进而能得出3(2x2+3y)的值,就能求出代数式6x2+9y+2的值.【详解】由题意得:2x2+3y+7=8,可得:2x2+3y=1,3(解析:5【解析】【分析】根据题意得出2x2+3y的值,进而能得出3(2x2+3y)的值,就能求出代数式6x2+9y+2的值.【详解】由题意得:2x2+3y+7=8,可得:2x2+3y=1,3(2x2+3y)=3=6x2+9y,∴6x2+9y+2=5.故答案为5.【点睛】本题考查了代数式求值,整体法的运用是解题的关键.16.【解析】【分析】先根据点C是线段AB的中点,AB=8cm求出BC的长,再根据CD=BC﹣BD即可得出结论.【详解】解:∵点C是线段AB的中点,AB=8cm,∴BC=AB=×8=4cm,解析:【解析】【分析】先根据点C是线段AB的中点,AB=8cm求出BC的长,再根据CD=BC﹣BD即可得出结论.【详解】解:∵点C是线段AB的中点,AB=8cm,∴BC=12AB=12×8=4cm,∵BD=2cm,∴CD=BC﹣BD=4﹣2=2cm.故答案为2.【点睛】本题考查的是线段,比较简单,需要熟练掌握线段的基本性质.17.2﹣()2019【解析】【分析】根据题意和图形,可以写出前几次操作后h对应的值,从而可以发现变化特点,从而可以写出h2020的值.【详解】解:由题意可知,h1=2﹣1=1,h2=2﹣=解析:2﹣(12)2019【解析】【分析】根据题意和图形,可以写出前几次操作后h对应的值,从而可以发现变化特点,从而可以写出h2020的值.【详解】解:由题意可知,h1=2﹣1=1,h2=2﹣12=32,h3=2﹣(12)2,…,则h2020=2﹣(12)2019,故答案为:2﹣(12)2019.【点睛】此题主要考查图形的规律探索,解题的关键是根据题意先求出前几次变换的距离,再发现规律进行求解.18.140°【解析】【分析】首先根据余角的定义求出这个角的度数,再根据补角的定义得出结果.【详解】解:根据余角的定义,这个角的度数=90°﹣50°=40°,根据补角的定义,这个角的补角度数=解析:140°【解析】【分析】首先根据余角的定义求出这个角的度数,再根据补角的定义得出结果.【详解】解:根据余角的定义,这个角的度数=90°﹣50°=40°,根据补角的定义,这个角的补角度数=180°﹣40°=140°.故答案为:140°.【点睛】考核知识点:余角和补角.理解定义是关键.19.8【解析】【分析】根据同类项的定义即可求出答案.【详解】由题意可知:m=5,2n=6,∴m=5,n=3,∴m+n=8,故答案为:8【点睛】本题考查同类项,解题的关键是正确理解同类解析:8【解析】【分析】根据同类项的定义即可求出答案.【详解】由题意可知:m=5,2n=6,∴m=5,n=3,∴m+n=8,故答案为:8【点睛】本题考查同类项,解题的关键是正确理解同类项的定义,本题属于基础题型.20.-673【解析】【分析】直接利用已知得出|a|=2b,进而去绝对值求出答案.【详解】解:由题意可得:|a-b|=2019,|a|=2b,∵点A(表示整数a)在原点O的左侧,点B(表示整解析:-673【解析】【分析】直接利用已知得出|a|=2b,进而去绝对值求出答案.【详解】解:由题意可得:|a-b|=2019,|a|=2b,∵点A(表示整数a)在原点O的左侧,点B(表示整数b)在原点O的右侧,∴-a=2b,-a+b=2019,解得:b=673,a=-1346,故a+b=-673.故答案为:-673.【点睛】此题主要考查了数轴上的点以及代数式求值,正确得出a,b之间的关系是解题关键.21.50【解析】【分析】根据题目中的数据对数据进行改写,进而观察规律得出第个数为时的值. 【详解】解:∵,,,,,,,,,,,可以写为:,(,),(,,),(,,,),,∴根据规律可知所在的括解析:50【解析】【分析】根据题目中的数据对数据进行改写,进而观察规律得出第n个数为56时n的值.【详解】解:∵11,12,21,13,22,31,14,23,32,41,⋯,可以写为:11,(12,21),(13,22,31),(14,23,32,41),⋯,∴根据规律可知56所在的括号内应为(1234567891,,,,,,,,,109876543210),共计10个,56在括号内从左向右第5位, ∴第n 个数为56,则n =1+2+3+4+5+6+7+8+9+5=50. 故答案为:50.【点睛】 本题考查数字的变化规律,解答本题的关键是明确题意,发现题目中数字的变化规律.22..【解析】【分析】根据已知的式子中的数的特点得到分母是相差3的两个整数相乘,分子为3,结果等于分母中的两个数的倒数相减,由此得到答案.【详解】由,,,可知每个式子等 解析:3(32)(31)n n -+ 113231n n --+ 300301. 【解析】【分析】根据已知的式子中的数的特点得到分母是相差3的两个整数相乘,分子为3,结果等于分母中的两个数的倒数相减,由此得到答案.【详解】 由13111414a ==-⨯,23114747a ==-⨯,3311710710a ==-⨯,可知每个式子等于相差3的两个整数的乘积且第二个整数比序数的3倍大1,此时分子为3,等于相差3的两个整数的倒数的差, ∴311(32)(31)3231n a n n n n ==--+-+, ∴123100a a a a +++⋯+, =11111111114477101013298301-+-+-+-++-, =11301-, =300301, 故答案为:3(32)(31)n n -+, 113231n n --+,300301. 【点睛】此题考查数字的规律探究,根据所给的代数式观察得到规律,并能表示出该规律是解题的关键,由此进行其他的应用计算.三、解答题23.(1)甲超市;(2)300【解析】【分析】(1)根据超市的销售方式先用x 式表示在甲超市购物所付的费用和在乙超市购物所付的费用,然后将x=350代入确定到哪家超市购物优惠;(2)由(1)得到的购物所付的费用使其相等,求出x ,使两家超市购物所花实际钱数相同.【详解】解:(1)在甲超市购物所付的费用是:200+0.8(x-200)=(0.8x+40)元,在乙超市购物所付的费用是:100+0.9(x-100)=(0.9x+10)元;当x=350时,在甲超市购物所付的费用是:0.8×350+40=320元,在乙超市购物所付的费用是:0.9×350+10=325,所以到甲超市购物优惠;(2)根据题意由(1)得:0.8x+40=0.9x+10,解得:x=300,答:当x=300时,两家超市所花实际钱数相同.【点睛】此题考查的是一元一次方程的应用,关键是用代数式列出在甲、乙两超市购物所需的费用.24.22a b ab -+,52-【解析】【分析】先去括号,再合并同类项得到化简结果,再将a 和b 的值代入即可.【详解】解:原式22222635106a b a b ab a b ab =+--+ 22a b ab =-+, 把12,2a b =-=代入得: 22a b ab -+2211(2)(2)()22=--⨯+-⨯ 122=--52=-.【点睛】本题考查整式的化简求值,熟练运用去括号及合并同类项法则是解题的关键.25.(1)9;(2)a的值为10或-10;(3)见解析,c的值为6或60 7【解析】【分析】(1)依据|a-b|=15,a,b异号,即可得到a的值;(2)分点A在原点左、右两侧两种情况讨论,依据OA=2OB,即可得到a的值;(3)分点C在点B左、右两侧两种情况进行讨论,依据O为AC的中点,OB=3BC,设未知数列方程即可得到所有满足条件的c的值.【详解】解:(1)∵b=-6,|a-b|=15,∴|a+6|=15,∴a+6=15或-15,∴a=9或-21,∵点A和点B分别位于原点O两侧,b=-6,∴a>0,∴a=9,故答案为:9;(2)当A在原点左侧时,点A表示的数为a,又|a-b|=15,即A,B两点间的距离为15,则可知B点对应的数为a+15,如图,由OA=2OB得,2(a+15-0)=0-a,解得a=-10;当A在原点右侧时,可知B点对应的数为a-15,如图,由OA=2OB得,2[0-(a-15)]=a-0,解得,a=10.综上所得:a=10或-10;(3)满足条件的C有两种情况:①当点C在点B左侧时,如图,设BC=x,由O为AC的中点,OB=3BC,则OC=OA=2x,∴AB=x+2x+2x=15,解得x=3,∴OC=2x=6,故c=6;②当点C在点B右侧时,如图,设BC=x,由O为AC的中点,OB=3BC,则OB=3x,OA=OC=4x,∴AB=3x+4x=15,解得x=157,∴OC=4x=607,则c=60 7,综上所述,c的值为6或607.【点睛】此题考查了线段长度的计算,一元一次方程的应用和数轴上两点间距离的计算,用到的知识点是线段的中点,关键是根据线段的和差关系求出线段的长度.26.(1)27x8;22020x2020;(2)(﹣1)n﹣1(2n﹣1+1)x n;(3)641 2【解析】【分析】(1)观察所给的第①与②行的式子可得它们的特点,第①行中第n个数是2n﹣1x n,第②行中第n个数是(﹣2)n x n;(2)观察第③行式子的特点,可得第n个数是(﹣1)n﹣1(2n﹣1+1)x n,即可求出解;(3)先求出A=28x9+(﹣2)9x9+(28+1)x9,再将x=12代入求出A,最后再求256(A+14)即可.【详解】解:(1)根据第①行式子的特点可得,第n个数是2n﹣1x n,∴第8个单项式是27x8;根据第②行式子的特点可得,第n个数是(﹣2)n x n,∴第2020个单项式是22020x2020;故答案为:27x8;22020x2020;(2)根据第③行式子的特点可得,第n个数是(﹣1)n﹣1(2n﹣1+1)x n,故答案为:(﹣1)n﹣1(2n﹣1+1)x n;(3)第①行的第9个单项式是28x9,第②行的第9个单项式是(﹣2)9x9,第③行的第9个单项式是(28+1)x9,∴A=28x9+(﹣2)9x9+(28+1)x9,当x=12时,A=28×(12)9+(﹣2)9×(12)9+(28+1)×(12)9=12﹣1+12+(12)9=(12)9,∴256(A+14)=256×[(12)9+14]=6412.【点睛】本题考查数字的变化规律,能够通过所给例子,找到式子的规律,列出每行第n个式子的代数式是解题的关键.27.(1)①10;3;②点P表示的数为-2+3t,点Q表示的数为8-2t;(2)1或3;(3)5【解析】【分析】(1)①根据点A表示的数为-2,点B表示的数为8,即可得到A、B两点间的距离以及线段AB的中点表示的数;②依据点P,Q的运动速度以及方向,即可得到结论;(2)由t秒后,点P表示的数-2+3t,点Q表示的数为8-2t,于是得到|PQ|=|(-2+3t)-(8-2t)|=|5t-10|,列方程即可得到结论;(3)依据PA的中点为M,N为PB的三等分点且靠近于P点,运用线段的和差关系进行计算,即可得到3||||4PM BN-的值.【详解】解:(1)①AB=8-(-2)=10,-2+12×10=3,故答案为:10,3;②由题可得,点P表示的数为-2+3t,点Q表示的数为8-2t;故答案为:-2+3t,8-2t;(2)∵t秒后,点P表示的数-2+3t,点Q表示的数为8-2t,∴|PQ|=|(-2+3t)-(8-2t)|=|5t-10|,又1||||2PQ AB==12×10=5,∴|5t-10|=5,解得:t=1或3,∴当t=1或3时,1||||2PQ AB=;(3)∵PA的中点为M,N为PB的三等分点且靠近于P点,∴|MP|=12|AP|=12×3t=32t,|BN|=23|BP|=23(|AP|-|AB|)=23×(3t-10)=2t-203,∴3||||4PM BN -=32t-34(2t-203)=5. 【点睛】 本题考查了实数和数轴以及一元一次方程的应用,解题的关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程求解.28.(1)见详解;(2)9和3-;(3)1.5;(4)M 、N 两点表示的数分别是1008-和1007;(5)3.5;符合条件的整数x 为:2-,1-,0,1.【解析】【分析】(1)在数轴上找出相应的数即可.(2)根据A 点的位置将A 点向左或向右平移6个单位即得;(3)根据点A 与4-表示的点重合确定点A 与4-表示的点的中间点表示的数,再确定中间点到B 点的距离,最后在中间点的另一侧取与到B 点距离相等的点表示的数即得. (4)由(3)中的中间点,根据M 、N 两点之间的距离为2015(M 在N 的左侧)可知点M 和点N 距离中间点的距离为20152且分别位于中间点的左右两侧即得. (5)先化简绝对值确定最小值时x 的取值范围,再根据范围确定符合条件的整数即可. 【详解】(1)∵:3A , 2.5B =-,:22C --=-∴如图所示:(2)∵点A 表示的数为3且3+6=9,363-=-∴与点A 的距离为6的点表示的数是9和3-故答案为:9和3-.(3)∵点A 与4-所在的点的中间点表示的数为:()340.52+-=-,点B 与中间点的距离为()0.5 2.52---=∴折叠后与点B 重合的点表示的数为:0.52 1.5-+=故答案为:1.5.(4)由(3)得:M 点与N 点的中间点所表示的数为-0.5∵数轴上M 、N 两点之间的距离为2015(M 在N 的左侧)∴点M 和点N 距离中间点的距离为20152 ∴点M 表示的数为:20150.510082--=-;点N 表示的数为:20150.5+10072-= ∴M 、N 两点表示的数分别是1008-和1007.(5)当 2.5x <-时| 2.5||1| 2.512 1.5 3.5x x x x x ++-=---+=-->当 2.51x -≤≤时| 2.5||1| 2.51 3.5x x x x ++-=+-+=当1x >时| 2.5||1|+2.5+12 1.5 3.5x x x x x ++-=-=+>∴当 2.51x -≤≤时,| 2.5||1|x x ++-有最小值为3.5;故答案为:3.5.∴符合条件的整数x 为:2-,1-,0,1【点睛】本题考查绝对值的几何意义及绝对值化简,解题关键是熟知:绝对值表示一个数到原点的距离,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.。

(完整版)北师大版七年级数学上册期末试卷及答案

(完整版)北师大版七年级数学上册期末试卷及答案

(完整版)北师大版七年级数学上册期末试卷及答案一、选择题1.方程114xx --=-去分母正确的是( ). A .x-1-x=-1B .4x-1-x=-4C .4x-1+x=-4D .4x-1+x=-12.将1,2,3,...,30,这30个整数,任意分为15组,每组2个数.现将每组数中的一个数记为x ,另一个数记为y ,计算代数式()1||||2x y x y -++的值,15组数代入后可得到15个值,则这15个值之和的最小值为( )A .2252B .120C .225D .2403.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是( )A .中B .国C .梦D .强4.小颖随机抽查他家6月份某5天的日用电量(单位:度),结果如下:9,11,7,10,8.根据这些数据,估计他家6月份日用电量为( ) A .6度B .7度C .8度D .9度5.若数a ,b 在数轴上的位置如图示,则( )A .a +b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >0 6.已知232-m a b 和45n a b 是同类项,则m n -的值是( )A .-2B .1C .0D .-17.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5 B .6 C .7 D .8 8.已知一个角的补角比它的余角的3倍小20度,则这个角的度数是( ) A .30B .35︒C .40D .459.下列方程为一元一次方程的是( ) A .x+2y =3B .y+3=0C .x 2﹣2x =0D .1y+y =0 10.如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A.36°B.54°C.64°D.72°11.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“我”相对面上所写的汉字是()A.美B.丽C.琼D.海12.将正整数1至2018按一定规律排列如表,平移表中带阴影的方框,则方框中的三个数的和可以是()A.2019B.2018C.2016D.2013二、填空题13.若式子2x2+3y+7的值为8,那么式子6x2+9y+2的值为_________.14.图1是一个轴对称图形,且每个角都是直角,长度如图所示,按图2所示方法拼图,两两相扣,相互间不留空隙,那么用99个这样的图形(图1)拼出来的图形的总长度是____(结果用含a,b的代数式表示) .15.已知:﹣a=2,|b|=6,且a>b,则a+b=_____.16.若一个角的补角加上10º后等于这个角的4倍,则这个角的度数为____.17.如图是某景点6月份内1~10日每天的最高温度折线统计图,由图信息可知该景点这10天,气温26C出现的频率是__________.18.已知方程2x ﹣a =8的解是x =2,则a =_____.19.我们知道,分数可以转化为有限小数或无限循环小数,无限循环小数也可以转化为分数.例如:将0.3转化为分数时,可设0.3x =,则x 10x 3-=,解得13x =.仿照这样的方法,将0.16化成分数是________.20.当x =1时,ax +b +1=﹣3,则(a +b ﹣1)(1﹣a ﹣b )的值为_____.21.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由5个圆组成,第3个图由11个圆组成,…按照这样的规律排列下去,则第20个图形由_____个圆组成.22.当n 取正整数时,(1+x )n 的展开式中每一项的系数可以表示成如下形式:(1)观察上面数表的规律,若(1+x )6=1+6x +15x 2+ax 3+15x 4+6x 5+x 6,则a =_____; (2)(1+x )7的展开式中每一项的系数和为_____.三、解答题23.发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中100名学生的成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表. 成绩x /分 频数 百分比 5060x ≤< 5 5% 6070x ≤<15 15%7080x ≤< 20n8090x ≤<m35%90100x ≤≤ 25 25%请根据所给信息,解答下列问题:(1)m =______,n =______,并补全频数分布直方图;(2)若成绩在90分以上(包括90分)的为“优”等,则该校参与这次比赛的800名学生中成绩“优”等的约有多少人? 24.计算: (1)11124834⎛⎫-⨯-+⎪⎝⎭(2)()()()322132633-+⨯---÷⨯-25.同学们,今天我们来学习一个新知识,形如a b cd的式子叫做二阶行列式,它的运算法则用公式表示为:a bc ad bc d=-,利用此法则解决以下问题:(1)仿照上面的解释,计算出23-14的结果;(2)依此法则化简23-32ab a b a b ab-+--的结果;(3)如果51x +34x=,那么x 的值为多少?26.如图,数轴上点A 表示的数为-2,点B 表示的数为8.点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,设运动时间为t 秒(0t >).(1)填空:①A 、B 两点间的距离AB =________,线段AB 的中点表示的数为________;②用含t 的代数式表示:t 秒后,点P 表示的数为________;点Q 表示的数为________; (2)求当t 为何值时,1||||2PQ AB =; (3)当点P 运动到点B 的右侧时,线段PA 的中点为M ,N 为线段PB 的三等分点且靠近于P 点,求3||||4PM BN -的值. 27.如图,直线l 有上三点M ,O ,N ,MO =3,ON =1;点P 为直线l 上任意一点,如图画数轴.(1)当以点O 为数轴的原点时,点P 表示的数为x ,且点P 到点M 、点N 的距离相等,那么x 的值是________;(2)当以点M 为数轴的原点时,点P 表示的数为y ,当y = 时,使点P 到点M 、点N 的距离之和是5;(3)若以点O 为数轴的原点,点P 以每秒2个单位长度的速度从点O 向左运动时,点E 从点M 以每秒1个单位长度速度向左运动,点F 从点N 每秒3个单位长度的向左运动,且三点同时出发,求运动几秒时点P 、点E 、点F 表示的数之和为-20. 28.阅读理解:一般地,在数轴上点A ,B 表示的实数分别为a ,b (a b <),则A ,B 两点的距离B A AB x x b a =-=-.如图,在数轴上点A ,B 表示的实数分别为-3,4,则记3A x =-,4B x =,因为34-<,显然A ,B 两点的距离4(3)7B A AB x x =-=--=.若点C 为线段AB 的中点,则AC CB =,所以C A B C x x x x -=-,即2A BC x x x +=. 解决问题:(1)直接写出线段AB 的中点C 表示的实数C x = ;(2)在点B 右侧的数轴上有点P ,且9AP BP +=,求点P 表示的实数P x ; (3)在(2)的条件下,点M 是AP 的中点,点N 是BP 的中点,若A ,B 两点同时沿数轴向正方向运动,A 点的速度是B 点速度的2倍,AP 的中点M 和BP 的中点N 也随之运动,3秒后,2MN =,则点B 的速度为每秒 个单位长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】1144(1)4414xx x x x x --=---=--+=-方程左右两边各项都要乘以4,故选C2.D解析:D 【解析】 【分析】先分别讨论x 和y 的大小关系,分别得出代数式的值,进而得出规律,然后以此规律可得出符合题意的组合,求解即可. 【详解】①若x>y ,则代数式中绝对值符号可直接去掉, ∴代数式等于x ,②若y >x 则绝对值内符号相反, ∴代数式等于y ,由此可知,原式等于一组中较大的那个数,当相邻2个数为一组时,这样求出的和最小= 2+4+6+…+30=240. 故选:D . 【点睛】本题考查了绝对值、有理数的加减混合运算,通过假设,把所给代数式化简,然后把满足条件的字母的值代入计算.3.B解析:B 【解析】 【分析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解. 【详解】解:由图1可得,“中”和第三行的“国”相对;第二行“国”和“强”相对;“梦”和“梦”相对;由图2可得,此时小正方体朝下面的字即为“中”的相对面对应的字,即为“国”. 故选:B . 【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.D解析:D 【解析】 【分析】先求出所抽查的这5天的平均用电量,从而估计他家6月份日用电量为. 【详解】解:∵这5天的日用电量的平均数为91171085++++=9(度),∴估计他家6月份日用电量为9度, 故选:D . 【点睛】本题考查平均数的定义和用样本去估计总体.平均数等于所有数据的和除以数据的个数.5.D解析:D 【解析】 【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案. 【详解】由数轴可知:a <0<b ,a<-1,0<b<1, 所以,A.a+b<0,故原选项错误; B. ab <0,故原选项错误; C.a-b<0,故原选项错误; D. 0a b -->,正确. 故选D . 【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.6.D解析:D 【解析】 【分析】根据同类项的字母相同且相同字母的指数也相同,可得关于m 、n 的方程,根据方程的解可得答案. 【详解】∵232-m a b 和45n a b 是同类项 ∴2m=4,n=3 ∴m=2,n=3 ∴=231m n --=-故选D.【点睛】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.7.B解析:B【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵-2a m b2与12a5b n+1是同类项,∴m=5,n+1=2,解得:m=1,∴m+n=6.故选B.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.8.B解析:B【解析】【分析】列方程解决问题,本题等量关系是3×余角-补角=20°,设这个角的度数为x°,则补角的度数为(180-x)°,余角的度数为(90-x)°,代入等量关系即可求解.【详解】设:这个角的度数是x,则补角的度数为180-x,余角的度数为90-x,由题意得:()()39018020x x---=解得35x=故选B.【点睛】本题考察了列方程解应用题,解题过程中要注意解应用题的步骤,正确找到等量关系是本题的关键.9.B解析:B【解析】【分析】根据一元一次方程的定义即可求出答案.【详解】解:只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程,A. x+2y =3,两个未知数;B. y+3=0,符合;C. x 2﹣2x =0,指数是2;D. 1y+y =0,不是整式方程. 故选:B . 【点睛】考核知识点:一元一次方程.理解定义是关键.10.B解析:B 【解析】∵OC ⊥OD ,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B .11.B解析:B 【解析】 【分析】利用正方体及其表面展开图的特点解题即可. 【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“爱”与面“琼”相对,面“海”与面“美”相对,面“我”与面“丽”相对; 故选:B . 【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手、分析及解答问题.12.D解析:D 【解析】 【分析】设中间数为x ,则另外两个数分别为11x x -+、,进而可得出三个数之和为3x ,令其分别等于四个选项中数,解之即可得出x 的值,由x 为整数、x 不能为第一列及第八列数,即可确定x 值,此题得解. 【详解】解:设中间数为x ,则另外两个数分别为11x x -+、, ∴三个数之和为()()113x x x x -+++=. 当32019x =时, 解得:673x =,∵673=84×8+1,∴2019不合题意,故A不合题意;当32018x=时,解得:26723x=,故B不合题意;当32016x=时,解得:672x=,∵672=84×8,∴2016不合题意,故C不合题意;当32013x=时,解得:671x=,∵671=83×8+7,∴三个数之和为2013,故D符合题意.故选:D.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.二、填空题13.5【解析】【分析】根据题意得出2x2+3y的值,进而能得出3(2x2+3y)的值,就能求出代数式6x2+9y+2的值.【详解】由题意得:2x2+3y+7=8,可得:2x2+3y=1,3(解析:5【解析】【分析】根据题意得出2x2+3y的值,进而能得出3(2x2+3y)的值,就能求出代数式6x2+9y+2的值.【详解】由题意得:2x2+3y+7=8,可得:2x2+3y=1,3(2x2+3y)=3=6x2+9y,∴6x2+9y+2=5.故答案为5.【点睛】本题考查了代数式求值,整体法的运用是解题的关键.14.a+98b【解析】【分析】根据题意用99个这样的图形(图1)的总长减去拼接时的重叠部分98个(a-b),即可得到拼出来的图形的总长度.【详解】解:由图可得,2个这样的图形(图1)拼出来的图解析:a+98b【解析】【分析】根据题意用99个这样的图形(图1)的总长减去拼接时的重叠部分98个(a-b),即可得到拼出来的图形的总长度.【详解】解:由图可得,2个这样的图形(图1)拼出来的图形中,重叠部分的长度为a-b,∴用99个这样的图形(图1)拼出来的图形的总长度=99a-98(a-b)= a+98b.故答案为:a+98b.【点睛】本题主要考查利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.15.-8.【解析】【分析】根据相反数的定义,绝对值的性质,可得a、b的值,根据有理数的加法,可得答案.【详解】∵﹣a=2,|b|=6,且a>b,∴a=﹣2,b=-6,∴a+b=﹣2+(-6解析:-8.【解析】【分析】根据相反数的定义,绝对值的性质,可得a、b的值,根据有理数的加法,可得答案.【详解】∵﹣a=2,|b|=6,且a>b,∴a=﹣2,b=-6,∴a+b=﹣2+(-6)=-8,故答案为:-8.【点睛】本题考查了相反数的定义,绝对值的性质,有理数的加法运算法则,注意一个正数的绝对值有2个数.16.38º【解析】【分析】先设这个角为x,然后根据补角的定义和已知的等量关系列出方程解答即可.【详解】解:设这个角为x,由题意得:180°-x+10°=4x,解得x=38°故答案为38°.解析:38º【解析】【分析】先设这个角为x,然后根据补角的定义和已知的等量关系列出方程解答即可.【详解】解:设这个角为x,由题意得:180°-x+10°=4x,解得x=38°故答案为38°.【点睛】本题考查了补角的定义和一元一次方程,根据题意列出一元一次方程是解答本题的关键.17.3【解析】【分析】用气温26℃出现的天数除以总天数10即可得.【详解】由折线统计图知,气温26℃出现的天数为3天,∴气温26℃出现的频率是3÷10=0.3,故答案为:0.3.【点睛】解析:3【解析】【分析】用气温26℃出现的天数除以总天数10即可得.【详解】由折线统计图知,气温26℃出现的天数为3天,∴气温26℃出现的频率是3÷10=0.3,故答案为:0.3.【点睛】本题主要考查了频数(率)分布折线图,解题的关键是掌握频率的概念,根据折线图得出解题所需的数据.18.-4【解析】【分析】把x=2代入方程计算即可求出a的值.【详解】解:把x=2代入方程得:4﹣a=8,解得:a=﹣4.故答案为:﹣4.【点睛】本题考查了一元一次方程的解,方程的解即为解析:-4【解析】【分析】把x=2代入方程计算即可求出a的值.【详解】解:把x=2代入方程得:4﹣a=8,解得:a=﹣4.故答案为:﹣4.【点睛】本题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.19.【解析】【分析】根据无限循环小数都可以转化为分数的方法,先设=x①,得到=100x②,由②-①得16=99x,进而解得x=,即可得到=.【详解】解:设=x①,则=100x②,,②-①得1解析:16 99【解析】【分析】根据无限循环小数都可以转化为分数的方法,先设0.16=x①,得到16.16=100x②,由②-①得16=99x,进而解得x=1699,即可得到0.16=1699.【详解】解:设0.16=x①,则16.16=100x②,,②-①得16=99x,解得x=16 99,即0.16=16 99,故答案为:16 99.【点睛】本题主要考查了解一元一次方程的应用,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.20.-25.【解析】【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a解析:-25.【解析】【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a+b+1=﹣3,∴a+b=﹣4,∴(a+b﹣1)(1﹣a﹣b)=(a+b﹣1)[1﹣(a+b)]=(﹣4﹣1)×(1+4)=﹣25.故答案为:﹣25.【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.21.【解析】【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】解:根据图形的变化,发现第n个图形的最上边的一排是1个圆,第二排是2个圆,第三排是3个圆,…,第n排是n个圆;则第n个解析:【解析】【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】解:根据图形的变化,发现第n个图形的最上边的一排是1个圆,第二排是2个圆,第三排是3个圆,…,第n排是n个圆;则第n个图形的圆的个数是:2(1+2+…n﹣1)+(2n﹣1)=n2+n﹣1.当n=20时,202+20﹣1=419,故答案为:419.【点睛】本题考查图形的变化类问题,重点考查了学生通过观察、归纳、抽象出数列的规律的能力,难度不大.22.27【解析】【分析】(1)根据表中的规律,从而可以解答本题;(2)根据数学归纳法,写出前几项总结规律,从而可以解答本题.【详解】解:(1)由题意可得,(1+x)6=1+6x+1解析:27【解析】【分析】(1)根据表中的规律,从而可以解答本题;(2)根据数学归纳法,写出前几项总结规律,从而可以解答本题.【详解】解:(1)由题意可得,(1+x)6=1+6x+15x2+ax3+15x4+6x5+x6,则a=20;(2)∵当n=1时,多项式(1+x)1展开式的各项系数之和为:1+1=2=21,当n=2时,多项式(1+x)2展开式的各项系数之和为:1+2+1=4=22,当n=3时,多项式(1+x)3展开式的各项系数之和为:1+3+3+1=8=23,当n=4时,多项式(1+x)4展开式的各项系数之和为:1+4+6+4+1=16=24,…∴多项式(1+x)7展开式的各项系数之和=27.故答案为:20,27.【点睛】本题考查整式的运算,数字的变化规律,解题的关键是明确题意,利用数学归纳法解答本题.三、解答题23.(1)35,20%,补全图见解析;(2)200(人)【解析】【分析】(1)根据第4组的频率是35%,求得m的值,根据第3组频数是20,求得n的值,然后补全频数直方图即可;(2)利用总数800乘以“优”等学生的所占的频率即可得出该校参加这次比赛的800名学生中成绩“优”等的人数.【详解】解:(1)由题可得,m=100×35%=35;n=20÷100=20%,补全频数直方图如下:故答案为:35,20%;(2)该校参加这次比赛的800名学生中成绩“优”等约有:800×25%=200(人).【点睛】本题考查频数(率)分布表,用样本估计总体,频数直方图.利用统计表获取信息时,必须认真观察、分析、研究统计表,才能作出正确的判断和解决问题.-;(2)7-24.(1)1【解析】【分析】(1)根据乘法分配律可以算得答案;(2)根据有理数的混合运算法则计算.【详解】解:(1)原式=()()1112424243861834⎛⎫-⨯+-⨯-+-⨯=-+-=- ⎪⎝⎭; (2)原式=()()138********-+⨯---⨯=--+=-.【点睛】本题考查有理数的运算,熟练掌握有理数的混合运算顺序、运算法则及运算律是解题关键.25.(1)11(2)5a −b −ab(3)72【解析】【分析】 (1)利用已知的新定义计算即可;(2)利用已知的新定义化简即可;(3)已知等式利用已知的新定义化简计算即可求出x 的值.【详解】(1)23- 14=2×4−1×(-3) =8+3=11(2)23- 32ab a b a b ab -+--=-2×(2a −b −ab )−3×(ab −3a+b )=-4a+2b+2ab −3ab+9a −3b=5a −b −ab(3)51x + 34x =∴5x-3(x+1)=4∴5x −3x −3=4∴2x=7∴x=72【点睛】此题考查了解一元一次方程,以及有理数的混合运算,理解题中的新定义是解题的关键.26.(1)①10;3;②点P表示的数为-2+3t,点Q表示的数为8-2t;(2)1或3;(3)5【解析】【分析】(1)①根据点A表示的数为-2,点B表示的数为8,即可得到A、B两点间的距离以及线段AB的中点表示的数;②依据点P,Q的运动速度以及方向,即可得到结论;(2)由t秒后,点P表示的数-2+3t,点Q表示的数为8-2t,于是得到|PQ|=|(-2+3t)-(8-2t)|=|5t-10|,列方程即可得到结论;(3)依据PA的中点为M,N为PB的三等分点且靠近于P点,运用线段的和差关系进行计算,即可得到3||||4PM BN-的值.【详解】解:(1)①AB=8-(-2)=10,-2+12×10=3,故答案为:10,3;②由题可得,点P表示的数为-2+3t,点Q表示的数为8-2t;故答案为:-2+3t,8-2t;(2)∵t秒后,点P表示的数-2+3t,点Q表示的数为8-2t,∴|PQ|=|(-2+3t)-(8-2t)|=|5t-10|,又1||||2PQ AB==12×10=5,∴|5t-10|=5,解得:t=1或3,∴当t=1或3时,1||||2PQ AB=;(3)∵PA的中点为M,N为PB的三等分点且靠近于P点,∴|MP|=12|AP|=12×3t=32t,|BN|=23|BP|=23(|AP|-|AB|)=23×(3t-10)=2t-203,∴3||||4PM BN-=32t-34(2t-203)=5.【点睛】本题考查了实数和数轴以及一元一次方程的应用,解题的关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程求解.27.(1)-1;(2)-0.5或4.5;(3)t=3【解析】【分析】(1)根据已知条件先确定点M表示的数为3-,点N代表的数为1,进而利用数轴上两点之间的距离公式、以及点P 到点M 、点N 的距离相等列出关于x 的方程,解含绝对值的方程即可得解.(2)根据已知条件先确定点N 表示的数为3-,进而利用数轴上两点之间的距离公式、以及点P 到点M 、点N 的距离之和等于5列出关于y 的方程,解含绝对值的方程即可得解.(3)设运动时间为t 秒,根据已知条件找到等量关系式,列出含t 方程即可求解.【详解】(1)∵点O 为数轴的原点,3OM =,1ON =∴ 点M 表示的数为3-,点N 代表的数为1∵点P 表示的数为x ,且点P 到点M 、点N 的距离相等∴()31x x --=-∴1x =-故答案是:1-(2)∵点M 为数轴的原点,3OM =,1ON =∴ 点N 代表的数为4∵点P 表示的数为y ∴PM y =,4PN y =-∵点P 到点M 、点N 的距离之和是5 ∴45y y +-=∴0.5y =-或 4.5y =故答案是:0.5-或4.5(3)设运动时间为t 秒P 点表示的数为2t -,E 点表示的数为3t --,F 点表示的数为13t -()()231320t t t -+--+-=-618t -=-3t =答:求运动3秒时点P 、点E 、点F 表示的数之和为20-.【点睛】本题考查了数轴上的两点之间的距离、绝对值方程以及动点问题,难度稍大,需认真审题、准确计算方可正确求解.28.(1)12;(2)5P x =;(3)1或113. 【解析】【分析】(1)按照题目给的公式求解即可;(2)按照阅读理解写出用x P 表示AP 、BP 的式子,列方程求解即可;(3)设点B 的速度为每秒b 个单位长度,则A 的速度为每秒2b 个单位长度.因为A 、B同时向右运动,故其表示的数加上速度时间的积即为新点表示的数.由于A的速度比B 快,有可能3秒后A到了B的右侧,MN的算法有改变,故需要分类讨论.【详解】解:(1)根据题意可得,341222A BCx xx+-+===.故答案为:12;(2)依题意得,x A<x B<x P,∴AP=x P-x A=x P+3,BP=x P-x B=x P-4,∵AP+BP=9,∴x P+3+x P-4=9.解得:x P=5.即点P表示的实数x P为5;(3)∵点M是AP的中点,点N是BP的中点∴x M=3522A Px x+-+==1,x N=459222B Px x++==.设B的运动速度为每秒b个单位长度,则A的运动速度为每秒2b个单位长度,3秒后,∴x B=4+3b,x A=-3+6b,∴x M=36522A Px x b+-++==1+3b,x N=43593222B Px x b b++++==,∵MN=|x N-x M|=2,①当点M在点N的左侧时,932b+−(1+3b)=2,解得:b=1;②当点M在点N的右侧时,(1+3b)-932b+=2,解得:b=113.∴点B的运动速度为每秒1个单位长度或每秒113个单位长度.故答案为:1或11 3.【点睛】本题考查了实数与数轴的一一对应关系,并按阅读信息理解运用两点间距离,中点坐标公式.要注意由于点运动速度不同导致位置不同引起的分类讨论.。

北师大版七年级上册数学期末考试试卷及答案

北师大版七年级上册数学期末考试试卷及答案

北师大版七年级上册数学期末考试试题一、单选题1.-2的倒数是()A .-2B .12-C .12D .22.下列调查中适合采用普查方式的是()A .了解一大批炮弹的杀伤半径B .调查全国初中学生的上网情况C .旅客登机前的安检D .了解成都市中小学生环保意识3.用一个平面去截下列的几何体,可以得到长方形截面的几何体有()A .1个B .2个C .3个D .4个4.如图所示,由A 到B 有①、②、③三条路线,最短的路线选①的理由是()A .两点确定一条直线B .两点间距离的定义C .两点之间,线段最短D .因为它直5.数据42600用科学记数法表示为()A .4.26×103B .4.26×104C .42.6×103D .0.426×1056.解一元一次方程11(1)123x x +=-时,去分母正确的是()A .3(1)12x x+=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-7.如图,已知点D 在点O 的北偏西30°方向,点E 在点O 的北偏东50︒方向,那么DOE ∠的度数为()A .30°B .50︒C .80︒D .100︒8.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x 辆汽车到甲队,由此可列方程为()A .100﹣x =2(68+x)B .2(100﹣x)=68+xC .100+x =2(68﹣x)D .2(100+x)=68﹣x 9.某校七年级开展“阳光体育”活动,对爱好排球、足球、篮球、羽毛球的学生人数进行统计,得到如图所示的扇形统计图.爱好排球的人数是21人,爱好足球的人数是爱好羽毛球的人数的4倍,则下列正确的是()A .喜欢篮球的人数为16人B .喜欢足球的人数为28人C .喜欢羽毛球的人数为10人D .被调查的学生人数为80人10.如图所示,直线,AB CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为1,2,3,4,5,6---….那么标记为“2021”的点在()A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上11.如图,把一张长方形纸片沿对角线BD 折叠,25CBD ∠=︒,则ABF ∠的度数是()A .25︒B .30°C .40︒D .50︒12.如图所示的运算程序中,如果开始输入的x 值为48-,我们发现第1次输出的结果为24-,第2次输出的结果为12-,…,第2021次输出的结果为()A .6-B .3-C .24-D .12-二、填空题13.如图所示在数轴上的点A 对应的数为a ,B 对应的数为b ,则a ,b 与0的大小关系为_____<0<_____.14.方程260x +=的解是______.15.如图,D 是AC 的中点,CB =4cm ,DB =7cm ,则AB 的长为___________cm .16.某地制作一年来每个月平均气温变化统计图,请你帮忙选择最恰当的统计图是_________.(从条形统计图、折线统计图、扇形统计图中选一个)17.已知A =2x 2+x+1,B =mx+1,若关于x 的多项式A+B 不含一次项,则常数m =_____.18.如图,是一个正方体的六个面的展开图形,则“力”所对的面是_____.19.如果代数式x+2y 的值是3,则代数式2x+4y+5的值是___________.三、解答题20.计算:(1)()211713-+--(2)214(3)()()39⎡⎤-⨯-+-⎢⎥⎣⎦.21.如图所示,已知线段AB ,点P 是线段AB 外一点.按要求画图,保留作图痕迹;(1)作射线PA ,作直线PB ;(2)延长线段AB 至点C ,使得AC=2AB .22.化简并求值:2(2a -3b)-(3a+2b+1),其中a=2,b=12-.23.解方程:(1)6234y y +=-(2)151136x x +--=24.如图,∠AOC 和∠BOD 都是直角.(1)如果∠DOC =35°,则∠AOB =;(2)找出图中一组相等的锐角为:;(3)选择,若∠DOC 变小,∠AOB 将变;(A .大B .小C .不变)25.某商店购进A 、B 两种商品共100件,花费3100元,其进价和售价如表:(元/件)售价(元/件)进价A2530B3545(1)B两种商品分别购进多少件?(2)两种商品售完后共获取利润多少元?26.如图,已知在数轴上有三个点A、B、C,O是原点,满足OA=AB=BC=20cm,动点P从点O出发向右以每秒2cm的速度匀速运动;同时,动点Q从点C出发,在数轴上向左匀速运动,速度为v(v>1);运动时间为t.(1)求:点P从点O运动到点C时,运动时间t的值.(2)若Q的速度v为每秒3cm,则经过多长时间P,Q两点相距30cm?此时|QB﹣QC|是多少?27.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)m=_____,E组对应的圆心角度数为______︒;(2)补全频数分布直方图;参考答案1.B 【分析】根据倒数的定义(两个非零数相乘积为1,则说它们互为倒数,其中一个数是另一个数的倒数)求解.【详解】解:-2的倒数是-12,故选:B .【点睛】本题难度较低,主要考查学生对倒数等知识点的掌握.2.C 【分析】根据全面调查与抽样调查的特点对四个选项进行判断.【详解】解:A 、具有破坏性,必须抽查,故选项错误;B 、人数多,不容易调查,适合抽查,故选项错误;C 、事关重大,是精确度要求高的调查,需全面调查,故本选项正确;D 、人数多,不容易调查,适合抽查,故选项错误;故选C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.B 【分析】根据球、圆柱、圆锥、三棱柱的形状判断即可,可用排除法.【详解】解:球、圆锥不可能得到长方形截面,故能得到长方形截面的几何体有:圆柱、三棱柱,一共有2个.故选:B .【点睛】本题考查几何体的截面,关键要理解面与面相交得到线,注意:截面的形状既与被截的几何体有关,还与截面的角度和方向有关.4.C 【分析】根据基本事实:两点之间,线段最短,直接作答即可.【详解】解:由A 到B 有①、②、③三条路线,最短的路线选①的理由是:两点之间,线段最短.故选C【点睛】本题考查的是两点之间,线段最短的实际应用,掌握“几何基本事实或图形的性质在生活中的应用”是解本题的关键.5.B 【分析】用科学记数法表示较大的数时,一般形式为10n a⨯,其中11|0|a ≤<,n 为整数.【详解】解:44.264260010=⨯.故选B .6.D 【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x+1)=6﹣2x ,故选:D .【点睛】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质.7.C 【分析】利用方向角的定义求解即可.【详解】解:∵D 在点O 的北偏西30°方向,点E 在点O 的北偏东50°方向,∴∠DOE=30°+50°=80°,故选:C .【点睛】本题主要考查了方向角,解题的关键是理解方向角的定义:方向角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.8.C 【分析】由题意得到题中存在的等量关系为:2(乙队原来的车辆-调出的车辆)=甲队原来的车辆+调入的车辆,根据此等式列方程即可.【详解】设需要从乙队调x 辆汽车到甲队,由题意得100+x =2(68﹣x),故选C .【点睛】本题考查了由实际问题抽象出一元一次方程,表示出抽调后两车队的汽车辆数是解题的关键.9.B 【分析】先求出被调查的学生的人数,可求得喜欢篮球的人数,从而得到喜欢足球的和喜欢羽毛球的人数之和,根据爱好足球的人数是爱好羽毛球的人数的4倍,可求出喜欢足球的人数,喜欢羽毛球的人数,即可求解.【详解】解:根据题意得:被调查的学生的人数:2130%70÷=(人),故D 错误;∴喜欢篮球的人数为:7020%14⨯=(人),故A 错误;∴喜欢足球的和喜欢羽毛球的人数之和为:70211435--=,∵爱好足球的人数是爱好羽毛球的人数的4倍,∴喜欢羽毛球的人数为()35417÷+=(人),故C 错误;∴喜欢足球的人数为35728-=(人),故B正确;故选:B.【点睛】本题主要考查了扇形统计图,解题的关键是从扇形统计图中获取准确的信息.10.A【分析】由图可观察出奇数项在OA或OB射线上,根据每四条射线为一组,即可得出答案.【详解】解:观察图形的变化可知:奇数项:1、3、5、7,…,2n-1(n为正整数),偶数项:-2、-4、-6、-8,…,-2n(n为正整数),∵2021是奇数项,∴2n-1=2021,∴n=1011,∵每四条射线为一组,始边为OC,∴1011÷4=252...3,∴标记为“2021”的点在射线OA上,故选:A.【点睛】本题考查了规律型图形的变化类,解决本题的关键是观察图形的变化寻找规律.11.C【分析】利用折叠的特性可得:∠CBD=∠EBD=25°,再利用长方形的性质∠ABC =90°,则∠ABE=90°−∠EBC,结论可得.【详解】解:由折叠可得:∠CBD=∠EBD=25°,则∠EBC=∠CBD+∠EBD=50°,∵四边形ABCD是长方形,∴∠ABC=90°,∴∠ABF=90°−∠EBC=40°,故C正确.故选:C.【点睛】本题主要考查了角的计算,折叠的性质,利用折叠得出:∠CBD=∠EBD是解题的关键.12.A【分析】根据程序得出一般性规律,确定出第2021次输出结果即可.【详解】解:把x=-48代入得:12×(-48)=-24;把x=-24代入得:12×(-24)=-12;把x=-12代入得:12×(-12)=-6;把x=-6代入得:12×(-6)=-3;把x=-3代入得:-3-3=-6,依此类推,从第3次输出结果开始,以-6,-3循环,∵(2021-2)÷2=1009…1,∴第2021次输出的结果为-6,故选:A .【点睛】此题考查了代数式求值,理解题意,根据程序得出一般性规律是解本题的关键.13.a b 【分析】根据数轴上点的位置进行判断,0的右边大于0,0的左边小于0,据此分析即可【详解】解:∵在数轴上的点A 对应的数为a ,B 对应的数为b ,A 点在原点的左侧,B 点在原点的右侧,正数大于负数,∴0a b<<故答案为:,a b【点睛】本题考查了根据数轴判断有理数的大小,数形结合是解题的关键.14.x =−3【分析】方程移项,把x 系数化为1,即可求出解.【详解】解:2x +6=0,移项得:2x =−6,解得:x =−3.故答案为:x =−3.【点睛】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.15.10【分析】根据线段中点的性质可得AD DC =,由DC DB CB =-求得AD ,根据AB AD DB =+求解即可.【详解】解:∵743cm DC DB CB =-=-=,点D 为AC 的中点,∴3cmAD DC ==∴AB AD DB =+3710cm=+=故答案为:10【点睛】本题考查了线段中点的性质,线段和差的计算,数形结合是解题的关键.16.折线统计图【分析】首先要清楚每一种统计图的特点:频数直方图能够显示各组频数分布的情况;条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.【详解】制作一年来每个月平均气温变化统计图,选择折线统计图合适.故答案为:折线统计图【点睛】本题考查统计图的选择,解答此题要熟练掌握统计图的特点,根据实际情况灵活选择.17.1-【分析】先计算A B +,合并同类项之后,根据题意令一次项系数为0,即可求得m 的值.【详解】A B +222112(1)2x x mx x m x ++++=+++=,若关于x 的多项式A+B 不含一次项,10m ∴+=,解得1m =-.故答案为:1-.【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键.18.我【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【详解】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“力”字相对的面上的汉字是“我”.故答案为:我【点睛】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.19.11【分析】观察看出,所求的代数式是已知代数式变形得到的,利用代入法求得代数式的值即可.【详解】∵x+2y=3,∴代数式两边分别乘以2得:2x+4y=6,代入2x+4y+5,得:原式=6+5=11.故本题答案为:11.【点睛】考查代数式的变形及代入法的运用.注意整体思想的应用.20.(1)9(2)-7【解析】(1)()211713-+--413=-+9=(2)214(3)(()39⎡⎤-⨯-+-⎢⎥⎣⎦149939⎛⎫⎛⎫=⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭34=--7=-21.(1)见解析(2)见解析【分析】(1)根据题意作射线PA ,作直线PB ;(2)以B 为圆心AB 的长为半径画弧,交AB 的延长线于点C ,连接BC ,则AC=2AB(1)如图所示,射线PA ,直线PB 即为所求作;(2)如图所示,延长线段AB 至点C ,使得AC=2AB22.a -8b -1;5【分析】根据去括号的法则去括号,然后合并同类项,然后代入求值即可.【详解】2(2a -3b )-(3a +2b +1)=4a -6b -3a -2b -1=a -8b -1.当a =2,b =-12,代入原式=2-8×(-12)-1=5考点:整式的化简求值23.(1)2y =-(2)1x =-【解析】(1)原方程可化为:6342y y -=--36y =-2y =-(2)原方程可化为:()21651x x +-=-2451x x -=-33x -=1x =-24.(1)145°(2)∠AOD 与∠BOC(3)A【分析】(1)根据题意可得90AOD DOC ∠=︒-∠,进而根据AOB AOD DOB ∠=∠+∠即可求解;(2)根据DOC ∠的余角相等求解即可;(3)由(1)可知AOB ∠180DOC =︒-∠,进而即可求得答案.(1)∠AOC 和∠BOD 都是直角∴90AOD DOC ∠=︒-∠,AOB AOD DOB ∠=∠+∠9090DOC =︒-∠+︒180DOC =︒-∠ ∠DOC =35°,∴AOB ∠=145°故答案为:145°(2)∠AOC 和∠BOD 都是直角∴90AOD AOC DOC DOC ∠=∠-∠=︒-∠,90BOC DOB DOC DOC ∠=∠-∠=︒-∠∴AOD ∠=BOC∠故答案为:AOD ∠与BOC∠(3)由(1)可知AOB ∠180DOC=︒-∠若∠DOC 变小,∠AOB 将变大故答案为:A【点睛】本题考查了几何图形中角度的计算,同角的余角相等,数形结合是解题的关键.25.(1)A 、B 两种商品分别购进40件、60件;(2)两种商品售完后共获取利润800元【分析】(1)设购进A 种商品a 件,则购进B 种商品(100a -)件,然后根据题意和表格中的数据即可列出相应的方程,从而可以求得A 、B 两种商品分别购进多少件;(2)根据(1)中的结果和表格中的数据可以计算出两种商品售完后共获取利润多少元.【详解】(1)设购进A 种商品a 件,则购进B 种商品(100a -)件,()25351003100a a +-=,解得,40a =,则10060a -=,答:A 、B 两种商品分别购进40件、60件;(2)()()302540453560-⨯+-⨯5401060=⨯+⨯200600800=+=(元),答:两种商品售完后共获取利润800元.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.26.(1)30秒(2)经过6秒或18秒P ,Q 两点相距30cm ,此时|QB ﹣QC|是16cm 或20cm【分析】(1)根据题意求得OC 的长,进而根据时间等于路程除以速度列算式求解即可;(2)根据题意,分相遇前和相遇后相距30cm ,两种情形列一元一次方程求解即可.(1)由题意知:OC=OA+AB+BC=20+20+20=60(cm),∴当P运动到点C时,t=60÷2=30(秒);(2)①当点P、Q还没有相遇时,2t+3t=60﹣30,解得:t=6,此时,QC=3×6=18(cm),QB=BC﹣QC=20﹣18=2(cm),∴|QB﹣QC|=|2﹣18|=16(cm),②当点P、Q相遇后,2t+3t=60+30,解得:t=18,此时,QC=3×18=54(cm),QB=QC﹣BC=54﹣20=34(cm),∴|QB﹣QC|=|34﹣54|=20(cm),综上所述,经过6秒或18秒P,Q两点相距30cm,此时|QB﹣QC|是16cm或20cm【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,数形结合以及分类讨论是解题的关键.27.(1)40;14.4(2)见解析【分析】(1)由B组有21人和B组占抽查学生总数的21%可计算出被抽查学生的总数,根据C组人数为40人,即可计算出C组占总数的百分比,从而得到:“m”的值;由E组人数4除以总人数再乘以360°即可得到扇形统计图中E组所对应的圆心角度数;(2)根据(1)计算出的被抽查学生的总数,由总数减去A、B、C、E各组的人数可得D 组的人数,即可补全频数直方图.(1)由题意可得:被抽查的总人数为:21÷21%=100(人),C组占总人数的百分比为:40100%=40% 100⨯,∴m=40;“E”组对应的圆心角度数为:4360=14.4 100⨯︒︒;故答案为:40;14.4.(2)D组的频数为:100-10-21-40-4=25(人),频数分布直方图补充完整如下:。

北师大版(完整版)七年级数学上册期末试卷及答案

北师大版(完整版)七年级数学上册期末试卷及答案

北师大版(完整版)七年级数学上册期末试卷及答案一、选择题1.若m 5=,n 3=,且m n 0+<,则m n -的值是( )A .8-或2-B .8±或2±C .8- 或2D .8或22.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为()A .-1009B .-2019C .-1010D .-20203.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )A .87B .91C .103D .1114.对于一个自然数n ,如果能找到正整数x 、y ,使得n x y xy =++,则称n 为“好数”.例如:31111=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有( )个 A .1B .2C .3D .45.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了如图的直方图.根据图中信息,下列说法错误的是( )A .这栋居民楼共有居民125人B .每周使用手机支付次数为28~35次的人数最多C .有25人每周使用手机支付的次数在35~42次D .每周使用手机支付不超过21次的有15人 6.计算22221111 (11223320152015)++++++++的结果为( ) A .1B .20142015C .20152016D .201620157.若3x-2y-7=0,则 4y-6x+12的值为( ) A .12B .19C .-2D .无法确定 8.如果有理数,a b ,满足0,0ab a b >+<,则下列说法正确的是( )A .0,0a b >>B .0,0a b <>C .0,0a b <<D .0,0a b >< 9.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y -B .1019x y +C .1021x y -D .1017x y -10.下列解方程的步骤正确的是( ) A .由2x +4=3x +1,得2x +3x =1+4 B .由3(x ﹣2)=2(x +3),得3x ﹣6=2x +6 C .由0.5x ﹣0.7x =5﹣1.3x ,得5x ﹣7=5﹣13x D .由1226x x -+-=2,得3x ﹣3﹣x +2=12 11.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5B .6C .7D .812.按照如图所示的计算程序,若输入的x =﹣3,则输出的值为﹣1:若输入的x =3,则输出的结果为( )A .12B .112C .2D .313.已知线段AB=m ,BC=n ,且m 2﹣mn=28,mn ﹣n 2=12,则m 2﹣2mn+n 2等于( ) A .49B .40C .16D .914.“幻方”在中国古代称为“河图”、“洛书”,又叫“纵横图”.其主要性质是在一个由若干个排列整齐的数组成的正方形中,图中任意一横行,一纵行及对角线的几个数之和都相等.图(l )所示是一个33⨯幻方.有人建议向火星发射如图(2)所示的幻方图案,如果火星上有智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).图(3)是一个未完成的33⨯幻方,请你类比图(l )推算图(3)中P 处所对应的数字是( )A .1B .2C .3D .4 15.在上午八点半钟的时候,时针和分针所夹的角度是( )A .85°B .75°C .65°D .55°16.下列各组数中,数值相等的是( ) A .﹣22和(﹣2)2 B .23和 32C .﹣33和(﹣3)3D .(﹣3×2)2和﹣32×2217.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形数阵解释二项式()na b +的展开式的各项系数,此三角形数阵称为“杨辉三角”. 第一行 ()0a b + 1 第二行 ()1a b + 1 1 第三行 ()2a b + 1 2 1 第四行 ()3a b + 1 3 3 1 第五行 ()4a b + 1 4 6 4 1根据此规律,请你写出第22行第三个数是( ) A .190 B .210 C .231 D .253 18.点C 、D 在线段AB 上,若点C 是线段AD 的中点,2BD>AD ,则下列结论正确的是( ). A .CD<AD - BDB .AB>2BDC .BD>ADD .BC>AD19.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是( )A .183B .157C .133D .9120.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >021.现有一列数a 1,a 2,a 3,…,a 98,a 99,a 100,其中a 3=2020,a 7=-2018,a 98=-1,且满足任意相邻三个数的和为常数,则a 1+a 2+a 3+…+a 98+a 99+a 100的值为( ) A .1985B .-1985C .2019D .-201922.将1,2,3,...,30,这30个整数,任意分为15组,每组2个数.现将每组数中的一个数记为x ,另一个数记为y ,计算代数式()1||||2x y x y -++的值,15组数代入后可得到15个值,则这15个值之和的最小值为( )A .2252B .120C .225D .24023.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为( ).A .36块B .41块C .46块D .51块24.根据等式性质,下列结论正确的是( ) A .如果22a b -=,那么=-a b B .如果22a b -=-,那么=-a b C .如果22a b =-,那么a b =D .如果122a b =,那么a b = 25.如图所示是一个自行设计的计算程序,若输入x 的值为1,那么执行此程序后,输出的数y 是( )A .﹣2B .2C .3D .426.一辆客车和一辆卡车同时从A 地出发沿同一公路同向行驶,客车的行驶速度是70km /h ,卡车的行驶速度是60km /h ,客车经过x 小时到达B 地,卡车比客车晚到1h .根据题意列出关于x 的方程,正确的是( ) A .16070x x -= B .106070x x+-= C .70x =60x+60 D .60x =70x-7027.已知关于x 的方程432x m -=的解是x m =-,则m 的值是( ) A .2B .-2C .-27D .2728.在料幻电影《银河护卫队》中,星球之间的穿梭往往靠宇宙飞船沿固定路径“空间跳跃”完成.如图所示:两个星球之间的路径只有1条,三个星球之间的路径有3条,四个星球之间的路径有6条,…,按此规律,则10个星球之间“空间跳跃”的路径有( ).A .45条B .21条C .42条D .38条29.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有( )A .1个B .2个C .3个D .4个30.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据题意,利用绝对值的代数意义求出m 与n 的值,即可确定出原式的值. 【详解】解:∵|m|=5,|n|=3,且m+n<0, ∴m=−5,n=3或m=−5,n=−3, ∴m−n=−8或m-n=-2 故选A. 【点睛】本题考查了有理数的加减法和绝对值的代数意义.2.C解析:C 【解析】 【分析】依次计算1a 、2a 、3a 、4a 、…,得到规律性答案,即可得到2020a 的值. 【详解】11a =-,212a a =-+=-1,323a a =-+=-2, 434a a =-+=-2,5453a a =-+=-, 6563a a =-+=-,,由此可得:每两个数的答案是相同的,结果为-2n(n 为偶数), ∴202010102=, ∴2020a 的值为-1010, 故选:C. 【点睛】此题考查代数式规律探究,计算此类题的关键是依次计算得出答案的规律并总结出答案与序数间的关系式,由此来解答问题.3.D解析:D 【解析】 【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数. 【详解】解:∵第①个图案中“●”有:1+3×(0+2)=7个, 第②个图案中“●”有:1+4×(1+2)=13个, 第③个图案中“●”有:1+5×(2+2)=21个, 第④个图案中“●”有:1+6×(3+2)=31个, …∴第9个图案中“●”有:1+11×(8+2)=111个, 故选:D .本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.4.C解析:C【解析】【分析】根据题意,由n=x+y+xy,可得n+1=x+y+xy+1,所以n+1=(x+1)(y+1),因此如果n+1是合数,则n是“好数”,据此判断即可.【详解】根据分析,∵8=2+2+2×2,∴8是好数;∵9=1+4+1×4,∴9是好数;∵10+1=11,11是一个质数,∴10不是好数;∵11=2+3+2×3,∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11.故选C.【点睛】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n+1是合数,则n是“好数”.5.D解析:D【解析】【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.【详解】解:A、这栋居民楼共有居民3+10+15+22+30+25+20=125(人),此结论正确;B、每周使用手机支付次数为28~35次的人数最多,这是因为从直方图上可以看出,每周使用手机支付次数为28~35次的小矩形的高度最高,所以每周使用手机支付次数为28~35次的人数最多,此结论正确,;C、有的人每周使用手机支付的次数在35~42次,此结论正确;D.每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选:D.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.6.C解析:C 【解析】 【分析】根据数字的变化寻找规律,再根据有理数的混合运算即可求解. 【详解】解:22221111···11223320152015++++++++ =21111261220152015+++++=111111112233420152016-+-+-++-= 112016-=20152016 故选:C . 【点睛】本题考查了数字的变化规律、有理数的混合运算,解决本题的关键是寻找数字的变化规律.7.C解析:C 【解析】 【分析】把(3x-2y )看作一个整体并求出其值,再代入所求代数式进行计算即可得解. 【详解】 解:∵3x-2y-7=0, ∴3x-2y=7,∴4y-6x+12=-2(3x-2y )+12=-2×7+12=-14+12=-2. 故选:C . 【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.8.C解析:C 【解析】 【分析】此题首先利用同号两数相乘得正判定a,b同号,然后根据同号两数相加,符号取原来加数的符号.即可判定a,b的符号.【详解】解:∵ab>0,∴a,b同号,∵a+b<0,∴a<0,b<0.故选:C.【点睛】此题比较简单,主要利用了有理数的加法法则和乘法法则解决问题.9.A解析:A【解析】【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【详解】多项式的第一项依次是x,x2,x3,x4,…,x n,第二项依次是y,-y3,y5,-y7,…,(-1)n+1y2n-1,所以第10个式子即当n=10时,代入到得到x n+(-1)n+1y2n-1=x10-y19.故选:A.【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.10.B解析:B【解析】【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C选项利用等式的性质进行化简.【详解】解:A、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误;B、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C、0.5x-0.7x=5-1.3x,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x,故本选项错误;D、1226x x-+-=2,去分母得:3x-3-x-2=12,故本选项错误;故选:B.【点睛】本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.11.B解析:B【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵-2a m b2与12a5b n+1是同类项,∴m=5,n+1=2,解得:m=1,∴m+n=6.故选B.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.12.D解析:D【解析】【分析】直接利用已知代入得出b的值,进而求出输入﹣3时,得出y的值.【详解】∵当输入x的值是﹣3,输出y的值是﹣1,∴﹣1=32b -+,解得:b=1,故输入x的值是3时,y=2331⨯-=3.故选:D.【点睛】本题主要考查了代数式求值,正确得出b的值是解题关键.13.C解析:C【解析】【分析】将两个式子相减后即可求解.【详解】两式相减得:m2﹣mn-mn+ n2=28-12,即 m2﹣2mn+n2=16,故选C.【点睛】本题考查了整式加减的应用,正确进行整式的加减是解题的关键..14.B解析:B【解析】【分析】设第1列第3行的数字为x,P处对应的数字为p,根据每一横行、每一竖列以及斜对角线上的点数的和相等,可得x+1+(-2)=x +(-3)+p,可得P处数字.【详解】解:设第1列第3行的数字为x,P处对应的数字为p,根据题意得,x+(-2)+1=x+(-3)+p,解得p=2,故选:B.【点睛】本题通过九方格考查了有理数的加法.九方格题目趣味性较强,本题的关键是找准每一横行、每一竖列以及两条斜对角线上的数字的和相等,据此列方程求解.15.B解析:B【解析】【分析】根据钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:如图,上午八点半钟时,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午八点半钟的时候,时钟的时针和分针所夹的角度是2.5×30°=75°.故选:B.【点睛】本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.16.C解析:C【解析】【分析】将原式各项运用有理数的运算法则计算得到结果,比较即可.【详解】解:A、-22=-4,(-2)2=4,不相等,故A错误;B、23=8,32=9,不相等,故B错误;C、-33=(-3)3=-27,相等,故C正确;D、(-3×2)2=36,-32×22=-36,不相等,故D错误.故选C【点睛】此题考查了有理数的乘方,以及有理数的乘法,熟练掌握运算法则是解本题的关键.17.B解析:B【解析】【分析】根据题目中的规律,即可求出第22行(a+b)21的展开式中第三项的系数.【详解】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n-2)+(n-1),∴第22行(a+b)21第三项系数为1+2+3+…+19+20=210;故选:B.【点睛】本题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.18.D解析:D【解析】【分析】根据点C是线段AD的中点,可得AD=2AC=2CD,再根据2BD>AD,可得BD> AC= CD,再根据线段的和差,逐一进行判即可.【详解】∵点C是线段AD的中点,∴AD=2AC=2CD,∵2BD>AD,∴BD> AC= CD,A. CD=AD-AC> AD- BD,该选项错误;B. 由A得AD- BD< CD,则AD<BD+CD=BC,则AB=AD+BD< BC+ BD<2BD,该选项错误;C.由B得 AB<2BD ,则BD+AD<2BD,则AD<BD,该选项错误;D. 由A得AD- BD< CD,则AD<BD+CD=BC, 该选项正确故选D.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.19.B解析:B【解析】【分析】观察根据排列的规律得到:所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数比上次增加连续的三个偶数.依次计算即可得到结论.【详解】所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数每次增加连续的三个偶数.第一行数字为1第二行数字为1+(2+4+6)=1+2(1+2+3)=1+3×4=13第三行数字为1+(2+4+6)+(8+10+12)=1+2(1+2+3+4+5+6)=1+6×7=43第四行数字为1+(2+4+6)+(8+10+12)+(14+16+18)=1+2(1+2+3+4+5+6+7+8+9)=1+9×10=91第五行数字为1+(2+4+6)+(8+10+12)+(14+16+18)+(20+22+24)=1+2(1+2+3+4+5+6+7+8+9+10+11+12)=1+12×13=157.故选B.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.20.C解析:C【解析】【分析】先根据数轴判定a、b、a+b、a-b的正负,然后进行判定即可.【详解】解:由数轴可得,b<﹣2<0<a<2,∴a+b<0,故选项A错误,|b|>|a|,故选项B错误,a﹣b>0,故选项C正确,a•b<0,故选项D错误,故答案为C.【点睛】本题考查了数轴的应用、绝对值、正数和负数的相关知识,解题的关键在于根据数轴判定字母和代数式的正负.21.B解析:B【解析】【分析】根据任意相邻三个数的和为常数列出求出a 1=a 4,a 2=a 5,a 3=a 6,从而得到每三个数为一个循环组依次循环,再求出a 100=a 1,然后分组相加即可得解.【详解】解:∵任意相邻三个数的和为常数,∴a 1+a 2+a 3=a 2+a 3+a 4,a 2+a 3+a 4=a 3+a 4+a 5,a 3+a 4+a 5=a 4+a 5+a 6,∴a 1=a 4,a 2=a 5,a 3=a 6,∴原式为每三个数一个循环;∵a 3=2020,a 7=-2018,a 98=-1,∵732÷=…1,98332÷=…2,∴a 1= a 7=-2018,a 2=a 98=-1,∴a 1+a 2+a 3=-2018-1+2020=1;∵100333÷=…1,∴a 100=a 1=-2018;∴a 1+a 2+a 3+…+a 98+a 99+a 100=(a 1+a 2+a 3)+…+(a 97+a 98+a 99)+a 100=133********⨯-=-;故选择:B.【点睛】本题是对数字变化规律的考查,求出每三个数为一个循环组依次循环是解题的关键,也是本题的难点.22.D解析:D【解析】【分析】先分别讨论x 和y 的大小关系,分别得出代数式的值,进而得出规律,然后以此规律可得出符合题意的组合,求解即可.【详解】①若x>y ,则代数式中绝对值符号可直接去掉,∴代数式等于x ,②若y >x 则绝对值内符号相反,∴代数式等于y ,由此可知,原式等于一组中较大的那个数,当相邻2个数为一组时,这样求出的和最小= 2+4+6+…+30=240.故选:D.【点睛】本题考查了绝对值、有理数的加减混合运算,通过假设,把所给代数式化简,然后把满足条件的字母的值代入计算.23.C解析:C【解析】【分析】根据题意观察图像找出数量上每次增加黑色瓷砖的变化规律,进而分析推出一般性的结论求解.【详解】⨯+=块.解:∵第1个图形有黑色瓷砖5116⨯+=块.第2个图形有黑色瓷砖52111⨯+=块.第3个图形有黑色瓷砖53116…⨯+=块.∴第9个图形中有黑色瓷砖59146故选:C.【点睛】本题主要考查图形的变化规律,解题的关键是通过归纳与总结,得到其中的一般规律.24.A解析:A【解析】【分析】根据等式的性质,可得答案.【详解】A.两边都除以-2,故A正确;B.左边加2,右边加-2,故B错误;C.左边除以2,右边加2,故C错误;D.左边除以2,右边乘以2,故D错误;故选A.【点睛】本题考查了等式的性质,熟记等式的性质是解题的关键.25.D解析:D【解析】【分析】按照程序的流程,写出前几次循环的结果,并同时判断各个结果是否满足判断框中的条件,直到满足条件,执行输出y .【详解】解:由已知计算程序可得到代数式:2x2﹣4,当x =1时,2x2﹣4=2×12﹣4=﹣2<0,所以继续输入,即x =﹣2,则:2x2﹣4=2×(﹣2)2﹣4=4>0,即y =4,故选D .【点睛】本题考查解决程序框图中的循环结构时常采用写出前几次循环的结果,找规律.26.C解析:C【解析】【分析】根据A 地到B 地的路程相等,可构造等量关系7060(1)x x =+,即可得出答案.【详解】解:根据题意,客车从A 地到B 地的路程为:70S x =卡车从A 地到B 地的路程为:60(1)S x =+则7060(1)x x =+故答案为:C .【点睛】本题考查一元一次方程路程的应用题,注意设未知数后等量关系构成的条件,属于一般题型.27.C解析:C【解析】【分析】将x =-m 代入方程,解出m 的值即可.【详解】将x =-m 代入方程可得:-4m -3m =2,解得:m =-27.故选:C .【点睛】本题主要考查一元一次方程的解的意义以及求解方法,将解代入方程求解是解题关键. 28.A解析:A【解析】【分析】观察图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,…,按此规律,可得10个星球之间“空间跳跃”的路径的条数.【详解】解:由图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,……,按此规律,10个星球之间“空间跳跃”的路径有9+8+7+6+5+4+3+2+1=45条. 故选:A .【点睛】本题是图形类规律探求问题,探寻规律时要认真观察、仔细思考,善用联想来解决这类问题.29.B解析:B【解析】【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确; ②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误; ④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B .【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.30.D解析:D【解析】【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解.【详解】等式两边同乘4得:2(1)4(3)x x -=-+,故选:D.【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.。

北师大版(完整版)七年级数学上册期末试卷及答案doc

北师大版(完整版)七年级数学上册期末试卷及答案doc

北师大版(完整版)七年级数学上册期末试卷及答案doc一、选择题1.已知a,b是有理数,若表示它们的点在数轴上的位置如图所示,则|a|–|b|的值为()A.零B.非负数C.正数D.负数2.已知一组数:1,-2,3,-4,5,-6,7,…,将这组数排成下列形式:第1行 1第2行 -2,3第3行 -4,5,-6第4行 7,-8,9,-10第5行 11,-12,13,-14,15……按照上述规律排列下去,那么第10行从左边数第5个数是()A.-50 B.50 C.-55 D.553.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )A.87 B.91 C.103 D.1114.按照如图所示的运算程序,若输入的x的值为4,则输出的结果是()A.21 B.89 C.261 D.3615.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是()A.第80个图形B.第82个图形C.第84个图形D.第86个图形6.如图,点O在直线AB上且OC⊥OD,若∠COA=36°则∠DOB的大小为()A .36°B .54°C .64°D .72° 7.如果有理数,a b ,满足0,0ab a b >+<,则下列说法正确的是( )A .0,0a b >>B .0,0a b <>C .0,0a b <<D .0,0a b >< 8.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为( ) A .4B .5C .6D .79.如图,已知矩形的长宽分别为m ,n ,顺次将各边加倍延长,然后顺次连接得到一个新的四边形,则该四边形的面积为( )A .3mnB .5mnC .7mnD .9mn10.某商店在某一时间以每件90元的价格出售两件商品,其中一件盈利25%,另一件亏损25%,则在这次买卖中,商家( ) A .亏损8元 B .赚了12元C .亏损了12元D .不亏不损11.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5B .6C .7D .812.下列运算正确的是( ) A .()a b c a b c -+=-+ B .2(1)21x y x y --=-+ C .22223m n nm m n -=-D .532x x -=13.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…….根据上述算式中的规律,你认为20192的个位数字是( ) A .2 B .4 C .6 D .814.“幻方”在中国古代称为“河图”、“洛书”,又叫“纵横图”.其主要性质是在一个由若干个排列整齐的数组成的正方形中,图中任意一横行,一纵行及对角线的几个数之和都相等.图(l )所示是一个33⨯幻方.有人建议向火星发射如图(2)所示的幻方图案,如果火星上有智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).图(3)是一个未完成的33⨯幻方,请你类比图(l )推算图(3)中P 处所对应的数字是( )A .1B .2C .3D .415.若数a ,b 在数轴上的位置如图示,则( )A .a +b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >016.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有( )A .1个B .2个C .3个D .4个17.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a >﹣bC .a >bD .|a |>|b |18.若m 5=,n 3=,且m n 0+<,则m n -的值是( ) A .8-或2- B .8±或2± C .8- 或2D .8或219.下列方程中,属于一元一次方程的是( ).A .23x y +=B .21x >C .720222020x +=D .241x = 20.点C 、D 在线段AB 上,若点C 是线段AD 的中点,2BD>AD ,则下列结论正确的是( ). A .CD<AD - BDB .AB>2BDC .BD>ADD .BC>AD21.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n ,则n =( )A .9B .11C .13D .1522.根据等式性质,下列结论正确的是( ) A .如果22a b -=,那么=-a b B .如果22a b -=-,那么=-a b C .如果22a b =-,那么a b =D .如果122a b =,那么a b = 23.使用科学计算器进行计算,其按键顺序如图所示,输出结果应为( )A .14-B . 3.94-C . 1.06-D . 3.7-24.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a ﹣b >0B .a +b >0C .b a>0 D .ab >025.一辆客车和一辆卡车同时从A 地出发沿同一公路同向行驶,客车的行驶速度是70km /h ,卡车的行驶速度是60km /h ,客车经过x 小时到达B 地,卡车比客车晚到1h .根据题意列出关于x 的方程,正确的是( )A .16070x x -= B .106070x x+-= C .70x =60x+60 D .60x =70x-7026.下列各式中运算正确的是( )A .2222a a a +=B .220a b ab -=C .2(1)21a a -=-D .33323a a a -= 27.以下问题,不适合抽样调查的是( ) A .了解全市中小学生的每天的零花钱 B .旅客上高铁列车前的安检 C .调查某批次汽车的抗撞击能力 D .调查某池塘中草鱼的数量28.在﹣(﹣8),﹣π,|﹣3.14|,227,0,(﹣13)2各数中,正有理数的个数有( ) A .3B .4C .5D .629.如图,一个底面直径为30πcm ,高为20cm 的糖罐子,一只蚂蚁从A 处沿着糖罐的表面爬行到B 处,则蚂蚁爬行的最短距离是( )A .24cmB .13C .25cmD .30cm30.已知232-m a b 和45n a b 是同类项,则m n -的值是( ) A .-2B .1C .0D .-1【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】本题根据a 、b 在数轴上的位置判定其绝对值大小,继而作差可直接得出答案. 【详解】由已知得:a 离数轴原点的距离相对于b 更近,可知a <b , 故:0a b -<,即其差值为负数; 故选:D . 【点睛】本题考查根据数轴上点的位置判别式子正负,解题关键在于对数轴相关概念与性质的理解,比较大小注意细心即可.2.A解析:A 【解析】 【分析】分析可得,第n 行有n 个数,此行第一个数的绝对值为(1)12n n -+,且式子的奇偶,决定它的正负,奇数为正,偶数为负,依此即可得出第10行从左边数第5个数. 【详解】解:第n 行有n 个数,此行第一个数的绝对值为(1)12n n -+,且式子的奇偶,决定它的正负,奇数为正,偶数为负. 所以第10行第5个数的绝对值为:1095502⨯+=, 50为偶数,故这个数为:-50. 故选:A . 【点睛】本题考查探索与表达规律,能依据已给数据分析得出每行第一个数与行数之间的规律是解决此题的关键.3.D解析:D 【解析】 【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数.【详解】解:∵第①个图案中“●”有:1+3×(0+2)=7个,第②个图案中“●”有:1+4×(1+2)=13个,第③个图案中“●”有:1+5×(2+2)=21个,第④个图案中“●”有:1+6×(3+2)=31个,…∴第9个图案中“●”有:1+11×(8+2)=111个,故选:D.【点睛】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.4.D解析:D【解析】【分析】首先把输入的x的值乘4,求出积是多少;然后用所得的积加上5,判断出和是多少,依此类推,直到输出的结果不小于100为止.【详解】解:4×4+5=16+5=21,21<100,21×4+5=84+5=89,89<100,89×4+5=356+5=361,∴输出的结果是361.故选:D.【点睛】此题主要考查了代数式求值,以及有理数的混合运算.熟练掌握代数式求值的方法,以及有理数的混合运算的法则是解题的关键.5.C解析:C【解析】【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题.【详解】解:根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,若5+7(n-1)×12=295,没有整数解,若8+7(n-2)×12=295,解得n=84,即用295根火柴搭成的图形是第84个图形,故选:C.【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.6.B解析:B【解析】∵OC⊥OD,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B.7.C解析:C【解析】【分析】此题首先利用同号两数相乘得正判定a,b同号,然后根据同号两数相加,符号取原来加数的符号.即可判定a,b的符号.【详解】解:∵ab>0,∴a,b同号,∵a+b<0,∴a<0,b<0.故选:C.【点睛】此题比较简单,主要利用了有理数的加法法则和乘法法则解决问题.8.B解析:B【解析】【分析】用极差除以组距,如果商是整数,组数=这个整数加1,如果商不是整数,用进一法,确定组数;【详解】∵296234.655-==, ∴分成的组数是5组. 故答案选B . 【点睛】本题主要考查了频数分布直方图,准确计算是解题的关键.9.B解析:B 【解析】 【分析】如图,可分别求出各个直角三角形的面积,再加上中间的矩形面积即可得到答案. 【详解】如图,根据题意可得:1()2FDE HBG S S n n m mn ∆∆==+=, 1()2ECH GAF S S m m n mn ∆∆==+=, 又矩形ABCD 的面积为mn ,所以,四边形EFGH 的面积为:++++5FDE HBG ECH GAF ABCD S S S S S mn mn mn mn mn mn ∆∆∆∆=++++=矩形,故选:B . 【点睛】此题主要考查了根据图形的面积列代数式,熟练掌握直角三角形面积公式易用佌题的关键.10.C解析:C 【解析】试题分析:设第一件衣服的进价为x 元, 依题意得:x (1+25%)=90,解得:x =72, 所以盈利了90﹣72=18(元). 设第二件衣服的进价为y 元,依题意得:y (1﹣25%)=90,解得:y =120, 所以亏损了120﹣90=30元,所以两件衣服一共亏损了30﹣18=12(元). 故选C .点睛:本题考查了一元一次方程的应用.解决本题的关键是要知道两件衣服的进价,知道了进价,就可求出总盈亏.11.B解析:B 【解析】 【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项. 【详解】 解:∵-2a m b 2与12a 5b n+1是同类项, ∴m=5,n+1=2, 解得:m=1, ∴m+n=6. 故选B . 【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.12.C解析:C 【解析】 【分析】分别判断各选项是否正确. 【详解】A 中,a b +c a b c -=--(),错误;B 中,2(1)22x y x y --=-+,错误;C 中,22223m n nm m n -=-,正确;D 中,532x x x -=,错误 故选:C . 【点睛】本题考查整式的加减法,需要注意合并同类项时,仅是系数的加减.13.D解析:D 【解析】 【分析】根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8. 【详解】解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环, ∵2019÷4=504…3, ∴22019的末位数字是8. 故选:D 【点睛】本题考查有理数的乘方运算,属于规律型试题,弄清本题的规律是解题关键.14.B解析:B 【解析】 【分析】设第1列第3行的数字为x,P 处对应的数字为p,根据每一横行、每一竖列以及斜对角线上的点数的和相等,可得x+1+(-2)=x +(-3)+p ,可得P 处数字. 【详解】解:设第1列第3行的数字为x,P 处对应的数字为p,根据题意得, x+(-2)+1=x+(-3)+p ,解得p=2, 故选:B . 【点睛】本题通过九方格考查了有理数的加法.九方格题目趣味性较强,本题的关键是找准每一横行、每一竖列以及两条斜对角线上的数字的和相等,据此列方程求解.15.D解析:D 【解析】 【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案. 【详解】由数轴可知:a <0<b ,a<-1,0<b<1, 所以,A.a+b<0,故原选项错误; B. ab <0,故原选项错误; C.a-b<0,故原选项错误; D. 0a b -->,正确. 故选D . 【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.16.B解析:B 【解析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.17.D解析:D【解析】分析:根据数轴上a、b的位置,判断出a、b的范围,然后根据有理数的大小比较和绝对值的性质进行比较即可.详解:根据数轴上点的位置得:﹣3<a<﹣2,1<b<2,∴|a|>|b|,a<﹣b,b>a,a<﹣2,故选D.点睛:本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.18.A解析:A【解析】【分析】根据题意,利用绝对值的代数意义求出m与n的值,即可确定出原式的值.【详解】解:∵|m|=5,|n|=3,且m+n<0,∴m=−5,n=3或m=−5,n=−3,∴m−n=−8或m-n=-2故选A.【点睛】本题考查了有理数的加减法和绝对值的代数意义.19.C解析:C【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).解:A、含有两个未知数,不是一元一次方程,选项错误;B、不是方程是不等式,选项错误;C、符合一元一次方程定义,是一元一次方程,正确;D、未知项的最高次数为2,不是一元一次方程,选项错误.故选:C.【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.20.D解析:D【解析】【分析】根据点C是线段AD的中点,可得AD=2AC=2CD,再根据2BD>AD,可得BD> AC= CD,再根据线段的和差,逐一进行判即可.【详解】∵点C是线段AD的中点,∴AD=2AC=2CD,∵2BD>AD,∴BD> AC= CD,A. CD=AD-AC> AD- BD,该选项错误;B. 由A得AD- BD< CD,则AD<BD+CD=BC,则AB=AD+BD< BC+ BD<2BD,该选项错误;C.由B得 AB<2BD ,则BD+AD<2BD,则AD<BD,该选项错误;D. 由A得AD- BD< CD,则AD<BD+CD=BC, 该选项正确故选D.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.21.B解析:B【解析】【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n=1,n=2和n=3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可.【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况,当盘子数量n=1时,游戏结束需要移动的最少次数为1;当盘子数量n=2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n=3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n=2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n=2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11,故选B.【点睛】本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.22.A解析:A【解析】【分析】根据等式的性质,可得答案.【详解】A.两边都除以-2,故A正确;B.左边加2,右边加-2,故B错误;C.左边除以2,右边加2,故C错误;D.左边除以2,右边乘以2,故D错误;故选A.【点睛】本题考查了等式的性质,熟记等式的性质是解题的关键.23.B解析:B【解析】【分析】根据如图所示的按键顺序,列出算式3×(-56)-1.22,再计算可得.【详解】根据如图所示的按键顺序,输出结果应为3×(-56)-1.22=-2.5-1.44=-3.94,故选:B.【点睛】本题主要考查计算器-基础知识,解题的关键是掌握分数的按键和平方的按键,并依据其功能列出算式.24.A解析:A【解析】【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,再根据有理数的加减法法则以及乘除法法则对各选项分析判断后利用排除法求解.由图可知,b <0,a >0,且|b|>|a|,A 、a -b >0,故本选项符合题意;B 、a +b <0,故本选项不合题意;C 、b a<0,故本选项不合题意; D 、ab <0,故本选项不合题意.故选:A .【点睛】 本题考查了数轴,熟练掌握数轴的特点并判断出a 、b 的正负情况以及绝对值的大小是解题的关键.25.C解析:C【解析】【分析】根据A 地到B 地的路程相等,可构造等量关系7060(1)x x =+,即可得出答案.【详解】解:根据题意,客车从A 地到B 地的路程为:70S x =卡车从A 地到B 地的路程为:60(1)S x =+则7060(1)x x =+故答案为:C .【点睛】本题考查一元一次方程路程的应用题,注意设未知数后等量关系构成的条件,属于一般题型.26.A解析:A【解析】【分析】各项计算得到结果,即可作出判断.【详解】A 、2222a a a +=,符合题意;B 、2a b 和2ab 不是同类项,不能合并,不符合题意;C 、2(1)22a a -=-,不符合题意;D 、33323a a a -=-,不符合题意,故选:A .【点睛】本题考查了整式的加减,熟练掌握运算法则是解本题的关键.27.B【解析】A 、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B 、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C 、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D 、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;故选B .28.B解析:B【解析】【分析】先去括号、化简绝对值、计算有理数的乘方,再根据正有理数的定义即可得.【详解】()88--=, 3.14 3.14-=,21319-=⎛⎫ ⎪⎝⎭, 则正有理数为()8--, 3.14-,227,213⎛⎫- ⎪⎝⎭,共4个, 故选:B .【点睛】本题考查了去括号、化简绝对值、有理数的乘方、正有理数,熟记运算法则和概念是解题关键. 29.C解析:C【解析】【分析】根据题意首先将此圆柱展成平面图,根据两点间线段最短,可得AB 最短,由勾股定理即可求得需要爬行的最短路程.【详解】解:将此圆柱展成平面图得:∵有一圆柱,它的高等于20cm ,底面直径等于30πcm ,∴底面周长=3030ππ⋅=cm ,∴BC =20cm ,AC =12×30=15(cm ),∴AB 25==(cm ).答:它需要爬行的最短路程为25cm .故选:C .【点睛】本题主要考查平面展开图求最短路径问题,将圆柱体展开,根据两点之间线段最短,运用勾股定理解答是解题关键.30.D解析:D【解析】【分析】根据同类项的字母相同且相同字母的指数也相同,可得关于m 、n 的方程,根据方程的解可得答案.【详解】∵232-m a b 和45n a b 是同类项∴2m=4,n=3∴m=2,n=3∴=231m n --=-故选D .【点睛】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.。

北师大版(完整版)七年级数学上册期末试卷及答案

北师大版(完整版)七年级数学上册期末试卷及答案

北师大版(完整版)七年级数学上册期末试卷及答案一、选择题1.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是( )A .9B .18C .12D .62.将1,2,3,...,30,这30个整数,任意分为15组,每组2个数.现将每组数中的一个数记为x ,另一个数记为y ,计算代数式()1||||2x y x y -++的值,15组数代入后可得到15个值,则这15个值之和的最小值为( )A .2252B .120C .225D .2403.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是( )A .中B .国C .梦D .强4.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a >﹣bC .a >bD .|a |>|b | 5.若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( ) A .2B .﹣2C .8D .﹣86.下列运算正确的是( ) A .()a b c a b c -+=-+ B .2(1)21x y x y --=-+ C .22223m n nm m n -=-D .532x x -=7.如图,已知矩形的长宽分别为m ,n ,顺次将各边加倍延长,然后顺次连接得到一个新的四边形,则该四边形的面积为( )A.3mn B.5mn C.7mn D.9mn8.下列计算正确的是()A.b﹣3b=﹣2 B.3m+n=4mnC.2a4+4a2=6a6D.﹣2a2b+5a2b=3a2b9.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“我”相对面上所写的汉字是()A.美B.丽C.琼D.海10.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是()A.第80个图形B.第82个图形C.第84个图形D.第86个图形=++,则称n为“好11.对于一个自然数n,如果能找到正整数x、y,使得n x y xy=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”.例如:31111数”的个数共有()个A.1 B.2 C.3 D.412.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第9个图形圆的个数为()A.94 B.85 C.84 D.76二、填空题13.如图,点D为线段AB上一点,C为AB的中点,且AB=8m,BD=2cm,则CD的长度为_____cm .14.已知方程2x ﹣a =8的解是x =2,则a =_____. 15.已知236(3)0x y -++=,则23y x -的值是_________.16.若自然数n 使得三个数的竖式加减法运算“(1)(2)n n n ++++”产生进位现象,则称n 为连加进位数,例如10不是“连加进位数”因为10+11+12=33不产生进位现象;14是连加进位数,因为14+15+16=45产生进位现象,如果从10,11,12,。

北师大版(完整版)七年级数学上册期末试卷及答案

北师大版(完整版)七年级数学上册期末试卷及答案

北师大版(完整版)七年级数学上册期末试卷及答案一、选择题1.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>02.在﹣(﹣8),﹣π,|﹣3.14|,227,0,(﹣13)2各数中,正有理数的个数有()A.3 B.4 C.5 D.63.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是()A.a﹣b>0 B.a+b>0 C.ba>0 D.ab>04.如图所示,OB是一条河流,OC是一片菜田,张大伯每天从家(A点处)去河处流边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是()A.B.C.D.5.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=2020,a7=-2018,a98=-1,且满足任意相邻三个数的和为常数,则a1+a2+a3+…+a98+a99+a100的值为( )A .1985B .-1985C .2019D .-20196.若m 5=,n 3=,且m n 0+<,则m n -的值是( ) A .8-或2- B .8±或2± C .8- 或2 D .8或2 7.若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( )A .2B .﹣2C .8D .﹣88.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+9.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5B .6C .7D .810.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y -B .1019x y +C .1021x y -D .1017x y -11.如果有理数,a b ,满足0,0ab a b >+<,则下列说法正确的是( ) A .0,0a b >>B .0,0a b <>C .0,0a b <<D .0,0a b ><12.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第9个图形圆的个数为( )A .94B .85C .84D .76二、填空题13.计算(0.04)2018×[(﹣5)]2018的结果是_____. 14.已知:﹣a =2,|b |=6,且a >b ,则a +b =_____. 15.一个角的余角比这个角的12少30°,则这个角的度数是_____. 16.在班级联欢会上,数学老师和同学们做了一个游戏.她在A B C ,,三个盘子里分别放了一些小球,小球数依次为000,,a b c ,记为()0000,,G a b c =,游戏规则如下:三个盘子中的小球数000a b c ≠≠,则从小球最多的一个盘子中拿出两个,给另外两个盘子各放一个,记作一次操作;n 次操作后的小球数记为(),,n n n n G a b c =.若0(3,5,19)G =,则3G =________,2000G =________.17.观察下列等式: ① 32 - 12 = 2 × 4② 52 - 32 = 2 × 8 ③ 72 - 52 = 2 × 12 ......那么第n (n 为正整数)个等式为___________18.观察表一寻找规律,表二、表三分别是从表一中截取的一部分,则a =_____,b =____.19.已知0a >,11S a =,211S S =--,321S S =,431S S =--,541S S =……(即当n 为大于1的奇数时,11n n S S -=;当n 为大于1的偶数时,11n n S S -=--),按此规律,2018S =____________.20.已知关于x 的一元一次方程520202020xx m +=+的解为2019x =,那么关于y 的一元一次方程552020(5)2020yy m --=--的解为________. 21.阅读理解题:我们知道,根据乘方的意义:23235358,,,a a a a a a a a a a a a a ====通过以上计算你能否发现规律,得到m na a 的结果呢?请根据规律计算:23499100······a a a a a a =__________.22.如图所示,把一根绳子对折后得到的图形为线段AB ,从点P 处把绳子剪断,已知AP :BP =4:5,若剪断后的各段绳子中最长的一段为80cm ,则绳子的原长为________ cm .三、解答题23.如图,阶梯图的每个台阶都标着一个数,从下到上的第1个至第4个台阶上依次标着5-,2-,1,9,且任意相邻的4个台阶上标着的数的和都相等.尝试:(1)求前4个台阶上标着的数的和; (2)求第5个台阶上标着的数x .应用:(3)求从下到上的前2018个台阶上标着的数的和.发现:(4)试用含k (k 为正整数)的式子表示出“1”所在的台阶数. 24.计算:(1)(12)(7)(5)(30)+--+--+ (2)32201913(2)(2)2(1)184-⨯-÷--⨯-⨯+ 25.如图,点C 、D 为线段上两点,75AD BC AB +=(1)若9AC BD +=,求线段CD 的长.(2)若AC BD m +=,则线段CD 等于(用含m 的式子表示). 26.已知:A= x 2﹣2,B=2 x 2﹣x+3 (1)化简:4A ﹣2B ;(2)若 2A ﹣kB 中不含x 2 项,求 k 的值.27.学校餐厅中,一张桌子可坐6人,有以下两种摆放方式:(1)当有5张桌子时,两种摆放方式各能坐多少人? (2)当有n 张桌子时,两种摆放方式各能坐多少人?(3)新学期有200人在学校就餐,但餐厅只有60张这样的餐桌,若你是老师,你打算选择哪种方式来摆放餐桌?为什么? 28.阅读理解:一般地,在数轴上点A ,B 表示的实数分别为a ,b (a b <),则A ,B 两点的距离B A AB x x b a =-=-.如图,在数轴上点A ,B 表示的实数分别为-3,4,则记3A x =-,4B x =,因为34-<,显然A ,B 两点的距离4(3)7B A AB x x =-=--=.若点C 为线段AB 的中点,则AC CB =,所以C A B C x x x x -=-,即2A BC x x x +=. 解决问题:(1)直接写出线段AB 的中点C 表示的实数C x = ;(2)在点B 右侧的数轴上有点P ,且9AP BP +=,求点P 表示的实数P x ; (3)在(2)的条件下,点M 是AP 的中点,点N 是BP 的中点,若A ,B 两点同时沿数轴向正方向运动,A 点的速度是B 点速度的2倍,AP 的中点M 和BP 的中点N 也随之运动,3秒后,2MN =,则点B 的速度为每秒 个单位长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】先弄清a,b,c 在数轴上的位置及大小,根据实数大小比较方法可以解得. 【详解】从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1; A 、|a|>|b|,故选项正确;B 、a 、c 异号,则|ac|=-ac ,故选项错误;C 、b <d ,故选项正确;D 、d >c >1,则c+d >0,故选项正确. 故选B. 【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.2.B解析:B 【解析】 【分析】先去括号、化简绝对值、计算有理数的乘方,再根据正有理数的定义即可得. 【详解】()88--=, 3.14 3.14-=,21319-=⎛⎫ ⎪⎝⎭, 则正有理数为()8--, 3.14-,227,213⎛⎫- ⎪⎝⎭,共4个,故选:B . 【点睛】本题考查了去括号、化简绝对值、有理数的乘方、正有理数,熟记运算法则和概念是解题关键.3.A解析:A【解析】【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,再根据有理数的加减法法则以及乘除法法则对各选项分析判断后利用排除法求解.【详解】由图可知,b<0,a>0,且|b|>|a|,A、a-b>0,故本选项符合题意;B、a+b<0,故本选项不合题意;C、ba<0,故本选项不合题意;D、ab<0,故本选项不合题意.故选:A.【点睛】本题考查了数轴,熟练掌握数轴的特点并判断出a、b的正负情况以及绝对值的大小是解题的关键.4.D解析:D【解析】【分析】做出点A关于OB和OC的对称点A′和A″,连接A′A″,与OB、OC分别交与点M,N,则沿AM-MN-NA的路线行走路线最短.【详解】要找一条最短路线,以河流为轴,取A点的对称点A',连接A'N与河流相交于M点,再连接AM,则张大伯可沿着AM走一条直线去河边M点挑水,然后再沿MN走一条直线到菜园去,同理,画出回家的路线图如下:故选D.【点睛】本题考查了轴对称-最短路线问题,熟练掌握轴对称的性质和两点之间线段最短是解决问题的关键.5.B解析:B【解析】【分析】根据任意相邻三个数的和为常数列出求出a1=a4,a2=a5,a3=a6,从而得到每三个数为一个循环组依次循环,再求出a100=a1,然后分组相加即可得解.【详解】解:∵任意相邻三个数的和为常数,∴a 1+a 2+a 3=a 2+a 3+a 4, a 2+a 3+a 4=a 3+a 4+a 5, a 3+a 4+a 5=a 4+a 5+a 6, ∴a 1=a 4,a 2=a 5,a 3=a 6, ∴原式为每三个数一个循环; ∵a 3=2020,a 7=-2018,a 98=-1, ∵732÷=…1,98332÷=…2, ∴a 1= a 7=-2018,a 2=a 98=-1, ∴a 1+a 2+a 3=-2018-1+2020=1; ∵100333÷=…1, ∴a 100=a 1=-2018; ∴a 1+a 2+a 3+…+a 98+a 99+a 100=(a 1+a 2+a 3)+…+(a 97+a 98+a 99)+a 100 =133********⨯-=-; 故选择:B. 【点睛】本题是对数字变化规律的考查,求出每三个数为一个循环组依次循环是解题的关键,也是本题的难点.6.A解析:A 【解析】 【分析】根据题意,利用绝对值的代数意义求出m 与n 的值,即可确定出原式的值. 【详解】解:∵|m|=5,|n|=3,且m+n<0, ∴m=−5,n=3或m=−5,n=−3, ∴m−n=−8或m-n=-2 故选A. 【点睛】本题考查了有理数的加减法和绝对值的代数意义.7.B解析:B 【解析】 【分析】把x =1代入方程3x ﹣m =5得出3﹣m =5,求出方程的解即可. 【详解】把x =1代入方程3x ﹣m =5得:3﹣m =5, 解得:m =﹣2, 故选:B .【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于m 的一元一次方程是解此题的关键.8.D解析:D 【解析】 【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解. 【详解】等式两边同乘4得:2(1)4(3)x x -=-+, 故选:D. 【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.9.B解析:B 【解析】 【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项. 【详解】 解:∵-2a m b 2与12a 5b n+1是同类项, ∴m=5,n+1=2, 解得:m=1, ∴m+n=6. 故选B . 【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.10.A解析:A 【解析】 【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律. 【详解】多项式的第一项依次是x ,x 2,x 3,x 4,…,x n , 第二项依次是y ,-y 3,y 5,-y 7,…,(-1)n+1y 2n-1, 所以第10个式子即当n=10时,代入到得到x n+(-1)n+1y2n-1=x10-y19.故选:A.【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.11.C解析:C【解析】【分析】此题首先利用同号两数相乘得正判定a,b同号,然后根据同号两数相加,符号取原来加数的符号.即可判定a,b的符号.【详解】解:∵ab>0,∴a,b同号,∵a+b<0,∴a<0,b<0.故选:C.【点睛】此题比较简单,主要利用了有理数的加法法则和乘法法则解决问题.12.A解析:A【解析】【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;可以推出第n 个图形中小圆的个数为n (n+1) +4.将9代入即可.【详解】第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,因为6= 4+1×2,10=4+2×3,16=4+3×4,24=4+4×5...,所以第n 个图形中小圆的个数为4+n (n+1)所以第9个图形有: 4 +9×10=94个小圆,故选: A【点睛】本题是一道找规律题,利用题目中给出的条件观察计算的出关于第n个图形的代数表达式将所求的代入.二、填空题13.. 【解析】 【分析】先将原式变形为[0.04×(﹣5)]2018,再根据乘方的定义计算可得. 【详解】原式=[0.04×(﹣5)]2018=(﹣0.2)2018. 故答案为. 【点睛】 本题考解析:201815.【解析】 【分析】先将原式变形为[0.04×(﹣5)]2018,再根据乘方的定义计算可得.【详解】原式=[0.04×(﹣5)]2018=(﹣0.2)2018201815.故答案为201815.【点睛】本题考查了有理数的乘方,解题的关键是掌握有理数的乘方的定义和运算法则.14.-8. 【解析】 【分析】根据相反数的定义,绝对值的性质,可得a 、b 的值,根据有理数的加法,可得答案. 【详解】∵﹣a =2,|b|=6,且a >b , ∴a =﹣2,b =-6, ∴a+b =﹣2+(-6解析:-8. 【解析】 【分析】根据相反数的定义,绝对值的性质,可得a 、b 的值,根据有理数的加法,可得答案. 【详解】∵﹣a =2,|b |=6,且a >b ,∴a=﹣2,b=-6,∴a+b=﹣2+(-6)=-8,故答案为:-8.【点睛】本题考查了相反数的定义,绝对值的性质,有理数的加法运算法则,注意一个正数的绝对值有2个数.15.80°【解析】【分析】设这个角为x,则它的余角是90°-x,列方程求解即可.【详解】解:设这个角为x,则它的余角是90°﹣x,由题意,得:90°﹣x=x﹣30°,解得:x=80°.即解析:80°【解析】【分析】设这个角为x,则它的余角是90°-x,列方程求解即可.【详解】解:设这个角为x,则它的余角是90°﹣x,由题意,得:90°﹣x=12x﹣30°,解得:x=80°.即这个角的度数是80°.故答案为:80°.【点睛】本题考查了余角的知识,掌握互余的两角之和为90°是解题关键.16.(6,8,13),(8,10,9),【解析】【分析】根据题意先列出前10个数列,得出从G5开始每3次为一个周期循环的规律,据此可得答案.【详解】解:∵G0=(3,5,19)解析:(6,8,13),(8,10,9),【解析】根据题意先列出前10个数列,得出从G 5开始每3次为一个周期循环的规律,据此可得答案.【详解】解:∵G 0=(3,5,19),∴G 1=(4,6,17),G 2=(5,7,15),G 3=(6,8,13),G 4=(7,9,11), G 5=(8,10,9),G 6=(9,8,10),G 7=(10,9,8),G 8=(8,10,9),G 9=(9,8,10),G 10=(10,9,8),……∴从G 5开始每3次为一个周期循环,∵(2000-4)÷3=665…1,∴G 2000=G 5=(8,10,9),故答案为:(6,8,13),(8,10,9),.【点睛】本题考查了列代数式,数字的规律,解题的关键是弄清题意得出从G 5开始每3次为一个周期循环的规律.17.【解析】【分析】通过观察可发现等式左边是两个连续奇数的平方差,右边是这两个奇数和的2倍,进而求出第n 个等式.【详解】通过观察发现:等式左边是两个连续奇数的平方差,右边是这两个奇数和的2倍,解析:()()22212124n n n +--=⨯【解析】【分析】通过观察可发现等式左边是两个连续奇数的平方差,右边是这两个奇数和的2倍,进而求出第n 个等式.【详解】通过观察发现:等式左边是两个连续奇数的平方差,右边是这两个奇数和的2倍, ()()()2221212212124n n n n n +--=++-=⨯.故答案为:()()22212124n n n +--=⨯.【点睛】本题考查了数字类的变化规律,通过观察,分析、归纳并发现其中的规律,本题的关键规律是左边是两个连续奇数的平方差,右边是这两个奇数和的2倍. 18.88【分析】观察不难发现,图表中的数据等于行数乘列数,然后确定出a 、b 所在的行数与列数,计算即可得解.【详解】解:∵12=3×4,18=3×6,∴a=3×5=15;∵7解析:88【解析】【分析】观察不难发现,图表中的数据等于行数乘列数,然后确定出a 、b 所在的行数与列数,计算即可得解.【详解】解:∵12=3×4,18=3×6,∴a=3×5=15;∵70=10×7,99=11×9,∴b=11×8=88,∴a 、b 的值分别为:15,88.故答案为15,88.【点睛】本题是对数字变化规律的考查,观察出图表中的数据等于行数乘列数是解题的关键.19.-【解析】【分析】根据Sn 数的变化找出Sn 的值每6个一循环,结合2018=336×6+2,即可得出S2018=S2,此题得解.【详解】解:S1=,S2=-S1-1=--1=-,S3==-,解析:-1a a【解析】【分析】 根据S n 数的变化找出S n 的值每6个一循环,结合2018=336×6+2,即可得出S 2018=S 2,此题得解.【详解】解:S 1=1a ,S 2=-S 1-1=-1a -1=-1a a +,S 3=21S =-1a a +,S 4=-S 3-1=1111a a a -=-++ ,541S S ==-(a+1),S 6=-S 5-1=(a+1)-1=a ,S 7=611S a = ,…, ∴S n 的值每6个一循环.∵2018=336×6+2,∴S 2018=S 2=-1a a+. 故答案为:-1a a +. 【点睛】此题考查规律型中数字的变化类,根据数值的变化找出S n 的值,每6个一循环是解题的关键.20.2024【解析】【分析】根据关于x 的一元一次方程的解,可以得到m 的值,把m 的值代入关于y 的方程式中,可以得到y 的解.【详解】∵的解为,∴,解得:,∴方程可化为,∴,∴,∴,解析:2024【解析】【分析】根据关于x 的一元一次方程的解,可以得到m 的值,把m 的值代入关于y 的方程式中,可以得到y 的解.【详解】 ∵520202020x x m +=+的解为2019x =, ∴52020120201920290m +=⨯+,解得:52020201920202019m =+-⨯, ∴方程552020(5)2020y y m --=--可化为 25052020(5)5202020192020202019y y --=---+⨯, ∴52020(5)20192020201920202020y y ---=-+⨯, ∴(2020)(5)2019(2020)2020202011y --=-⨯-, ∴52019y -=-, ∴2024y =,故答案为:2024.【点睛】本题考查了已知一元一次方程的解求参数,整体代换解一元一次方程,掌握整体代换的思想是解题的关键.21.【解析】【分析】先通过已知的计算得出乘方运算的规律,再根据乘法的结合律和交换律即可得.【详解】归纳类推得:则故答案为:.【点睛】本题考查了有理数的乘方、乘法的结合解析:5050a【解析】【分析】先通过已知的计算得出乘方运算的规律,再根据乘法的结合律和交换律即可得.【详解】112a a a a +⋅==2213a a a a a a a +⋅⋅=⋅==23235a a a a +⋅==35358a a a a +⋅==归纳类推得:m nm n a a a +⋅=则23499100a a a a a a ⋅⋅⋅⋅⋅⋅10029939849749525051()()()()()()a a a a a a a a a a a a =⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 101101101101101101a a a a a a =⋅⋅⋅⋅⋅⋅ 101101101101a ++++=10150a ⨯=5050a =故答案为:5050a .【点睛】 本题考查了有理数的乘方、乘法的结合律和交换律,依据已知计算等式,归纳出乘方运算的计算规律是解题关键.22.绳子的原长为144cm 或180cm .【解析】【分析】解:分两种情形讨论:(1)当点A 是绳子的对折点时,(2)当点B 是绳子的对折点时,分别求解即可.【详解】解:本题有两种情形:(1)当点A解析:绳子的原长为144cm 或180cm .【解析】【分析】解:分两种情形讨论:(1)当点A 是绳子的对折点时,(2)当点B 是绳子的对折点时,分别求解即可.【详解】解:本题有两种情形:(1)当点A 是绳子的对折点时,将绳子展开如图.∵AP :BP=4:5,剪断后的各段绳子中最长的一段为80cm ,∴2AP=80cm ,∴AP=40cm ,∴PB=50cm ,∴绳子的原长=2AB=2(AP+PB )=2×(40+50)=180(cm );(2)当点B 是绳子的对折点时,将绳子展开如图.∵AP :BP=4:5,剪断后的各段绳子中最长的一段为80cm ,∴2BP=80cm ,∴BP=40cm ,∴AP=32cm .∴绳子的原长=2AB=2(AP+BP )=2×(32+40)=144(cm ).综上,绳子的原长为144cm 或180cm .【点睛】本题主要考查了线段相关计算,和分类讨论的思想,懂得分类讨论,防止漏解是解决本题的关键.三、解答题23.(1)3;(2)5-;(3)1505;(4)41k -【解析】【分析】(1)将前4个数字相加可得;(2)根据“相邻四个台阶上数的和都相等”列出方程求解可得;(3)根据(1)中的结果和题目中的数据可以求得从下到上的前2018个台阶上标着的数的和;(4)由循环规律即可知“1”所在的台阶数为41k -.【详解】(1)由题意得前4个台阶上数的和是52193--++=;(2)由题意得2193x -+++=,解得:5x =-,则第5个台阶上的数x 是5-;(3)由题意知台阶上的数字是每4个一循环,∵2018÷4=504…2,∴5043521505⨯--=,即从下到上前2018个台阶上数的和为1505;(4)根据题意可知数“1”所在的台阶数为:41k -.【点睛】本题考查了探索规律-数字的变化类,解题的关键是根据相邻四个台阶上数的和都相等得出台阶上的数字是每4个一循环.24.(1)16-;(2)14-【解析】【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】(1)()()()()127530+--+--+()()127530=++-+- 1935=-16=-;(2)32201913(2)(2)2(1)184-⨯-÷--⨯-⨯+ 13(8)421184=-⨯-÷-⨯-⨯+ 13(8)42184=-⨯-÷-⨯-+ 14142=-⨯ 14=-. 【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.25.(1)6;(2)23CD m =. 【解析】【分析】(1) 把AC +BD =9代入AD +BC =75AB 得出75(9+CD )=2CD +9,求出方程的解即可. (2)把AC +BD =m 代入AD +BC =75AB 得出75(m +CD )=2CD +m ,求出方程的解即可. 【详解】解:(1)∵75AD BC AB +=,AB =AC +CD +BD +CD , AC +BD =9,AB =AC +BD +CD , ∴75(9+CD )=2CD +9, 解得CD=6(2)AC +BD =m ,AB =AC +BD +CD ,∴75(a +CD )=2CD +m ,解得:CD=23 m.【点睛】本题考查了两点间的距离,得出关于CD的方程是解此题的关键.26.(1)2x﹣14;(2)k=1.【解析】【分析】(1)将A与B代入4A-2B中,即可解题,(2)将A与B代入2A﹣kB中,找到所有二次项,让二次项的系数和为零即可解题.【详解】解:(1)原式=4(x2﹣2)﹣2(2 x2﹣x+3)=4 x2﹣8﹣4 x2+2x﹣6=2x﹣14(2)2A﹣kB=2(x2﹣2)﹣k(2 x2﹣x+3)=2 x2﹣4﹣2kx2+kx﹣3k∵2A﹣kB 中不含x2项,∴2﹣2k=0,∴k=1【点睛】本题考查了整式的化简求值,属于简单题,找到并理解x2项系数为零是解题关键.27.(1)22,14;(2)4n+2,2n+4;(3)第一种,见解析【解析】【分析】(1)旁边2人除外,每张桌可以坐4人,由此即可解决问题;旁边4人除外,每张桌可以坐2人,由此即可解决问题;(2)根据(1)中所得规律列式可得;(3)分别求出两种情形坐的人数,即可判断.【详解】(1)有5张桌子,用第一种摆设方式,可以坐5×4+2=22人;用第二种摆设方式,可以坐5×2+4=14人;(2)有n张桌子,用第一种摆设方式可以坐4n+2人;用第二种摆设方式,可以坐2n+4(用含有n的代数式表示);(3)选择第一种方式.理由如下;第一种方式:60张桌子一共可以坐60×4+2=242(人).第二种方式:60张桌子一共可以坐60×2+4=124(人).又242>200>124,所以选择第一种方式.【点睛】本题考查规律型−数字问题,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.28.(1)12;(2)5Px=;(3)1或113.【解析】【分析】(1)按照题目给的公式求解即可;(2)按照阅读理解写出用x P表示AP、BP的式子,列方程求解即可;(3)设点B的速度为每秒b个单位长度,则A的速度为每秒2b个单位长度.因为A、B 同时向右运动,故其表示的数加上速度时间的积即为新点表示的数.由于A的速度比B 快,有可能3秒后A到了B的右侧,MN的算法有改变,故需要分类讨论.【详解】解:(1)根据题意可得,341222A BCx xx+-+===.故答案为:12;(2)依题意得,x A<x B<x P,∴AP=x P-x A=x P+3,BP=x P-x B=x P-4,∵AP+BP=9,∴x P+3+x P-4=9.解得:x P=5.即点P表示的实数x P为5;(3)∵点M是AP的中点,点N是BP的中点∴x M=3522A Px x+-+==1,x N=459222B Px x++==.设B的运动速度为每秒b个单位长度,则A的运动速度为每秒2b个单位长度,3秒后,∴x B=4+3b,x A=-3+6b,∴x M=36522A Px x b+-++==1+3b,x N=43593222B Px x b b++++==,∵MN=|x N-x M|=2,①当点M在点N的左侧时,932b+−(1+3b)=2,解得:b=1;②当点M在点N的右侧时,(1+3b)-932b+=2,解得:b=113.∴点B的运动速度为每秒1个单位长度或每秒113个单位长度.故答案为:1或11 3.【点睛】本题考查了实数与数轴的一一对应关系,并按阅读信息理解运用两点间距离,中点坐标公式.要注意由于点运动速度不同导致位置不同引起的分类讨论.。

北师大版(完整版)七年级数学上册期末试卷及答案

北师大版(完整版)七年级数学上册期末试卷及答案

北师大版(完整版)七年级数学上册期末试卷及答案一、选择题1.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >02.下列各式中运算正确的是( )A .2222a a a +=B .220a b ab -=C .2(1)21a a -=-D .33323a a a -=3.有两个正数a ,b ,且a b <,把大于等于a 且小于等于b 所有数记作[a ,b ],例如大于等于1且小于等于4的所有数记作[1,4] .如果m 在[5,15]内,n 在[20,30]内,那么n m的一切值中属于整数的有( ) A .1,2,3,4,5B .2,3,4,5,6C .2,3,4D .4,5,64.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >05.a 是不为1的有理数,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,以此类推,则2019(a = ) A .3B .23C .12-D .无法确定6.点C 、D 在线段AB 上,若点C 是线段AD 的中点,2BD>AD ,则下列结论正确的是( ). A .CD<AD - BDB .AB>2BDC .BD>ADD .BC>AD7.求1+2+22+23+…+22019的值,可令S =1+2+22+23+…+22019,则2S =2+22+23+…+22019+22020因此2S -S =22020-1.仿照以上推理,计算出1+5+52+53+…+52019的值为( ) A .52019-1 B .52020-1C .2020514-D .2019514-8.小牧用60根长短相同的小木棍按照下图所示的方式,先连续摆出若干正方形,再摆出一些六边形,摆出的正方形和六边形一共有1个,要求所有的图形都摆在一行上,且相邻的图形只有一条公共边,同时没有木棍剩余.则t 可以取( )个不同的值.A .2B .3C .4D .59.按照如图所示的计算程序,若输入的x =﹣3,则输出的值为﹣1:若输入的x =3,则输出的结果为( )A .12B .112C .2D .310.按照如图所示的运算程序,若输入的x 的值为4,则输出的结果是( )A .21B .89C .261D .36111.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,按此规律排列下去第n 个图中黑色正方形纸片的张数为( ) ….A .4n+1B .3n+1C .3nD .2n+112.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第9个图形圆的个数为( )A .94B .85C .84D .76二、填空题13.若()221x y -++=0,则x+y=_____.14.一个角的余角是这个角的补角的三分之一,则这个角的度数是_____________ . 15.如图,若D 是AB 的中点,E 是BC 的中点,若AC =8,BC =5,则AD =______.16.数学小组对收集到的160个数据进行整理,并绘制出扇形图发现有一组数据所对应扇形的圆心角是72°,则该组的频数为______________________ 17.一个角的余角比这个角的12少30°,则这个角的度数是_____. 18.如图,点A ,B ,C ,D ,E ,F 都在同一直线上,点B 是线段AD 的中点,点E 是线段CF 的中点,有下列结论:①AE =12(AC +AF ),②BE =12AF ,③BE =12(AF ﹣CD ),④BC =12(AC ﹣CD ).其中正确的结论是_____(只填相应的序号).19.将图中的三角形纸片沿AB 折叠所得的AB 右边的图形的面积与原三角形面积之比为2:3,已知图中重叠部分的面积为5,则图中三个阴影部分的三角形的面积之和为_____.20.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由5个圆组成,第3个图由11个圆组成,…按照这样的规律排列下去,则第20个图形由_____个圆组成.21.一个角的补角是这个角的余角的3倍小20°,则这个角的度数是_______ 22.如图,已知圆柱体底面圆的半径为2π,高为2,AB ,CD 分别是两底面的直径.若一只小虫从A 点出发,沿圆柱侧面爬行到C 点,则小虫爬行的最短路线的长度是________(结果保留根号).三、解答题23.计算:(1)1108(2)()2--÷-⨯-; (2)2020313()12(1)468-+-⨯+-. 24.如图,点C 、D 为线段上两点,75AD BC AB +=(1)若9AC BD +=,求线段CD 的长.(2)若AC BD m+=,则线段CD等于(用含m的式子表示).25.已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.(1)求k的值;(2)在(1)的条件下,已知线段AB=6cm,点C是线段AB上一点,且BC=kAC,若点D 是AC的中点,求线段CD的长.(3)在(2)的条件下,已知点A所表示的数为﹣2,有一动点P从点A开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q从点B开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD=2QD?26.如图,数轴上点A,B表示的有理数分别为6-,3,点P是射线AB上的一个动点(不与点A,B重合),M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为________;若点P表示的有理数是6,那么MN的长为________;(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.27.如图,两条直线AB、CD相交于点O,且∠AOC=∠AOD,射线OM(与射线OB重合)绕O点逆时针方向旋转,速度为15°/s,射线ON(与射线OD重合)绕O点顺时值方向旋转,速度为12°/s,两射线,同时运动,运动时间为t秒(本题出现的角均指小于平角的角)(1)图中一定有______个直角;当t=2时,∠MON的度数为_____,∠BON的度数为_____,∠MOC的度数为_____;(2)当0<t<12时,若∠AOM=3∠AON-60°,试求出t的值.(3)当0<t<6时,探究72COM BONMON∠+∠∠的值,在t满足怎样的条件是定值,在t满足怎样的条件不是定值.28.问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|;(应用):(1)若点A(﹣1,1)、B(2,1),则AB∥x轴,AB的长度为.(2)若点C(1,0),且CD∥y轴,且CD=2,则点D的坐标为.(拓展):我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)已知E(2,0),若F(﹣1,﹣2),求d(E,F);(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,求t的值;(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,求d(P,Q).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.2.A解析:A 【解析】 【分析】各项计算得到结果,即可作出判断. 【详解】A 、2222a a a +=,符合题意;B 、2a b 和2ab 不是同类项,不能合并,不符合题意;C 、2(1)22a a -=-,不符合题意;D 、33323a a a -=-,不符合题意, 故选:A . 【点睛】本题考查了整式的加减,熟练掌握运算法则是解本题的关键.3.B解析:B 【解析】 【分析】根据m 在[5,15]内,n 在[20,30]内,可得n m 的一切值中属于整数的有2010,248,205,255,305,依此即可求解. 【详解】∵m 在[5,15]内,n 在[20,30]内, ∴5≤m ≤15,20≤n ≤30, ∴n m 的一切值中属于整数的有20210=,2438=,2045=,2555=,3065=, 综上,那么nm的一切值中属于整数的有2,3,4,5,6. 故选:B . 【点睛】本题考查了有理数、整数,关键是得到5≤m ≤15,20≤n ≤30.4.C解析:C 【解析】 【分析】先根据数轴判定a 、b 、a+b 、a-b 的正负,然后进行判定即可. 【详解】 解:由数轴可得,b<﹣2<0<a<2,∴a+b<0,故选项A错误,|b|>|a|,故选项B错误,a﹣b>0,故选项C正确,a•b<0,故选项D错误,故答案为C.【点睛】本题考查了数轴的应用、绝对值、正数和负数的相关知识,解题的关键在于根据数轴判定字母和代数式的正负.5.B解析:B【解析】【分析】根据规则计算出a2、a3、a4,即可发现每3个数为一个循环,然后用2019除以3,即可得出答案.【详解】解:由题意可得,13a=,211 132a==--,31213 1()2a==--,413213a==-,⋯,由上可得,每三个数一个循环,2019÷3=673,20192 3a∴=,故选:B.【点睛】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a2、a3、a4找出数字变化的规律.6.D解析:D【解析】【分析】根据点C是线段AD的中点,可得AD=2AC=2CD,再根据2BD>AD,可得BD> AC= CD,再根据线段的和差,逐一进行判即可.【详解】∵点C是线段AD的中点,∴AD=2AC=2CD,∵2BD>AD,∴BD> AC= CD,A. CD=AD-AC> AD- BD,该选项错误;B. 由A得AD- BD< CD,则AD<BD+CD=BC,则AB=AD+BD< BC+ BD<2BD,该选项错误;C.由B得 AB<2BD ,则BD+AD<2BD,则AD<BD,该选项错误;D. 由A得AD- BD< CD,则AD<BD+CD=BC, 该选项正确故选D.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.7.C解析:C【解析】【分析】根据题目信息,设S=1+5+52+53+…+52019,表示出5S=5+52+53+…+52020,然后相减求出S即可.【详解】根据题意,设S=1+5+52+53+…52019,则5S=5+52+53+…52020,5S-S=(5+52+53+…52020)-(1+5+52+53+…52019),4S=52020-1,所以,1+5+52+53+…+52019 =2020 514-故选C.【点睛】本题考查了有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.8.C解析:C【解析】【分析】由题意可知:摆a个正方形需要4+3(a-1)=3a+1根小木棍;摆b个六边形需要6+5(b-1)=5b+1根小木棍;由此得到方程3a+1+5b+1-1=60,再确定正整数解的个数即可求得答案.【详解】设摆出的正方形有a个,摆出的六边形有b个,依题意有3a+1+5b+1-1=60,3a+5b=59,当a=3时,b=10,t=13;当a=8时,b=7,t=15;当a=13时,b=4,t=17;当a=18时,b=1,t=19.故t可以取4个不同的值.故选:C.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.9.D解析:D【解析】【分析】直接利用已知代入得出b的值,进而求出输入﹣3时,得出y的值.【详解】∵当输入x的值是﹣3,输出y的值是﹣1,∴﹣1=32b -+,解得:b=1,故输入x的值是3时,y=2331⨯-=3.故选:D.【点睛】本题主要考查了代数式求值,正确得出b的值是解题关键.10.D解析:D【解析】【分析】首先把输入的x的值乘4,求出积是多少;然后用所得的积加上5,判断出和是多少,依此类推,直到输出的结果不小于100为止.【详解】解:4×4+5=16+5=21,21<100,21×4+5=84+5=89,89<100,89×4+5=356+5=361,∴输出的结果是361.故选:D.【点睛】此题主要考查了代数式求值,以及有理数的混合运算.熟练掌握代数式求值的方法,以及有理数的混合运算的法则是解题的关键.11.D解析:D【解析】【分析】根据图形的规律可知,从第二个图形开始,每个图形中的黑色正方形纸片数比前一个图形多2个,由此可推出结果.【详解】第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,依次类推,第n个图中黑色正方形纸片的张数为2n+1,故选:D.【点睛】本题考查了图形的规律,代数式表示图形的个数,掌握图形的规律是解题的关键.12.A解析:A【解析】【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;可以推出第n 个图形中小圆的个数为n (n+1) +4.将9代入即可.【详解】第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,因为6= 4+1×2,10=4+2×3,16=4+3×4,24=4+4×5...,所以第n 个图形中小圆的个数为4+n (n+1)所以第9个图形有: 4 +9×10=94个小圆,故选: A【点睛】本题是一道找规律题,利用题目中给出的条件观察计算的出关于第n个图形的代数表达式将所求的代入.二、填空题13.1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x+y=2+(-1)=解析:1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x+y=2+(-1)=2-1=1.故答案为1.【点睛】本题考查算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.14.45°【解析】【分析】设这个角的度数为x°,分别表示出这个角的余角和补角,根据题意列出方程,即可求解.【详解】解:设这个角的度数为x°,则这个角的余角为(90-x)°、补角为(180-x)解析:45°【解析】【分析】设这个角的度数为x°,分别表示出这个角的余角和补角,根据题意列出方程,即可求解.【详解】解:设这个角的度数为x°,则这个角的余角为(90-x)°、补角为(180-x)°,根据题意可得:90-x=13(180-x)解得:x=45故答案为:45°【点睛】本题考查余角和补角,属于基础题,解题的关键是掌握互余的两角之和为90°,互补的两角之和为180°.15.5【解析】【分析】根据AC=8,BC=5得出BC的长,再由D是AB的中点,即可求出AD的长.【详解】∵AC=8,BC=5,∴AB= AC-BC=3,又∵D是AB的中点,∴AD=1.5,故答解析:5【解析】【分析】根据AC=8,BC=5得出BC的长,再由D是AB的中点,即可求出AD的长.【详解】∵AC=8,BC=5,∴AB= AC-BC=3,又∵D是AB的中点,∴AD=1.5,故答案为1.5.【点睛】此题主要考查了两点之间的距离以及线段中点的性质,根据已知得出AB,的长是解题关键.16.32【解析】【分析】该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数,设该组频数为x,根据圆心角度数的计算公式求解.【详解】设该组频数为x,,x=32,故答案为:32.解析:32【解析】【分析】该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数,设该组频数为x,根据圆心角度数的计算公式求解.【详解】设该组频数为x,36072160x ⨯=, x=32,故答案为:32.【点睛】此题考查圆心角度数的计算公式,正确掌握计算公式是解题的关键.17.80°【解析】【分析】设这个角为x ,则它的余角是90°-x ,列方程求解即可.【详解】解:设这个角为x ,则它的余角是90°﹣x ,由题意,得:90°﹣x =x ﹣30°,解得:x =80°.即解析:80°【解析】【分析】设这个角为x ,则它的余角是90°-x ,列方程求解即可.【详解】解:设这个角为x ,则它的余角是90°﹣x ,由题意,得:90°﹣x =12x ﹣30°, 解得:x =80°.即这个角的度数是80°.故答案为:80°.【点睛】本题考查了余角的知识,掌握互余的两角之和为90°是解题关键. 18.① ③ ④【解析】【分析】根据线段的关系和中点的定义,得到AB=BD=,CE=EF=,再根据线段和与查的计算方法逐一推导即可.【详解】∵点是线段的中点,点是线段的中点,∴AB=BD=,C解析:① ③ ④【解析】【分析】根据线段的关系和中点的定义,得到AB=BD=12AD ,CE=EF=12CF ,再根据线段和与查的计算方法逐一推导即可.【详解】∵点B 是线段AD 的中点,点E 是线段CF 的中点,∴AB=BD=12AD ,CE=EF=12CF ()()()()()()1211122211222112212AE AB BEAD BD CE CD AD AD CF CD AC CD AD CF CD AC CD AF CD AC CD AF CD =+=++-⎛⎫=++- ⎪⎝⎭=+++-=++-=++- ()12AC AF =+,故①正确; ()()11221212BE BD DE BD CE CDAD CF CD AD CF CD AF CD CD =+=+-=+-=+-=+- ()12AF CD =-,故②错误,③正确; ()1212BC BD CDAD CD AC CD CD =-=-=+- ()12AC CD =-,④正确 故答案为①③④.【点睛】此题考查的是线段的和与差,掌握各个线段之间的关系和中点的定义是解决此题的关键.19.5【解析】【分析】设图中三个阴影部分的三角形的面积之和为y,可得AB右边的图形的面积=5+y,原三角形面积=2×5+y=10+y,由题意列出方程可求解.【详解】设图中三个阴影部分的三角形的解析:5【解析】【分析】设图中三个阴影部分的三角形的面积之和为y,可得AB右边的图形的面积=5+y,原三角形面积=2×5+y=10+y,由题意列出方程可求解.【详解】设图中三个阴影部分的三角形的面积之和为y,则AB右边的图形的面积=5+y,原三角形面积=2×5+y=10+y,由题意可得:(5+y):(10+y)=2:3,∴y=5,故答案为:5.20.【解析】【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】解:根据图形的变化,发现第n个图形的最上边的一排是1个圆,第二排是2个圆,第三排是3个圆,…,第n排是n个圆;则第n个解析:【解析】【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】解:根据图形的变化,发现第n个图形的最上边的一排是1个圆,第二排是2个圆,第三排是3个圆,…,第n排是n个圆;则第n个图形的圆的个数是:2(1+2+…n﹣1)+(2n﹣1)=n2+n﹣1.当n=20时,202+20﹣1=419,故答案为:419.【点睛】本题考查图形的变化类问题,重点考查了学生通过观察、归纳、抽象出数列的规律的能力,难度不大.21.【解析】【分析】设这个角的度数为x,分别表示出这个角的补角和余角,即可列出方程解答. 【详解】设这个角的度数为x,,.故答案为: .【点睛】此题考查角的余角和补角定义及计算,设出所解析:35︒【解析】【分析】设这个角的度数为x,分别表示出这个角的补角和余角,即可列出方程解答.【详解】设这个角的度数为x,︒-=︒--︒,x x1803(90)20x=︒.35故答案为:35︒.【点睛】此题考查角的余角和补角定义及计算,设出所求的角,表示出其补角和余角,才好列式进行计算.22.【解析】【分析】将圆柱体的侧面沿AD展开是长方形,并找到长方形长的中点C,连接AC,线段A C的长度即为所求路径的长度.【详解】将圆柱体的侧面沿剪开并铺平,得长方形,取的中点C,连接,根据两解析:【解析】【分析】将圆柱体的侧面沿AD展开是长方形''AA D D,并找到长方形长'D D的中点C,连接AC,线段AC 的长度即为所求路径的长度.【详解】将圆柱体的侧面沿AD 剪开并铺平,得长方形''AA D D ,取'D D 的中点C ,连接AC ,根据两点之间线段最短可得线段AC 就是小虫爬行的最短路线,如图:根据题意得212π2π2AB =⨯⨯=. 在Rt ABC ∆中,由勾股定理得22222228AC AB BC =+=+=, ∴822AC 故答案为:2【点睛】考查最短路径的问题,学生要掌握圆柱体的侧面张开图是长方形,并且理解两点之间线段最短这一基本事实是本道题解题的关键.三、解答题23.(1)12-;(2)212-. 【解析】【分析】(1)有理数的混合运算,先做乘除,然后做加减;(2)有理数的混合运算,先做乘方,然后根据乘法分配律做乘法使得运算简便,最后做加减.【详解】解:(1)1108(2)()2--÷-⨯-= 1110822--⨯⨯=102--=12-(2)2020313()12(1)468-+-⨯+- =3131212121468-⨯+⨯-⨯+=9 9212-+-+=21 2 -【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则及运用乘法分配律使得计算简便是本题的解题关键.24.(1)6;(2)23CD m=.【解析】【分析】(1) 把AC+BD=9代入AD+BC=75AB得出75(9+CD)=2CD+9,求出方程的解即可.(2)把AC+BD=m代入AD+BC=75AB得出75(m+CD)=2CD+m,求出方程的解即可.【详解】解:(1)∵75AD BC AB+=,AB=AC+CD+BD+CD,AC+BD=9,AB=AC+BD+CD,∴75(9+CD)=2CD+9,解得CD=6(2)AC+BD=m,AB=AC+BD+CD,∴75(a+CD)=2CD+m,解得:CD=23 m.【点睛】本题考查了两点间的距离,得出关于CD的方程是解此题的关键.25.(1)2;(2)1cm;(3)910秒或116秒【解析】【分析】(1)将x=﹣3代入原方程即可求解;(2)根据题意作出示意图,点C为线段AB上靠近A点的三等分点,根据线段的和与差关系即可求解;(3)求出D和B表示的数,然后设经过x秒后有PD=2QD,用x表示P和Q表示的数,然后分两种情况①当点D在PQ之间时,②当点Q在PD之间时讨论即可求解.【详解】(1)把x=﹣3代入方程(k+3)x+2=3x﹣2k得:﹣3(k+3)+2=﹣9﹣2k,解得:k=2;故k =2;(2)当C 在线段AB 上时,如图,当k =2时,BC =2AC ,AB =6cm ,∴AC =2cm ,BC =4cm ,∵D 为AC 的中点,∴CD =12AC =1cm . 即线段CD 的长为1cm ;(3)在(2)的条件下,∵点A 所表示的数为﹣2,AD =CD =1,AB =6,∴D 点表示的数为﹣1,B 点表示的数为4.设经过x 秒时,有PD =2QD ,则此时P 与Q 在数轴上表示的数分别是﹣2﹣2x ,4﹣4x . 分两种情况:①当点D 在PQ 之间时,∵PD =2QD ,∴()()1222441x x ⎡⎤---=---⎣⎦,解得x =910 ②当点Q 在PD 之间时,∵PD =2QD ,∴()()1222144x x ⎡⎤----=---⎣⎦,解得x =116. 答:当时间为910或116秒时,有PD =2QD . 【点睛】本题考查了方程的解,线段的和与差,数轴上的动点问题,一元一次方程与几何问题,分情况讨论是本题的关键.26.(1)6;6;(2)不发生改变,MN 为定值6,过程见解析【解析】【分析】(1)由点P 表示的有理数可得出AP 、BP 的长度,根据三等分点的定义可得出MP 、NP 的长度,再由MN=MP+NP (或MN=MP-NP ),即可求出MN 的长度;(2)分-6<a <3及a >3两种情况考虑,由点P 表示的有理数可得出AP 、BP 的长度(用含字母a 的代数式表示),根据三等分点的定义可得出MP 、NP 的长度(用含字母a 的代数式表示),再由MN=MP+NP (或MN=MP-NP ),即可求出MN=6为固定值.【详解】解:(1)若点P 表示的有理数是0(如图1),则AP=6,BP=3.∵M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.∴MP=23AP=4,NP=23BP=2, ∴MN=MP+NP=6; 若点P 表示的有理数是6(如图2),则AP=12,BP=3.∵M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.∴MP=23AP=8,NP=23BP=2, ∴MN=MP-NP=6.故答案为:6;6.(2)MN 的长不会发生改变,理由如下:设点P 表示的有理数是a (a >-6且a≠3).当-6<a <3时(如图1),AP=a+6,BP=3-a .∵M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(3-a ), ∴MN=MP+NP=6; 当a >3时(如图2),AP=a+6,BP=a-3. ∵M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(a-3), ∴MN=MP-NP=6. 综上所述:点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长为定值6.【点睛】本题考查了两点间的距离,解题的关键是:(1)根据三点分点的定义找出MP 、NP 的长度;(2)分-6<a <3及a >3两种情况找出MP 、NP 的长度(用含字母a 的代数式表示). 27.(1)4;144°,114°,60°;(2)107s 或10s ;(3),当0<t <103时,72COM BON MON ∠+∠∠的值不是定值,当103<t <6时,72COM BON MON∠+∠∠的值是3 【解析】【分析】(1)根据两条直线AB ,CD 相交于点O ,∠AOC=∠AOD ,可得图中一定有4个直角;当t=2时,根据射线OM ,ON 的位置,可得∠MON 的度数,∠BON 的度数以及∠MOC 的度数;(2)分两种情况进行讨论:当0<t≤7.5时,当7.5<t <12时,分别根据∠AOM=3∠AON-60°,列出方程式进行求解,即可得到t的值;(3)先判断当∠MON为平角时t的值,再以此分两种情况讨论:当0<t<103时,当103<t<6时,分别计算72COM BONMON∠+∠∠的值,根据结果作出判断即可.【详解】解:(1)如图所示,∵两条直线AB,CD相交于点O,∠AOC=∠AOD,∴∠AOC=∠AOD=90°,∴∠BOC=∠BOD=90°,∴图中一定有4个直角;当t=2时,∠BOM=30°,∠NON=24°,∴∠MON=30°+90°+24°=144°,∠BON=90°+24°=114°,∠MOC=90°-30°=60°;故答案为:4;144°,114°,60°;(2)当ON与OA重合时,t=90÷12=7.5(s),当OM与OA重合时,t=180°÷15=12(s),如图所示,当0<t≤7.5时,∠AON=90°-12t°,∠AOM=180°-15t°,由∠AOM=3∠AON-60°,可得180°-15t°=3(90°-12t°)-60°,解得t=107;如图所示,当7.5<t<12时,∠AON=12t°-90°,∠AOM=180°-15t°,由∠AOM=3∠AON-60°,可得180°-15t°=3(12t°-90°)-60°,解得t=10;综上所述,当∠AOM=3∠AON-60°时,t的值为10 7s或10s;(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t°+90°+12t°=180°,解得t=103,①如图所示,当0<t<103时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°,∴72COM BONMON∠+∠∠=()()7901529012159012t tt t︒︒︒︒︒︒︒-++++=810812790tt︒︒︒-+(不是定值),②如图所示,当103<t<6时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=360°-(∠BOM+∠BOD+∠DON)=360°-(15t°+90°+12t°)=270°-27t°, ∴72COM BON MON ∠+∠∠=()()790152901227027t t t ︒︒︒︒︒︒-++- =8108127027t t ︒︒︒︒--=3(定值), 综上所述,当0<t <103时,72COM BON MON ∠+∠∠的值不是定值,当103<t <6时,72COM BON MON∠+∠∠的值是3. 【点睛】本题属于角的计算综合题,主要考查了角的和差关系的运用,解决问题的关键是将相关的角用含t 的代数式表示出来,并根据题意列出方程进行求解,以及进行分类讨论,解题时注意方程思想和分类思想的灵活运用.28.【应用】:(1)3;(2)(1,2)或(1,﹣2);【拓展】:(1)5;(2)t =±2;(3)d (P ,Q )的值为4或8.【解析】【分析】(1)根据若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1-x 2|,代入数据即可得出结论; (2)由CD ∥y 轴,可设点D 的坐标为(1,m ),根据CD=2即可得出|0-m|=2,解之即可得出结论;【拓展】:(1)根据两点之间的折线距离公式,代入数据即可得出结论;(2)根据两点之间的折线距离公式结合d (E ,H )=3,即可得出关于t 的含绝对值符号的一元一次方程,解之即可得出结论;(3)由点Q 在x 轴上,可设点Q 的坐标为(x ,0),根据三角形的面积公式结合三角形OPQ 的面积为3即可求出x 的值,再利用两点之间的折线距离公式即可得出结论.【详解】解:【应用】:(1)AB 的长度为|﹣1﹣2|=3.故答案为:3.(2)由CD ∥y 轴,可设点D 的坐标为(1,m ),∵CD=2,∴|0﹣m|=2,解得:m=±2,∴点D的坐标为(1,2)或(1,﹣2).【拓展】:(1)d(E,F)=|2﹣(﹣1)|+|0﹣(﹣2)|=5.故答案为:5.(2)∵E(2,0),H(1,t),d(E,H)=3,∴|2﹣1|+|0﹣t|=3,解得:t=±2.(3)由点Q在x轴上,可设点Q的坐标为(x,0),∵三角形OPQ的面积为3,∴1|x|×3=3,解得:x=±2.2当点Q的坐标为(2,0)时,d(P,Q)=|3﹣2|+|3﹣0|=4;当点Q的坐标为(﹣2,0)时,d(P,Q)=|3﹣(﹣2)|+|3﹣0|=8综上所述,d(P,Q)的值为4或8.【点睛】本题考查了两点间的距离公式,读懂题意并熟练运用两点间的距离及两点之间的折线距离公式是解题的关键.。

北师大版(完整版)七年级数学上册期末试卷及答案doc

北师大版(完整版)七年级数学上册期末试卷及答案doc

北师大版(完整版)七年级数学上册期末试卷及答案doc一、选择题1.已知线段AB=m ,BC=n ,且m 2﹣mn=28,mn ﹣n 2=12,则m 2﹣2mn+n 2等于( ) A .49B .40C .16D .92.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第9个图形圆的个数为( )A .94B .85C .84D .763.已知a ,b ,c 为有理数,且0a b c ++=,0abc <,则a b ca b c++的值为( ) A .1B .1-或3-C .1或3-D .1-或34.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,按此规律排列下去第n 个图中黑色正方形纸片的张数为( ) ….A .4n+1B .3n+1C .3nD .2n+15.对于一个自然数n ,如果能找到正整数x 、y ,使得n x y xy =++,则称n 为“好数”.例如:31111=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有( )个 A .1B .2C .3D .46.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“我”相对面上所写的汉字是( )A .美B .丽C .琼D .海7.如图,若已知七巧板拼图中的平行四边形的面积为2,则图中,最大正方形面积为( )A .8B .10C .16D .328.有理数,a b 在数轴上的位置如图所示,则下列结论正确的是( )A .0a b +>B .0a b -<C .b a >D .0ab <9.如果有理数,a b ,满足0,0ab a b >+<,则下列说法正确的是( ) A .0,0a b >>B .0,0a b <>C .0,0a b <<D .0,0a b >< 10.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y - B .1019x y +C .1021x y -D .1017x y -11.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5 B .6C .7D .812.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .413.下列运算正确的是( ) A .()a b c a b c -+=-+ B .2(1)21x y x y --=-+ C .22223m n nm m n -=-D .532x x -=14.“幻方”在中国古代称为“河图”、“洛书”,又叫“纵横图”.其主要性质是在一个由若干个排列整齐的数组成的正方形中,图中任意一横行,一纵行及对角线的几个数之和都相等.图(l )所示是一个33⨯幻方.有人建议向火星发射如图(2)所示的幻方图案,如果火星上有智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).图(3)是一个未完成的33⨯幻方,请你类比图(l )推算图(3)中P 处所对应的数字是( )A .1B .2C .3D .415.若式子()222mx 2x 83x nx -+--的值与x 无关,n m 是( ) A .49B .32C .54D .9416.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有( )A .1个B .2个C .3个D .4个17.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+18.求1+2+22+23+…+22019的值,可令S =1+2+22+23+…+22019,则2S =2+22+23+…+22019+22020因此2S -S =22020-1.仿照以上推理,计算出1+5+52+53+…+52019的值为( ) A .52019-1 B .52020-1C .2020514-D .2019514-19.已知a ,b 是有理数,若表示它们的点在数轴上的位置如图所示,则|a |–|b |的值为( )A .零B .非负数C .正数D .负数 20.在上午八点半钟的时候,时针和分针所夹的角度是( ) A .85° B .75° C .65°D .55°21.下列方程中,属于一元一次方程的是( ).A .23x y +=B .21x >C .720222020x +=D .241x =22.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n,则n ( )A.9 B.11 C.13 D.1523.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=2020,a7=-2018,a98=-1,且满足任意相邻三个数的和为常数,则a1+a2+a3+…+a98+a99+a100的值为( ) A.1985 B.-1985 C.2019 D.-201924.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是()A.中B.国C.梦D.强25.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是()A.a﹣b>0 B.a+b>0 C.ba>0 D.ab>026.如图所示是一个自行设计的计算程序,若输入x的值为1,那么执行此程序后,输出的数y是()A.﹣2 B.2 C.3 D.427.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是()A.男女生5月份的平均成绩一样B.4月到6月,女生平均成绩一直在进步C.4月到5月,女生平均成绩的增长率约为8.5%D.5月到6月女生平均成绩比4月到5月的平均成绩增长快28.方程114xx--=-去分母正确的是().A.x-1-x=-1 B.4x-1-x=-4 C.4x-1+x=-4 D.4x-1+x=-1 29.以下问题,不适合抽样调查的是()A.了解全市中小学生的每天的零花钱B.旅客上高铁列车前的安检C.调查某批次汽车的抗撞击能力D.调查某池塘中草鱼的数量30.如图,在数轴上,若A、B、C三点表示的数为a、b、c,则下列结论正确的是()A.c>a>b B.1b>1cC.|a|<|b| D.abc>0【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】将两个式子相减后即可求解.【详解】两式相减得:m2﹣mn-mn+ n2=28-12,即 m2﹣2mn+n2=16,故选C.【点睛】本题考查了整式加减的应用,正确进行整式的加减是解题的关键..2.A解析:A 【解析】 【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;可以推出第n 个图形中小圆的个数为n (n+1) +4.将9代入即可. 【详解】第1个图形有6个小圆, 第2个图形有10个小圆, 第3个图形有16个小圆, 第4个图形有24个小圆,因为6= 4+1×2,10=4+2×3,16=4+3×4,24=4+4×5..., 所以第n 个图形中小圆的个数为4+n (n+1) 所以第9个图形有: 4 +9×10=94个小圆, 故选: A 【点睛】本题是一道找规律题,利用题目中给出的条件观察计算的出关于第n 个图形的代数表达式将所求的代入.3.A解析:A 【解析】 【分析】先根据有理数的乘法法则推出:要使三个数的乘积为负,a ,b ,c 中应有奇数个负数,进而可将a ,b ,c 的符号分两种情况:1负2正或3负;再根据加法法则:要使三个数的和为0,a ,b ,c 的符号只能为1负2正,然后化简即得. 【详解】 ∵0abc <∴a ,b ,c 中应有奇数个负数∴a ,b ,c 的符号可以为:1负2正或3负 ∵0a b c ++=∴a ,b ,c 的符号为1负2正 令0a <,0b >,0c > ∴a a =-,b b =,c c =∴a b c a b c ++1111=-++= 故选:A .【点睛】本题考查了绝对值的性质、乘法法则及加法法则,利用加法法则和乘法法则确定数的符号是解题关键.4.D解析:D【解析】【分析】根据图形的规律可知,从第二个图形开始,每个图形中的黑色正方形纸片数比前一个图形多2个,由此可推出结果.【详解】第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,依次类推,第n个图中黑色正方形纸片的张数为2n+1,故选:D.【点睛】本题考查了图形的规律,代数式表示图形的个数,掌握图形的规律是解题的关键.5.C解析:C【解析】【分析】根据题意,由n=x+y+xy,可得n+1=x+y+xy+1,所以n+1=(x+1)(y+1),因此如果n+1是合数,则n是“好数”,据此判断即可.【详解】根据分析,∵8=2+2+2×2,∴8是好数;∵9=1+4+1×4,∴9是好数;∵10+1=11,11是一个质数,∴10不是好数;∵11=2+3+2×3,∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11.故选C.【点睛】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n+1是合数,则n是“好数”.6.B解析:B【解析】【分析】利用正方体及其表面展开图的特点解题即可.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“爱”与面“琼”相对,面“海”与面“美”相对,面“我”与面“丽”相对;故选:B.【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手、分析及解答问题.7.C解析:C【解析】【分析】根据七巧板的性质,分别计算出每一块图形的面积,最后再求和即可.【详解】由题意可知,6号的面积为:2,则1号的面积为:1,2号的面积为:2,3号的面积为:2,4号的面积为:4,5号的面积为:1,7号的面积为:4,++++++=.所以最大正方形面积为:122412416故选C.【点睛】本题考查了七巧板拼图,计算出每一块图形的面积是解题的关键.8.B解析:B【分析】先根据点在数轴上的位置,判断出a、b的正负,然后再比较出a、b的大小,最后结合选项进行判断即可.【详解】解:由点在数轴上的位置可知:a<0,b<0,|a|>|b|,A、∵a<0,b<0,∴a+b<0,故A错误;B、∵a<b,∴a-b<0,故B正确;C、|a|>|b|,故C错误;D、ab>0,故D错误.故选:B.【点睛】本题主要考查的是绝对值、数轴、有理数的加法、减法、乘法运算,掌握运算法则是解题的关键.9.C解析:C【解析】【分析】此题首先利用同号两数相乘得正判定a,b同号,然后根据同号两数相加,符号取原来加数的符号.即可判定a,b的符号.【详解】解:∵ab>0,∴a,b同号,∵a+b<0,∴a<0,b<0.故选:C.【点睛】此题比较简单,主要利用了有理数的加法法则和乘法法则解决问题.10.A解析:A【解析】【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【详解】多项式的第一项依次是x,x2,x3,x4,…,x n,第二项依次是y,-y3,y5,-y7,…,(-1)n+1y2n-1,所以第10个式子即当n=10时,代入到得到x n+(-1)n+1y2n-1=x10-y19.【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.11.B解析:B【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵-2a m b2与12a5b n+1是同类项,∴m=5,n+1=2,解得:m=1,∴m+n=6.故选B.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.12.C解析:C【解析】【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.13.C解析:C【解析】【分析】分别判断各选项是否正确.A 中,a b +c a b c -=--(),错误;B 中,2(1)22x y x y --=-+,错误;C 中,22223m n nm m n -=-,正确;D 中,532x x x -=,错误故选:C .【点睛】本题考查整式的加减法,需要注意合并同类项时,仅是系数的加减.14.B解析:B【解析】【分析】设第1列第3行的数字为x,P 处对应的数字为p,根据每一横行、每一竖列以及斜对角线上的点数的和相等,可得x+1+(-2)=x +(-3)+p ,可得P 处数字.【详解】解:设第1列第3行的数字为x,P 处对应的数字为p,根据题意得,x+(-2)+1=x+(-3)+p ,解得p=2,故选:B .【点睛】本题通过九方格考查了有理数的加法.九方格题目趣味性较强,本题的关键是找准每一横行、每一竖列以及两条斜对角线上的数字的和相等,据此列方程求解.15.D解析:D【解析】【分析】直接利用去括号法则化简,再利用合并同类项法则计算得出答案.【详解】解:∵式子2mx 2-2x+8-(3x 2-nx )的值与x 无关,∴2m-3=0,-2+n=0,解得:m=32,n=2, 故m n =(32)2= 94. 故选D .【点睛】此题主要考查了合并同类项,去括号,正确得出m ,n 的值是解题关键. 16.B解析:B【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确; ②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误; ④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B .【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.17.D解析:D【解析】【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解.【详解】等式两边同乘4得:2(1)4(3)x x -=-+,故选:D.【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.18.C解析:C【解析】【分析】根据题目信息,设S=1+5+52+53+…+52019,表示出5S=5+52+53+…+52020,然后相减求出S 即可.【详解】根据题意,设S=1+5+52+53+…52019,则5S=5+52+53+…52020,5S-S=(5+52+53+…52020)-(1+5+52+53+…52019),4S=52020-1,所以,1+5+52+53+…+52019 =2020514- 故选C .【点睛】本题考查了有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.19.D解析:D【解析】【分析】本题根据a 、b 在数轴上的位置判定其绝对值大小,继而作差可直接得出答案.【详解】由已知得:a 离数轴原点的距离相对于b 更近,可知a <b , 故:0a b -<,即其差值为负数;故选:D .【点睛】本题考查根据数轴上点的位置判别式子正负,解题关键在于对数轴相关概念与性质的理解,比较大小注意细心即可.20.B解析:B【解析】【分析】根据钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:如图,上午八点半钟时,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午八点半钟的时候,时钟的时针和分针所夹的角度是2.5×30°=75°.故选:B .【点睛】本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.21.C解析:C【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b 是常数且a≠0).【详解】解:A、含有两个未知数,不是一元一次方程,选项错误;B、不是方程是不等式,选项错误;C、符合一元一次方程定义,是一元一次方程,正确;D、未知项的最高次数为2,不是一元一次方程,选项错误.故选:C.【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.22.B解析:B【解析】【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n=1,n=2和n=3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可.【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况,当盘子数量n=1时,游戏结束需要移动的最少次数为1;当盘子数量n=2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n=3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n=2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n=2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11,故选B.【点睛】本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.23.B解析:B【解析】【分析】根据任意相邻三个数的和为常数列出求出a1=a4,a2=a5,a3=a6,从而得到每三个数为一个循环组依次循环,再求出a100=a1,然后分组相加即可得解.【详解】解:∵任意相邻三个数的和为常数,∴a1+a2+a3=a2+a3+a4,a2+a3+a4=a3+a4+a5,a 3+a 4+a 5=a 4+a 5+a 6,∴a 1=a 4,a 2=a 5,a 3=a 6,∴原式为每三个数一个循环;∵a 3=2020,a 7=-2018,a 98=-1,∵732÷=…1,98332÷=…2,∴a 1= a 7=-2018,a 2=a 98=-1,∴a 1+a 2+a 3=-2018-1+2020=1;∵100333÷=…1,∴a 100=a 1=-2018;∴a 1+a 2+a 3+…+a 98+a 99+a 100=(a 1+a 2+a 3)+…+(a 97+a 98+a 99)+a 100=133********⨯-=-;故选择:B.【点睛】本题是对数字变化规律的考查,求出每三个数为一个循环组依次循环是解题的关键,也是本题的难点.24.B解析:B【解析】【分析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.【详解】解:由图1可得,“中”和第三行的“国”相对;第二行“国”和“强”相对;“梦”和“梦”相对;由图2可得,此时小正方体朝下面的字即为“中”的相对面对应的字,即为“国”. 故选:B .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.25.A解析:A【解析】【分析】根据数轴判断出a 、b 的正负情况以及绝对值的大小,再根据有理数的加减法法则以及乘除法法则对各选项分析判断后利用排除法求解.【详解】由图可知,b <0,a >0,且|b|>|a|,A 、a -b >0,故本选项符合题意;B 、a +b <0,故本选项不合题意;C、ba<0,故本选项不合题意;D、ab<0,故本选项不合题意.故选:A.【点睛】本题考查了数轴,熟练掌握数轴的特点并判断出a、b的正负情况以及绝对值的大小是解题的关键.26.D解析:D【解析】【分析】按照程序的流程,写出前几次循环的结果,并同时判断各个结果是否满足判断框中的条件,直到满足条件,执行输出y.【详解】解:由已知计算程序可得到代数式:2x2﹣4,当x=1时,2x2﹣4=2×12﹣4=﹣2<0,所以继续输入,即x=﹣2,则:2x2﹣4=2×(﹣2)2﹣4=4>0,即y=4,故选D.【点睛】本题考查解决程序框图中的循环结构时常采用写出前几次循环的结果,找规律.27.C解析:C【解析】【分析】男女生5月份的平均成绩均为8.9,据此判断A选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B选项;根据增长率的概念,结合折线图的数据计算,从而判断C选项;根据女生平均成绩两端折线的上升趋势可判断D选项.【详解】解:A.男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意;B.4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C.4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D.5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意;故选:C.【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.28.C解析:C【解析】1144(1)4414x x x x x x --=---=--+=- 方程左右两边各项都要乘以4,故选C29.B解析:B【解析】A 、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B 、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C 、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D 、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;故选B .30.B解析:B【解析】【分析】先确定出a 、b 、c 的取值范围,然后根据有理数的运算法则解答即可.【详解】解:观察数轴,可知:﹣2<a <﹣1,0<b <1,1<c <2,∴c >b >a ,1b >1c ,|a |>|b |,abc <0. 故选:B .【点睛】本题考查了利用数轴比较有理数的大小,以及有理数的运算法则,熟练掌握有理数的运算法则是解答本题的关键.。

(完整版)北师大版七年级数学上册期末试卷及答案

(完整版)北师大版七年级数学上册期末试卷及答案

(完整版)北师大版七年级数学上册期末试卷及答案一、选择题1.下列生活、生产现象:①用两颗钉子就可以把木条固定在墙上;②从甲地到乙地架设电线,总是沿线段架设;③把弯曲的公路改直就能缩短路程;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线.其中能用“两点之间线段最短”来解释的现象是( ) A .①②B .②③C .①④D .③④ 2.下列各式中运算正确的是( ) A .2222a a a += B .220a b ab -= C .2(1)21a a -=- D .33323a a a -=3.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >0 4.下列方程中,属于一元一次方程的是( ). A .23x y += B .21x > C .720222020x += D .241x =5.若m 5=,n 3=,且m n 0+<,则m n -的值是( )A .8-或2-B .8±或2±C .8- 或2D .8或2 6.已知232-m a b 和45n a b 是同类项,则m n -的值是( )A .-2B .1C .0D .-1 7.下列运算正确的是( )A .()a b c a b c -+=-+B .2(1)21x y x y --=-+C .22223m n nm m n -=-D .532x x -=8.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .49.如图,已知矩形的长宽分别为m ,n ,顺次将各边加倍延长,然后顺次连接得到一个新的四边形,则该四边形的面积为( )A .3mnB .5mnC .7mnD .9mn 10.下列计算正确的是( ) A .b ﹣3b =﹣2B .3m +n =4mnC .2a 4+4a 2=6a 6D .﹣2a 2b +5a 2b =3a 2b11.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为()A .-1009B .-2019C .-1010D .-202012.如图,在1000个“○”中依次填入一列数字1231000,,,m m m m 使得其中任意四个相邻“○”中所填数字之和都等于10-,已知251m x =-,9992m x =-,则x 的值为( )A .1B .1-C .2D .2-二、填空题13.如图,填在下面各正方形中的四个数字之间有一定的规律,据此规律可得a b c ++=_____________.14.已知:﹣a =2,|b |=6,且a >b ,则a +b =_____.15.某品牌服装店以200元的进价购进一批体恤衫,销售时标价为300元,为了减少商品库存,让利于顾客,准备打折销售,但要保证利润率不低于20%,则至多可大打_______________折.16.一个角的余角比这个角的12少30°,则这个角的度数是_____. 17.已知线段8cm AB =,在直线AB 上画线段5cm AC =,则BC 的长是______cm .18.已知254a b -=-,则13410a b -+的值为__________.19.已知236(3)0x y -++=,则23y x -的值是_________.20.关于x 的方程()212a x x -=-的解为__________.21.观察下列式子:13111414a ==-⨯;23114747a ==-⨯;3311710710a ==-⨯;431110131013a ==-⨯,按此规律,则n a =_____________=______________(用含n 的代数式表示,其中n 为正整数),并计算123100a a a a +++⋯+=________________.22.如图所示,把一根绳子对折后得到的图形为线段AB ,从点P 处把绳子剪断,已知AP :BP =4:5,若剪断后的各段绳子中最长的一段为80cm ,则绳子的原长为________ cm .三、解答题23.下面是林林同学的解题过程:解方程212136x x ++-=.解:去分母,得:2(21)26x x +-+= 第①步去括号,得:4226x x +-+= 第②步移项合并,得:32x = 第③步系数化1,得:23x = 第④步 (1)上述林林的解题过程从第________步开始出现错误;(2)请你帮林林写出正确的解题过程.24.有理数a 、b 在数轴上的位置如图所示:求:(1)a-b 0(填“>,<,=”)(2)|b-a|=25.如图:在数轴上A 点表示数,a B 点示数,b C 点表示数,c b 是最大的负整数,A 在B 左边两个单位长度处,C 在B 右边5个单位处()1a = ;b = _;c = _;()2若将数轴折叠,使得A 点与C 点重合,则点B 与数_ __表示的点重合; ()3点、、A B C 开始在数轴上运动,若点A 以每秒2个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为,AB 点A 与点C 之间的距离表示为,AC 点B 与点C 之间的距离表示为BC ,则AB =_ _,AC =_ _,BC =__ _;(用含t 的代数式表示)()4请问:52BC AB -的值是否随着时间t 的变化而改变﹖若变化,请说明理由;若不变,请求其值.26.如图所示,在一张正方形纸片的四个角上各剪去一个同样大小的正方形,然后把剩下的部分折成一个无盖的长方体盒子.请回答下列问题:(1)剪去的小正方形的边长与折成的无盖长方体盒子的高之间的大小关系为 ;(2)如果设原来这张正方形纸片的边长为acm ,所折成的无盖长方体盒子的高为hcm ,那么,这个无盖长方体盒子的容积可以表示为 3cm ;(3)如果原正方形纸片的边长为20cm,剪去的小正方形的边长按整数值依次变化,即分别取1,2,3,4,5,6,7,8,9,10cm cm cm cm cm cm cm cm cm cm时,计算折成的无盖长方体盒子的容积得到下表,由此可以判断,当剪去的小正方形边长为cm时,折成的无盖长方体盒子的容积最大剪去的小正方形的边长/cm12345678910折成的无盖长方体的容积3/cm324m n57650038425212836027.如图,两条直线AB、CD相交于点O,且∠AOC=∠AOD,射线OM(与射线OB重合)绕O点逆时针方向旋转,速度为15°/s,射线ON(与射线OD重合)绕O点顺时值方向旋转,速度为12°/s,两射线,同时运动,运动时间为t秒(本题出现的角均指小于平角的角)(1)图中一定有______个直角;当t=2时,∠MON的度数为_____,∠BON的度数为_____,∠MOC的度数为_____;(2)当0<t<12时,若∠AOM=3∠AON-60°,试求出t的值.(3)当0<t<6时,探究72COM BONMON∠+∠∠的值,在t满足怎样的条件是定值,在t满足怎样的条件不是定值.28.观察下面的三行单项式x,2x2,4x3,8x4,16x5…①﹣2x,4x2,﹣8x3,16x4,﹣32x5…②2x,﹣3x2,5x3,﹣9x4,17x5…③根据你发现的规律,完成以下各题:(1)第①行第8个单项式为 ;第②行第2020个单项式为 .(2)第③行第n 个单项式为 .(3)取每行的第9个单项式,令这三个单项式的和为A .计算当x =12时,256(A +14)的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据两点确定一条直线,两点之间线段最短的性质对各选项分析判断即可得出结果.【详解】解:①用两颗钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故错误; ②从甲地到乙地架设电线,总是沿线段架设是利用了“两点之间线段最短”,故正确; ③把弯曲的公路改直就能缩短路程是利用了“两点之间线段最短”,故正确;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故错误.故选:B【点睛】本题主要考查的是线段的性质和直线的性质,正确的掌握这两个性质是解题的关键.2.A解析:A【解析】【分析】各项计算得到结果,即可作出判断.【详解】A 、2222a a a +=,符合题意;B 、2a b 和2ab 不是同类项,不能合并,不符合题意;C 、2(1)22a a -=-,不符合题意;D 、33323a a a -=-,不符合题意,故选:A .【点睛】本题考查了整式的加减,熟练掌握运算法则是解本题的关键.3.C解析:C【解析】【分析】先根据数轴判定a、b、a+b、a-b的正负,然后进行判定即可.【详解】解:由数轴可得,b<﹣2<0<a<2,∴a+b<0,故选项A错误,|b|>|a|,故选项B错误,a﹣b>0,故选项C正确,a•b<0,故选项D错误,故答案为C.【点睛】本题考查了数轴的应用、绝对值、正数和负数的相关知识,解题的关键在于根据数轴判定字母和代数式的正负.4.C解析:C【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【详解】解:A、含有两个未知数,不是一元一次方程,选项错误;B、不是方程是不等式,选项错误;C、符合一元一次方程定义,是一元一次方程,正确;D、未知项的最高次数为2,不是一元一次方程,选项错误.故选:C.【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.5.A解析:A【解析】【分析】根据题意,利用绝对值的代数意义求出m与n的值,即可确定出原式的值.【详解】解:∵|m|=5,|n|=3,且m+n<0,∴m=−5,n=3或m=−5,n=−3,∴m−n=−8或m-n=-2故选A.【点睛】本题考查了有理数的加减法和绝对值的代数意义.6.D解析:D【解析】【分析】根据同类项的字母相同且相同字母的指数也相同,可得关于m 、n 的方程,根据方程的解可得答案.【详解】∵232-m a b 和45n a b 是同类项∴2m=4,n=3∴m=2,n=3∴=231m n --=-故选D .【点睛】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.7.C解析:C【解析】【分析】分别判断各选项是否正确.【详解】A 中,a b +c a b c -=--(),错误;B 中,2(1)22x y x y --=-+,错误;C 中,22223m n nm m n -=-,正确;D 中,532x x x -=,错误故选:C .【点睛】本题考查整式的加减法,需要注意合并同类项时,仅是系数的加减.8.C解析:C【解析】【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C .【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.9.B解析:B【解析】【分析】如图,可分别求出各个直角三角形的面积,再加上中间的矩形面积即可得到答案.【详解】如图,根据题意可得:1()2FDE HBG S S n n m mn ∆∆==+=, 1()2ECH GAF S S m m n mn ∆∆==+=, 又矩形ABCD 的面积为mn ,所以,四边形EFGH 的面积为:++++5FDE HBG ECH GAF ABCD S S S S S mn mn mn mn mn mn ∆∆∆∆=++++=矩形,故选:B .【点睛】此题主要考查了根据图形的面积列代数式,熟练掌握直角三角形面积公式易用佌题的关键.10.D解析:D【解析】【分析】根据合并同类项的法则即可求出答案.【详解】A. b ﹣3b =﹣2b ,故原选项计算错误;B. 3m +n 不能计算,故原选项错误;C. 2a 4+4a 2不能计算,故原选项错误;D.﹣2a 2b +5a 2b =3a 2b 计算正确.故选D .【点睛】本题考查合并同类项的法则,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.11.C解析:C【解析】【分析】依次计算1a 、2a 、3a 、4a 、…,得到规律性答案,即可得到2020a 的值.【详解】11a =-,212a a =-+=-1,323a a =-+=-2,434a a =-+=-2,5453a a =-+=-,6563a a =-+=-,,由此可得:每两个数的答案是相同的,结果为-2n (n 为偶数), ∴202010102=, ∴2020a 的值为-1010,故选:C.【点睛】此题考查代数式规律探究,计算此类题的关键是依次计算得出答案的规律并总结出答案与序数间的关系式,由此来解答问题.12.C解析:C【解析】【分析】由于任意四个相邻数之和都是-10得到a 1+a 2+a 3+a 4=a 2+a 3+a 4+a 5,a 5+a 6+a 7+a 8=a 6+a 7+a 8+a 9,…,则a 1=a 5=a 9=…=,利用同样的方法可得到a 1=a 5=a 9=…=x -1,a 2=a 6=a 10=…-7,a 3=a 7=a 11=…=-2x ,a 4=a 8=a 12=…=0,所以已知a 999=a 3=-2x ,a 25=a 1=x-1,由此联立方程求得x 即可.【详解】∵a 1+a 2+a 3+a 4=a 2+a 3+a 4+a 5,a 5+a 6+a 7+a 8=a 6+a 7+a 8+a 9,…,∴a 1=a 5=a 9=…=x -1,同理可得a 2=a 6=a 10=…=-7,a 3=a 7=a 11=…=-2x ,a 4=a 8=a 12= 0∵a 1+a 2+a 3+a 4=-10,∴x-1-7-2x+0=-10,解得:x=2.故答案为:2.【点睛】本题考查数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.二、填空题13.420【解析】【分析】观察并思考前面几个正方形内的四个数之间的联系,找到规律再求解.【详解】解:通过观察前面几个正方形四个格子内的数,发现规律如下:左上角的数2=右上角的数,右上角的数解析:420【解析】【分析】观察并思考前面几个正方形内的四个数之间的联系,找到规律再求解.【详解】解:通过观察前面几个正方形四个格子内的数,发现规律如下:左上角的数⨯2=右上角的数,右上角的数-1=左下角的数,右下角的数=右上角的数⨯左下角的数+左上角的数,∴当左下角的数=19时,19120b =+=,20210a =÷=,201910390c =⨯+=,∴1020390420a b c ++=++=.故答案是:420.【点睛】本题考查找规律,解题的关键是观察并总结规律.14.-8.【解析】【分析】根据相反数的定义,绝对值的性质,可得a 、b 的值,根据有理数的加法,可得答案.【详解】∵﹣a =2,|b|=6,且a >b ,∴a=﹣2,b =-6,∴a+b=﹣2+(-6解析:-8.【解析】【分析】根据相反数的定义,绝对值的性质,可得a 、b 的值,根据有理数的加法,可得答案.【详解】∵﹣a =2,|b |=6,且a >b ,∴a =﹣2,b =-6,∴a +b =﹣2+(-6)=-8,故答案为:-8.【点睛】本题考查了相反数的定义,绝对值的性质,有理数的加法运算法则,注意一个正数的绝对值有2个数.15.8【解析】【分析】设打x 折,得出售价是300×元,利润是(300×-200)元,再根据利润率不低于20%,即利润要大于或等于200×20%元,列出不等式,解出x 的取值范围.【详解】解:设打解析:8【解析】【分析】设打x 折,得出售价是300×10x 元,利润是(300×10x -200)元,再根据利润率不低于20%,即利润要大于或等于200×20%元,列出不等式,解出x 的取值范围.【详解】解:设打x 折,根据题意得:则300×10x -200≥200×20%, 解得:x≥8,则最多可打8折.故答案为:8.【点睛】 本题考查一元一次不等式组的应用,正确理解利润率的含义,理解利润=进价×利润率,列出不等式是解题关键.16.80°【解析】【分析】设这个角为x ,则它的余角是90°-x ,列方程求解即可.【详解】解:设这个角为x ,则它的余角是90°﹣x ,由题意,得:90°﹣x =x ﹣30°,解得:x =80°.即解析:80°【解析】【分析】设这个角为x ,则它的余角是90°-x ,列方程求解即可.【详解】解:设这个角为x ,则它的余角是90°﹣x ,由题意,得:90°﹣x =12x ﹣30°, 解得:x =80°.即这个角的度数是80°.故答案为:80°.【点睛】本题考查了余角的知识,掌握互余的两角之和为90°是解题关键. 17.13或3【解析】【分析】根据线段的和与差运算法则,若点在延长线上时,即得;若点在之间,即得.【详解】当点在延长线上线段,当点在之间线段,综上所述:或故答案为:13或3【点解析:13或3【解析】【分析】根据线段的和与差运算法则,若点C 在BA 延长线上时,=+BC AB AC 即得;若点C 在AB 之间,=BC AB AC -即得.【详解】当点C 在BA 延长线上线段8cm AB =,5cm AC =∴==8+5=13cm +BC AB AC当点C 在AB 之间线段8cm AB =,5cm AC =∴==853cm --=BC AB AC综上所述:=13cm BC 或=3cm BC故答案为:13或3【点睛】本题考查线段的和与差,分类讨论确定点C 的位置是易错点,正确理解线段的无方向的性质是正确进行分类讨论的关键.18.21【解析】【分析】将所求式子变形为,然后利用整体代入的方法进行求解即可.【详解】因为,所以===21,故答案为:21.【点睛】本题考查了代数式求值,利用整体代入思想进行求解是解题解析:21【解析】【分析】将所求式子变形为()13225a b --,然后利用整体代入的方法进行求解即可.【详解】因为254a b -=-,所以13410a b -+=()13225a b --=()1324-⨯-=21,故答案为:21.【点睛】本题考查了代数式求值,利用整体代入思想进行求解是解题的关键.19.-12【解析】【分析】利用非负数的性质求出x 与y 的值,代入所求式子计算即可得到结果.【详解】解:∵|3x -6|+(y+3)2=0,∴3x -6=0,y+3=0,即x=2,y=-3,则2解析:-12【解析】【分析】利用非负数的性质求出x 与y 的值,代入所求式子计算即可得到结果.【详解】解:∵|3x-6|+(y+3)2=0,∴3x-6=0,y+3=0,即x=2,y=-3,则2y-3x=-6-6=-12.故答案为:-12.【点睛】此题考查了代数式求值以及非负数的性质,根据“几个非负数的和为0时,每个非负数都为0”进行求解是解本题的关键.20.【解析】【分析】方程去括号,移项合并,把x 系数化为1,即可表示出解.【详解】解:方程a2(x ﹣1)=2﹣x ,去括号得:a2x﹣a2=2﹣x,移项合并得:(a2+1)x=a2+2,解得解析:2221axa+ =+【解析】【分析】方程去括号,移项合并,把x系数化为1,即可表示出解.【详解】解:方程a2(x﹣1)=2﹣x,去括号得:a2x﹣a2=2﹣x,移项合并得:(a2+1)x=a2+2,解得:x=2221aa++.故答案为:x=2221aa++.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.21..【解析】【分析】根据已知的式子中的数的特点得到分母是相差3的两个整数相乘,分子为3,结果等于分母中的两个数的倒数相减,由此得到答案.【详解】由,,,可知每个式子等解析:3(32)(31)n n-+113231n n--+300301.【解析】【分析】根据已知的式子中的数的特点得到分母是相差3的两个整数相乘,分子为3,结果等于分母中的两个数的倒数相减,由此得到答案.【详解】由1311 1414a==-⨯,23114747a==-⨯,3311710710a==-⨯,可知每个式子等于相差3的两个整数的乘积且第二个整数比序数的3倍大1,此时分子为3,等于相差3的两个整数的倒数的差,∴311(32)(31)3231n a n n n n ==--+-+, ∴123100a a a a +++⋯+, =11111111114477101013298301-+-+-+-++-, =11301-, =300301, 故答案为:3(32)(31)n n -+, 113231n n --+,300301. 【点睛】此题考查数字的规律探究,根据所给的代数式观察得到规律,并能表示出该规律是解题的关键,由此进行其他的应用计算.22.绳子的原长为144cm 或180cm .【解析】【分析】解:分两种情形讨论:(1)当点A 是绳子的对折点时,(2)当点B 是绳子的对折点时,分别求解即可.【详解】解:本题有两种情形:(1)当点A解析:绳子的原长为144cm 或180cm .【解析】【分析】解:分两种情形讨论:(1)当点A 是绳子的对折点时,(2)当点B 是绳子的对折点时,分别求解即可.【详解】解:本题有两种情形:(1)当点A 是绳子的对折点时,将绳子展开如图.∵AP :BP=4:5,剪断后的各段绳子中最长的一段为80cm ,∴2AP=80cm ,∴AP=40cm ,∴PB=50cm ,∴绳子的原长=2AB=2(AP+PB )=2×(40+50)=180(cm );(2)当点B 是绳子的对折点时,将绳子展开如图.∵AP :BP=4:5,剪断后的各段绳子中最长的一段为80cm ,∴2BP=80cm ,∴BP=40cm ,∴AP=32cm .∴绳子的原长=2AB=2(AP+BP )=2×(32+40)=144(cm ).综上,绳子的原长为144cm 或180cm .【点睛】本题主要考查了线段相关计算,和分类讨论的思想,懂得分类讨论,防止漏解是解决本题的关键.三、解答题23.(1)①;(2)2x =,过程见解析【解析】【分析】(1)找出林林错误的步骤,分析原因即可;(2)写出正确的解题过程即可.【详解】(1)上述林林解题过程从第①步开始出现错误,错误的原因是去括号没变号; 故答案为:①;(2)去分母得:()()22126x x +-+=,去括号得:4226x x +--=,移项合并得:36x =,解得:2x =.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤和运算法则是解本题的关键.24.(1)>;(2)a -b【解析】【分析】(1)从数轴上可得:a >0,b <0且|a |<|b |,(2)先判断b-a 的正负,再根据绝对值的性质进行化简即可【详解】解:(1)根据数轴可得:a>0,b<0且|a|<|b|,则a >b ,a -b >0,故答案为:>;(2)从数轴上可得:a >0,b <0且|a |<|b |,则b -a <0,根据绝对值的法则可得:|b -a |= a -b ,故答案为:a -b .【点睛】本题考查用数轴表示有理数和绝对值化简,根据点在数轴上的位置判断出0a b >>是解题的关键.25.(1)﹣3,﹣1,4;(2)2;(3)2+5t ,7+7t ,2t+5;(4)5BC ﹣2AB 的值不会随着时间t 的变化而改变,该值是21.【解析】【分析】(1)根据b 为最大的负整数可得出b 的值,再根据A 在B 左边两个单位长度处,C 在B 右边5个单位处即可得出a 、c 的值;(2)根据折叠的性质结合a 、b 、c 的值,即可找出与点B 重合的数;(3)根据运动的方向和速度结合a 、b 、c 的值,即可找出t 秒后点A 、B 、C 分别表示的数,利用数轴上两点间的距离即可求出AB 、AC 、BC 的值;(4))将(3)的结论代入52BC AB -中,可得出52BC AB -的值不会随着时间的变化而变化,即为定值,此题得解.【详解】(1)b 是最大的负整数,∴1b =-A 在B 左边两个单位长度处,C 在B 右边5个单位处∴3a =-,c 4=(2)将数轴折叠,使得A 点与C 点重合∴()3412a c b +-=-+--=(3)点A 以每秒2个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和5个单位长度的速度向右运动∴t 秒钟过后,根据s vt =得:s 2A t =,s 3B t =,s 5C t = 又3a =-,1b =-,c 4=∴点A 表示的数为23t --,点B 表示的数为31t -,点C 表示的数为54t +, ∴25AB t =+,77AC t =+,2+5BC t =;(4)由(3)可知:25AB t =+,2+5BC t =∴()()52=525225102541021BC AB t t t t -⨯+-+=+--=∴52BC AB -的值为定值21.故答案为:(1)﹣3,﹣1,4;(2)2;(3)2+5t ,7+7t ,2t+5;(4)5BC ﹣2AB 的值不会随着时间t 的变化而改变,该值是21.【点睛】本题考查了数轴及两点间的距离,根据点运动的方向和速度找出点A 、B 、C 运动后代表的数是解题的关键.26.(1)相等;(2)h (a-2h )2;(3)3【解析】【分析】(1)根据图形作答即可;(2)根据长方体体积公式即可解答;(3)将h=2,3分别代入体积公式,即可求出m ,n 的值;再根据材料一定时长方体体积最大与底面积和高都有关,进而得出答案.【详解】解:(1)由折叠可知,剪去的小正方形的边长与折成的无盖长方体盒子的高之间的大小关系为相等, 故答案为:相等;(2)这个无盖长方体盒子的容积=h (a-2h )(a-2h )=h (a-2h )2(cm 3);故答案为:h (a-2h )2;(3)当剪去的小正方形的边长取2时,m=2×(20-2×2)2=512,当剪去的小正方形的边长取3时,n=3×(20-2×3)2=588,当剪去的小正方形的边长的值逐渐增大时,所得到的无盖长方体纸盒的容积的值先增大后减小,当剪去的小正方形的边长为3cm 时,所得到的无盖长方体纸盒的容积最大.故答案为:3.【点睛】此题主要考查了几何体的体积求法以及展开图问题,根据题意表示出长方体体积是解题关键.27.(1)4;144°,114°,60°;(2)107s 或10s ;(3),当0<t <103时,72COM BON MON ∠+∠∠的值不是定值,当103<t <6时,72COM BON MON∠+∠∠的值是3 【解析】【分析】(1)根据两条直线AB ,CD 相交于点O ,∠AOC=∠AOD ,可得图中一定有4个直角;当t=2时,根据射线OM ,ON 的位置,可得∠MON 的度数,∠BON 的度数以及∠MOC 的度数;(2)分两种情况进行讨论:当0<t≤7.5时,当7.5<t <12时,分别根据∠AOM=3∠AON-60°,列出方程式进行求解,即可得到t 的值;(3)先判断当∠MON 为平角时t 的值,再以此分两种情况讨论:当0<t <103时,当103<t <6时,分别计算72COM BON MON∠+∠∠的值,根据结果作出判断即可. 【详解】解:(1)如图所示,∵两条直线AB ,CD 相交于点O ,∠AOC=∠AOD ,∴∠AOC=∠AOD=90°,∴∠BOC=∠BOD=90°,∴图中一定有4个直角;当t=2时,∠BOM=30°,∠NON=24°,∴∠MON=30°+90°+24°=144°,∠BON=90°+24°=114°,∠MOC=90°-30°=60°;故答案为:4;144°,114°,60°;(2)当ON与OA重合时,t=90÷12=7.5(s),当OM与OA重合时,t=180°÷15=12(s),如图所示,当0<t≤7.5时,∠AON=90°-12t°,∠AOM=180°-15t°,由∠AOM=3∠AON-60°,可得180°-15t°=3(90°-12t°)-60°,解得t=107;如图所示,当7.5<t<12时,∠AON=12t°-90°,∠AOM=180°-15t°,由∠AOM=3∠AON-60°,可得180°-15t°=3(12t°-90°)-60°,解得t=10;综上所述,当∠AOM=3∠AON-60°时,t的值为107s或10s;(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t°+90°+12t°=180°,解得t=103,①如图所示,当0<t<103时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°,∴72COM BONMON∠+∠∠=()()7901529012159012t tt t︒︒︒︒︒︒︒-++++=810812790tt︒︒︒-+(不是定值),②如图所示,当103<t<6时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=360°-(∠BOM+∠BOD+∠DON)=360°-(15t°+90°+12t°)=270°-27t°,∴72COM BONMON∠+∠∠=()()790152901227027t tt︒︒︒︒︒︒-++-=8108127027tt︒︒︒︒--=3(定值),综上所述,当0<t<103时,72COM BONMON∠+∠∠的值不是定值,当103<t<6时,72COM BONMON∠+∠∠的值是3.【点睛】本题属于角的计算综合题,主要考查了角的和差关系的运用,解决问题的关键是将相关的角用含t的代数式表示出来,并根据题意列出方程进行求解,以及进行分类讨论,解题时注意方程思想和分类思想的灵活运用.28.(1)27x8;22020x2020;(2)(﹣1)n﹣1(2n﹣1+1)x n;(3)641 2【解析】【分析】(1)观察所给的第①与②行的式子可得它们的特点,第①行中第n个数是2n﹣1x n,第②行中第n个数是(﹣2)n x n;(2)观察第③行式子的特点,可得第n个数是(﹣1)n﹣1(2n﹣1+1)x n,即可求出解;(3)先求出A=28x9+(﹣2)9x9+(28+1)x9,再将x=12代入求出A,最后再求256(A+14)即可.【详解】解:(1)根据第①行式子的特点可得,第n个数是2n﹣1x n,∴第8个单项式是27x8;根据第②行式子的特点可得,第n个数是(﹣2)n x n,∴第2020个单项式是22020x2020;故答案为:27x8;22020x2020;(2)根据第③行式子的特点可得,第n个数是(﹣1)n﹣1(2n﹣1+1)x n,故答案为:(﹣1)n﹣1(2n﹣1+1)x n;(3)第①行的第9个单项式是28x9,第②行的第9个单项式是(﹣2)9x9,第③行的第9个单项式是(28+1)x9,∴A=28x9+(﹣2)9x9+(28+1)x9,当x=12时,A=28×(12)9+(﹣2)9×(12)9+(28+1)×(12)9=12﹣1+12+(12)9=(12)9,∴256(A+14)=256×[(12)9+14]=6412.【点睛】本题考查数字的变化规律,能够通过所给例子,找到式子的规律,列出每行第n个式子的代数式是解题的关键.。

(完整版)北师大版七年级数学上册期末试卷及答案

(完整版)北师大版七年级数学上册期末试卷及答案

(完整版)北师大版七年级数学上册期末试卷及答案一、选择题1.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >02.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( )A .a b b a -<<-<B .a b b a >->>-C .b a b a <-<-<D .a b b a -<-<< 3.“比a 的3倍大5的数”用代数式表示为( )A .35a +B .3(5)a +C .35a -D .3(5)a - 4.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a ﹣b >0B .a +b >0C .b a >0D .ab >05.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为( ).A .36块B .41块C .46块D .51块6.某商场周年庆期间,对销售的某种商品按成本价提高30%后标价,又以9折(即按标价的90%)优惠卖出,结果每件商品仍可获利85元,设这种商品每件的成本是x 元,根据题意,可得到的方程是( )A .()130%90%85x x +⋅=-B .()130%90%85x x +⋅=+C .()130%90%85x x +⋅=-D .()130%90%85x x +⋅=+ 7.已知线段AB=m ,BC=n ,且m 2﹣mn=28,mn ﹣n 2=12,则m 2﹣2mn+n 2等于( )A .49B .40C .16D .9 8.已知232-m a b 和45n a b 是同类项,则m n -的值是( )A .-2B .1C .0D .-1 9.如图,若已知七巧板拼图中的平行四边形的面积为2,则图中,最大正方形面积为( )A .8B .10C .16D .32 10.若3x-2y-7=0,则 4y-6x+12的值为( )A .12B .19C .-2D .无法确定 11.a ,b 在数轴上位置如图所示,则a ,b ,a -,b -的大小顺序是( )A .a b a b -<<<-B .b a b a <-<-<C .a b b a -<-<<D .b a a b <-<<- 12.已知一组数:1,-2,3,-4,5,-6,7,…,将这组数排成下列形式:第1行 1第2行 -2,3第3行 -4,5,-6第4行 7,-8,9,-10第5行 11,-12,13,-14,15……按照上述规律排列下去,那么第10行从左边数第5个数是( )A .-50B .50C .-55D .55 二、填空题13.计算(0.04)2018×[(﹣5)]2018的结果是_____.14.数学小组对收集到的160个数据进行整理,并绘制出扇形图发现有一组数据所对应扇形的圆心角是72°,则该组的频数为______________________15.已知:﹣a =2,|b |=6,且a >b ,则a +b =_____.16.a 、b 、c 、d 为互不相等的有理数,且2c =,1a c b c d b -=-=-=,则2a d -=__________.17.如图是某景点6月份内1~10日每天的最高温度折线统计图,由图信息可知该景点这10天,气温26C 出现的频率是__________.18.若关于x 的方程()||1 13n n x -+=是一元一次方程,则n 的值是_________.19.已知254a b -=-,则13410a b -+的值为__________.20.已知 10a =,211a a =-+,322a a =-+,…,依此类推,则 2019a =_______.21.已知关于x 的一元一次方程520202020x x m +=+的解为2019x =,那么关于y 的一元一次方程552020(5)2020y y m --=--的解为________. 22.如图,△ABC 的面积为1.第一次操作:分别延长AB ,BC ,CA 至点A 1,B 1,C 1,使A 1B =AB ,B 1C =BC ,C 1A =CA ,顺次连结A 1,B 1,C 1,得到△A 1B 1C 1.第二次操作:分别延长A 1B 1,B 1C 1,C 1A 1至点A 2,B 2,C 2,使A 2B 1=A 1B 1,B 2C 1=B 1C 1,C 2A 1=C 1A 1,顺次连结A 2,B 2,C 2,得到△A 2B 2C 2.…按此规律,要使得到的三角形的面积超过2013,最少经过_____次操作.三、解答题23.将一三角板中的两块直角三角尺的直角顶点O 按如图方式叠放在一起.(1)如图1,若∠BOD=35°,则∠AOC=______°;若∠AOC=135°,则∠BOD=_____°;(2)如图2,若∠AOC=140°,则∠BOD=_____°;(3)猜想∠AOC 与∠BOD 的大小关系,并结合图1说明理由;(4)三角尺AOB 不动,将三角尺COD 的OD 边与OA 边重合,然后绕点O 按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD <90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD 角度所有可能的值,不用说明理由.24.解下列方程:(1)4﹣4(x﹣3)=2(9﹣x)(2)221153x xx---=-25.化简、求值2(a2b+2b3-ab3)+3a3-(2ba2-3ab2+3a3)-4b3,其中a=-3,b=226.已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.(1)求k的值;(2)在(1)的条件下,已知线段AB=6cm,点C是线段AB上一点,且BC=kAC,若点D 是AC的中点,求线段CD的长.(3)在(2)的条件下,已知点A所表示的数为﹣2,有一动点P从点A开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q从点B开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD=2QD?27.如图,两条直线AB、CD相交于点O,且∠AOC=∠AOD,射线OM(与射线OB重合)绕O点逆时针方向旋转,速度为15°/s,射线ON(与射线OD重合)绕O点顺时值方向旋转,速度为12°/s,两射线,同时运动,运动时间为t秒(本题出现的角均指小于平角的角)(1)图中一定有______个直角;当t=2时,∠MON的度数为_____,∠BON的度数为_____,∠MOC的度数为_____;(2)当0<t<12时,若∠AOM=3∠AON-60°,试求出t的值.(3)当0<t<6时,探究72COM BONMON∠+∠∠的值,在t满足怎样的条件是定值,在t满足怎样的条件不是定值.28.如图,将连续的奇数1,3,5,7,…按图中的方式排成一个数表,用一个十字框框住5个数,这样框出的意5个数(如图2)分别用,,,,a b c d x表示.(1)若17x =,则a b c d +++=______.(2)用含x 的式子分别表示数a 、b 、c 、d .(3)直接写出,,,,a b c d x 这5个数之间的一个等量关系:______.(4)设M a b c d x =++++,判断M 的值能否等于2020,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先弄清a,b,c 在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1;A 、|a|>|b|,故选项正确;B 、a 、c 异号,则|ac|=-ac ,故选项错误;C 、b <d ,故选项正确;D 、d >c >1,则c+d >0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.2.A解析:A【解析】【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可.【详解】解:0a >,0b <,0a b +>,||||a b ∴>,如图,, a b b a ∴-<<-<.故选:A .【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.3.A解析:A【解析】【分析】根据题意可以用代数式表示比a 的3倍大5的数,本题得以解决.【详解】解:比a 的3倍大5的数”用代数式表示为:3a +5,故选A .【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.4.A解析:A【解析】【分析】根据数轴判断出a 、b 的正负情况以及绝对值的大小,再根据有理数的加减法法则以及乘除法法则对各选项分析判断后利用排除法求解.【详解】由图可知,b <0,a >0,且|b|>|a|,A 、a -b >0,故本选项符合题意;B 、a +b <0,故本选项不合题意;C 、b a<0,故本选项不合题意; D 、ab <0,故本选项不合题意.故选:A .【点睛】本题考查了数轴,熟练掌握数轴的特点并判断出a 、b 的正负情况以及绝对值的大小是解题的关键.5.C解析:C【解析】【分析】根据题意观察图像找出数量上每次增加黑色瓷砖的变化规律,进而分析推出一般性的结论求解.【详解】解:∵第1个图形有黑色瓷砖5116⨯+=块.第2个图形有黑色瓷砖52111⨯+=块.第3个图形有黑色瓷砖53116⨯+=块.…∴第9个图形中有黑色瓷砖59146⨯+=块.故选:C .【点睛】本题主要考查图形的变化规律,解题的关键是通过归纳与总结,得到其中的一般规律.6.B解析:B【解析】【分析】由题意可知:成本+利润=售价,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +,列出方程即可.【详解】由题意可知:售价=成本+利润,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +;根据:售价=成本+利润,列出方程:()130%90%85x x +⋅=+故选B【点睛】本题考查了一元一次方程的应用,熟练掌握等量关系:“成本+利润=售价”是解答本题的关键.7.C解析:C【解析】【分析】将两个式子相减后即可求解.【详解】两式相减得:m 2﹣mn-mn+ n 2=28-12,即 m 2﹣2mn+n 2=16,故选C.【点睛】本题考查了整式加减的应用,正确进行整式的加减是解题的关键..8.D解析:D【解析】【分析】根据同类项的字母相同且相同字母的指数也相同,可得关于m 、n 的方程,根据方程的解可得答案.【详解】∵232-m a b 和45n a b 是同类项∴2m=4,n=3∴m=2,n=3∴=231m n --=-故选D .【点睛】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.9.C解析:C【解析】【分析】根据七巧板的性质,分别计算出每一块图形的面积,最后再求和即可.【详解】由题意可知,6号的面积为:2,则1号的面积为:1,2号的面积为:2,3号的面积为:2,4号的面积为:4,5号的面积为:1,7号的面积为:4,所以最大正方形面积为:122412416++++++=.故选C .【点睛】本题考查了七巧板拼图,计算出每一块图形的面积是解题的关键.10.C解析:C【分析】把(3x-2y)看作一个整体并求出其值,再代入所求代数式进行计算即可得解.【详解】解:∵3x-2y-7=0,∴3x-2y=7,∴4y-6x+12=-2(3x-2y)+12=-2×7+12=-14+12=-2.故选:C.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.11.D解析:D【解析】【分析】从数轴上a b的位置得出b<0<a,|b|>|a|,推出-a<0,-a>b,-b>0,-b>a,根据以上结论即可得出答案.【详解】从数轴上可以看出b<0<a,|b|>|a |,∴-a<0,-a>b,-b>0,-b>a,即b<-a<a<-b,故选D.【点睛】本题考查了数轴和有理数的大小比较,关键是能根据a、b的值得出结论-a<0,-a>b,-b >0,-b>a,题目比较好,是一道比较容易出错的题目.12.A解析:A【解析】【分析】分析可得,第n行有n个数,此行第一个数的绝对值为(1)12n n-+,且式子的奇偶,决定它的正负,奇数为正,偶数为负,依此即可得出第10行从左边数第5个数.【详解】解:第n行有n个数,此行第一个数的绝对值为(1)12n n-+,且式子的奇偶,决定它的正负,奇数为正,偶数为负.所以第10行第5个数的绝对值为:109550 2⨯+=,50为偶数,故这个数为:-50.故选:A.本题考查探索与表达规律,能依据已给数据分析得出每行第一个数与行数之间的规律是解决此题的关键.二、填空题13..【解析】【分析】先将原式变形为[0.04×(﹣5)]2018,再根据乘方的定义计算可得.【详解】原式=[0.04×(﹣5)]2018=(﹣0.2)2018.故答案为.【点睛】本题考 解析:201815. 【解析】【分析】先将原式变形为[0.04×(﹣5)]2018,再根据乘方的定义计算可得.【详解】 原式=[0.04×(﹣5)]2018=(﹣0.2)2018201815. 故答案为201815.【点睛】 本题考查了有理数的乘方,解题的关键是掌握有理数的乘方的定义和运算法则. 14.32【解析】【分析】该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数,设该组频数为x ,根据圆心角度数的计算公式求解.【详解】设该组频数为x ,,x=32,故答案为:32.解析:32【分析】该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数,设该组频数为x ,根据圆心角度数的计算公式求解.【详解】设该组频数为x ,36072160x ⨯=, x=32,故答案为:32.【点睛】此题考查圆心角度数的计算公式,正确掌握计算公式是解题的关键.15.-8.【解析】【分析】根据相反数的定义,绝对值的性质,可得a 、b 的值,根据有理数的加法,可得答案.【详解】∵﹣a =2,|b|=6,且a >b ,∴a=﹣2,b =-6,∴a+b=﹣2+(-6解析:-8.【解析】【分析】根据相反数的定义,绝对值的性质,可得a 、b 的值,根据有理数的加法,可得答案.【详解】∵﹣a =2,|b |=6,且a >b ,∴a =﹣2,b =-6,∴a +b =﹣2+(-6)=-8,故答案为:-8.【点睛】本题考查了相反数的定义,绝对值的性质,有理数的加法运算法则,注意一个正数的绝对值有2个数.16.或【解析】【分析】分类讨论,当和时,然后利用得出的值.当时,∵,即,∴与必互为相反数(否则,不合题意),∴,∴,,∵,即,∴或,∴(不合题意,舍去),,∴,∴当解析:2或4【解析】【分析】分类讨论,当2a c >=和2a c <=时,然后利用1a c b c d b -=-=-=得出2a d -的值.【详解】当2a c >=时, ∵1a c b c -=-=,即221a b -=-=,∴2a -与2b -必互为相反数(否则a b =,不合题意),∴221a b -=-=,∴3a =,1b =, ∵1d b -=,即11d -=,∴11d -=或11d -=-,∴2d =(2d c ==,不合题意,舍去),0d =,∴0d =, ∴22306a d -=⨯-=当2a c <=时, ∵1a c b c -=-=,即221a b -=-=,∴a c -与b c -必互为相反数(否则a b =,不合题意),∴221a b -=-=,∴1a =,3b =, ∵1d b -=,即31d -=,∴31d -=或31d -=-,∴4d =,2d =(2d c ==,不合题意,舍去),∴4d =, ∴22142a d -=⨯-=故答案为:6或2【点睛】本题主要考查了根据已知条件确定符号及去绝对值的运算,解题的关键是分类讨论去绝对值符号.17.3【解析】【分析】用气温26℃出现的天数除以总天数10即可得.【详解】由折线统计图知,气温26℃出现的天数为3天,∴气温26℃出现的频率是3÷10=0.3,故答案为:0.3.【点睛】解析:3【解析】【分析】用气温26℃出现的天数除以总天数10即可得.【详解】由折线统计图知,气温26℃出现的天数为3天,∴气温26℃出现的频率是3÷10=0.3,故答案为:0.3.【点睛】本题主要考查了频数(率)分布折线图,解题的关键是掌握频率的概念,根据折线图得出解题所需的数据.18.-1【解析】【分析】只含有一个未知数,并且未知数的最高次数为1的方程叫做一元一次方程,据此进一步求解即可.【详解】∵关于的方程是一元一次方程,∴,∴且,即:,故答案为:.【点睛】解析:-1【解析】【分析】只含有一个未知数,并且未知数的最高次数为1的方程叫做一元一次方程,据此进一步求解即可.【详解】∵关于x 的方程()||1 13n n x -+=是一元一次方程, ∴110n n =-≠且,∴1n =±且1n ≠,即:1n =-,故答案为:1-.【点睛】本题主要考查了一元一次方程的定义,熟练掌握相关概念是解题关键.19.21【解析】【分析】将所求式子变形为,然后利用整体代入的方法进行求解即可.【详解】因为,所以===21,故答案为:21.【点睛】本题考查了代数式求值,利用整体代入思想进行求解是解题解析:21【解析】【分析】将所求式子变形为()13225a b --,然后利用整体代入的方法进行求解即可.【详解】因为254a b -=-,所以13410a b -+=()13225a b --=()1324-⨯-=21,故答案为:21.【点睛】本题考查了代数式求值,利用整体代入思想进行求解是解题的关键.20.【解析】【分析】根据题意,可以得出这一组数的规律,分为n 为奇数和偶数二种情况讨论即可.【详解】因为,所以==-1,==-1,==-2,,所以n 为奇数时,,n 为偶数时,,所以-=解析:1009-【解析】【分析】根据题意,可以得出这一组数的规律,分为n 为奇数和偶数二种情况讨论即可.【详解】因为10a =, 所以211a a =-+=01-+=-1,322a a =-+=-12-+=-1,433a a =-+=-13-+=-2,544=--2+4=-2a a =-+,所以n 为奇数时,1-2n n a -=,n 为偶数时,-2n n a =, 所以2019a =-2019-12=-1009, 故答案为:-1009.【点睛】本题考查了有理数运算的规律,含有绝对值的计算,掌握有理数运算的规律是解题的关键.21.2024【解析】【分析】根据关于x 的一元一次方程的解,可以得到m 的值,把m 的值代入关于y 的方程式中,可以得到y 的解.【详解】∵的解为,∴,解得:,∴方程可化为,∴,∴,∴,解析:2024【解析】【分析】根据关于x 的一元一次方程的解,可以得到m 的值,把m 的值代入关于y 的方程式中,可以得到y 的解.【详解】 ∵520202020x x m +=+的解为2019x =, ∴52020120201920290m +=⨯+, 解得:52020201920202019m =+-⨯, ∴方程552020(5)2020y y m --=--可化为 25052020(5)5202020192020202019y y --=---+⨯, ∴52020(5)20192020201920202020y y ---=-+⨯, ∴(2020)(5)2019(2020)2020202011y --=-⨯-, ∴52019y -=-, ∴2024y =,故答案为:2024.【点睛】本题考查了已知一元一次方程的解求参数,整体代换解一元一次方程,掌握整体代换的思想是解题的关键.22.【解析】【分析】先根据已知条件求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.【详解】解:△ABC与△A1BB1底相等(AB=A1B),高为1:2(BB1=2B解析:【解析】【分析】先根据已知条件求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.【详解】解:△ABC与△A1BB1底相等(AB=A1B),高为1:2(BB1=2BC),故面积比为1:2,∵△ABC面积为1,∴S△A1B1B=2.同理可得,S△C1B1C=2,S△AA1C=2,∴S△A1B1C1=S△C1B1C+S△AA1C+S△A1B1B+S△ABC=2+2+2+1=7;同理可证S△A2B2C2=7S△A1B1C1=49,第三次操作后的面积为7×49=343,第四次操作后的面积为7×343=2401.故按此规律,要使得到的三角形的面积超过2013,最少经过4次操作.故答案为:4.【点睛】考查了三角形的面积,此题属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据此规律求解即可.三、解答题23.(1)145°,45°;(2)40°;(3)∠AOC 与∠BOD 互补,理由详见解析;(4)∠AOD 角度所有可能的值为:30°、45°、60°、75°.【解析】【分析】(1)由于是两直角三角形板重叠,根据∠AOC=∠AOB+∠COD-∠BOD可分别计算出∠AOC、∠BOD的度数;(2)根据∠BOD=360°-∠AOC-∠AOB-∠COD计算可得;(3)由∠AOD+∠BOD+∠BOD+∠BOC=180°且∠AOD+∠BOD+∠BOC=∠AOC可知两角互补;(4)分别利用OD⊥AB、CD⊥OB、CD⊥AB、OC⊥AB分别求出即可.【详解】解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣35°=145°,若∠AOC=135°,则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°;(2)如图 2,若∠AOC=140°,则∠BOD=360°﹣∠AOC ﹣∠AOB ﹣∠COD=40°;(3)∠AOC 与∠BOD 互补.∵∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC ,∴∠AOC+∠BOD=180°,即∠AOC 与∠BOD 互补.(4)OD ⊥AB 时,∠AOD=30°,CD ⊥OB 时,∠AOD=45°,CD ⊥AB 时,∠AOD=75°,OC ⊥AB 时,∠AOD=60°,即∠AOD 角度所有可能的值为:30°、45°、60°、75°;故答案为(1)145°,45°;(2)40°.【点睛】本题题主要考查了互补、互余的定义等知识,解决本题的关键是理解重叠的部分实质是两个角的重叠.24.(1)1x =-;(2)13x =-【解析】【分析】(1)先去括号,然后移项合并,系数化为1,即可得到答案;(2)先去分母,然后移项合并,即可得到答案.【详解】解:(1)去括号得:4﹣4x +12=18﹣2x ,移项合并得:﹣2x =2,解得:x =﹣1;(2)去分母得:15x ﹣3x +6=10x ﹣5﹣15,移项合并得:2x =﹣26,解得:x =﹣13.【点睛】本题考查了解一元一次方程,解题的关键是熟练掌握运算法则进行解题.25.ab 2,-12.【解析】【分析】先去括号,再合并,最后再把a 、b 的值代入化简后的式子计算即可.【详解】解:原式=2a 2b+4b 3-2ab 2+3a 3-2a 2b+3ab 2-3a 3-4b 3=ab 2,当a=-3,b=2时,原式=-3×22=-12.【点睛】本题考查了整式的化简求值,解题的关键是掌握去括号法则和合并同类项的法则.26.(1)2;(2)1cm ;(3)910秒或116秒 【解析】【分析】 (1)将x =﹣3代入原方程即可求解;(2)根据题意作出示意图,点C 为线段AB 上靠近A 点的三等分点,根据线段的和与差关系即可求解;(3)求出D 和B 表示的数,然后设经过x 秒后有PD =2QD ,用x 表示P 和Q 表示的数,然后分两种情况①当点D 在PQ 之间时,②当点Q 在PD 之间时讨论即可求解.【详解】(1)把x =﹣3代入方程(k +3)x +2=3x ﹣2k 得:﹣3(k +3)+2=﹣9﹣2k ,解得:k =2;故k =2;(2)当C 在线段AB 上时,如图,当k =2时,BC =2AC ,AB =6cm ,∴AC =2cm ,BC =4cm ,∵D 为AC 的中点,∴CD =12AC =1cm . 即线段CD 的长为1cm ;(3)在(2)的条件下,∵点A 所表示的数为﹣2,AD =CD =1,AB =6,∴D 点表示的数为﹣1,B 点表示的数为4.设经过x 秒时,有PD =2QD ,则此时P 与Q 在数轴上表示的数分别是﹣2﹣2x ,4﹣4x . 分两种情况:①当点D 在PQ 之间时,∵PD =2QD ,∴()()1222441x x ⎡⎤---=---⎣⎦,解得x =910 ②当点Q 在PD 之间时,∵PD =2QD ,∴()()1222144x x ⎡⎤----=---⎣⎦,解得x =116. 答:当时间为910或116秒时,有PD =2QD . 【点睛】本题考查了方程的解,线段的和与差,数轴上的动点问题,一元一次方程与几何问题,分情况讨论是本题的关键.27.(1)4;144°,114°,60°;(2)107s 或10s ;(3),当0<t <103时,72COM BON MON ∠+∠∠的值不是定值,当103<t <6时,72COM BON MON∠+∠∠的值是3 【解析】【分析】(1)根据两条直线AB ,CD 相交于点O ,∠AOC=∠AOD ,可得图中一定有4个直角;当t=2时,根据射线OM ,ON 的位置,可得∠MON 的度数,∠BON 的度数以及∠MOC 的度数;(2)分两种情况进行讨论:当0<t≤7.5时,当7.5<t <12时,分别根据∠AOM=3∠AON-60°,列出方程式进行求解,即可得到t 的值;(3)先判断当∠MON 为平角时t 的值,再以此分两种情况讨论:当0<t <103时,当103<t <6时,分别计算72COM BON MON∠+∠∠的值,根据结果作出判断即可. 【详解】解:(1)如图所示,∵两条直线AB ,CD 相交于点O ,∠AOC=∠AOD ,∴∠AOC=∠AOD=90°,∴∠BOC=∠BOD=90°,∴图中一定有4个直角;当t=2时,∠BOM=30°,∠NON=24°,∴∠MON=30°+90°+24°=144°,∠BON=90°+24°=114°,∠MOC=90°-30°=60°;故答案为:4;144°,114°,60°;(2)当ON 与OA 重合时,t=90÷12=7.5(s ),当OM 与OA 重合时,t=180°÷15=12(s ),如图所示,当0<t≤7.5时,∠AON=90°-12t°,∠AOM=180°-15t°,由∠AOM=3∠AON-60°,可得180°-15t°=3(90°-12t°)-60°,解得t= 107;如图所示,当7.5<t<12时,∠AON=12t°-90°,∠AOM=180°-15t°,由∠AOM=3∠AON-60°,可得180°-15t°=3(12t°-90°)-60°,解得t=10;综上所述,当∠AOM=3∠AON-60°时,t的值为107s或10s;(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t°+90°+12t°=180°,解得t=103,①如图所示,当0<t<103时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°,∴72COM BONMON∠+∠∠=()()7901529012159012t tt t︒︒︒︒︒︒︒-++++=810812790tt︒︒︒-+(不是定值),②如图所示,当103<t<6时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=360°-(∠BOM+∠BOD+∠DON)=360°-(15t°+90°+12t°)=270°-27t°, ∴72COM BON MON ∠+∠∠=()()790152901227027t t t ︒︒︒︒︒︒-++- =8108127027t t ︒︒︒︒--=3(定值), 综上所述,当0<t <103时,72COM BON MON ∠+∠∠的值不是定值,当103<t <6时,72COM BON MON∠+∠∠的值是3. 【点睛】本题属于角的计算综合题,主要考查了角的和差关系的运用,解决问题的关键是将相关的角用含t 的代数式表示出来,并根据题意列出方程进行求解,以及进行分类讨论,解题时注意方程思想和分类思想的灵活运用.28.(1)68(2)12a x =-,2b x =-,2c x =+,12d x =+(3)4a b c d x +++=(4)M 的值不能等于2020,理由见解析【解析】【分析】(1)根据图片信息可得到a 、b 、c 、d 的值,再将它们相加即可得解;(2)根据图片信息可发现a 、b 、c 、d 的值与x 的关系,从而可用含x 的式子表示出他们的值;(3)在(2)结论的基础上,将它们相加即可得到五个数之间的数量关系;(4)在(3)结论的基础上进行计算可得404x =,这与已知条件产生矛盾,从而得到结论.【详解】解:(1)∵17x =∴17125a =-=,17215b =-=,17219c =+=,171229d =+=∴515192968a b c d +++=+++=;(2)∵观察图片可知,a 比x 小12,b 比x 小2,c 比x 大2,d 比x 大12 ∴12a x =-,2b x =-,2c x =+,12d x =+;(3)∵12a x =-,2b x =-,2c x =+,12d x =+∴()()()()1222125a b c d x x x x x x x ++++=-+-+++++=∴4a b c d x +++=;(4)结论:M 的值不能等于2020理由:∵4a b c d x +++=∴5M a b c d x x =++++=∴当52020x =时,404x =∵404是偶数,而图片中的所有数均为奇数∴M 的值不能等于2020.故答案是:(1)68(2)12a x =-,2b x =-,2c x =+,12d x =+(3)4a b c d x +++=(4)M 的值不能等于2020,理由见解析【点睛】本题考查了一元一次方程的应用以及列代数式,仔细阅读图表排列规律,观察出其余四个数与最中间的数的关系是解题的关键.。

(完整版)北师大版七年级数学上册期末试卷及答案doc

(完整版)北师大版七年级数学上册期末试卷及答案doc

(完整版)北师大版七年级数学上册期末试卷及答案doc一、选择题1.如图,在数轴上,若A 、B 、C 三点表示的数为a 、b 、c ,则下列结论正确的是( )A .c >a >bB .1b >1cC .|a |<|b |D .abc >02.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第9个图形圆的个数为( )A .94B .85C .84D .763.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )A .87B .91C .103D .1114.对于一个自然数n ,如果能找到正整数x 、y ,使得n x y xy =++,则称n 为“好数”.例如:31111=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有( )个 A .1B .2C .3D .45.下列说法中正确的是( ) A .0不是单项式 B .316X π的系数为16C .27ah的次数为2 D .365x y +-不是多项式6.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是( )A .第80个图形B .第82个图形C .第84个图形D .第86个图形7.下列四个选项中,不是正方体展开图形的是( )A .B .C .D .8.若3x-2y-7=0,则 4y-6x+12的值为( ) A .12B .19C .-2D .无法确定9.下列方程为一元一次方程的是( ) A .x+2y =3B .y+3=0C .x 2﹣2x =0D .1y+y =010.如果有理数,a b ,满足0,0ab a b >+<,则下列说法正确的是( ) A .0,0a b >>B .0,0a b <>C .0,0a b <<D .0,0a b ><11.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y -B .1019x y +C .1021x y -D .1017x y - 12.已知一个角的补角比它的余角的3倍小20度,则这个角的度数是( ) A .30 B .35︒C .40D .4513.下列计算正确的是( )A .b ﹣3b =﹣2B .3m +n =4mnC .2a 4+4a 2=6a 6D .﹣2a 2b +5a 2b =3a 2b14.“幻方”在中国古代称为“河图”、“洛书”,又叫“纵横图”.其主要性质是在一个由若干个排列整齐的数组成的正方形中,图中任意一横行,一纵行及对角线的几个数之和都相等.图(l )所示是一个33⨯幻方.有人建议向火星发射如图(2)所示的幻方图案,如果火星上有智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).图(3)是一个未完成的33⨯幻方,请你类比图(l )推算图(3)中P 处所对应的数字是( )A .1B .2C .3D .415.如图,已知矩形的长宽分别为m ,n ,顺次将各边加倍延长,然后顺次连接得到一个新的四边形,则该四边形的面积为( )A .3mnB .5mnC .7mnD .9mn16.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >017.按照如图所示的计算程序,若输入的x =﹣3,则输出的值为﹣1:若输入的x =3,则输出的结果为( )A .12B .112C .2D .318.已知线段AB ,C 是直线AB 上的一点,AB=8,BC=4,点M 是线段AC 的中点,则线段AM 的长为( ) A .2cmB .4cmC .2cm 或6cmD .4cm 或6cm19.若式子()222mx 2x 83x nx -+--的值与x 无关,n m 是( ) A .49B .32C .54D .9420.已知线段AB=m ,BC=n ,且m 2﹣mn=28,mn ﹣n 2=12,则m 2﹣2mn+n 2等于( ) A .49 B .40C .16D .921.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+22.甲、乙两人分别从A B 、两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达地后立刻以原路和提高后的速度向地返行,乙到达A 地后也立刻以原路和提高后的速度向B 地返行.甲、乙两人在开始 出发后的5小时36分钟又再次相遇,则A B 、两地的距离是( ) A .24千米B .30千米C .32千米D .36千米23.现有一列数a 1,a 2,a 3,…,a 98,a 99,a 100,其中a 3=2020,a 7=-2018,a 98=-1,且满足任意相邻三个数的和为常数,则a 1+a 2+a 3+…+a 98+a 99+a 100的值为( ) A .1985B .-1985C .2019D .-201924.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是( )A .9B .18C .12D .625.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为( ).A .36块B .41块C .46块D .51块26.使用科学计算器进行计算,其按键顺序如图所示,输出结果应为( )A .14-B . 3.94-C . 1.06-D . 3.7- 27.“比a 的3倍大5的数”用代数式表示为( )A .35a +B .3(5)a +C .35a -D .3(5)a -28.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D.5月到6月女生平均成绩比4月到5月的平均成绩增长快29.以下问题,不适合抽样调查的是()A.了解全市中小学生的每天的零花钱B.旅客上高铁列车前的安检C.调查某批次汽车的抗撞击能力D.调查某池塘中草鱼的数量30.下列解方程的步骤正确的是()A.由2x+4=3x+1,得2x+3x=1+4B.由3(x﹣2)=2(x+3),得3x﹣6=2x+6C.由0.5x﹣0.7x=5﹣1.3x,得5x﹣7=5﹣13xD.由1226x x-+-=2,得3x﹣3﹣x+2=12【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先确定出a、b、c的取值范围,然后根据有理数的运算法则解答即可.【详解】解:观察数轴,可知:﹣2<a<﹣1,0<b<1,1<c<2,∴c>b>a,1b >1c,|a|>|b|,abc<0.故选:B.【点睛】本题考查了利用数轴比较有理数的大小,以及有理数的运算法则,熟练掌握有理数的运算法则是解答本题的关键.2.A解析:A【解析】【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;可以推出第n 个图形中小圆的个数为n (n+1) +4.将9代入即可.【详解】第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,因为6= 4+1×2,10=4+2×3,16=4+3×4,24=4+4×5...,所以第n 个图形中小圆的个数为4+n (n+1)所以第9个图形有: 4 +9×10=94个小圆,故选: A【点睛】本题是一道找规律题,利用题目中给出的条件观察计算的出关于第n个图形的代数表达式将所求的代入.3.D解析:D【解析】【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数.【详解】解:∵第①个图案中“●”有:1+3×(0+2)=7个,第②个图案中“●”有:1+4×(1+2)=13个,第③个图案中“●”有:1+5×(2+2)=21个,第④个图案中“●”有:1+6×(3+2)=31个,…∴第9个图案中“●”有:1+11×(8+2)=111个,故选:D.【点睛】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.4.C解析:C【解析】【分析】根据题意,由n=x+y+xy,可得n+1=x+y+xy+1,所以n+1=(x+1)(y+1),因此如果n+1是合数,则n是“好数”,据此判断即可.【详解】根据分析,∵8=2+2+2×2,∴8是好数;∵9=1+4+1×4,∴9是好数;∵10+1=11,11是一个质数,∴10不是好数;∵11=2+3+2×3,∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11.故选C.【点睛】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n+1是合数,则n是“好数”.5.C解析:C【解析】【分析】根据单项式与多项式的概念即可求出答案.【详解】解:(A)0是单项式,故A错误;(B)πx3的系数为,故B错误;(D)3x+6y-5是多项式,故D错误;故选C.【点睛】本题考查单项式与多项式,解题的关键是熟练运用单项式与多项式的概念,本题属于基础题型.6.C解析:C【解析】【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题.【详解】解:根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,若5+7(n-1)×12=295,没有整数解,若8+7(n-2)×12=295,解得n=84,即用295根火柴搭成的图形是第84个图形,故选:C.【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.7.A解析:A【解析】【分析】根据平面图形的折叠及正方体的展开图解答,中间四联方,上下各一个,可以围成正方体.【详解】正方体共有11种表面展开图,B、C、D能围成正方体;A、不能,折叠后有两个面重合,不能折成正方体.故选:A.【点睛】本题考查的是学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.8.C解析:C【解析】【分析】把(3x-2y)看作一个整体并求出其值,再代入所求代数式进行计算即可得解.【详解】解:∵3x-2y-7=0,∴3x-2y=7,∴4y-6x+12=-2(3x-2y)+12=-2×7+12=-14+12=-2.故选:C.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.9.B解析:B【解析】根据一元一次方程的定义即可求出答案.【详解】解:只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程,A. x+2y=3,两个未知数;B. y+3=0,符合;C. x2﹣2x=0,指数是2;D. 1y+y=0,不是整式方程.故选:B.【点睛】考核知识点:一元一次方程.理解定义是关键.10.C解析:C【解析】【分析】此题首先利用同号两数相乘得正判定a,b同号,然后根据同号两数相加,符号取原来加数的符号.即可判定a,b的符号.【详解】解:∵ab>0,∴a,b同号,∵a+b<0,∴a<0,b<0.故选:C.【点睛】此题比较简单,主要利用了有理数的加法法则和乘法法则解决问题.11.A解析:A【解析】【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【详解】多项式的第一项依次是x,x2,x3,x4,…,x n,第二项依次是y,-y3,y5,-y7,…,(-1)n+1y2n-1,所以第10个式子即当n=10时,代入到得到x n+(-1)n+1y2n-1=x10-y19.故选:A.本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.12.B解析:B【解析】【分析】列方程解决问题,本题等量关系是3×余角-补角=20°,设这个角的度数为x°,则补角的度数为(180-x)°,余角的度数为(90-x)°,代入等量关系即可求解.【详解】设:这个角的度数是x,则补角的度数为180-x,余角的度数为90-x,由题意得:()()---=x x39018020x=解得35故选B.【点睛】本题考察了列方程解应用题,解题过程中要注意解应用题的步骤,正确找到等量关系是本题的关键.13.D解析:D【解析】【分析】根据合并同类项的法则即可求出答案.【详解】A. b﹣3b=﹣2b,故原选项计算错误;B. 3m+n不能计算,故原选项错误;C. 2a4+4a2不能计算,故原选项错误;D.﹣2a2b+5a2b=3a2b计算正确.故选D.【点睛】本题考查合并同类项的法则,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.14.B解析:B【解析】【分析】设第1列第3行的数字为x,P处对应的数字为p,根据每一横行、每一竖列以及斜对角线上的点数的和相等,可得x+1+(-2)=x +(-3)+p,可得P处数字.【详解】解:设第1列第3行的数字为x,P 处对应的数字为p,根据题意得,x+(-2)+1=x+(-3)+p ,解得p=2,故选:B .【点睛】本题通过九方格考查了有理数的加法.九方格题目趣味性较强,本题的关键是找准每一横行、每一竖列以及两条斜对角线上的数字的和相等,据此列方程求解.15.B解析:B【解析】【分析】如图,可分别求出各个直角三角形的面积,再加上中间的矩形面积即可得到答案.【详解】如图,根据题意可得:1()2FDE HBG S S n n m mn ∆∆==+=, 1()2ECH GAF S S m m n mn ∆∆==+=, 又矩形ABCD 的面积为mn ,所以,四边形EFGH 的面积为:++++5FDE HBG ECH GAF ABCD S S S S S mn mn mn mn mn mn ∆∆∆∆=++++=矩形,故选:B .【点睛】此题主要考查了根据图形的面积列代数式,熟练掌握直角三角形面积公式易用佌题的关键.16.B解析:B【解析】【分析】先弄清a,b,c 在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1;A 、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.17.D解析:D【解析】【分析】直接利用已知代入得出b的值,进而求出输入﹣3时,得出y的值.【详解】∵当输入x的值是﹣3,输出y的值是﹣1,∴﹣1=32b -+,解得:b=1,故输入x的值是3时,y=2331⨯-=3.故选:D.【点睛】本题主要考查了代数式求值,正确得出b的值是解题关键.18.C解析:C【解析】【分析】分类讨论:点C在线段AB上,点C在线段BC的延长线上,根据线段的和差,可得AC的长,根据线段中点的性质,可得AM的长.【详解】解:①当点C在线段AB上时,由线段的和差,得AC=AB-BC=8-4=4(cm),由线段中点的定义,得AM=12AC=12×4=2(cm);②点C在线段BC的延长线上,由线段的和差,得AC=AB+BC=8+4=12(cm),由线段中点的定义,得AM=12AC=12×12=6(cm);故选C.【点睛】本题考查两点间的距离,利用了线段的和差,线段中点的定义;解题关键是进行分类讨论.解析:D【解析】【分析】直接利用去括号法则化简,再利用合并同类项法则计算得出答案.【详解】解:∵式子2mx 2-2x+8-(3x 2-nx )的值与x 无关,∴2m-3=0,-2+n=0,解得:m=32,n=2, 故m n =(32)2= 94. 故选D .【点睛】此题主要考查了合并同类项,去括号,正确得出m ,n 的值是解题关键. 20.C解析:C【解析】【分析】将两个式子相减后即可求解.【详解】两式相减得:m 2﹣mn-mn+ n 2=28-12,即 m 2﹣2mn+n 2=16,故选C.【点睛】本题考查了整式加减的应用,正确进行整式的加减是解题的关键.. 21.D解析:D【解析】【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解.【详解】等式两边同乘4得:2(1)4(3)x x -=-+,故选:D.【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.解析:D【解析】【分析】第一次相遇时,甲、乙的速度和为xkm/h ,由第一次到第二次相遇的过程中,甲,乙的路程和是第一次相遇时甲,乙路程和的两倍.可列方程,即可求解.【详解】解:设第一次相遇时,甲、乙的速度和为xkm/h ,5小时36分钟=535(小时) 由题意可得:2×2x=(535-2)(x+2), 解得:x=18,∴A 、B 两地的距离=2×18=36(km ),故选:D .【点睛】本题考查了一元一次方程的应用,理解题意,找到正确的等量关系是本题的关键.23.B解析:B【解析】【分析】根据任意相邻三个数的和为常数列出求出a 1=a 4,a 2=a 5,a 3=a 6,从而得到每三个数为一个循环组依次循环,再求出a 100=a 1,然后分组相加即可得解.【详解】解:∵任意相邻三个数的和为常数,∴a 1+a 2+a 3=a 2+a 3+a 4,a 2+a 3+a 4=a 3+a 4+a 5,a 3+a 4+a 5=a 4+a 5+a 6,∴a 1=a 4,a 2=a 5,a 3=a 6,∴原式为每三个数一个循环;∵a 3=2020,a 7=-2018,a 98=-1,∵732÷=…1,98332÷=…2,∴a 1= a 7=-2018,a 2=a 98=-1,∴a 1+a 2+a 3=-2018-1+2020=1;∵100333÷=…1,∴a 100=a 1=-2018;∴a 1+a 2+a 3+…+a 98+a 99+a 100=(a 1+a 2+a 3)+…+(a 97+a 98+a 99)+a 100=133********⨯-=-;【点睛】本题是对数字变化规律的考查,求出每三个数为一个循环组依次循环是解题的关键,也是本题的难点.24.B解析:B【解析】试题分析:由频率直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选B.考点:频数(率)分布直方图.25.C解析:C【解析】【分析】根据题意观察图像找出数量上每次增加黑色瓷砖的变化规律,进而分析推出一般性的结论求解.【详解】解:∵第1个图形有黑色瓷砖5116⨯+=块.第2个图形有黑色瓷砖52111⨯+=块.第3个图形有黑色瓷砖53116⨯+=块.…∴第9个图形中有黑色瓷砖59146⨯+=块.故选:C.【点睛】本题主要考查图形的变化规律,解题的关键是通过归纳与总结,得到其中的一般规律.26.B解析:B【解析】【分析】根据如图所示的按键顺序,列出算式3×(-56)-1.22,再计算可得.【详解】根据如图所示的按键顺序,输出结果应为3×(-56)-1.22=-2.5-1.44=-3.94,故选:B.本题主要考查计算器-基础知识,解题的关键是掌握分数的按键和平方的按键,并依据其功能列出算式.27.A解析:A【解析】【分析】根据题意可以用代数式表示比a的3倍大5的数,本题得以解决.【详解】解:比a的3倍大5的数”用代数式表示为:3a+5,故选A.【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.28.C解析:C【解析】【分析】男女生5月份的平均成绩均为8.9,据此判断A选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B选项;根据增长率的概念,结合折线图的数据计算,从而判断C选项;根据女生平均成绩两端折线的上升趋势可判断D选项.【详解】解:A.男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意;B.4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C.4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D.5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意;故选:C.【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.29.B解析:B【解析】A、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;30.B解析:B【解析】【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C选项利用等式的性质进行化简.【详解】解:A、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误;B、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C、0.5x-0.7x=5-1.3x,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x,故本选项错误;D、1226x x-+-=2,去分母得:3x-3-x-2=12,故本选项错误;故选:B.【点睛】本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.。

(完整版)北师大版七年级数学上册期末试卷及答案

(完整版)北师大版七年级数学上册期末试卷及答案

(完整版)北师大版七年级数学上册期末试卷及答案一、选择题1.以下问题,不适合抽样调查的是( ) A .了解全市中小学生的每天的零花钱 B .旅客上高铁列车前的安检 C .调查某批次汽车的抗撞击能力D .调查某池塘中草鱼的数量2.下列生活、生产现象:①用两颗钉子就可以把木条固定在墙上;②从甲地到乙地架设电线,总是沿线段架设;③把弯曲的公路改直就能缩短路程;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线.其中能用“两点之间线段最短”来解释的现象是( ) A .①② B .②③C .①④D .③④3.如图所示是一个自行设计的计算程序,若输入x 的值为1,那么执行此程序后,输出的数y 是( )A .﹣2B .2C .3D .44.a 是不为1的有理数,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,以此类推,则2019(a = ) A .3B .23C .12-D .无法确定5.若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( ) A .2 B .﹣2 C .8 D .﹣8 6.已知232-m a b 和45n a b 是同类项,则m n -的值是( )A .-2B .1C .0D .-17. 已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD等于( )A .15 cmB .16 cmC .10 cmD .5 cm8.下列说法中正确的是( )A .0不是单项式B .316X π的系数为16C .27ah的次数为2 D .365x y +-不是多项式9.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )A .87B .91C .103D .11110.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,按此规律排列下去第n 个图中黑色正方形纸片的张数为( ) ….A .4n+1B .3n+1C .3nD .2n+111.已知a ,b ,c 为有理数,且0a b c ++=,0abc <,则a b ca b c++的值为( ) A .1B .1-或3-C .1或3-D .1-或312.如图,在1000个“○”中依次填入一列数字1231000,,,m m m m 使得其中任意四个相邻“○”中所填数字之和都等于10-,已知251m x =-,9992m x =-,则x 的值为( )A .1B .1-C .2D .2-二、填空题13.把我国夏禹时代的“洛书”用数学符号翻译出来就是一个三阶幻方,它的每行、每列、每条对角线上三个数之和均相等.则图1的三阶幻方中,字母a 所表示的数是______,根据图2的三阶幻方中的数字规律计算代数式3m n -+的值为______.14.若()221x y -++=0,则x+y=_____.15.若|21(3)0x x y ++-=,则22x y +=_______.16.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第n 个正方形(实线)四条边上的整点个数共有_________个.17.一个角的余角为50°,则这个角的补角等于_____.18.如图,将一个正方形纸片分割成四个面积相等的小正方形纸片,然后将其中一个小正方形纸片再分割成四个面积相等的小正方形纸片.如此分割下去,第n 次分割后,正方形纸片共有_________个.19.关于x 的方程()212ax x -=-的解为__________.20.已知 10a =,211a a =-+,322a a =-+,…,依此类推,则 2019a =_______. 21.在数轴上,点A (表示整数a )在原点O 的左侧,点B (表示整数b )在原点O 的右侧,若a b -=2019,且AO =2BO ,则a +b 的值为_________22.一个角的补角是这个角的余角的3倍小20°,则这个角的度数是_______三、解答题23.“中国梦”是中华民族每个人的梦,也是每个中小学生的梦.各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符.某中学在全校600名学生中随机抽取部分学生进行调查,调查内容分为四种:A :非常喜欢,B :喜欢,C :一般,D :不喜欢,被调查的同学只能选取其中的一种.根据调查结果,绘制出两个不完整的统计图(图形如下),并根据图中信息,回答下列问题:()1本次调查中,一共调查了 名学生; ()2条形统计图中,m = ,n = ;()3求在扇形统计图中,“B :喜欢”所在扇形的圆心角的度数;()4请估计该学校600名学生中“A :非常喜欢”和“B :喜欢”经典诵读的学生共有多少人.24.(1)已知:2(2)30m n -++=.线段AB=4()m n -cm ,则线段AB= cm .(此空直接填答案,不必写过程.)(2)如图,线段AB 的长度为(1)中所求的值,点P 沿线段AB 自点A 向点B 以2cm/s 的速度运动,同时点Q 沿线段BA 自点B 向点A 以3cm/s 的速度运动.①当P 、Q 两点相遇时,点P 到点B 的距离是多少? ②经过多长时间,P 、Q 两点相距5cm ? 25.已知 A=3x 2+3y 2﹣2xy ,B=xy ﹣2y 2﹣2x 2. 求:(1)2A ﹣3B .(2)若|2x ﹣3|=1,y 2=9,|x ﹣y|=y ﹣x ,求 2A ﹣3B 的值.(3)若 x=2,y=﹣4 时,代数式 ax 31+2by+5=17,那么当 x=﹣4,y=﹣12时,求代 数式3ax ﹣24by 3+6 的值.26.(2+3+3分)阅读材料:我们知道,4x ﹣2x+x=(4﹣2+1)x=3x ,类似地,我们把(a+b )看成一个整体,则4(a+b )﹣2(a+b )+(a+b )=(4﹣2+1)(a+b )=3(a+b ).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用整体思想解决下列问题:(1)把()2a b -看成一个整体,合并()()()222362a b a b a b ---+-.(2)已知224x y -=,求23621x y --的值;(3)已知a ﹣2b=3,2b ﹣c=﹣5,c ﹣d=10,求(a ﹣c )+(2b ﹣d )﹣(2b ﹣c )的值. 27.如图,相距10千米的A B 、两地间有一条笔直的马路,C 地位于A B 、两地之间且距A 地4千米,小明同学骑自行车从A 地出发沿马路以每小时5千米的速度向B 地匀速运动,当到达B 地后立即以原来的速度返回,到达A 地停止运动,设运动时间为(时),小明的位(1)当0.5=t 时,求点P C 、间的距离(2)当小明距离C 地1千米时,直接写出所有满足条件的t 值 (3)在整个运动过程中,求点P 与点A 的距离(用含的代数式表示)28.如图,点P 是定长线段AB 上一点,C 、D 两点分别从点P 、B 出发以1厘米/秒,2厘米/秒的速度沿直线AB 向左运动(点C 在线段AP 上,点D 在线段BP 上). (1)若点C 、D 运动到任一时刻时,总有2PD AC =,请说明点P 在线段AB 上的位置;(2)在(1)的条件下,点Q 是直线AB 上一点,且AQ BQ PQ -=,求PQAB的值; (3)在(1)的条件下,若点C 、D 运动5秒后,恰好有12CD AB =,此时点C 停止运动,点D 继续运动(点D 在线段PB 上),点M 、N 分别是CD 、PD 的中点,下列结论:①PM PN -的值不变;②MNAB的值不变.可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】A 、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B 、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C 、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D 、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误; 故选B .2.B解析:B 【解析】 【分析】根据两点确定一条直线,两点之间线段最短的性质对各选项分析判断即可得出结果.解:①用两颗钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故错误;②从甲地到乙地架设电线,总是沿线段架设是利用了“两点之间线段最短”,故正确;③把弯曲的公路改直就能缩短路程是利用了“两点之间线段最短”,故正确;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故错误.故选:B【点睛】本题主要考查的是线段的性质和直线的性质,正确的掌握这两个性质是解题的关键.3.D解析:D【解析】【分析】按照程序的流程,写出前几次循环的结果,并同时判断各个结果是否满足判断框中的条件,直到满足条件,执行输出y.【详解】解:由已知计算程序可得到代数式:2x2﹣4,当x=1时,2x2﹣4=2×12﹣4=﹣2<0,所以继续输入,即x=﹣2,则:2x2﹣4=2×(﹣2)2﹣4=4>0,即y=4,故选D.【点睛】本题考查解决程序框图中的循环结构时常采用写出前几次循环的结果,找规律.4.B解析:B【解析】【分析】根据规则计算出a2、a3、a4,即可发现每3个数为一个循环,然后用2019除以3,即可得出答案.【详解】解:由题意可得,13a=,211 132a==--,31213 1()2a==--,413213a ==-,⋯,由上可得,每三个数一个循环, 2019÷3=673, 201923a ∴=, 故选:B . 【点睛】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a2、a3、a4找出数字变化的规律.5.B解析:B 【解析】 【分析】把x =1代入方程3x ﹣m =5得出3﹣m =5,求出方程的解即可. 【详解】把x =1代入方程3x ﹣m =5得:3﹣m =5, 解得:m =﹣2, 故选:B . 【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于m 的一元一次方程是解此题的关键.6.D解析:D 【解析】 【分析】根据同类项的字母相同且相同字母的指数也相同,可得关于m 、n 的方程,根据方程的解可得答案. 【详解】∵232-m a b 和45n a b 是同类项 ∴2m=4,n=3 ∴m=2,n=3 ∴=231m n --=- 故选D . 【点睛】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.7.A解析:A 【解析】【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.8.C解析:C【解析】【分析】根据单项式与多项式的概念即可求出答案.【详解】解:(A)0是单项式,故A错误;(B)πx3的系数为,故B错误;(D)3x+6y-5是多项式,故D错误;故选C.【点睛】本题考查单项式与多项式,解题的关键是熟练运用单项式与多项式的概念,本题属于基础题型.9.D解析:D【解析】【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数.【详解】解:∵第①个图案中“●”有:1+3×(0+2)=7个, 第②个图案中“●”有:1+4×(1+2)=13个, 第③个图案中“●”有:1+5×(2+2)=21个, 第④个图案中“●”有:1+6×(3+2)=31个, …∴第9个图案中“●”有:1+11×(8+2)=111个, 故选:D . 【点睛】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.10.D解析:D 【解析】 【分析】根据图形的规律可知,从第二个图形开始,每个图形中的黑色正方形纸片数比前一个图形多2个,由此可推出结果. 【详解】第1个图中有3张黑色正方形纸片, 第2个图中有5张黑色正方形纸片, 第3个图中有7张黑色正方形纸片, …,依次类推,第n 个图中黑色正方形纸片的张数为2n+1, 故选:D . 【点睛】本题考查了图形的规律,代数式表示图形的个数,掌握图形的规律是解题的关键.11.A解析:A 【解析】 【分析】先根据有理数的乘法法则推出:要使三个数的乘积为负,a ,b ,c 中应有奇数个负数,进而可将a ,b ,c 的符号分两种情况:1负2正或3负;再根据加法法则:要使三个数的和为0,a ,b ,c 的符号只能为1负2正,然后化简即得. 【详解】 ∵0abc <∴a ,b ,c 中应有奇数个负数∴a ,b ,c 的符号可以为:1负2正或3负 ∵0a b c ++=∴a ,b ,c 的符号为1负2正 令0a <,0b >,0c >∴a a =-,b b =,c c =∴a b c a b c ++1111=-++= 故选:A . 【点睛】本题考查了绝对值的性质、乘法法则及加法法则,利用加法法则和乘法法则确定数的符号是解题关键.12.C解析:C 【解析】 【分析】由于任意四个相邻数之和都是-10得到a 1+a 2+a 3+a 4=a 2+a 3+a 4+a 5,a 5+a 6+a 7+a 8=a 6+a 7+a 8+a 9,…,则a 1=a 5=a 9=…=,利用同样的方法可得到a 1=a 5=a 9=…=x -1,a 2=a 6=a 10=…-7,a 3=a 7=a 11=…=-2x ,a 4=a 8=a 12=…=0,所以已知a 999=a 3=-2x ,a 25=a 1=x-1,由此联立方程求得x 即可. 【详解】∵a 1+a 2+a 3+a 4=a 2+a 3+a 4+a 5,a 5+a 6+a 7+a 8=a 6+a 7+a 8+a 9,…, ∴a 1=a 5=a 9=…=x -1, 同理可得a 2=a 6=a 10=…=-7, a 3=a 7=a 11=…=-2x , a 4=a 8=a 12=…=0, ∵a 1+a 2+a 3+a 4=-10, ∴x-1-7-2x+0=-10, 解得:x=2. 故答案为:2. 【点睛】本题考查数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.二、填空题13.﹣2 【解析】 【分析】在图1中,设中心数为x ,根据每行、每列的三个数之和相等可得关于a 、x 的方程,解方程即可求出a ,在图2中,根据每列、每条对角线上三个数之和相等可得关于m 、n 的等式,整解析:﹣2【分析】在图1中,设中心数为x ,根据每行、每列的三个数之和相等可得关于a 、x 的方程,解方程即可求出a ,在图2中,根据每列、每条对角线上三个数之和相等可得关于m 、n 的等式,整理变形即得答案.【详解】解:在图1中,设中心数为x ,根据题意得:2104x a x ++=++,解得:8a =; 在图2中,根据题意得:2020m n n -+=++,整理得:32m n -+=-;故答案为:8,﹣2.【点睛】本题以三阶幻方为载体,主要考查了一元一次方程的应用和代数式求值,正确理解题意、掌握解答的方法是关键.14.1【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x+y=2+(-1)=解析:1【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x+y=2+(-1)=2-1=1.故答案为1.【点睛】本题考查算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.15.【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】∵,∴,,∴.故答案为:.【点睛】本题考查了非负数的性质以及代数式的求值.解题解析:5-【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】 ∵21(3)0x x y ++-=,∴10x +=,30x y -=,∴1x =-,3y =-,∴222(1)2(3)165x y +=-+⨯-=-=-.故答案为:5-.【点睛】本题考查了非负数的性质以及代数式的求值.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0. 16.4n .【解析】【分析】依次求出每个正方形四条边上的整点个数,得到个数的变化规律,即可得到第n 个正方形四条边上的整点个数.【详解】第1个正方形的整点个数为4=,第2个正方形的整点个数为8=解析:4n .【解析】【分析】依次求出每个正方形四条边上的整点个数,得到个数的变化规律,即可得到第n 个正方形四条边上的整点个数.【详解】第1个正方形的整点个数为4=41⨯,第2个正方形的整点个数为8=4⨯2,第3个正方形的整点个数为12=4⨯3,,∴第n个正方形的整点个数为4n,故答案为:4n.【点睛】此题考查图形类规律的探究,根据图形求出前几个正方形四条边上整点的个数得到个数的变化规律是解题的关键.17.140°【解析】【分析】首先根据余角的定义求出这个角的度数,再根据补角的定义得出结果.【详解】解:根据余角的定义,这个角的度数=90°﹣50°=40°,根据补角的定义,这个角的补角度数=解析:140°【解析】【分析】首先根据余角的定义求出这个角的度数,再根据补角的定义得出结果.【详解】解:根据余角的定义,这个角的度数=90°﹣50°=40°,根据补角的定义,这个角的补角度数=180°﹣40°=140°.故答案为:140°.【点睛】考核知识点:余角和补角.理解定义是关键.18.3n+1【解析】【分析】观察图形规律,第一次有4个,第二次有7个,第三次有10个,依此类推可以得到第n次的计算结果.【详解】解:第一次有4个,第二次有7=3+4,第三次有10=3×2+4,解析:3n+1【解析】【分析】观察图形规律,第一次有4个,第二次有7个,第三次有10个,依此类推可以得到第n 次的计算结果.【详解】解:第一次有4个,第二次有7=3+4,第三次有10=3×2+4,第四次有13=3(4-1)+4,…以此类推,第n次有3(n-1)+4=3n+1.故答案为:3n+1.【点睛】本题考查了规律性的题目,首先至少正确计算三个特殊数据,然后进一步发现数据之间的规律,进行计算即可,本题可看到第一次有4个,第二次有7=3+4,第三次有10=3×2+4,从而得到第n次的规律.19.【解析】【分析】方程去括号,移项合并,把x系数化为1,即可表示出解.【详解】解:方程a2(x﹣1)=2﹣x,去括号得:a2x﹣a2=2﹣x,移项合并得:(a2+1)x=a2+2,解得解析:2221axa+ =+【解析】【分析】方程去括号,移项合并,把x系数化为1,即可表示出解.【详解】解:方程a2(x﹣1)=2﹣x,去括号得:a2x﹣a2=2﹣x,移项合并得:(a2+1)x=a2+2,解得:x=2221aa++.故答案为:x=2221aa++.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.20.【解析】【分析】根据题意,可以得出这一组数的规律,分为n为奇数和偶数二种情况讨论即可.【详解】因为,所以==-1,==-1,,所以n 为奇数时,,n 为偶数时,,所以-=解析:1009-【解析】【分析】根据题意,可以得出这一组数的规律,分为n 为奇数和偶数二种情况讨论即可.【详解】因为10a =, 所以211a a =-+=01-+=-1,322a a =-+=-12-+=-1,433a a =-+=-13-+=-2,544=--2+4=-2a a =-+,所以n 为奇数时,1-2n n a -=,n 为偶数时,-2n n a =, 所以2019a =-2019-12=-1009, 故答案为:-1009.【点睛】本题考查了有理数运算的规律,含有绝对值的计算,掌握有理数运算的规律是解题的关键.21.-673【解析】【分析】直接利用已知得出|a|=2b ,进而去绝对值求出答案.【详解】解:由题意可得:|a-b|=2019,|a|=2b ,∵点A (表示整数a )在原点O 的左侧,点B (表示整解析:-673【解析】【分析】直接利用已知得出|a|=2b ,进而去绝对值求出答案.【详解】解:由题意可得:|a-b|=2019,∵点A(表示整数a)在原点O的左侧,点B(表示整数b)在原点O的右侧,∴-a=2b,-a+b=2019,解得:b=673,a=-1346,故a+b=-673.故答案为:-673.【点睛】此题主要考查了数轴上的点以及代数式求值,正确得出a,b之间的关系是解题关键.22.【解析】【分析】设这个角的度数为x,分别表示出这个角的补角和余角,即可列出方程解答. 【详解】设这个角的度数为x,,.故答案为: .【点睛】此题考查角的余角和补角定义及计算,设出所解析:35︒【解析】【分析】设这个角的度数为x,分别表示出这个角的补角和余角,即可列出方程解答.【详解】设这个角的度数为x,︒-=︒--︒,1803(90)20x xx=︒.35故答案为:35︒.【点睛】此题考查角的余角和补角定义及计算,设出所求的角,表示出其补角和余角,才好列式进行计算.三、解答题23.(1)80;(2)16,24;(3)72°;(4)390人【解析】【分析】(1)由A类人数及其所占百分比可得调查的总人数;(2)由C 类人数所占百分比乘(1)求得的总人数可得n 的值,再用调查的总人数减去A 、C 、D 类人数可以得到B 类总人数;(3)算出B 类人数所占百分比,再乘以360度可以得到答案;(4)用“A :非常喜欢”和“B :喜欢”经典诵读的学生人数和占调查人数的比例乘以学校总人数可得解答.【详解】解:()13645%80÷=,∴本次调查中,一共调查了80名学生;()()28030%24803624416n m =⨯==-++=;()3解:163607280⨯︒=︒ 答:“B :喜欢”所在扇形的圆心角的度数是72.()4解: 361660039080+⨯= (人) 答:该学校“A :非常喜欢”和“B :喜欢”经典诵读的学生大约有390人.【点睛】本题考查数据的整理和分析,熟练掌握条形统计图和扇形统计图的关联及用样本估计总体的方法是解题关键.24.(1)20;(2)①P 、Q 两点相遇时,点P 到点B 的距离是12cm ;②经过3s 或5s ,P 、Q 两点相距5cm .【解析】【分析】(1)根据绝对值和平方的非负数求出m 、n 的值,即可求解;(2)①根据相遇问题求出P 、Q 两点的相遇时间,就可以求出结论;②设经过xs ,P 、Q 两点相距5cm ,分相遇前和相遇后两种情况建立方程求出其解即可.【详解】解:(1)因为2(2)30m n -++=,所以m-2=0,n+3=0,解得:m=2,n=-3,所以AB=4()m n -=4×[2-(-3)]=20,即20AB =cm ,故答案为:20(2)①设经过t 秒时,P 、Q 两点相遇,根据题意得, 2320t t +=4t =∴P 、Q 两点相遇时,点P 到点B 的距离是:4×3=12cm ;②设经过x 秒,P 、Q 两点相距5cm ,由题意得2x+3x+5=20,解得:x=3或2x+3x-5=20,解得:x=5答:经过3s 或5s ,P 、Q 两点相距5cm .【点睛】本题考查平方和绝对值的非负性以及相遇问题的数量关系在实际问题中的运用,行程问题的数量关系的运用,分类讨论思想的运用,解答时根据行程问题的数量关系建立方程是解题关键.25.(1)12x2+12y2-7xy;(2)当 x=2,y=3 时,2A﹣3B=114;当 x=1,y=3 时,2A﹣3B=99;(3)﹣12.【解析】【分析】(1)把A、B代入化简即可;(2)由|2x-3|=1,y2=9,|x-y|=y-x,确定x、y的值,然后代入(1)的结果中;(3)把x=2,y=-4代入ax3+12by+5=17中,得关于a、b的代数式,把x=-4,y=-12,代入代数式3ax-24by3+6中,然后把得到的关于a、b的代数式整体代入求值.【详解】解:(1)2A-3B,=2(3x2+3y2-2xy)-3(xy-2y2-2x2),=6x2+6y2-4xy-3xy+6y2+6x2,=12x2+12y2-7xy;(2)∵|2x-3|=1,y2=9,∴x1=2,x2=1,y1=3,y2=-3,又∵|x-y|=y-x,∴x1=2,x2=1,y=3.当x=2,y=3时,2A-3B,=12x2+12y2-7xy,=12×4+12×9-7×2×3,=114;当x=1,y=3时,2A-3B,=12x2+12y2-7xy,=12×1+12×9-7×1×3,=99.(3)∵x=2,y=﹣4时原式=ax31+2by+5=17 ,∴8a﹣2b=12,即 4a﹣b=6.当 x=﹣4,y=﹣12时,原式=3ax﹣24by3+6,=﹣12a+3b+6,=﹣3(4a﹣b)+6,∵4a﹣b=6,∴原式=﹣3×6+6,=﹣12.【点睛】本题考查了代数式的化简求值.题目(2)由条件确定x 、y 的值是关键,题目(3)掌握整体代入的方法是关键.26.(1)2()a b --;(2)-9;(3)8【解析】【分析】(1)利用整体思想,把2()a b -看成一个整体,进行合并即可得到结果;(2)原式可化为3(x 2-2y )-21,把x 2-2y=4整体代入即可;(3)依据a-2b=3,2b-c=-5,c-d=10,即可得到a-c=-2,2b-d=5,整体代入进行计算即可.【详解】(1)∵()()()()2222236236((2))a b a b a a b a b b ---+-=---=-+; 故答案为:2()a b --;(2)∵224x y -=, ∴原式=3(x 2-2y )-21=12-21= -9;(3)∵a-2b=3,2b-c=-5,c-d=10,∴()()222a b b c a c -+-=-=-,()()225c d b c b d -+-=-=∴原式=-2+5-(-5)=8.故答案为(1)2()a b --;(2)-9;(3)8.【点睛】本题主要考查了整式的加减,解决问题的关键是运用整体思想;给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.27.(1)1.5k ;(2)317,1,3,55h h h h ;(3)5,20-5t 【解析】【分析】(1)根据速度,求出t=0.5时的路程,即可得到P 、C 间的距离;(2)分由A 去B ,B 返回A 两种情况,各自又分在点C 的左右两侧,分别求值即可;(3)PA 的距离为由A 去B ,B 返回A 两种情况求值.【详解】(1)由题知: 5/,4, 10v km h AC km AB km ===当0.5t h =时,50.5 2.5s vt kom ==⨯=,即 2.5AP km = 425 1.5PC AC AP k ∴=-=-=()2当小明由A 地去B 地过程中:在AC 之间时, 41355t -==(小时), 在BC 之间时, 4115t +==(小时), 当小明由B 地返回A 地过程中:在BC 之间时, 1024135t ⨯--==(小时), 在AC 之间时, 102(41)1755t ⨯--==(小时), 故满足条件的t 值为:317,1,3,55h h h h (3)当小明从A 运动到B 的过程中,AP=vt= 5,当小明从B 运动到A 的过程中,AP= 20-vt= 20- 5t.【点睛】此题考查线段的和差的实际应用,掌握题中运用的行程题的公式,正确理解题意即可正确解题.28.(1)点P 在线段AB 的13处;(2)13或1;(3)结论②MN AB 的值不变正确,112MN AB =. 【解析】【分析】(1)设运动时间为t 秒,用含t 的代数式可表示出线段PD 、AC 长,根据2PD AC =,可知点P 在线段AB 上的位置;(2)由AQ BQ PQ -=可知AQ PQ BQ =+,当点Q 在线段AB 上时,等量代换可得AP BQ =,再结合13AP AB =可得PQ AB的值;当点Q 在线段AB 的延长线上时,可得AQ BQ AB PQ -==,易得PQ AB 的值. (3)点C 停止运动时,12CD AB =,可求得CM 与AB 的数量关系,则PM 与PN 的值可以含AB 的式子来表示,可得MN 与AB 的数量关系,易知MN AB 的值. 【详解】解:(1)设运动时间为t 秒,则2,PD PB t PC AP t =-=-,由2PD AC =得22()PB t AP t -=-,即2PB AP =AP PB AB +=,2AP AP AB ∴+=,3AP AB ∴=,即13AP AB =所以点P 在线段AB 的13处; (2)①如图,当点Q 在线段AB 上时,由AQ BQ PQ -=可知AQ PQ BQ =+, AQ AP PQ =+13PQ AP AB ∴==13PQ AB ∴= ②如图,当点Q 在线段AB 的延长线上时,AQ BQ AB -=,AQ BQ PQ -=AB PQ ∴=1PQ AB∴= 综合上述,PQ AB 的值为13或1; (3)②MN AB的值不变. 由点C 、D 运动5秒可得5,5210CP BD ==⨯=,如图,当点M 、N 在点P 同侧时,点C 停止运动时,12CD AB =, 点M 、N 分别是CD 、PD 的中点,11,22CM CD PN PD ∴== 14CM AB ∴= 154PM CM CP AB ∴=-=- 2103PD PB BD AB =-=- 121(10)5233PN AB AB ∴=-=-112MN PN PMAB ∴=-= 当点C 停止运动,点D 继续运动时,MN 的值不变,所以111212AB MN AB AB ==; 如图,当点M 、N 在点P 异侧时,点C 停止运动时,12CD AB =, 点M 、N 分别是CD 、PD 的中点,11,22CM CD PN PD ∴== 14CM AB ∴= 154PM CP CM AB ∴=-=-2103PD PB BD AB =-=- 121(10)5233PN AB AB ∴=-=- 112MN PN PM AB ∴=+= 当点C 停止运动,点D 继续运动时,MN 的值不变,所以111212AB MN AB AB ==; 所以②MN AB的值不变正确,112MN AB =. 【点睛】本题考查了线段的相关计算,利用线段中点性质转化线段之间的和差倍分关系是解题的关键.。

北师大版七年级上册数学期末试卷及答案完整版

北师大版七年级上册数学期末试卷及答案完整版

数 学 试 卷 北 师 大 版 七 年 级 上 册一、精心选一选(每小题3分,共30分) 1.-21的相反数是( )A .2B .-2C .21 D .-212.下列式子正确的是( )A .-0.1>-0.01B .—1>0C .21<31D .-5<3 3. 沿图1中虚线旋转一周,能围成的几何体是下面几何体中的 ( )ABC D 图1 4.多项式12++xy xy 是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式5.桌上放着一个茶壶,4个同学从各自的方向观察,请指出图3右边的四幅图,从左至右分别是由哪个同学看到的( )A .①②③④B .①③②④C .②④①③D .④③①②6.数a ,b 在数轴上的位置如图2所示,则b a +是( )A .正数B .零C .负数D .都有可能7. 每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米 B .1.5×810千米 C .15×710千米 D .1.5×710千米 8.图5是某市一天的温度变化曲线图,通过该图可知,下列说法错误的是( ) A .这天15点时的温度最高B .这天3点时的温度最低C .这天最高温度与最低温度的差是13℃ 温度/℃383430 26 22 15 18 21 24 图3 图2D .这天21点时的温度是30℃9.一个正方体的侧面展开图如图4所示,用它围成的正方体只可能是( )10.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( )A .3瓶B .4瓶C .5瓶D .6瓶 二、细心填一填(每空3分,共30分)11.52xy -的系数是 。

12.某公园的成人单价是10元,儿童单价是4元。

某旅行团有a 名成人和b 名儿童;则旅行团的门票费用总和为 元。

北师大版(完整版)七年级数学上册期末试卷及答案

北师大版(完整版)七年级数学上册期末试卷及答案

北师大版(完整版)七年级数学上册期末试卷及答案一、选择题1.若式子()222mx 2x 83x nx -+--的值与x 无关,n m 是( )A .49B .32C .54D .942.已知a ,b ,c 为有理数,且0a b c ++=,0abc <,则a b ca b c++的值为( ) A .1B .1-或3-C .1或3-D .1-或33.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,按此规律排列下去第n 个图中黑色正方形纸片的张数为( ) ….A .4n+1B .3n+1C .3nD .2n+14.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O 点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A 1,第2次移动到A 2,第3次移动到A 3,……,第n 次移动到A n ,则△OA 2A 2019的面积是( )A .504B .10092C .10112 D .10095.下列说法中正确的是( ) A .0不是单项式 B .316X π的系数为16C .27ah的次数为2 D .365x y +-不是多项式6.下列四个选项中,不是正方体展开图形的是( )A .B .C .D .7.如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72°8. 已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD等于( )A .15 cmB .16 cmC .10 cmD .5 cm9.有理数,a b 在数轴上的位置如图所示,则下列结论正确的是( )A .0a b +>B .0a b -<C .b a >D .0ab <10.下列计算正确的是( )A .b ﹣3b =﹣2B .3m +n =4mnC .2a 4+4a 2=6a 6D .﹣2a 2b +5a 2b =3a 2b11.某商店在某一时间以每件90元的价格出售两件商品,其中一件盈利25%,另一件亏损25%,则在这次买卖中,商家( ) A .亏损8元 B .赚了12元C .亏损了12元D .不亏不损12.如图,在数轴上,若A 、B 、C 三点表示的数为a 、b 、c ,则下列结论正确的是( )A .c >a >bB .1b >1cC .|a |<|b |D .abc >013.按照如图所示的计算程序,若输入的x =﹣3,则输出的值为﹣1:若输入的x =3,则输出的结果为( )A .12B .112C .2D .314.如图,在1000个“○”中依次填入一列数字1231000,,,m m m m 使得其中任意四个相邻“○”中所填数字之和都等于10-,已知251m x =-,9992m x =-,则x 的值为( )A .1B .1-C .2D .2-15.骰子是一种特别的数字立方体(见下图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )A .B .C .D .16.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0 17.若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( ) A .2 B .﹣2 C .8 D .﹣8 18.在上午八点半钟的时候,时针和分针所夹的角度是( ) A .85° B .75° C .65°D .55°19.下列方程中,属于一元一次方程的是( ).A .23x y +=B .21x >C .720222020x +=D .241x =20.甲、乙两人分别从A B 、两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达地后立刻以原路和提高后的速度向地返行,乙到达A 地后也立刻以原路和提高后的速度向B 地返行.甲、乙两人在开始 出发后的5小时36分钟又再次相遇,则A B 、两地的距离是( ) A .24千米B .30千米C .32千米D .36千米21.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是( )A .183B .157C .133D .9122.a 是不为1的有理数,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,以此类推,则2019(a = ) A .3B .23C .12-D .无法确定23.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n ,则n =( )A .9B .11C .13D .1524.在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图2所示,若这个两位数的个位数字为a ,则这个两位数为( )A .a ﹣50B .a +50C .a ﹣20D .a +20 25.下列运算中正确的是( )A .235a b ab +=B .220a b ba -=C .32534a a a +=D .22321a a -=26.在数轴上有一个动点从原点出发,每次向正方向或负方向移1个单位长度,经过5次移动后,动点落在表示数3的点上,则动点的不同运动方案共有( ) A .2种B .3种C .4种D .5种27.根据等式性质,下列结论正确的是( ) A .如果22a b -=,那么=-a b B .如果22a b -=-,那么=-a b C .如果22a b =-,那么a b =D .如果122a b =,那么a b = 28.一辆客车和一辆卡车同时从A 地出发沿同一公路同向行驶,客车的行驶速度是70km /h ,卡车的行驶速度是60km /h ,客车经过x 小时到达B 地,卡车比客车晚到1h .根据题意列出关于x 的方程,正确的是( ) A .16070x x -= B .106070x x+-= C .70x =60x+60 D .60x =70x-7029.以下问题,不适合抽样调查的是( )A.了解全市中小学生的每天的零花钱B.旅客上高铁列车前的安检C.调查某批次汽车的抗撞击能力D.调查某池塘中草鱼的数量30.小牧用60根长短相同的小木棍按照下图所示的方式,先连续摆出若干正方形,再摆出一些六边形,摆出的正方形和六边形一共有1个,要求所有的图形都摆在一行上,且相邻的图形只有一条公共边,同时没有木棍剩余.则t可以取()个不同的值.A.2 B.3 C.4 D.5【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用去括号法则化简,再利用合并同类项法则计算得出答案.【详解】解:∵式子2mx2-2x+8-(3x2-nx)的值与x无关,∴2m-3=0,-2+n=0,解得:m=32,n=2,故m n=(32)2= 94.故选D.【点睛】此题主要考查了合并同类项,去括号,正确得出m,n的值是解题关键.2.A解析:A【解析】【分析】先根据有理数的乘法法则推出:要使三个数的乘积为负,a,b,c中应有奇数个负数,进而可将a,b,c的符号分两种情况:1负2正或3负;再根据加法法则:要使三个数的和为0,a,b,c的符号只能为1负2正,然后化简即得.【详解】∵0abc <∴a ,b ,c 中应有奇数个负数∴a ,b ,c 的符号可以为:1负2正或3负 ∵0a b c ++=∴a ,b ,c 的符号为1负2正 令0a <,0b >,0c > ∴a a =-,b b =,c c =∴a b ca b c++1111=-++= 故选:A . 【点睛】本题考查了绝对值的性质、乘法法则及加法法则,利用加法法则和乘法法则确定数的符号是解题关键.3.D解析:D 【解析】 【分析】根据图形的规律可知,从第二个图形开始,每个图形中的黑色正方形纸片数比前一个图形多2个,由此可推出结果. 【详解】第1个图中有3张黑色正方形纸片, 第2个图中有5张黑色正方形纸片, 第3个图中有7张黑色正方形纸片, …,依次类推,第n 个图中黑色正方形纸片的张数为2n+1, 故选:D . 【点睛】本题考查了图形的规律,代数式表示图形的个数,掌握图形的规律是解题的关键.4.B解析:B 【解析】 【分析】观察图形可知:2n OA n =,由2016OA 1008=,推出2019OA 1009=,由此即可解决问题. 【详解】观察图形可知:点2n A 在数轴上,2n OA n =,2016OA 1008=,2019OA 1009∴=,点2019A 在数轴上,22019OA A 11009S1009122∴=⨯⨯=, 故选B . 【点睛】本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.5.C解析:C 【解析】 【分析】根据单项式与多项式的概念即可求出答案. 【详解】解:(A )0是单项式,故A 错误; (B )πx 3的系数为,故B 错误;(D )3x+6y-5是多项式,故D 错误; 故选C . 【点睛】本题考查单项式与多项式,解题的关键是熟练运用单项式与多项式的概念,本题属于基础题型.6.A解析:A 【解析】 【分析】根据平面图形的折叠及正方体的展开图解答,中间四联方,上下各一个,可以围成正方体. 【详解】正方体共有11种表面展开图, B 、C 、D 能围成正方体;A 、不能,折叠后有两个面重合,不能折成正方体. 故选:A . 【点睛】本题考查的是学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.7.B解析:B 【解析】∵OC ⊥OD ,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B.8.A解析:A【解析】【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.9.B解析:B【解析】【分析】先根据点在数轴上的位置,判断出a、b的正负,然后再比较出a、b的大小,最后结合选项进行判断即可.【详解】解:由点在数轴上的位置可知:a<0,b<0,|a|>|b|,A、∵a<0,b<0,∴a+b<0,故A错误;B、∵a<b,∴a-b<0,故B正确;C、|a|>|b|,故C错误;D、ab>0,故D错误.故选:B.【点睛】本题主要考查的是绝对值、数轴、有理数的加法、减法、乘法运算,掌握运算法则是解题的关键.10.D解析:D【解析】根据合并同类项的法则即可求出答案.【详解】A. b﹣3b=﹣2b,故原选项计算错误;B. 3m+n不能计算,故原选项错误;C. 2a4+4a2不能计算,故原选项错误;D.﹣2a2b+5a2b=3a2b计算正确.故选D.【点睛】本题考查合并同类项的法则,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.11.C解析:C【解析】试题分析:设第一件衣服的进价为x元,依题意得:x(1+25%)=90,解得:x=72,所以盈利了90﹣72=18(元).设第二件衣服的进价为y元,依题意得:y(1﹣25%)=90,解得:y=120,所以亏损了120﹣90=30元,所以两件衣服一共亏损了30﹣18=12(元).故选C.点睛:本题考查了一元一次方程的应用.解决本题的关键是要知道两件衣服的进价,知道了进价,就可求出总盈亏.12.B解析:B【解析】【分析】先确定出a、b、c的取值范围,然后根据有理数的运算法则解答即可.【详解】解:观察数轴,可知:﹣2<a<﹣1,0<b<1,1<c<2,∴c>b>a,1b >1c,|a|>|b|,abc<0.故选:B.【点睛】本题考查了利用数轴比较有理数的大小,以及有理数的运算法则,熟练掌握有理数的运算法则是解答本题的关键.13.D解析:D【分析】直接利用已知代入得出b的值,进而求出输入﹣3时,得出y的值.【详解】∵当输入x的值是﹣3,输出y的值是﹣1,∴﹣1=32b -+,解得:b=1,故输入x的值是3时,y=2331⨯-=3.故选:D.【点睛】本题主要考查了代数式求值,正确得出b的值是解题关键.14.C解析:C【解析】【分析】由于任意四个相邻数之和都是-10得到a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,则a1=a5=a9=…=,利用同样的方法可得到a1=a5=a9=…=x-1,a2=a6=a10=…-7,a3=a7=a11=…=-2x,a4=a8=a12=…=0,所以已知a999=a3=-2x,a25=a1=x-1,由此联立方程求得x即可.【详解】∵a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,∴a1=a5=a9=…=x-1,同理可得a2=a6=a10=…=-7,a3=a7=a11=…=-2x,a4=a8=a12= 0∵a1+a2+a3+a4=-10,∴x-1-7-2x+0=-10,解得:x=2.故答案为:2.【点睛】本题考查数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.15.C解析:C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【详解】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A、1点与3点是向对面,4点与6点是向对面,2点与5点是向对面,所以不可以折成符合规则的骰子,故本选项错误;B、3点与4点是向对面,1点与5点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误;C、4点与3点是向对面,5点与2点是向对面,1点与6点是向对面,所以可以折成符合规则的骰子,故本选项正确;D、1点与5点是向对面,3点与4点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误.故选C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.16.B解析:B【解析】【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.17.B解析:B【解析】【分析】把x=1代入方程3x﹣m=5得出3﹣m=5,求出方程的解即可.【详解】把x=1代入方程3x﹣m=5得:3﹣m=5,解得:m=﹣2,故选:B.本题考查了解一元一次方程和一元一次方程的解,能得出关于m的一元一次方程是解此题的关键.18.B解析:B【解析】【分析】根据钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:如图,上午八点半钟时,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午八点半钟的时候,时钟的时针和分针所夹的角度是2.5×30°=75°.故选:B.【点睛】本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.19.C解析:C【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【详解】解:A、含有两个未知数,不是一元一次方程,选项错误;B、不是方程是不等式,选项错误;C、符合一元一次方程定义,是一元一次方程,正确;D、未知项的最高次数为2,不是一元一次方程,选项错误.故选:C.【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.20.D解析:D【分析】第一次相遇时,甲、乙的速度和为xkm/h,由第一次到第二次相遇的过程中,甲,乙的路程和是第一次相遇时甲,乙路程和的两倍.可列方程,即可求解.【详解】解:设第一次相遇时,甲、乙的速度和为xkm/h,5小时36分钟=535(小时)由题意可得:2×2x=(535-2)(x+2),解得:x=18,∴A、B两地的距离=2×18=36(km),故选:D.【点睛】本题考查了一元一次方程的应用,理解题意,找到正确的等量关系是本题的关键.21.B解析:B【解析】【分析】观察根据排列的规律得到:所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数比上次增加连续的三个偶数.依次计算即可得到结论.【详解】所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数每次增加连续的三个偶数.第一行数字为1第二行数字为1+(2+4+6)=1+2(1+2+3)=1+3×4=13第三行数字为1+(2+4+6)+(8+10+12)=1+2(1+2+3+4+5+6)=1+6×7=43第四行数字为1+(2+4+6)+(8+10+12)+(14+16+18)=1+2(1+2+3+4+5+6+7+8+9)=1+9×10=91第五行数字为1+(2+4+6)+(8+10+12)+(14+16+18)+(20+22+24)=1+2(1+2+3+4+5+6+7+8+9+10+11+12)=1+12×13=157.故选B.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.22.B解析:B【解析】【分析】根据规则计算出a2、a3、a4,即可发现每3个数为一个循环,然后用2019除以3,即可得出答案.【详解】解:由题意可得,13a=,211 132a==--,31213 1()2a==--,413213a==-,⋯,由上可得,每三个数一个循环,2019÷3=673,20192 3a∴=,故选:B.【点睛】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a2、a3、a4找出数字变化的规律.23.B解析:B【解析】【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n=1,n=2和n=3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可.【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况,当盘子数量n=1时,游戏结束需要移动的最少次数为1;当盘子数量n=2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n=3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n=2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n=2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11,故选B.本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.24.B解析:B【解析】【分析】根据表格可得,第一行从右向左分别为个位数和十位数字的平方,每个数的平方占两个空,平方是一位数的前面的空用0填补,第二行从左边第2个空开始向右是这个两位数的两个数字的乘积的2倍,然后相加即为这个两位数的平方,根据此规律求解设这个两位数的十位数字为b,根据图3,利用十位数字与个位数字的乘积的2倍的关系列出方程用a表示出b,然后写出即可.【详解】解:设这个两位数的十位数字为b,由题意得,2ab=10a,解得b=5,所以,这个两位数是10×5+a=a+50.故答案为B.【点睛】本题考查了数字变化规律的,仔细观察图形、观察出前两行的数与两位数的十位和个位上的数字的关系是解答本题的关键.25.B解析:B【解析】【分析】根据同类项的定义和合并同类项的法则解答.【详解】解:A、2a与3b不是同类项,不能合并,故本选项错误;B、原式=0,故本选项正确;C、a3与3a2不是同类项,不能合并,故本选项错误;D、原式=a2,故本选项错误.故选B.【点睛】此题考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.26.D解析:D【解析】【分析】根据题意可以用列举法把符合要求的方案写出来,从而得到问题的答案.解:∵数轴上有一个动点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,动点落在表示数3的点上,∴动点的不同运动方案为:方案一:0→-1→0→1→2→3;方案二:0→1→0→1→2→3;方案三:0→1→2→1→2→3;方案四:0→1→2→3→2→3;方案五:0→1→2→3→4→3;共计5种.故选:D .【点睛】本题考查数轴,解题的关键是可以根据题目中的信息,把符合要求的方案列举出来.27.A解析:A【解析】【分析】根据等式的性质,可得答案.【详解】A.两边都除以-2,故A 正确;B.左边加2,右边加-2,故B 错误;C.左边除以2,右边加2,故C 错误;D.左边除以2,右边乘以2,故D 错误;故选A .【点睛】本题考查了等式的性质,熟记等式的性质是解题的关键.28.C解析:C【解析】【分析】根据A 地到B 地的路程相等,可构造等量关系7060(1)x x =+,即可得出答案.【详解】解:根据题意,客车从A 地到B 地的路程为:70S x =卡车从A 地到B 地的路程为:60(1)S x =+则7060(1)x x =+故答案为:C .【点睛】本题考查一元一次方程路程的应用题,注意设未知数后等量关系构成的条件,属于一般题型.29.B解析:B【解析】A、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;故选B.30.C解析:C【解析】【分析】由题意可知:摆a个正方形需要4+3(a-1)=3a+1根小木棍;摆b个六边形需要6+5(b-1)=5b+1根小木棍;由此得到方程3a+1+5b+1-1=60,再确定正整数解的个数即可求得答案.【详解】设摆出的正方形有a个,摆出的六边形有b个,依题意有3a+1+5b+1-1=60,3a+5b=59,当a=3时,b=10,t=13;当a=8时,b=7,t=15;当a=13时,b=4,t=17;当a=18时,b=1,t=19.故t可以取4个不同的值.故选:C.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版七年级数学上
学期期末试卷及答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】
北师大版数学七年级上学期期末测试
姓名: 一、选择题:(第小题3分,共24分)
1、下列四个算式中,有一个算式与其他三个算式的计算结果不同,则该算式是( )
A .()21-
B .21-
C .()3
1-
D .
1
--
2、现在网购越来越多地成为人们的一种消费方式,刚刚过去的2014年的“双11”网上促销活动中,天猫的支付交易额突破570亿元,将570亿元用科学记数法表示为( )
A. 8
1070.5⨯ B. 101070.5⨯ C. 9100.57⨯ D. 1110570.0⨯
3、a 、b 为有理数,a<0,b<0,且|a|>|b|,如果a ,b ,-a ,-b 在数轴上所对应的点分别为A 、B 、C 、D ,那么这四个点在数轴上从左到右的顺序依次为: ( )
A. A B D C
B. C D B A
C. B A C D
D. B D C A 4、如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相
反数,则2x +y 的值为 A. 0 B. -1
C. -2
D. 1 5、下列判断错误的是 ( )
A .多项式4252+-x x 是二次三项式
B .单项式4
32c b a -的系数是-1,次数是9
C .式子m + 5,ab ,x=1,-2,v
s
都是代数式
D.当k=3时,关于x ,y 的代数式(-3kxy + 3y)+(9xy - 8x + 1)中 不含二次项 6、方程
13
1
212=---x x 去分母得62236=---x x ,其中错误的原因是(? ) A. 分母的最小公倍数找错
B. 去分母时,漏乘了分母为1的数
C. 去分母时,分子部分多项式未添括号,造成符号错误
D. 去分母时,分子未乘相应的数
7、已知某商店有两个进价不同的计算器,都卖了100元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店( ) A. 不盈不亏 B. 盈利元 C. 亏损25元 D. 盈利元 8、下列语句正确的是 ( ) A .线段AB 是点A 与点B 的距离
B .过n 边形的每一个顶点有(n -3)条对角线
C .各边相等的多边形是正多边形
D .两点之间的所有连线中,直线最短 二、填空题:(第小题3分,共21分)
9、两个同样大小的正方体积木,每个正方体相对两个面上写的数字之和都等于0.现将两个正方体并排放置,看得见的5个面上的数如图所示,则看不见的7个面上所写的数字之和等于 .
10、已知a+b=-7,ab=10,则代数式(3ab+6a+4b)-(2a-2ab)的值为 . 11、9时45分时,时钟的时针与分针的夹角度数是 . 12、如图所示,O 是直线AC 上一点,OB 是一条射线,OD 平分AOB ∠,OE 在BOC ∠内,EOC BOE ∠=∠3
1,
︒=∠60DOE ,则EOC ∠的度数是 .
13、点C 在直线AB 上,AC = 10 cm ,CB =8 cm ,点
M 、N 分别是AC 、BC 的中点, 则线段MN 的长为 .
14、一圆柱形容器的内半径为3厘米,内壁高30厘米,容器内盛有18厘米高的水,现将一个底面半径为2厘米,高15厘米的金属圆柱竖直放入容器内,问容器内的水将升高 厘米.
15、已知:1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52,…,根据前面各式的规律,以下等式(n 为正整数),
E
O C
A
D B
①1+3+5+7+9+…+(2n -1)=2
n ; ②1+3+5+7+9+…+(2n +3)=()2
3+n ;
③ 1+3+5+7+9+…+2013=2
1007 ; ④101+…+2013=2
1007-2
50
其中正确的有 个.
三、解答题:(共8个小题,共75分)
16、(6分)画出右面由11个小正方体搭成的几何体从不同角度看得到的图形。

从正面看 从左面看 从上面看
17、(1)计算(6分):⎥⎦

⎢⎣⎡--⨯---22014)21(4)5332(1
(2)先化简,再求值(6分):
322323323(23)(2)(3)x x y xy x xy y x x y y -----+-+-,其中1
4
x =
,2y =. 18、解方程(6分):
6.025.013.05.1
7.1x
x +-=- 19、(8分)用⊕表示一种运算,它的含义是:B A ⊕=
()()
111+++
+B A x
B A . 如果3
5
12=⊕,请计算出43⊕的值。

20、(10分)(1)平面内将一副三角板按如图1所示摆放,∠EBC=
________ °;
(2)平面内将一副三角板按如图2所示摆放,若∠EBC=165°,那么∠α= ___°; (3)平面内将一副三角板按如图3所示摆放,∠EBC=115°,求∠ABD 的度数. 21、(10分)如图,第一次将正方形纸片剪成4个一样的小正方形纸片,第2次将右下角的那个小正方形纸片按同样的方法剪成4个小正方形纸片,第3次,将第2次剪出的小正方形纸片右下角的那个小正方形纸片再剪成4个一样的小正方形纸片,……如此循环进行下去。

(1)请将下表补充完整。

剪的次数 1 2 3 4 5 ……
总共得到的小正方形纸片的个数 4 ……
(2)如果剪n次,总共能得到多少个小正方形纸片?
(3)如果剪100次,总共得到多少个小正方形纸片?
(4)如果想得到361个小正方形纸片,需要剪几次?
22、(11分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.?
(1)求钢笔和毛笔的单价各为多少元??
(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的
方程知识
....解释王老师为什么说他用这些钱只买这两种笔的帐算错了。

②这时,陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔。

如果签字笔的单价为小于
..写出签字笔的单价可能为
....,请通过计算,直接
..10..元的整数
元。

23、(12分)已知:线段AB=20cm.
(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点Q沿线段BA自B 点向A点以3厘米/秒运动,经过__ ___秒,点P、Q两点能相遇.
(2)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点P出发2秒后,点Q沿线段BA自B点向A点以3厘米/秒运动,问再经过几秒后P、Q相距6cm?
(3)如图2:AO=4cm,PO=2cm,∠POB=60°,点P绕着点O以60度/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自B点向A点运动,假若点P、Q两点能相遇,求点Q运动的速度.
七年级数学参考答案:
1、A
2、B
3、A
4、B
5、C
6、C
7、D
8、B
9、-3
10、22 11、° 12、90° 13、9cm
或1cm 14、
3
20 15、3
16、略 17、(1)4
5 (2)xy 2 1
18、 19、
35
19 20、(1)150°;(2)15°;(3)35°.
21、(1)7、10、13、16 (2)(3n+1)个 (3)301个 (4)120次 22、(1)钢笔的单价为21元,毛笔的单价为25元.
(2)设单价为21元的钢笔为y 支,所以单价为25元的毛笔则为(105-y)支.
根据题意,得21y+25(105-y)=2447 解得:y= (不符合题意) . 所以王老师肯定搞错了. (3)2或6. 23、 (1)4
(2)2或
5
22 (3)9cm/s 或2.8cm/s。

相关文档
最新文档