项目三矿井通风动力

合集下载

矿井通风实训教案

矿井通风实训教案

课程类型:工学结合 实验实训主题 (任务 1) 专业或班级 实训目标
项目 2 矿井风流能量及变化规律 相对空气压力测定 煤矿开采技术 计划课时 时间 2 2012 年 9 月 指导教师 日
赵尚书
使学生掌握矿井相对空气压力测定方法,能分析空气变化状况。 1.熟悉相对空气压力测定仪器的种类、构造与功能。
2.熟悉通风阻力测定仪器的操作使用方法及要领。 3.会测算矿井通风阻力。 4.会分析评价矿井通风等级和通风状况。
地点与器材 教学方法 实训教学 组织
地点:矿井通风实训室 器材:U 型压差计、皮托管、连接胶管 示范引导法、训练指导法 “师讲生学、师示生仿、生练师导、相互考评、总结讲评” 集中引导讲授、示范操作引导模仿、组织指导练习、组织学生互评、教 师总结讲评 实训内容: 1.矿井通风阻力测定仪器的构造原理。 2.矿井通风阻力测定操作方法及要领。 3.测算通风阻力。
实训任务
2.熟悉相对空气压力测定压力测定仪器的操作使用方法及要领。 3.会操作使用相对空气压力测定仪器。 4.会绘制不同通风法的相对压力关系图,分析空气压力变化状况。
地点与器材 教学方法 实训教学 组织
地点:矿井通风实训室 器材:U 型压差计、皮托管、胶管 示范引导法、训练指导法 “师讲生学、师示生仿、生练师导、相互考评、总结讲评” 集中引导讲授、示范操作引导模仿、组织指导练习、组织学生互评、教 师总结讲评 实训内容: 1.相对空气压力测定仪器的构造原理。 2.相对空气压力测定仪器操作使用方法及要领。 3.用相对空气压力测定仪器测量空气压力。
2. 示范操作绝对空气压力测定仪器,引导学生模仿操作过程,掌 握操作要领。 (1)选择绝对空气压力测定仪器。
(2)检查绝对空气压力测定仪器。 (3)确定测量路线。 (4)将绝对空气压力测定仪器置于测点。 (5)读取所测定的空气压力值 PS。 3.按 6 人一组实施绝对空气压力测定仪器操作的反复训练,巡回 指导答疑。 4.抽查学生“边操作,边提问”,检查训练效果。 5.组织训练小组织间相互考评。 6.组织训练小组代表对考评结果进行讲评。 7.总结讲评实训情况,并提出改进建议。 8.安排实训报告的编写。 9.组织学生评教。 效果评价

矿井自然通风

矿井自然通风

矿井自然通风2008-11-3 16:24:10 中国选矿技术网浏览482 次收藏我来说两句为了将地面新鲜空气不断输送到井下,并克服井巷阻力而流动,使工作面获得所需风量,矿井通风系统中必须有足够的通风动力。

矿井通风的动力有两种:自然风压(称自然通风)和扇风机风压(即机械通风)。

一、矿井自然通风的基本概念在非机械通风的矿井里常常观测到,风流从气温较低的井筒经工作面流到气温较高的井筒。

这主要是由于风流经过井巷时与岩石发生了热量交换,进、回风井里的气温出现差异,回风井里的空气密度小,因而两个井筒底部的空气压力不相等,其压差就是所谓的自然风压H n。

在自然风压的作用下风流不断流过矿井,形成自然通风过程。

如图1所示,p o为竖井口标高处的大气压。

如果在夏天,地面气温较高,如图1(a)所示的矿井里,p2> p1,就会出现与冬天相反方向的自然通风,如虚矢线所示。

不难设想,由于地面气温的变化,也会导致p2 = p1,因而自然通风停止。

在山区用平硐开拓的矿井,未安主扇通风时,经常可以见到自然通风风向的变化,有时风流停滞。

这就表明,完全依靠自然通风,不能满足安全生产的要求。

图1 自然通风对于一个有主扇通风的矿井,由于上述自然因素的作用,自然通风压依然存在。

设若主扇在回风井抽出式或在进风井压入式工作,当炎热季节温度颇高的地面空气流入进风井巷后,其热量虽然已经不断传给岩石,但通常仍然形成进风井里的空气密度还低于回风井里的空气密度,这时自然风压的方向就与扇风机通风的方向相反,扇风机风压不仅要用来克服井巷通风阻力,而且还要克服反向的自然风压。

冬季情况正好相反,自然风压能够帮助扇风机去克服井巷通风阻力。

从上述自然通风形成的原因也可以说明,即使只有一个出口的井筒或平硐,也可能形成自然通风。

冬天,当井筒周壁不淋水,就可能出现井筒中心部下风而周围上风的现象;夏天,却可能出现相反的通风方向。

大爆破后产生大量温度稍高的有毒有害气体以后,特别是当井下发生火灾产生大量温度较高的烟气时,就会出现局部的自然风压(称为“火风压”),扰乱原来的通风系统风流状况。

矿井通风与安全(中国矿业大学课件)第四章通风动力

矿井通风与安全(中国矿业大学课件)第四章通风动力

根据具体要求和环境,设计通风 系统的布局和组件。
优化
通过模拟和优化算法,提高通风 系统的效率和性能。
测量
使用空气流量计和压力计等设备, 监测和评估通风系统的运行状况。
矿井通风动力管理的必要性和挑战
有效管理通风动力对于确保矿井的安全和高效运行至关重要。然而,管理挑战包括人员培训、设备维护和监测 系统的建立。
矿井通风动力的分类和特点
自然通风
利用自然气流,适用于小型 矿井和开放式工作场所。
机械通风
通过风机和风道系统,更适风
结合自然通风和机械通风的 优点,综合应用于不同矿井。
矿井通风动力系统的组成
1 风机
通过旋转叶片产生气流。
3 风门和调节阀
控制气流的流量和分布。
2 风道
将气流引导到矿井各个区域。
4 排风系统
将废气排出矿井,保持空气质量。
矿井通风动力的计算方法和参数
1
风量计算
根据矿井的大小、工作环境和需求,计算所需的风量。
2
风速计算
确定适当的风速,以保证空气的流动和气体的分散。
3
风压计算
计算风道和风门的适当压力,以维持稳定的气流。
矿井通风动力系统的设计和优化
设计
矿井通风与安全
在这个课堂上,我们将学习矿井通风动力的重要性、定义和基本原理,以及 实际应用中的分类、组成、计算方法、设计和优化。
通风动力的重要性
矿井通风动力是确保矿井安全运行的关键因素之一。它不仅能提供新鲜空气,还可以排除有害气体和煤尘,有 效预防火灾和爆炸。
通风动力的定义和基本原理
通风动力是通过排风和送风系统,控制气体的流动和分布。它基于流体力学 原理,包括压力差、速度和阻力等概念。

矿井通风技术

矿井通风技术

矿井通风技术矿井通风技术是矿山开采过程中必不可少的一项技术措施,其主要目的是解决矿井中因开采过程产生的有害气体和灰尘等污染物质,以维护矿工安全和健康的工作环境,并保障矿井正常生产和经济效益。

下面就来详细介绍一下矿井通风技术。

一、矿井通风的原理矿井通风的原理主要是利用风力和气流的作用,将新鲜空气从矿井口引入,利用空气流动的物理特性将有害气体和灰尘排出矿井,以维护空气流通,保障矿工安全。

二、矿井通风的分类矿井通风可以根据通风方式分为自然通风和机械通风两种。

1、自然通风:自然通风以自然风力为动力,其原理是利用自然风通过矿井开口处渗透进入矿井,经过井巷内多次反射、分散、合流和挤压,最终将废气排出矿井。

自然通风是比较常用和简单的一种通风方法,但其通风效果和稳定性不如机械通风,常用于一些小型矿井或通风条件较好的矿井中。

2、机械通风:机械通风是根据机械设备排风,通过强制流动空气,使矿井内形成稳定的通风状态。

其通风效果和稳定性较好,能够控制空气流量和空气分布,适用于通风条件较差、危害气体较多的矿井。

三、矿井通风的设备矿井通风设备主要包括风机、风筒、风门等。

1、风机:风机是产生气流的主要设备,根据矿井所需要的气体流量和压力来选择风机的型号和数量。

常用的风机有本质安全式主风机、防爆型主风机、副风机、局部通风机等。

不同的风机有不同的使用范围和使用条件,使用时应根据实际情况进行选择和使用。

2、风筒:风筒是将气流输送到需要通风的地方的设备,其主要作用是承载和传递气流,其质量好坏和安装位置的合理性直接影响矿井通风效果。

3、风门:风门是控制气流分配和方向的设备,通过调整风门的开度和位置来控制通风气流流动速度和方向,以达到最佳通风效果。

四、矿井通风管理矿井通风管理是保障矿井安全和正常生产的关键措施,其主要内容包括通风计划编制、通风系统维护、通风轮换等。

1、通风计划编制:通风计划是制定机械通风或自然通风的前提和基础,应在考虑矿井经营、生产和环境保障的前提下,制定适宜的通风计划。

矿井通风动力.doc

矿井通风动力.doc

第六节 矿井通风动力一 、自然风压(一)、 自然风压及其形成和计算图1—6—1 简化矿井通风系图1-6-1为一个简化的矿井通风系统,2-3为水平巷道,0-5为通过系统最高点的水平线。

如果把地表大气视为断面无限大,风阻为零的假想风路,则通风系统可视为一个闭合的回路。

在冬季,由于空气柱0-1-2比5-4-3的平均温度较低,平均空气密度较大,导致两空气柱作用在2-3水平面上的重力不等。

其重力之差就是该系统的自然风压。

它使空气源源不断地从井口1流入,从井口5流出。

在夏季时,若空气柱5-4-3比0-1-2温度低,平均密度大,则系统产生的自然风压方向与冬季相反。

地面空气从井口5流入,从井口1流出。

这种由自然因素作用而形成的通风叫自然通风。

由上述例子可见,在一个有高差的闭合回路中,只要两侧有高差巷道中空气的温度或密度不等,则该回路就会产生自然风压。

p 为井口的大气压,Pa ;Z 为井深,m ;0-1-2和5-4-3井巷中空气密度的平均值ρm1和ρm2,kg/m 3,则自然风压为:H Zg N m m =-()ρρ12 (1-6-1)(二)、自然风压的影响因素及变化规律1、自然风压变化规律自然风压的大小和方向,主要受地面空气温度变化的影响。

如图1-6-2、图1-6-3所示分别为浅井和我国北部地区深井的自然风压随季节变化的情形。

由图可以看出,对于浅井,夏季的自然风压出现负值;而对于我国北部地区的一些深井,全年的自然风压都为正值。

图1-6-2 浅井自然风压随季节变化图图1-6-3 深井自然风压随季节变化图2、自然风压影响因素(1)两侧空气柱的温度差矿井某一回路中两侧空气柱的温差是影响的主要因素。

影响气温差的主要因素是地面入风气温和风流与围岩的热交换。

其影响程度随矿井的开拓方式、采深、地形和地理位置的不同而有所不同。

(2)矿井深度当两侧空气柱温差一定时,自然风压与矿井或回路最高与最低点间的高差Z 成正比。

深1000m的矿井,“自然通风能”占总通风能量的30%。

矿井通风基本知识

矿井通风基本知识

3 局部通风 局扇通风是目前矿山局部通风最常用的一种方法,按
局扇通风方式又分为压入式、抽出式和混合式三种。 压入式通风是扇风机把新鲜风流经风筒压送到工作面,
而污浊空气沿巷道排出。这种通风方式工作面的通风时间短, 但全巷道的通风时间长,故适用于较短巷道掘进时的通风。
抽出式通风是扇风机将工作面的污浊空气经风 筒抽排至排风道,新风由巷道进入工作面。
矿井通风基本知识
一 矿井通风的目的和任务
矿井通风定义:利用机械或自然通风动力,使地面空气进入井下,并在井巷中作定 向和定量地流动,最后排出矿井的全过程称为矿井通风。
1.1 矿井通风的目的
矿井通风的主要目的是供给矿井新鲜风量,冲淡并排出有毒、有害气体和矿尘,保 证井下风流质量和数量符合国家安全卫生标准;创造安全、健康的工作环境, 防止各种伤害和爆炸事故;保障井下人员身体健康和生命安全,保护国家资源 和财产。
过0.5%;总回风流中不得超过0.75%;当采掘工作面风流中二氧 化碳浓度达到1.5%或采区、•采掘工作面回风道风流中二氧化碳浓 度超过1.5%时,必须停工处理。
4 矿井空气中的有害气体 空气中常见有害气体:CO、NO2、SO2 、NH3 、H2 。 4.1 基本性性质 1)一氧化碳(CO) 一氧化碳是一种无色、•无味、•无臭的气体。相对密度为0.97,微
2 矿井空气的主要成分及基本性质 新鲜空气:井巷中用风地点以前、受污染程度较轻的进风巷道内
的空气; 污浊空气:通过用风地点以后、受污染程度较重的回风巷道内的
空气。 1)氧气(O2) 氧气是维持人体正常生理机能所需要的气体,人体维持正常生命过
程所需的氧气量,取决于人的体质、精神状态和劳动强度等。
当空气中的氧浓度降低时,人体就可能产生不良的生理反应,出 现种种不舒适的症状,严重时可能导致缺氧死亡。

3矿井通风9矿井通风的基本理论

3矿井通风9矿井通风的基本理论

9.2
矿井通风动力
自然风压的形成和计算
简化的矿井通风系统
在一个有高差的闭合回路中,只要两侧有高差巷道中空气的温 度或密度不等,则该回路就会产生自然风压。自然风压为: HN=Zg(ρm1-ρm2)
自然风压的变化规律及其影响因素 A 自然风压变化规律
浅井自然风压随季节变化图
深井自然风压随季节变化图
B 自然风压的影响因素 (1)两侧空气柱的温度差。 (2)矿井深度。 (3)主要通风机工作对自然风压的大小和方向也有一定影响。 (4)地面大气压、空气成分和湿度影响空气的密度,因而对自 然风压也有一定影响,但影响较小。 C 自然风压的控制和利用 (1)应充分考虑利用地形和当地气候特点; (2)应适时调整主要通风机的工况; (3)要掌握自然风压的变化规律; (4)在建井时期,要注意因地制宜和因时制宜利用自然风压通 风; (5)利用自然风压做好非常时期通风。

i 1
n
hi

n
电动机功率 通风机转速
P 3 U I cos
大气参数:大气压力、温度和湿度 测定步骤 1.测定前的准备; 2.组织分工; 3.测定工作; 4.资料整理。
9.3
矿井通风阻力
同一流体在同一管道中流动时,不同的流速,会形成不同的 流动状态。风流的流动状态有层流与紊流两种。 层流是指当流速较低时,流体质点互不混杂,沿着与管轴 平行的方向做层状运动。 紊流是指当流速较太时,流体质点的运动速度在大小和方 向上都随时发生变化,成为互相混杂的紊乱流动,且在流 体内部存在着时而产生、时而消失的旋涡。 影响因素:流体的速度、粘性和管道尺寸。雷诺数表示: vd Re
9.1
矿井空气
矿井空气:由多种气体组成的干空气和水蒸汽组合而成的混合 气体。 主要组成:氧气、氮气、二氧化碳、水蒸汽、有害气体(瓦斯 、一氧化碳、硫化氢、二氧化硫、二氧化氮、氨气、氢气、矿 尘等。 氧气:维持人体生命和劳动必不可少。矿井空气中氧气浓度 降低的主要原因有:氧化;火灾、爆炸;煤炭自燃;人员呼 吸;爆破及生产产生的有害气体的混入。 氮气:井下氮气的主要来源是:地面大气、有机物的腐烂、 爆破、煤岩中涌出等。 二氧化碳:能维持正常呼吸。矿井空气中二氧化碳的主要来 源有:有机物的氧化、人员的呼吸、煤和岩石的缓慢氧化, 以及矿井水与碳酸性岩石的分解作用,爆破工作等。

矿井通风技术

矿井通风技术

矿井通风技术集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-矿井通风技术矿井通风的基本任务是采用安全、经济、有效的通风方法,供给井下足够的新鲜空气,稀释和排除有毒有害气体和矿尘,调节井下气候条件,以防止各种伤害和爆炸事故,保证井下职工的安全和健康,提高劳动生产的效率。

矿内空气的主要成分是氧、氮和二氧化碳。

矿内空气中含氧量不得低于20%;有人工作或可能有人到达的井巷,二氧化碳不得大于o.5%;总回风流中,二氧化碳不超过1%。

(一)矿井通风系统矿井通风系统是向井下各作业地点供给新鲜空气,排出污浊空气的通风网路、通风动力和通风控制设施(通风构筑物)的总称。

矿井通风系统与井下各作业地点相联系,对矿井通风安全状况具有全局性影响,是搞好矿井通风防尘的基础工程。

无论新设计的矿井或生产矿井,都应按照有关法律法规的规定,建立和完善矿井通风系统。

矿井通风系统按服务范围分为统一通风和分区通风;按进风井与回风井在井田范围内的布局分为中央式、对角式和中央对角混合式;按主要通风机的工作方式分为压入式、抽出式和压抽混合式。

此外,阶段通风网络、采区通风网络和通风构筑物,也是通风系统的重要构成要素。

防止漏风,提高有效风量率,是矿井通风系统管理的重要内容。

矿井通风的动力有自然通风和机械通风两种。

自然通风是利用自然风压对矿井或井巷进行通风的方法;机械通风是利用通风机产生的风压,对矿井或井巷进行通风的方法。

小型矿山,特别是那些山区平硐开拓的中小型矿井,自然通风起了相当的作用。

自然通风对机械通风有一定的影响,当自然风压与机械风压一致时,对矿井通风有利,能增加矿井的风量,反之会影响矿井通风。

《煤矿安全规程》规定,煤矿井下必须使用机械通风。

矿井反风是为防止灾害扩大和抢救人员的需要而采取的迅速倒转风流方向的措施。

矿井反风的方式分为全矿性反风和局部反风。

(二)阶段通风、采场通风及通风构筑物矿井开采通常多阶段同时作业。

煤矿企业与生产概况:矿井通风方式及方法

煤矿企业与生产概况:矿井通风方式及方法

21041综掘工作面
2102高档普采工作面
总回风巷 盘区联络巷
回风立井
风硐
盘区水仓
溜煤眼
盘区回风巷 盘区皮带巷
盘区轨道巷
2101综采工作面







消防材料库




副斜井井底车场

副立井

井底车场
央 水
输 送 机




副斜井
副立井 主斜井
平硐
图3-1-8 教学矿井通风系统图
谢谢大家!
但此种通风方法因使用的风机设备多,动力消耗大,通风管理复杂, 一般很少采用。
二、 实例介绍
三、实例介绍
教学矿井采用中央分列式通 风方式,位于井田中央南侧的主 斜井、副斜井、副立井及平硐均 为进风井,位于井田中央北侧的 回风立井为回风井。通风方法为 抽出式。
21041综掘工作面
2102高档普采工作面
3、区域式通风
在井田的每一个生产区域开凿
进、回风井,分别构成独立的
通风系统。
N
No4
No2 2
4
No1
No3 1000m No 5
1
3
8
5
7
6
图3-1-5 区域式通风
一、矿井通风方式
4、混合式通风
由上述诸种方式混合组成。例 如:中央分列式与两翼对角混 合式、中央并列式与两翼对角 混合式等;
二、 矿井通风方法
矿井通风系统是矿井通风方式、通风方法、通风网络与 矿井通风设施的总称。
知识点一 矿井通风方式 与方法
授课内容
一、矿井通风方式 二、矿井通风方法 三、实例介绍

矿井通风与安全

矿井通风与安全

气体
氧 氮 二氧化碳
甲烷 一氧化碳
二氧化氮 硫化氢 二氧化硫
色、味、 相对密度 水溶性 毒理 嗅

1.11



0.97


燃烧爆炸性
无 无
来源
大气 大气、爆破

微酸臭 1.52
易 刺激

氧化、燃烧、
涌出

0.55



煤岩涌出

0.97
微 剧毒

爆破、燃烧、
爆炸
红褐色 1.57
易 剧毒

爆破
臭鸡蛋 1.19
2、缺点:通风设备多,管理复杂;易形成 角联小系统,造成风流不稳定,抗灾能力 差。
3/适用条件:井田范围大,地质和地面地形复
杂;产量大,瓦斯涌出量大的矿井。
第三十七页,编辑于星期五:十五点 三十九分。
三、矿井通风系统包括:通风方式、通风方法、通风
网络和通风设施。 ❖ 四、通风方式: ❖ 可分为:中央式、对角式、混合式。
❖ 1、中央式:分为中央并列式和中央边界式两种。
6、墙体周边要掏槽,或见硬顶、硬帮并与 煤岩接实,墙面平整无裂缝、重缝和空缝。
7、风门水沟要设反水池或挡风帘,防突区 域通车风门要设底坎,电缆、管线孔要堵严。
第十九页,编辑于星期五:十五点 三十九分。
风桥: 1、采用不燃性材料建筑。 2、桥面平整不漏风(手触感觉不到漏风为 准)。 3、风桥前后5m范围内巷道支护良好,无杂 物、淤泥、积水。 4、风桥通风断面不小于巷道断面面4/5,成 流线型,坡度不小于30度。 5、风桥两端接口严密,四周见实帮、实底。 6、风桥上下不准设风门。

矿井通风(总工)

矿井通风(总工)

1.4 通风网络风量分配与调节 1. 4.1通风网络风量分配 1.4.1.1 通风网络的基本形式 1.通风网络的联结形式
通风网络基本联结形式可分为串联通风网络、并联通 风网络、角联通风网络和复杂联结通风网络。 1)串联通风网络 由两条或两条以上的分支彼此首尾相连,中间没有分 节点的线路叫做串联风路。
《煤矿安全规程》强调各工作面要独立通风,限制 采用串联通风。
3)角联通风网络 如图6-1-13所示,在单角联风网中,对角分支 5的风流方向,随着其他4条分支 的风阻值R1、R2、R3、R4变化而变化,即有3种 变化:
(1)当风量Q,向上流时,风压hi>h2,h3<h4;风 量Qi<Q3,Q2>Q4;则有: 将上面两式相除 得

2.完全紊流状态下的摩擦阻力定律 井下多数风流属于完全紊流状态,其摩擦阻 力为
风流在完全紊流状态下的摩擦阻力定律
3.层流状态下的摩擦阻力定律 在层流状态下,风流的摩擦阻力为
风流在层流状态下的摩擦阻力定律
5.降低摩擦阻力的措施 降低矿井通风阻力,无论对安全(管理自然 发火和瓦斯)和经济(减少通风电费)都有重要 意义。由于摩擦阻力是矿井通风阻力的主要组成 部分,故要以降低摩擦阻力为重点,同时注意降 低某些风量大的井巷的局部阻力。根据摩擦阻力 的计算式可知,要降低摩擦阻力须从以下几个方 面来考虑: (1)降低摩擦阻力系数。 (2)扩大巷道断面。 (3)选用周界较小的井巷。 (4)减少巷道的长度。 (5)避免巷道内风量过大。
上式表示A和R成反比。即井巷或矿井的R值 大,相当的A值就小,表示该矿井或井巷通风困 难;反之亦然。风阻较大、等积孔较小、通风 困难、通风能力较小的井巷或矿井,其风阻曲 线就较陡;反之,风阻较小、等积孔较大、通 风较容易、通风能力大的井巷或矿井,其风阻 曲线就较平缓。 用矿井等积孔A和矿井风阻R表示矿井通风 的难易程度实质上一样,只是矿井等积孔比矿 井风阻更直观、更形象,但矿井等积孔仅仅是 评定矿井通风难易程度的一个重要指标,不能 全面地反映现代矿井通风难易程度。

5采煤概论6-矿井通风

5采煤概论6-矿井通风

地面空气进入矿井以后就称为矿井空气。矿井空气由于受到井下 各种自然因素和生产过程的影响与地面空气在成分和质量上有不同的 特点。
1、一般地说,地面空气的成分是固定的,它主要由氧、氮、二 氧化碳三种气体组成,按体积的百分比数计为:氧—20.96%;氮— 79%;二氧化碳—0.04% 2、地面空气进入矿井后,由于受到污染,成分和性质发生了变 化:氧浓度降低,二氧化碳浓度增加;混入各种有毒、有害气体和矿 尘;空气的状态参数如温度、湿度、压力等均发生改变。 《煤矿安全规程》规定:采掘工作面的进风流中,氧气浓度不得低 于20%;采掘工作面的进风流中,二氧化碳浓度不得超过0.5%,总回风 流中二氧化碳浓度不得超过0.75%。当采掘工作面风流中二氧化碳浓度 超过1.5%,或采区、采掘工作面回风道风流中二氧化碳浓度超过1.5% 时,必须停工处理。 《规程》还规定:井下空气中一氧化碳的浓度不得 超过0.0024% ;井下空气中二氧化硫浓度不得超过0.0005%。
离心式通风机
产生的风压高, 运转特性曲线平稳, 坚固耐用, 噪声小, 但体积大。
轴流式通风机
便于风量和风压 的调节,机体小, 但结构复杂,噪 声大,维护困难。
第二节
一、空气压力
矿井通风压力与通风阻力
表示一条水平巷道,在巷道内风 流(空气)能从A点向B点流动,是 因为A点的压力大于B点的压力,由 此可以引出两个概念,一是A点或B 点的压力,称为点压力;二是A点与 B点之间存在着压力差。 点压力:可以用绝对压力或相对压力来表示。以绝对真空为基准 进行计量的压力称为绝对压力,它衡正;以当地当时的大气压力为基 准进行计量的称为相对压力,大为正,小为负。 压力差:在矿井通风中,进风井与出风井之间存在着压力差,这 主要是由通风机形成的。习惯上称为矿井通风压力,主要是用来克服 巷道空气流动的阻力并使风流产生按照规定的风速流动的动力,其数 值可以通过计算或仪器测定得到。

矿井通风安全名词解释汇总

矿井通风安全名词解释汇总

1、矿井通风:依靠通风动力,将定量的新鲜空气沿着既定的通风路线不断地输入井下,以满足各用风地点的需要,同时将用过的污浊空气不断地排出地面。

这种对矿井不断输入新鲜空气与排出污浊空气的作业过程,叫矿井通风。

2、绝对湿度:指单位体积或单位质量湿空气中含有水蒸气的质量。

3、相对湿度:指湿空气中实际含有水蒸汽量与同温度下的饱与湿度之比的百分数。

4、恒温带:地表下地温常年不变的地带。

5、地温梯度:即岩层温度随深度的变化率,常用百米地温梯度6、通风机工况点:以同样的比例把矿井总通风阻曲线绘制于通风机个体特性曲线图中,矿井总风阻R曲线与风压曲线交于一点,此点就就是通风机的工况点。

7、防爆门:安装在出风井口,以防可燃气、煤尘爆炸时毁坏通风机的安全设施。

8、摩擦阻力:风流在井巷中作均匀流动时,沿程受到井巷固定壁面的限制,引起内外摩擦而产生的阻力。

9、局部阻力、冲击损失:风流在井巷的局部地点,由于速度或方向突然发生变化,导致风流本身产生剧烈的冲击,形成极为紊乱的涡流,因而在该局部地带产生一种附加的阻力,称为局部阻力。

由此阻力所产生的风压损失习惯上叫作。

10、等积孔:习惯上引用一个与风阻的数值相当、意义相同的假想的面积值来表示井巷或矿井的通风难易程度。

这个假想的孔口称做井巷或矿井的等积孔。

11、瓦斯的引火延迟性:瓦斯与高温热源接触后,不就是立即燃烧或爆炸,而就是要经过一个很短的间隔时间,这种现象叫引火延迟性。

12、相对瓦斯涌出量:指平均产1t煤所涌出的瓦斯量。

13、绝对瓦斯涌出量:指单位时间内涌出的瓦斯体积量。

14、煤层瓦斯含量:指单位质量或体积的煤岩中在一定温度与压力条件下所含有的瓦斯量,即游离瓦斯与吸附瓦斯的总与。

15、煤层瓦斯压力:指煤孔隙中所含游离瓦斯的气体压力,即气体作用于孔隙壁的压力。

16、煤层瓦斯透气性系数:我国普遍采用的单位就是/(MP·d),其物理意义就是在1m长煤体上,当压力平方差为1 MP时,通过1煤层断面每天流过的瓦斯体积。

矿井通风费用概算

矿井通风费用概算

矿井通风费用概算对矿井通风设计除要求通风系统的安全可靠外,还应考虑它的经济性,其经济性包括通风成本、能量消耗、风量的有效利用等。

在矿井通风费用概算中要求计算出单位产量的通风总费用。

其计算方法如下。

1矿井通风动力费(1)主扇风机运转的耗电量I z = 365×24N /ηeηtηvηf式中I z—主扇风机运转的耗电量,kW·h/a;N—主扇输入功率,kWηe—主扇电动机的效率,可在电动机的技术特征表上查得,一般取0.9~0.95ηt一变压器的效率,一般取0.8;ηv—电线的输电效率,一般取0.95;ηf一传动功率,直接传动时,取1.0;间接传动时取0.95。

(2)局扇、辅扇风机运转的耗电量I e=I j+I f式中I e—局扇、辅扇风机运转的耗电量,kW·h/a;I j—运转局扇风机的总耗电量,kW·h/a;I f—运转辅扇风机的总耗电量,kW·h/a(3)单位产量通风动力费W=T/( I z+I e)P式中W—单位产量通风动力费,元/tT—矿井年产量,t;P—电价,元/KW·h2矿井通风其他费用矿井通风费用除通风动力费外,还包括设施设备折旧费、材料费、工资成本等其他费用,将这些其他费用累加并计算单位产量的费用。

矿井通风其他费用主要包括如下项目:(1)通风设备的折旧费和维修费。

折旧费一般是通风设备的服务年限去除购置费、运输费、安装费的总和。

(2)专为通风服务的井巷工程折旧费和维修费。

这项费用是用井巷服务年限去除井巷施工费。

(3)通风器材的购置费和维修费。

包括掘进通风和通风构筑物用的器材。

(4)通风仪表的购置费和维修费。

(5)通风区队全体人员的工资费。

矿井单位产量的通风动力费与单位产量其他费用之和即为矿井单位产量的通风总费用。

矿井通风

矿井通风


1)主要通风机(简称主扇),主要用于全矿井或 矿井的一翼(部分); 2)辅助通风机(简称辅扇),主要服务于矿井网 络的某一分支(如采区或工作面),以帮助主要通 风机供风以保证该分支的风量; 3)局部通风机(简称局扇),主要用于独头掘进 的井巷等局部地区通风。

矿用通风机按其构造又可分为离心式通风机和 轴流式通风机两类。
3)箕斗提升井或装有胶带输送机的井筒不应兼作进风
井,如果兼作回风井使用,必须采取措施,满足安全 的要求。
4)多风机通风系统,在满足风量按需分配的前 提下,各主要通风机的工作风压应接近。
5)每一个生产水平和每一采区,必须布置回
风巷,实行分区通风。 6)井下爆破材料库必须有单独的新鲜风流, 回风风流必须直接引入矿井的总回风巷或主要 回风巷中。
第二节矿井通风压力和通风阻力


一、空气压力
表示一条水平巷道,在巷 道内风流(空气)能从A 点向B点流动,是因为A点 的压力大于B点的压力, 由此可以引出两个概念, 一是A点或B点的压力,称 为点压力;二是A点与B点 之间存在着压力差。

1. 点压力
空气的点压力可以用绝对压力和相对压力来表示。 1) 绝对压力:某点的绝对压力是以真空为基准,以“0”压为 起算点所计量的压力,所以,绝对压力总是正值,其单位通 常用帕(Pa)表示。通常说的大气压力就是指绝对压力。一 个标准大气压力值为101.325Pa。 2) 相对压力:某点的相对压力是以当地的大气压力为基准所 计算的压力。若大于当地的大气压力的为正压,小于当地的 大气压力的为负压。故相对压力有正值和负值之分。相对压 力的单位通常是帕(Pa)表示。
4、防止矿井空气污染的措施



(1)稀释、排除污染物。 (2)封闭火区、采空区、旧巷和不通 风的巷道。 (3)加强对有害气体检查,及时掌握 涌出情况,防止造成危害。 (4)减少有害气体生成和净化风流。 (5)防止缺氧窒息及有害气体中毒。

矿井通风。实验三

矿井通风。实验三

单管倾斜压差计结构:图 3-5 为倾斜微压计的结构图,在三角形的底座 1 上
3
装设容器 10 与带刻度的玻璃 8,并用胶皮管将其连通。容器 2 的顶盖上有注液 孔螺丝 4,三通旋塞 6 及调零螺丝 5,仪器的底座上有水准泡 2 和调平螺丝 9。 玻璃管 8 的倾角可借弧形板 3 与销钉来调节。为了读数准确,玻璃管 8 上装有活 动游标 7。零位调整螺丝下部是一个浸入液体的圆拄体,若转动螺丝就可改变圆 柱体浸入液体的深度。三通旋塞如图所示(图 3-5 下),当反时针方向转动塞柄 6 至极限位置时,玻璃管 3 与容器 2 连通,并经三通旋塞孔与大气相通,而标有 “+”、“-”两管接头则被隔断,此时为调整零位位置(如图 3-5 下 a);当顺时 针方向转动其旋钮至极限位置时,管接头“+”端与容器 2 相通,标有“-”管接 头借胶皮管通向玻璃管液面,此时三通旋塞孔与大气的通路则被隔断,此即为测 压位置(如图 3-5 下 b)。
1、用气压计测定绝对压力 Pt, Ps、用压差计测定动压 hv,连接形式如图 3-7、 3-8。
用皮托管接两台气压计和一台倾斜微压计,一台气压计感受风流绝对全压, 另一台感受绝对静压;倾斜微压计接收动压。
图 3-7 压入式通风图
图 3-8 抽出式通风
2、用压差计测定的相对压力及动压 ht、hs、hv 选择巷道适当位置安装皮托管和压差计,风机分别作抽出式和压入式通风, 连接形式如下图 1 号、2 号和 3 号 U 形水柱计,分别测出相对全压、动压和相对 静压
实验三 风流点压力实验
一、实验目的 1.熟悉风流压力测定仪器及使用方法; 2.掌握风流点压力的测定方法; 3.加深认识在不同通风方式下风流的压力状态,理解风流点压力及相互关
系。 二、实验内容

矿井通风

矿井通风

通风安全 一、名词解释:1、矿井通风:利用机械或自然通风为动力,使地面空气进入井下,并在井巷中做定向和定量地流动,最后将污浊客气排出矿井的全过程。

2、矿井气候:矿井空气的温度、湿度和流速这三个参数的综合作用状态。

3、矿井空气:地面空气进入井下后。

4、井巷通风阻力:当空气沿井巷流动时,由于风流的粘滞性和惯性以及 井巷壁面等对风流的阻滞、扰动作用而形成通风阻力,包括摩擦阻力和局部阻力。

5、摩擦阻力:风流在井巷中做沿程流动时,由于流体层间的摩擦和流体与井巷壁面之间的摩擦所形成的阻力,又称沿程阻力。

6、局部阻力:在分流流动过程中,由于井巷断面、方向的改变以及分岔或汇合等原因,使均匀流动在局部地区受到影响而破坏,从而引起风流速度分布变化和产生涡流等,造成分流能量的损失。

7、工况点:分机在某一特定转速和工作风阻条件下的工作参数。

8、矿井总风阻:从入风井到主要通风机入口,把顺序连接的各段井巷的通风阻力累加起来。

9、矿井等积孔:用来衡量矿井通风难易程度的指标。

10、矿井通风系统:向矿井各作业地点供给新鲜空气,排出污浊空气的进、回风井的布置方式,主要通风机的工作方法,通风网络和风流控制设施的总称。

11、通风构筑物:矿井通风系统除了有结构合理的通风网路和能力适当的风机外,还有在网路中适当位置安设隔断、引导和控制风流的设施和装置,以保证分流按生产需要流动,这些设施和装置叫通风构筑物。

12、风门:在通风系统中需要行人和行车的巷道中而设立的隔断风流的门。

13、风桥:设在进回风交叉处使进回风互不混合的设施。

14、密闭:隔断分流的构筑物。

15、矿井瓦斯:煤矿生产过程中,从煤岩内涌出的以甲烷为主的各种有害气体的总称。

16、瓦斯涌出量:在矿井建设和生产过程中从煤岩内涌出的涌出的瓦斯量,对于矿井的叫矿井瓦斯涌出量,对于翼、采区或工作面的叫翼、采区或工作面瓦斯涌出量。

17、瓦斯喷出:大量承压状态的瓦斯从煤、岩裂隙中快速喷出的现象。

矿井通风与除尘(蒋仲安版) 4 矿井通风动力

矿井通风与除尘(蒋仲安版) 4 矿井通风动力
25
4. 2. 1
离心式通风机的工作原理
26
4.2.2轴流式通风机的构造和工作原理

空气沿轴向流动的通风机称为轴流式通风机。一般通风 机的结构如图4-7所示,主要由集风器、叶轮、导叶和扩 散器等组成。叶轮安装在圆筒形机壳中,电动机与叶轮 直接联接。
图4-7 轴流通风机
1-集风器;2-叶轮;3-导叶;4-扩散筒
27
4.2.2轴流式通风机的构造和工作原理

由于风机叶轮的叶片具有一定的斜面形状,当叶轮在机 壳中高速转动时,使叶轮周围气体一面随叶轮旋转;一 面沿轴向推进,气体在通过叶轮时获得能量,压力升高, 进入扩散管后一部分轴向气流的动能转变为静压能,最 后以一定的压力从扩散管流出。
28
Axial Flow Fans

(1)主要通风机,服务于全矿或矿井的某一翼(部分); (2)辅助通风机,服务于矿井网络的某一分支(采区或工作面), 帮助主要通风机通风,以保证该分支风量; (3)局部通风机,服务于独头掘进井巷等局部地区。

按通风机的构造和工作原理可分为离心式通风机和轴流式 通风机两种。
17
4.2 矿用通风机的类型及构造




有些叶轮的叶片安装角是可以调整的,
通过调整叶片安装角可以改变风机的性能参数。
29
对旋式轴流风机
屋顶风机
30
4.2.2轴流式通风机的构造和工作原理
图4-8是矿用轴流式风机在矿井通风井口安装作抽出式通 风的示意图。
1-集风器;2-前流线体;3-前导器;4-第一级工作轮;5-中间整流器; 6 -第二级工作轮;7- 后整流器;8-环行或水泥扩散器;9-机架;10-电动机; 11- 通风机房;12—风硐;13-导流板;14-基础;15-径向轴承; 16-止推轴承;17- 制动器;18-齿轮联轴节;19- 扩散器
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档