弹性应力应变关系
弹性力学:04 应力和应变的关系
广义胡克定律
杨氏模量
单向应力状态时的胡克定律是
x E x
式中 E 称为弹性模量。对于一种材 料在一定温度下,E 是常数。
Chapter 5.1
广义胡克定律
泊松比
在单向拉伸时,在垂直于力作用线的方向发生收缩。
在弹性极限内,横向相对缩短 x 和纵向相对伸长 y
成正比,因缩短与伸长的符号相反,有:
ν
x y
Chapter 5.1
广义胡克定律
根据实验可知,xy只引起 xy 坐标面内的剪应变xy,
而不引起 xz、yz,于是可得
xy
xy
G
同理
yz
yz
G
zx
zx
G
Chapter 5.1
广义胡克定律
于是,得到各向同性材料的应变-应y
1 E
y
ν x
z
z
ij
1 2
ui, j u j.i
协调条件:
ij,kl kl,ij ik , jl jl,ik 0
对于一个假定位移场ui ,其相应的协调应变分量ij 可直接由应
变-位移关系得到。显然,这组协调的应变和位移,仅仅是许 多其他可能的应变和位移场中的一组。
几何可能的位移未必是真实的,真实位移在弹性体内部须满足 以位移表示的平衡微分方程。
应力和应变的关系
1. 本构关系的概念 2. 广义胡克定律 各向同性体 3. 各向异性弹性体 4. 热力学定律与应变能函数 5. 应变能和应变余能(自学) 6. 热弹耦合本构关系(自学) 7. 例题
应力和应变的关系
1. 本构关系的概念 2. 广义胡克定律 各向同性体 3. 各向异性弹性体 4. 热力学定律与应变能函数 5. 应变能和应变余能(自学) 6. 热弹耦合本构关系(自学) 7. 例题
弹性体力学中的应变与应力关系
弹性体力学中的应变与应力关系弹性体力学是研究物体在力的作用下变形和恢复原状的力学分支学科,研究的对象主要是固体物质。
在弹性体力学中,应变与应力是两个重要的概念,它们描述了物体的变形和受力状态。
应变和应力之间的关系在弹性体力学中具有重要意义,它们可以通过材料力学模型来描述。
应变是物体在受力作用下发生形变的程度。
一般来说,我们可以将应变分为线性应变和非线性应变。
线性应变是指物体的形变与受力成正比。
例如,当我们拉伸一根弹簧时,弹簧的长度会发生变化,而这种形变与拉力之间是线性相关的。
用数学的语言来表达,线性应变可以用应变量ε表示,其与外力F之间存在着关系ε=ΔL/L,其中ΔL为物体长度的增量,L为物体的原始长度。
非线性应变则是指物体的形变与受力不成比例。
在高强度材料的情况下,非线性应变是不可忽视的。
非线性应变与材料的本构关系有关,常用的本构关系模型包括背应变率本构关系、黏弹性本构关系等。
这些模型可以更准确地描述材料的力学行为,使得我们能够更准确地计算应变。
与应变相对应的是应力。
应力可以看作是物体单位面积的受力情况。
一般来说,应力可以分为正应力和剪应力。
正应力是指垂直于物体内部某一面的力的作用情况。
例如,当我们用一把剪刀剪断一根木棍时,剪刀的受力情况可以被描述为正应力。
剪应力则是指平行于物体内部某一面的力的作用情况。
例如,当我们剪断一个绳索时,绳索的受力情况可以被描述为剪应力。
应变与应力之间的关系又可以通过应力-应变曲线来描述。
应力-应变曲线是弹性体力学研究中的一个重要工具,它可以体现材料的力学性质。
一般来说,应力-应变曲线可以分为弹性阶段、屈服阶段、塑性阶段和断裂阶段。
在弹性阶段,应力与应变成正比。
这个阶段的曲线是一个直线,斜率即为弹性模量,用来描述材料的刚度。
当应力超过一定值时,物体进入屈服阶段。
在屈服阶段,物体的应变不再与应力成正比,而是呈现出非线性关系。
此时物体会发生塑性变形,形成剩余应变。
当应力进一步增加时,物体可能发生断裂。
弹性力学弹性材料的应力应变关系与力学行为
弹性力学弹性材料的应力应变关系与力学行为弹性力学是研究物体在受力作用下产生的形变,并研究这种形变与施加力之间的关系的力学学科。
弹性材料是指在受到外力作用时,可以恢复其原有形状和大小的材料。
在弹性力学中,应力应变关系是研究弹性材料变形的重要理论基础,同时也是理解弹性材料力学行为的关键。
一、应力应变关系弹性材料的应力应变关系是指在弹性变形过程中,材料受到的应力与应变之间的关系。
根据前人的研究,线弹性模型是描述弹性材料应力应变关系较为简单的模型。
在线弹性模型中,应力与应变之间满足线性的关系,即应力与应变成正比。
线弹性模型的数学表达为:应力=弹性模量×应变其中,弹性模量是描述材料抵抗形变的能力,常用符号为E,单位为帕斯卡(Pa);应变是材料在受力作用下发生的形变,通常用ε表示。
二、力学行为在实际工程中,弹性材料的力学行为可以通过拉伸试验来研究。
拉伸试验是将材料在两端加以拉伸,观察材料的变形与受力之间的关系。
通过拉伸试验可以得到材料的应力-应变曲线,从而了解其力学行为。
应力-应变曲线通常可分为三个阶段:线弹性阶段、屈服阶段和塑性阶段。
1. 线弹性阶段材料在小应变下,应力与应变之间呈线性关系,即遵循线弹性模型。
在这个阶段,材料受力后会发生弹性形变,一旦撤去外力,材料便会恢复到初始状态。
2. 屈服阶段当应力超过材料的屈服强度时,材料开始发生塑性变形。
此时,材料的应变与外力不再成线性关系,应力-应变曲线开始变得非线性。
3. 塑性阶段在超过屈服阶段后,材料会出现塑性变形,即使撤去外力,材料也不能完全恢复到初始状态。
材料在这个阶段会发生永久性变形。
除了拉伸试验,弹性材料的力学行为还可以通过其他实验方法进行研究,如压缩试验和剪切试验等。
通过这些实验,可以探究材料在不同受力情况下的变形特性。
总结:弹性力学中,弹性材料的应力应变关系是研究弹性材料变形的重要理论基础。
应力应变关系可以通过线弹性模型进行描述,其中应力与应变成正比。
材料力学中的应力与应变关系
材料力学中的应力与应变关系引言:材料力学是研究材料在外力作用下的力学性能和变形规律的学科,应力与应变是材料力学中最基础的概念之一。
应力与应变关系的研究对于材料的设计、工程应用以及材料力学理论的发展具有重要意义。
本文将从宏观和微观两个角度出发,探讨材料力学中的应力与应变关系。
一、宏观角度下的应力与应变关系宏观角度下的应力与应变关系是指在宏观尺度上,材料在外力作用下的力学响应。
我们可以通过引入应力和应变的概念来描述材料的力学行为。
1. 弹性应力与应变关系弹性应力与应变关系是指材料在弹性阶段内,应力与应变之间的关系。
弹性材料在受力后能够恢复到原始形状,且应力与应变呈线性关系。
根据胡克定律,应力与应变之间的关系可以表示为:σ = Eε其中,σ表示应力,E表示弹性模量,ε表示应变。
弹性模量是材料的一种力学性能参数,反映了材料对外力的抵抗能力。
2. 塑性应力与应变关系塑性应力与应变关系是指材料在超过弹性极限后,发生塑性变形时的应力与应变关系。
塑性材料在受力后会发生永久性变形,应力与应变之间不再呈线性关系。
根据真应力与真应变的定义,塑性应力与应变关系可以表示为:σ' = Kε'其中,σ'表示真应力,K表示材料的强度系数,ε'表示真应变。
强度系数是衡量材料塑性变形能力的指标。
3. 强化应力与应变关系强化应力与应变关系是指材料在受到强化处理后,应力与应变之间的关系。
强化处理是通过改变材料的晶体结构或添加外部组分来提高材料的力学性能。
强化应力与应变关系的表达式与具体的强化方式有关,可以通过试验或模型计算得到。
二、微观角度下的应力与应变关系微观角度下的应力与应变关系是指材料在微观尺度上,原子或分子之间的相互作用导致的力学响应。
我们可以通过分子动力学模拟或统计力学方法来研究材料的微观力学行为。
1. 分子动力学模拟分子动力学模拟是一种通过求解牛顿运动方程来模拟材料微观力学行为的方法。
通过分子动力学模拟,我们可以得到材料的应力与应变关系,并研究材料的力学性能和变形机制。
关于弹性体受力后某一方向的应力与应变关系
弹性力学中应力与应变为线性关系,应力与应变的比例常数E 被称为弹性系数或扬氏模量,不同的材料有其固定的扬氏模量。
虽然无法对应力进行直接的测量但是通过测量由外力影响产生的应变可以计算出应力的大小。
应力是应变的原因,应变是应力的结果。
应力概念解释:物体由于外因(受力、湿度、温度场变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并力图使物体从变形后的位置回复到变形前的位置。
在所考察的截面某一点单位面积上的内力称为应力。
同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。
拓展资料
应力会随着外力的增加而增长,对于某一种材料,应力的增长是有限度的,超过这一限度,材料就要破坏。
对某种材
料来说,应力可能达到的这个限度称为该种材料的极限应力。
极限应力值要通过材料的力学试验来测定。
将测定的极限应力作适当降低,规定出材料能安全工作的应力最大值,这就是许用应力。
材料要想安全使用,在使用时其内的应力应低于它的极限应力,否则材料就会在使用时发生破坏。
工程构件,大多数情形下,内力并非均匀分布,通常“破坏”或“失效”往往从内力集度最大处开始,因此,有必要区别并定义应力概念。
弹性力学中的应力与应变关系
弹性力学中的应力与应变关系弹性力学是力学的一个重要分支,研究物体在外力的作用下产生的形变与应力的关系。
在弹性力学理论中,应力与应变关系是最为核心的概念之一。
本文将探讨弹性力学中的应力与应变关系的基本原理,并从不同角度对其进行分析。
一、基本概念在弹性力学中,应力是描述物体内部单位面积受力情况的物理量。
它可以分为正应力和剪应力。
正应力表示物体在垂直于某一平面上的受力情况,剪应力表示物体在平行于某一平面上的受力情况。
应力的大小一般采用希腊字母σ表示。
应变是描述物体形变情况的物理量。
它可以分为线性应变和体积应变。
线性应变表示物体中某一方向上的长度相对变化,体积应变表示物体在各个方向上的体积变化。
应变的大小可以用希腊字母ε表示。
二、胡克定律胡克定律是描述弹性体材料中应力与应变关系最基本的定律。
其数学表达式为σ = Eε,即应力等于弹性模量与应变之积。
其中,弹性模量E是描述物体对应变的抵抗能力的物理量。
根据胡克定律,应力与应变之间的关系是线性的,即若应变增大,则应力也会相应增大。
胡克定律适用范围有限,对于非线性应力-应变关系的材料,需要采用其他力学模型进行描述。
例如,当外力作用超出一定范围时,弹性体会发生塑性变形,此时应力和应变之间的关系就无法再用胡克定律来描述。
三、材料力学模型由于胡克定律的局限性,研究者们提出了各种各样的材料力学模型来描述应力与应变之间的关系。
其中,最常用的有线性弹性模型、非线性弹性模型和本构模型。
线性弹性模型是胡克定律的拓展,它适用于应力与应变关系呈线性关系的情况。
在这种模型中,应力与应变之间的关系是单一的、唯一的。
当外力作用停止后,物体能够完全恢复到初始状态。
非线性弹性模型适用于应力与应变关系不再呈线性关系的情况。
它可以更好地描述材料的实际变形情况。
在这种模型中,应力与应变之间的关系可以是非线性的、曲线状的。
本构模型是一种综合考虑多种因素的力学模型,它可以更全面地描述材料的应力与应变关系。
弹性与塑性应力应变关系
02
弹性应力应变关系
弹性应力应变定义
弹性应力
物体受到外力作用时,在内部产生的抵抗 力量。
弹性应变
物体在弹性应力作用下发生的形状变化。
弹性阶段
在弹性应力范围内,物体的应力和应变呈 线性关系,即应力与应变成正比。
胡克定律
胡克定律表述:在弹性范围内,物体的应力和应变满足线性关系,即应 力=弹性模量×应变。
多尺度与跨学科 研究
未来研究可以进一步探索不 同尺度下材料的应力应变行 为,从微观到宏观,深入了 解材料的内在机制。此外, 跨学科的研究方法将有助于 更全面地理解材料的力学性 能,推动相关领域的发展。
实验与数值模拟 的结合
结合实验与数值模拟的方法 ,可以更准确地预测材料的 应力应变行为。通过建立更 精确的数学模型和实验装置 ,可以进一步揭示材料的力 学特性,为工程应用提供更 有力的支持。
应变软化
在某些情况下,随着应变的增加,材 料的屈服强度和极限强度会降低,表 现出应变软化的现象。这种现象通常 出现在高温或长时间变形条件下。
05
实际应用
工程材料选择
弹性材料
在工程中,选择具有高弹性模量和良好稳定性的材料,以确保结构在承受载荷 时具有足够的刚度和稳定性。
塑性材料
对于需要承受较大塑性变形的结构,应选择具有良好塑性和韧性的材料,以避 免脆性断裂和灾难性失效。
应用领域
弹性与塑性应力应变关系在工程 领域中具有广泛的应用价值,如 结构分析、材料设计、机械零件 的强度校核等。了解材料的应力 应变关系有助于合理设计构件, 提高结构的稳定性和安全性。
对未来的展望
新材料与新技术 的应用
随着科技的发展,新型材料 和先进技术的应用将进一步 拓展弹性与塑性应力应变关 系的研究领域。例如,智能 材料、纳米材料等新型材料 的出现,将为该领域的研究 提供更多可能性。
第四章应力应变关系
4 应力应变关系4.1弹性变形时应力和应变的关系当材料所受应力小于其线弹性极限时,材料应力应变间的关系服从广义Hooke 定律,即1()1()1()111222x x y z y yx zz z x yxy xy yz yz zx zxE E E G G G εσνσνσεσνσνσεσνσνσετετετ⎧=--⎪⎪⎪=--⎪⎨⎪=--⎪⎪⎪===⎩,, (4.1) 式中,E 为拉压弹性模量,G 为剪切模量,ν为泊松比,对于各向同性材料,三个常数之间满足()21E G ν=+关系。
由上式可得11212()()33m x y z x y z m E E ννεεεεσσσσ--=++=++= (4.2) 于是11()'2x m x m x E G νεεσσσ+-=-= 或1112''22x m x x m G G Eνεεσσσ-=+=+ 类似地可以得到1112''22y m y y m G G E νεεσσσ-=+=+ 1112''22z m z z m G G Eνεεσσσ-=+=+于是,方程(4.1)可写成如下形式1212'00'0000'x xy xz x xy xz m v yx y yz yx y yz m G E m zx zy z zx zy z εγγσττσγεγτστσσγγεττσ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即'1122ij ij m ij ij m G Eνεεεσδσ-'=+=+ (4.3)显然,弹性变形包括体积改变的变形和形状改变的变形。
前者与球应力分量成正比,即12m m E νεσ-= (4.4)后者与偏差应力分量成正比,即''12''12''12111222x x m x G y y m y G z z m z G xy xy yz yz zx zxG G G εεεσεεεσεεεσετετετ⎧=-=⎪=-=⎪⎨=-=⎪⎪===⎩,,或简写为2ij ij G σε''= (4.5)此即为广义Hooke 定律。
弹性体与变形弹性体的应力与应变关系
弹性体与变形弹性体的应力与应变关系弹性体是指在外部施加力后能够发生形变,但在去除力后能够恢复原状的物质。
而变形弹性体则是指在外力作用下形变后不能完全恢复原状的物质。
弹性体与变形弹性体在受力时会出现应力与应变的关系,这种关系是研究材料力学性能的重要内容。
一、弹性体的应力与应变关系弹性体在外力作用下,发生形变。
应力是单位面积上的力,定义为单位面积上的力与面积的比值,通常用σ表示,单位为帕斯卡(Pa)。
应变是物体的相对形变,定义为单位长度的变化量与被测长度的比值,通常用ε表示,无单位。
根据弹性体的应力与应变关系,我们可以得到胡克定律,即应力与应变成正比关系。
弹性体的胡克定律可表示为:σ = E * ε其中,E表示弹性体的弹性模量,是反映弹性体变形能力大小的重要参数,单位为帕斯卡(Pa)。
弹性模量越大,代表弹性体越难形变,具有较好的弹性性能。
根据胡克定律,当外力施加于弹性体上时,应力与应变成正比,且两者之间的关系是线性的。
即在弹性极限之内,如果应力增大,应变也会相应增大;如果应力减小,应变也会相应减小。
而且,当外力去除后,弹性体会恢复到原来的形状和大小,应变会回到零。
二、变形弹性体的应力与应变关系变形弹性体与弹性体不同,其在外力作用下形变后不能完全恢复原状。
因此,其应力与应变关系也存在一定的差异。
变形弹性体的应力与应变关系可以用应力-应变曲线来描述。
在应力-应变曲线中,随着应变的逐渐增大,物体的应力并不是线性变化的,而是呈现出一定的非线性特性。
应力-应变曲线通常可以分为弹性阶段、屈服阶段、塑性阶段和断裂阶段。
在弹性阶段,应力与应变基本保持线性关系,符合胡克定律;而在屈服阶段,应力增加的同时,应变开始出现非比例增长。
当应力达到一定程度后,材料会发生塑性变形,进入塑性阶段;在断裂阶段,材料发生破裂。
变形弹性体的应力与应变关系还可以通过一些指标进行描述,如屈服强度、断裂强度、延伸率等。
这些指标是衡量材料变形能力和抗破坏能力的重要参数。
弹性力学中的应力和应变
弹性力学中的应力和应变弹性力学是物理学中的一个重要分支,研究物体在外力作用下的变形和应力分布规律。
在弹性力学中,应力和应变是两个关键的概念。
本文将详细介绍弹性力学中的应力和应变,并探讨它们之间的关系和物体在外力作用下的行为。
一、应力的概念与分类在弹性力学中,应力是描述物体内部受力状况的物理量。
它的定义是单位面积上的力,即单位面积上所受的力。
在材料力学中,通常将力的作用面积取无限小,这样就可以得到面积趋于无穷小的情况下的应力。
根据作用方向的不同,应力可以分为三种类型:正应力、剪应力和体应力。
1. 正应力:即垂直于物体截面的力在该截面上单位面积的作用力。
正应力可以分为正拉应力和正压应力,正拉应力是指物体上的拉力,正压应力是指物体上的压力。
2. 剪应力:即平行于物体截面的力在该截面上单位面积的作用力。
剪应力是指物体上的切力,它使得物体相对于截面沿切应变方向发生形变。
3. 体应力:即物体内部体积元素上的力在该体积元素上单位体积的作用力。
体应力是指物体中各个点处的压力或拉力。
二、应变的概念与分类应变是描述物体变形程度的物理量,它是物体的形状改变相对于初始形状的相对变化量。
应变也可以分为三种类型:线性应变、剪应变和体应变。
1. 线性应变:即物体在受力下沿作用力方向产生的长度变化与初始长度的比值。
线性应变通常用拉伸应变表示。
2. 剪应变:即物体在受剪力作用下发生的相对位移与物体初始尺寸的比值。
3. 体应变:即物体受力时体积的相对变化量与初始体积的比值。
三、应力和应变的关系应力和应变之间存在着一定的关系,它们之间通过杨氏模量来联系。
杨氏模量是描述物体在拉伸应力作用下的应变程度的物理量。
弹性体的材料有两个重要的杨氏模量:弹性模量(或称杨氏模量)和剪切模量。
1. 弹性模量(E):它描述的是物体在正应力作用下的正应变情况。
根据材料的不同,弹性模量也不同。
2. 剪切模量(G):它描述的是物体在剪应力作用下的剪应变情况。
弹性力学弹性体的应力与应变关系
弹性力学弹性体的应力与应变关系弹性力学是一门研究固体材料在外力作用下的变形和应力分布规律的学科。
其中,弹性体是一类能够在外力作用下发生形变,但恢复力可以将其恢复到原始状态的物质。
弹性体的应力与应变关系是弹性力学中的基本概念和重要理论。
一、什么是应力与应变在力学中,应力是物体受来自外界作用的力引起的单位面积内的力的大小。
它是描述物体受力情况的物理量。
应力可分为正应力和剪应力两种,正应力作用于物体的表面上的垂直方向,而剪应力则作用于物体的表面上的切向方向。
应变是描述材料形变程度的物理量,是物体在受力下发生变形时单位长度的变化。
应变也可分为正应变和剪应变两种,正应变是物体长度在受力作用下产生的相对变化量,而剪应变则是物体形状的变化量与原始尺寸之比。
二、背景知识弹性体的应力与应变关系可以通过背景知识来理解。
弹性体的主要特性是能够在外力的作用下发生形变,但当外力消失时,它能够恢复到原来的形状和尺寸。
这是因为弹性体的分子或原子之间存在着弹性力,当外力作用结束时,弹性力将趋于平衡,使得物体恢复到原来的状态。
三、胡克定律胡克定律是描述弹性体应力与应变关系的基本定律。
根据胡克定律,当外力作用于弹性体时,弹性体内部的应力与应变成正比。
具体数学描述如下:σ = Eε其中,σ代表应力,单位为帕斯卡(Pa),E代表弹性模量,单位为帕斯卡(Pa),ε代表应变,为无单位。
胡克定律适用于弹性体在线性弹性范围内,即应力与应变成正比,并且比例系数恒定。
此时的应力-应变关系为线性关系,称为胡克定律。
超出线性弹性范围后,材料会发生塑性变形。
四、弹性模量弹性模量是表征弹性体抵抗形变的能力大小的物理量。
它是胡克定律中比例系数的倒数,可以用来度量弹性体的刚度。
常见的弹性模量有:1. 杨氏模量(Young's Modulus):用E表示,描述的是物体在拉伸或压缩时的应变与应力之间的关系。
2. 剪切模量(Shear Modulus):用G表示,描述的是物体在受剪时的应变与应力之间的关系。
【弹塑性力学】5 弹性应力应变关系
1
W 2 x x y y z z x x y y y z y z z x z x
2 1 E 1 2 x y z2 2 x 2 y 2 z 1 2 2 x y 2 y z 2 z x
精选版课件ppt
40
• 应变能分解 应变能可分解为体积改变能和形状改变能。
力分量ij都只在与它相同的应变分量ij上做功,
W ij 0
d ij ij
z
z
zx
yx xz
yz
xy
x
zy
yx zx
yz y
y
x
精选版课件ppt
37
根据能量平衡,单位体积的应变能应是
所以
WijdW ij
0
0
d ij ij
dW=ijdij
对于弹性体,应变能只取决于状态,是应变状态的单值
• 弹性系数cmn也应具有对称性
cmn=cnm
精选版课件ppt
9
5.1.2 材料对称性
• 弹性对称面 该面对称的两个方向具有相同的弹性关系
精选版课件ppt
10
x
xy
xz
yx y yz
zx
zy
z
x
1 2
yx
1 2
zx
1 2
xy
y
1 2
zy
1 2
xz
1 2
yz
精选版课件ppt
4
• 对于线性弹性材料,应力与应变是线性关系
x =c11x+ c12y+ c13z+ c14xy+ c15yz+ c16zx
y =c21x+ c22y+ c23z+ c24xy+ c25yz+ c26zx
4. 弹性应力应变关系和弹性问题求解
(八)弹性问题的求解
③ 将上式代入平衡微分方程
∂ 2u ∂ 2 v ∂ 2u ∂ 2u ∂ 2u ∂2w ∂e =0 λ + G + + G + + 2+ 2 2 2 ∂x ∂y ∂z ∂x ∂x∂y ∂x∂z ∂x
复杂加载时的弹性变形能密度
(三)弹性变形能
1 U 0 = σ ij ε ij 2 U 0 (σ ij ) =
广义虎克定律
1 2 2 2 (σ x2 + σ y2 + σ z2 ) − ν (σ xσ y + σ yσ z + σ zσ x ) + 1 (τ xy ) + τ yz + τ zx E 2E 2G 1 [σ 12 + σ 22 + σ 32 − 2ν (σ 1σ 2 + σ 2σ 3 + σ 3σ 1 )] U 0 (σ i ) = 2E
x z y
ε x = ε y = −νε z = −ν
σz
σx
当 τxy 单独作用时
1 1 1 τ xy ε x = σx −νε y −νε z = [σ x −ν (σ y + σ z )] ; γ xy = 2G E E 1 1 ε y = [σ y −ν (σ z + σ x )] ; γ yz = τ yz E 2G 1 1 ε z = [σ z −ν (σ x + σ y )] ; γ zx = τ zx E 2G
U 0 (ε ij ) =
λ
2 2
(ε
2 2 2 2 2 2 ) ( ) ( ) 2 G G ε ε ε ε ε ε ε ε + + + + + + + + z xy yz zx x y z x y 2
弹性力学:04 应力和应变的关系
广义胡克定律
杨氏模量
单向应力状态时的胡克定律是
x E x
式中 E 称为弹性模量。对于一种材 料在一定温度下,E 是常数。
Chapter 5.1
广义胡克定律
泊松比
在单向拉伸时,在垂直于力作用线的方向发生收缩。
在弹性极限内,横向相对缩短 x 和纵向相对伸长 y
成正比,因缩短与伸长的符号相反,有:
C1113 C2213 C3313 C2313 C3113 C1213 C3213 C1313 C2113
C1121 e11
C2221
e22
C3321 C2321
e33 e23
C3121
e31
C1221 e12
C3221
e32
C1321 e13
C2121
泊松比广义胡克定律chapter51轴的相对伸长它由三部分组成即线弹性叠加原理广义胡克定律chapter51其中是由于广义胡克定律chapter51将上述三个应变相加即得在同时作用下在x轴方向的应变广义胡克定律chapter51根据实验可知xy只引起xy坐标面内的剪应变xy而不引起xzyz于是可得xyxy同理yzyzzxzx广义胡克定律chapter51于是得到各向同性材料的应变应力关系
ν
x y
Chapter 5.1
广义胡克定律
根据实验可知,xy只引起 xy 坐标面内的剪应变xy,
而不引起 xz、yz,于是可得
xy
xy
G
同理
yz
yz
G
zx
zx
G
Chapter 5.1
广义胡克定律
于是,得到各向同性材料的应变-应力关系:
x
1 E
x
弹性力学 第四章应力和应变的关系
vI t
x
x
t
y
y
t
z
z
t
yz
yz
t
xz
xz
t
xy
xy
t
若固定x,y,z的值,则得在dt时间内vI 的增量为,即在上式两边乘以dt
dvI xd x yd y zd z yzd yz xz d xz xyd xy
由于内能密度 vI 是状态的单值函数,dvI 必须是全微分,因此
所以
v
1 2
(
x
x
y y
zz
xy xy
xz xz
zy zy )
张量表示
v
1 2
ij
ij
弹性体应变能 V v dV V
§4-3 各向异性弹性体
(一)极端各向异性弹性体
理论具有36个弹性常数
x c11 x c12 y c13 z c14 xy c15 yz c16 zx y c21 x c22 y c23 z c24 xy c25 yz c26 zx
的值,根据无初始应力假设,( f1)0为0。均匀材料,函数 f1
对应变的一阶偏导数为常数。这是因为对物体内各点来说,
承受相同的应力,必产生相同的应变;反之,物体内各点
有相同的应变,必承受同样的应力。
经过上面的处理后,小变形情况就可简化为
广义胡克定律
x C11 x C12 y C13 z C14 xy C15 yz C16 xz y C21 x C22 y C23 z C24 xy C25 yz C26 xz z C31 x C32 y C33 z C34 xy C35 yz C36 xz xy C41 x C42 y C43 z C44 xy C45 yz C46 xz yz C51 x C52 y C53 z C54 xy C55 yz C56 xz xz C61 x C62 y C63 z C64 xy C65 yz C66 xz
弹塑性力学 应力和应变之间的关系
我所认识的应力和应变之间的关系在单向应力状态下,理想弹性材料的应力和应变之间的关系是满足胡克定律的一一对应的关系。
在三维应力状态下描述一点处的应力状态需要9个分量,相应的应变状态也要用9个应变分量来表示。
对于一个具体的理想弹性体来讲,如果在三维应力状态下,应力与应变之间仍然有线性一一对应关系存在,则称这类弹性体为线性弹性体。
所谓各向弹性体,从力学意义上讲,就是弹性体内的每一点沿各个方向的力学性质都完全相同的。
这类线性弹性体独立的唐兴常数只有两个。
各向同性体本构关系特点:1.主应力与主应变方向重合。
2.体积应力与体积应变成比例。
3.应力强度与应变强度成比例。
4.应力偏量与应变偏量成比例。
工程应用中,常把各向同性弹性体的本构方程写下成11()11()11()x y z xy xy y x z yz yz z y x xz xz E G E G E G εσμσσγτεσμσσγτεσμσσγτ⎧⎡⎤=-+=⎣⎦⎪⎪⎪⎡⎤=-+=⎨⎣⎦⎪⎪⎡⎤=-+=⎪⎣⎦⎩,式中分别为弹性模量、泊松比和剪切模量。
在E G μ、、这三个参数之间,实际上独立的常量只有两个,它们之间存在关系为()21E G μ=+。
屈服条件:弹性和塑性的最主要区别在于变形是可以恢复。
习惯上,根据破坏时变形的大小把工程材料分为脆性材料和塑性材料两类。
对于加载过程如图1OA: 比例阶段;线性弹性阶段AB: 非弹性变形阶段 BC : 初始屈服阶段 s σσ≤ CDE :强化阶段;应变强化硬化阶段EF : 颈缩阶段;应变弱化,软化阶段s σσ≥ C 点为初始屈服点具有唯一性。
在应力超过屈服应力后,如果在曲线上任意一点D 处卸载,应力和应变之间将不再遵循原有的加载曲线规律,而是沿一条接近平行于OA 的直线DO ’变化,直到应力下降为零,这时应变并不为零,即有塑性应变产生。
如果用OD ’表示总应变ε,O ’D ’表示可以恢复的弹性应变eε,OO ’表示不能恢复的塑性应变p ε,则有e p εεε=+,即总应变等于弹性应变加上塑性应变。
弹性体应力应变关系
σx=f1 εx,εy,εz,γyz,γxz,γxyσy=f2 εx,εy,εz,γyz,γxz,γxyσz=f3 εx,εy,εz,γyz,γxz,γxyτyz=f4 εx,εy,εz,γyz,γxz,γxyτxz=f5 εx,εy,εz,γyz,γxz,γxyτxy=f6 εx,εy,εz,γyz,γxz,γxy或者简写为:σi=f i εj,i,j=1,6满足小变形假设的弹性体,应力可以表示为应变的线性函数:σi=C ijεj,C ij为常数弹性体的应变能可以表示为:Vε=vεdVVvε为应变能密度,可以表示为:vε=1σiεi≥0,i=1,6且满足:σi=ðvεi该式称为格林公式,通过热力学第一定律和第二定律导出。
σ1=ðvεðε1=C11ε1+C12ε2+C13ε3+C14ε4+C15ε5+C16ε6σ5=ðvε5=C51ε1+C52ε2+C53ε3+C54ε4+C55ε5+C56ε6ð2vεðε1ðε5=C15ð2vεðε5ðε1=C51由于偏导的次序可以交换,因此必满足:C15=C51说明C ij是对称的,则对于各向异性体,具有6+30/2=21个独立的弹性常数。
下面考虑材料性能对称问题。
若材料存在对称面,则材料在与该对称面对称的两个方向上具有相同的弹性,称该对称面为弹性对称面,而垂直于弹性对称面的方向称为弹性主方向。
例如:设X轴为材料弹性主方向,则OYZ面为弹性对称面,X轴转动180度后,应力与应变σi′j′=σij n i′i n j′jεi′j′=εij n i′i n j′jσx =C 11εx +C 12εy +C 13εz +C 14γyz +C 15γxz +C 16γxy σy =C 21εx +C 22εy +C 23εz +C 24γyz +C 25γxz +C 26γxy σz =C 31εx +C 32εy +C 33εz +C 34γy′z′+C 35γxz +C 36γxy τyz =C 41εx +C 42εy +C 43εz +C 44γyz +C 45γxz +C 46γxy τxz =C 51εx +C 52εy +C 53εz +C 54γyz +C 55γxz +C 56γxy τxy =C 61εx +C 62εy +C 63εz +C 64γyz +C 65γxz +C 66γxy 坐标变换后应力分量满足以下关系:σx′=σx ,σy′=σy ,σz′=σzτx′y′=−τxy ,τx′z′=−τxz ,τy′z′=τyz 应变分量满足以下关系:εx′=εx ,εy′=εy ,εz′=εzγx′y′=−γxy ,γx′z′=−γxz ,γy′z′=γyz那么,应力——应变关系成为:σx′=C 11εx′+C 12εy′+C 13εz′+C 14γy′z′−C 15γx ′z ′−C 16γx′y′ σy′=C 21εx′+C 22εy′+C 23εz′+C 24γy′z′−C 25γx ′z ′−C 26γx′y′ σz′=C 31εx′+C 32εy′+C 33εz′+C 34γy′z′−C 35γx ′z ′−C 36γx′y′ τy′z′=C 41εx′+C 42εy′+C 43εz′+C 44γy′z′−C 45γx ′z ′−C 46γx′y′ −τx′z′=C 51εx′+C 52εy′+C 53εz′+C 54γy′z′−C 55γx ′z ′−C 56γx′y′ −τx′y′=C 61εx′+C 62εy′+C 63εz′+C 64γy′z′−C 65γx ′z ′−C 66γx′y′ 为了满足坐标变换后应力——应变关系不变,必须满足:C 15=C 16=C 25=C 26=C 35=C 36=C 45=C 46=0则应力——应变关系为:σx =C 11εx +C 12εy +C 13εz +C 14γyz σy =C 21εx +C 22εy +C 23εz +C 24γyz σz =C 31εx +C 32εy +C 33εz +C 34γy′z′ τyz =C 41εx +C 42εy +C 43εz +C 44γyzτxz =C 55γxz +C 56γxy τxy =C 65γxz +C 66γxy 根据对称性,独立的弹性常数为:6+(30-16)/2=13个(21-8=13)。
弹性力学 第四章 应力和应变关系.
第四章应力和应变关系知识点应变能原理应力应变关系的一般表达式完全各向异性弹性体正交各向异性弹性体本构关系弹性常数各向同性弹性体应变能格林公式广义胡克定理一个弹性对称面的弹性体本构关系各向同性弹性体的应力和应变关系应变表示的各向同性本构关系一、内容介绍前两章分别从静力学和运动学的角度推导了静力平衡方程,几何方程和变形协调方程。
由于弹性体的静力平衡和几何变形是通过具体物体的材料性质相联系的,因此,必须建立了材料的应力和应变的内在联系。
应力和应变是相辅相成的,有应力就有应变;反之,有应变则必有应力。
对于每一种材料,在一定的温度下,应力和应变之间有着完全确定的关系。
这是材料的固有特性,因此称为物理方程或者本构关系。
对于复杂应力状态,应力应变关系的实验测试是有困难的,因此本章首先通过能量法讨论本构关系的一般形式。
分别讨论广义胡克定理;具有一个和两个弹性对称面的本构关系一般表达式;各向同性材料的本构关系等。
本章的任务就是建立弹性变形阶段的应力应变关系。
二、重点1、应变能函数和格林公式;2、广义胡克定律的一般表达式;3、具有一个和两个弹性对称面的本构关系;4、各向同性材料的本构关系;5、材料的弹性常数。
§4.1 弹性体的应变能原理学习思路:弹性体在外力作用下产生变形,因此外力在变形过程中作功。
同时,弹性体内部的能量也要相应的发生变化。
借助于能量关系,可以使得弹性力学问题的求解方法和思路简化,因此能量原理是一个有效的分析工具。
本节根据热力学概念推导弹性体的应变能函数表达式,并且建立应变能函数表达的材料本构方程。
根据能量关系,容易得到由于变形而存储于物体内的单位体积的弹性势能,即应变能函数。
探讨应变能的全微分,可以得到格林公式,格林公式是以能量形式表达的本构关系。
如果材料的应力应变关系是线性弹性的,则单位体积的应变能必为应变分量的齐二次函数。
因此由齐次函数的欧拉定理,可以得到用应变或者应力表示的应变能函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故独立的弹性常数也是36个。
可以证明 Cijkl关于i j与k l也是对称的,故一 般各向异性弹性材料独立的弹性常数是21个。
z yz
zx xy
c51 c61
c52 c62
c53 c63
c54 c64
c55 c65
c56 c66
zx xy
D
D: 弹性矩阵
应力应变关系使用张量形式表示有:
ij Cijkl kl
式中Cijkl 称为弹性张量, 为四阶常张量, 共有81 个分量。 根据应力、应变张量的对称性,Cijkl 关于指标 i 和 j 对称,关于指标 k 和 l 也对称,即
x x ( x , y , z , xy , yz , zx ) y y ( x , y , z , xy , yz , zx ) z z ( x , y , z , xy , yz , zx ) yz yz ( x , y , z , xy , yz , zx ) zx zx ( x , y , z , xy , yz , zx ) xy xy ( x , y , z , xy , yz , zx )
将 3K 代入应力表达式有
x
2G x
1
2G x
1
3K
2G x
y
2G y
1
2G y
1
3K
2G y
z
2G z
1
2G z
1
3K
2G z
xy 2G xy yz 2G yz zx 2G zx
式中 称为Lame 常数。
3K E
E
1
1 1 2 (1 )(1 2)
3.2 各向异性线弹性材料
线弹性应力应变关系为线性关系:
x c11 x c12 y c13 z c14 yz c15 zx c16 xy y c21 x c22 y c23 z c24 yz c25 zx c26 xy z c31 x c32 y c33 z c34 yz c35 zx c36 xy yz c41 x c42 y c43 z c44 yz c45 zx c46 xy zx c51 x c52 y c53 z c54 yz c55 zx c56 xy xy c61 x c62 y c63 z c64 yz c65 zx c66 xy
xy
G
yz
yz
G
zx
zx
G
x y z 称为体积应力。
从正应力应变关系中可得到:
E x (1 ) x E y (1 ) y
E z (1 ) z
由上式则有应力表达式:
x
E
1
( x
E
)
2G x
1
y
E
1
( y
E
)
2G y
1
z
E
1
( z
E
)
2G z
1
xy Gγxy yz Gγyz zx Gγzx
另一方面由
E x (1 ) x
E y (1 ) y
E (1 ) -3
E z (1 ) z
(1 2)
从而有体积应力与体积应变之间的关系
E 令 3K E
1 2
1 2
则
3K
K为材料常数, :为体积应变。 x y z
x
1 E
[
x
(
y
z
)]
x
1 E
[(1
) x
( x
y
z )]
同理
1 E
[(1
)
x
]
y
1 E
[
y
( z
x )]
y
1 E
[(1
)
y
]
z
1 E
[ z
( x
y )]
z
1 E
[(1
) z
]
三向应力状态的应力应变关系
x
1 E
[(1
) x
]
y
1 E
[(1
) y
]
z
1 E
[(1
) z
]
xy
a(1
x
)
1 2
a(1+
x
)
(1 x ) (1+x )
tg(
4
)
2
1 tg
2
1 tg
1
2
1
2
2
(1 x (1+x )
)
1 1
2
2
x (1 )
x (1 ) x
GE
2
x x (1 )
2G E
1 1
2G E
(3)双向应力状态的应力应变关系
x
x
E
y
E
1 E
( x
第三章 弹性应力应变关系
3.1 广义胡克定律 3.2 各向异性线弹性材料 3.3 各向同性线弹性材料的弹性常数 3.4 体积改变定律和形状改变定律 3.5 线弹性体的应变能函数
3.1 广义胡克定律
应力应变关系属于材料的性能,称为物理方程或 者本构方程 单向拉伸与纯剪应力应变关系可以通过试验确定 复杂应力状态的应力应变关系难以通过试验确定
σy
τyx τxy
σx
(5)三向应力状态的应力应变关系
x
x
E
y
E
z
E
1 E
[ x
( y
z )]
y
y
E
x
E
z
E
1 E
[
y
( x
z )]
z
z
E
x
E
y
E
1 E
[
z
( x
y )]
xy
xy
G
yz
yz
G
zx
zx
G
引入: x y z
G E
2(1 )
式中cmn(m,n=1,6)是取决于材料性质的常数,共36个。
线弹性材料的应力应变关系的矩阵表达
x c11 c12 c13 c14 c15 c16 x
y
c21
c22
c23
c24
c25
c26
y2
c33 c43
c34 c44
c35 c45
c36 c46
y )
y
y
E
x
E
1 E
( y
x )
x
x
E
1 2
( x
y )
y
y 1 2
( y
x )
x
y
y x
x
y
y
(4)平面应力状态的应力应变关系
x
x
E
y
E
1 E
(
x
y )
y
y
E
x
E
1 E
( y
x )
xy
xy
G
x
E
1 2
( x
y )
y
y 1 2
( y
x )
xy G xy
整理最终的应力应变关系是
x 2G xx y 2G yy z 2G zz
x y z
xy 2G xy yz 2G yz zx 2G zx
由上面的式子可以写出应力应变关系的张量表达:
ij 2Gij ij
3.2 各向异性线弹性材料
对于弹性体一点的应力取决于该点的应变大小,即 应力与应变之间存在函数关系。
(1)单向应力状态的应力应变关系
x
x
E
或 x E x
σx
y
x
x
E
εy
σx
: 泊松比,由试验确定。 εx
(2)纯剪应力状态的应力应变关系 τ
τ
Mn
G 或
G G: 剪切弹性模量 G E
2(1 )
E与G之间的关系
a(1 x )
aa
a(1 x ) x
2
x
tg(
4
)
2
1 2