中考压轴冲刺二 动态几何定值问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考压轴冲刺二 动态几何定值问题
本类问题主要有三种:1、线段(和差)为定值问题;2、角度(和差)为定值问题;3、面积(和差)为定值问题。
解答本类问题的方法,
1 、先探求定值. 它要用题中固有的几何量表示.再证明它能成立.探求的方法,常用特殊位置定值法,即把动点放在特殊的位置;
2、找出定值的表达式,然后写出证明.
类型一 【线段及线段的和差为定值】
例1、已知:△ABC 是等腰直角三角形,△BAC =90°,将△ABC 绕点C 顺时针方向旋转得到△A ′B ′C ,记旋转角为α,当90°<α<180°时,作A ′D △AC ,垂足为D ,A ′D 与B ′C 交于点E .
(1)如图1,当△CA ′D =15°时,作△A ′EC 的平分线EF 交BC 于点F .
△写出旋转角α的度数;
△求证:EA ′+EC =EF ;
(2)如图2,在(1)的条件下,设P 是直线A ′D 上的一个动点,连接P A ,PF ,若AB ,求线段P A +PF 的最小值.(结果保留根号)
类型二 【线段的积或商为定值】
例2、如图△,矩形ABCD 中,2,5,1AB BC BP ===,090MPN ∠=,将MPN ∠绕点P 从PB 处开始按顺时针方向旋转,PM 交边AB (或AD )于点E ,PN 交边AD (或CD )于点F .当PN 旋转至PC 处时,MPN ∠的旋转随即停止.
(1)特殊情形:如图△,发现当PM 过点A 时,PN 也恰好过点D ,此时ABP ∆是否与PCD ∆相似?并说明理由;
(2)类比探究:如图△,在旋转过程中,
PE PF
的值是否为定值?若是,请求出该定值;若不是,请说明理由;
(3)拓展延伸:设AE t =时,EPF ∆的面积为S ,试用含t 的代数式表示S ;
△在旋转过程中,若1t =时,求对应的EPF ∆的面积;
△在旋转过程中,当EPF ∆的面积为4.2时,求对应的t 的值.
类型三 【角及角的和差定值】
例3、如图,在△ABC 中,△ABC >60°,△BAC <60°,以AB 为边作等边△ABD (点C 、D 在边AB 的同侧),连接CD .
(1)若△ABC =90°,△BAC =30°,求△BDC 的度数;
(2)当△BAC =2△BDC 时,请判断△ABC 的形状并说明理由;
(3)当△BCD 等于多少度时,△BAC =2△BDC 恒成立.
类型四 【三角形的周长为定值】
例4、如图,现有一张边长为的正方形ABCD ,点P 为正方形 AD 边上的一点(不与点 A 、点D 重合),将正方形纸片折叠,使点 B 落在 P 处,点 C 落在 G 处,PG 交DC 于H ,折痕为 EF ,连接 BP ,BH .
(1)求证:EPB EBP ∠=∠;
(2)求证:APB BPH ∠=∠;
(3)当点P 在边AD 上移动时,△PDH 的周长是否发生变化?不变化,求出周长,若变化,说明理由; (4)设AP 为x ,四边形EFGP 的面积为S ,求出S 与x 的函数关系式.
类型五【三角形的面积及和差为定值】
例5、综合与实践:矩形的旋转
问题情境:
在综合与实践课上,老师让同学们以“矩形的旋转”为主题开展数学活动.具体要求:如图1,将长与宽都相等的两个矩形纸片ABCD和EFGH叠放在一起,这时对角线AC和EG互相重合.固定矩形ABCD,将矩形EFGH绕AC的中点O逆时针方向旋转,直到点E与点B重合时停止,在此过程中开展探究活动.操作发现:
(1)雄鹰小组初步发现:在旋转过程中,当边AB与EF交于点M,边CD与GH交于点N,如图2、图3所示,则线段AM与CN始终存在的数量关系是.
(2)雄鹰小组继续探究发现:在旋转开始后,当两个矩形纸片重叠部分为四边形QMRN时,如图3所示,四边形QMRN为菱形,请你证明这个结论.
(3)雄鹰小组还发现在问题(2)中的四边形QMRN中△MQN与旋转角△AOE存在着特定的数量关系,请你写出这一关系,并说明理由.
实践探究:
(4)在图3中,随着矩形纸片EFGH的旋转,四边形QMRN的面积会发生变化.若矩形纸片的长为
,请你帮助雄鹰小组探究当旋转角△AOE为多少度时,四边形QMRN的面积最大?最大面积是多少?(直接写出答案)
练习:
1.已知在平行四边形ABCD中,AB=6,BC=10,△BAD=120°,E为线段BC上的一个动点(不与B,C重合),过E作直线AB的垂线,垂足为F,FE与DC的延长线相交于点G,
(1)如图1,当AE△BC时,求线段BE、CG的长度.
(2)如图2,点E在线段BC上运动时,连接DE,DF,△BEF与△CEG的周长之和是否是一个定值,若是请求出定值,若不是请说明理由.
(3)如图2,设BE=x,△DEF的面积为y,试求出y关于x的函数关系式.
2.如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A、C间的一个动点(含端点),过点P作PF△BC于点F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD,PE,DE.
(1)求抛物线的解析式;
(2)小明探究点P的位置是发现:当点P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判定该猜想是否正确,并说明理由;
(3)请直接写出△PDE周长的最大值和最小值.
3.如图,四边形ABCD中,AD△BC,△ABC=90°.
(1)直接填空:△BAD=______°.
(2)点P在CD上,连结AP,AM平分△DAP,AN平分△P AB,AM、AN分别与射线BP交于点M、N.设△DAM=α°.