数值分析讲稿3

合集下载

王能超-数值分析-第三章

王能超-数值分析-第三章

4.9
王能超 编著
二阶龙格-库塔方法
随意考察区间 xn , xn1 内一点 点 xn , xn p 的斜率 到如下计算格式:
xn+p xn ph,0 p 1 , 用两个
K1 , K2 的加权平均代替平均斜率 K ,
于是我们就得
yn 1 yn h 1 K1 K 2 K1 f xn , yn K 2 f xn p , yn phK1
校正
数值分析简明教程
4.16
王能超 编著
改进的亚当姆斯预报-校正系统
我们可以方便地估计出亚当姆斯预报校正系统的截断误差,从而 依据这种估计将该系统 就可改进为如下精度更高的计算方案:

' ' ' ' p y h 55 y 59 y 37 y 9 y n 1 n n n 1 n 2 n 3 / 24 预报 251 改进 mn 1 pn 1 cn pn 270 ' mn 1 f xn 1 , mn 1
y xn1 y xn hf xn , y xn
h
设用 y xn 的近似值 yn 代入上式右端,记所求结果为 yn1 ,这样导 出的计算公式
yn1 yn hf xn , yn , n 0,1,2,
就是众所周知的欧拉(Euler)格式,若初值 yn 是已知的,则依据 1 上式即可逐步算出数值解 y1 , y2 , 。
数值分析简明教程
4.13
王能超 编著
亚当姆斯格式
亚当姆斯(Adams)方法的设计思想是充分利用计算 yn之前已 1 得到一系列节点 xn , xn1 , 上的斜率值来减少计算量。譬如,我们可 以用 xn , xn1 两点的斜率的加权平均作为区间

(整理)数值分析课件 第3章 函数逼近与曲线拟合

(整理)数值分析课件 第3章 函数逼近与曲线拟合

第三章 函数逼近与曲线拟合1 函数的逼近与基本概念1.1问题的提出多数计算机的硬件系统只提供加、减、乘、除四种算术运算指令,因此为了计算大多数有解析表达式的函数的值,必须产生可用四则运算进行计算的近似式,一般为多项式和有理分式函数.实际上,我们已经接触到两种逼近多项式,一种是泰乐多项式,一种是插值多项式.泰乐多项式是一种局部方法,误差分布不均匀,满足一定精度要求的泰乐多项式次数太高,不宜在计算机上直接使用.例如,设()f x 是[1,1]-上的光滑函数,它的Taylor 级数0()k k k f x a x ∞==∑,()(0)!k k f a k =在[1,1]-上收敛。

当此级数收敛比较快时,11()()()n n n n e x f x s x a x ++=-≈。

这个误差分布是不均匀的。

当0x =时,(0)0n e =,而x 离开零点增加时,()n e x 单调增加,在1x =±误差最大。

为了使[1,1]-的所有x 满足()()n f x s x ε-<,必须选取足够大的n ,这显然是不经济的。

插值函数出现的龙格现象表明,非节点处函数和它的插值多项式相差太大。

更重要的是,实际中通过观测得到的节点数据往往有各种误差,此时如果要求逼近函数过全部节点,相当于保留全部数据误差,这是不适宜的。

如图1所示,给出五个点上的实验测量数据,理论上的结果应该满足线性关系,即图1中的实线。

由于实验数据的误差太大,不能用过任意两点的直线逼近函数。

如果用过5个点的4次多项式逼近线性函数,显然误差会很大。

实验数据真函数插值多项式逼近精确的线性逼近图11.2范数与逼近一、线性空间及赋范线性空间要深入研究客观事物,不得不研究事物间的内在联系,给集合的元素之间赋予某种“确定关系”也正是这样的道理.数学上常把在各种集合中引入某些不同的确定关系称为赋予集合以某种空间结构,并将这样的集合称为空间.最常用的给集合赋予一种“加法”和“数乘”运算,使其构成线性空间.例如将所有实n 维数对组成的集合,按照“加法”和“数乘”运算构成实数域上的线性空间,记作n R ,称为n 维向量空间.类似地,对次数不超过n 的实系数多项式全体,按通常多项式与多项式加法及数与多项式乘法也构成数域R 上一个线性空间,用n H 表示,称为多项式空间.所有定义在[,]a b 上的连续函数集合,按函数加法和数与函数乘法构成数域R 上的线性空间,记作[,]C a b .类似地,记[,]p C a b 为具有p 阶连续导数的函数空间.在实数的计算问题中,对实数的大小、距离及误差界等是通过绝对值来度量的.实践中,我们常常会遇到对一般线性空间中的向量大小和向量之间的距离进行度量的问题,因此有必要在一般线性空间上,赋予“长度”结构,使线性空间成为赋范线性空间.定义1 设X 是数域K 上一个线性空间,在其上定义一个实值函数,即对于任意,x y X ∈及K α∈,有对应的实数x 和y ,满足下列条件(1) 正定性:0x ≥,而且0x =当且仅当0x =;(2) 齐次性:x x αα=;(3) 三角不等式:x y x y +≤+;称为X 上的范数,定义了范数的线性空间就称为赋范线性空间.以上三个条件刻划了“长度”、“大小”及“距离”的本质,因此称为范数公理.对n X 上的任一种范数,n X ∀∈x,y ,显然有±≥-x y x y .n R 上常用的几种范数有:(1) 向量的∞-范数:1max i i nx ∞≤≤=x(2) 向量的1-范数:11n i i x ==∑x(3) 向量的2-范数:12221()n i i x ==∑x (4) 向量的p -范数:11()n p pi p i x ==∑x其中[1,)p ∈∞,可以证明向量函数()p N x x ≡是nR 上向量的范数. 前三种范数是p -范数的特殊情况(lim p p ∞→∞=x x ).我们只需表明(1).事实上1111111max max max n n p pp p i i i i i n i n i n i i x x x x ≤≤≤≤≤≤==⎛⎫⎛⎫≤≤≤ ⎪ ⎪⎝⎭⎝⎭∑∑及max 1p →∞=,故由数学分析的夹逼定理有1l i m ma x i p p i nx ∞→∞≤≤==x x 。

数值分析方法讲义

数值分析方法讲义

第十章 数值分析方法在生产实际中,常常要处理由实验或测量所得到的一批离散数据,数值分析中的插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。

插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。

相应的理论和算法是数值分析的内容,这里不作详细介绍。

§1 数据插值方法及应用在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。

与此有关的一类问题是当原始数据),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。

1、分段线性插值这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。

如果b x x x a n =<<<= 10那么分段线性插值公式为n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11111 =≤<--+--=-----可以证明,当分点足够细时,分段线性插值是收敛的。

其缺点是不能形成一条光滑曲线。

例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。

根据地图的比例,18 mm 相当于40 km 。

根据测量数据,利用MA TLAB 软件对上下边界进行线性多项式插值,分别求出上边界函数)(2x f ,下边界函数)(1x f ,利用求平面图形面积的数值积分方法—将该面积近似分成若干个小长方形,分别求出这些长方形的面积后相加即为该面积的近似解。

《数值分析》完整版讲义

《数值分析》完整版讲义

2.1.3 多项式插值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.4 基函数插值法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.1 为什么要插值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.2 什么是插值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.1.2 数值分析的研究内容 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.3 学习建议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
i
· ii ·
目录
2.2 Lagrange 插值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.1 Lagrange 基函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.2 Lagrange 插值多项式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.3 插值余项 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.4 Lagrange 基函数性质 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

数值分析 李庆扬ppt课件

数值分析 李庆扬ppt课件
x
x xA xA
➢ 定义2.2 绝对误差界、相对误差界
若 x ,x则A 称 为A绝对误差界,简称 误A 差界
称 为A 相对误差界, 记为 . xA
r
;.
数值分析14
数值分析
➢定义2.3 有效数字 /* significant digits */
用|为x科有 学nx计A 位|数 有(法0效即.,5数 记的字10截,k 取精n按确x A 四到 舍 五(a。1 n入其0 k 规中 则0 ).a )1 ,a . 则2 若称a n
离散集合(部分有理数),此集合的数称为机器数.
浮点数:
这种允36许.83小=数0.3点68位3×置1浮02动=0的.03表68示3×法1称03为数的 浮点形式。
机器数 x 的二进制浮点形式为: 尾数
x 2k0 .12 t

其中, k 12 s(j { 0 ,1 } )
阶的位数
;.
数值分析19
数值分析
促使一些边缘学科的相继出现: 计算数学,计算物理学,计算力学,计算化学,计算生物学, 计算地质学,计算经济学,等等
;.
4 数值分析
数值分析
实际问题
建立数学模型
数值分析提出算法
程序 设计
分析结果并对实际问题进行解释说明
编程上机计算
在建立了数学模型之后,并不能立刻用计算机直接求解,还必须寻找用计算机计算这 些数学模型的数值方法,即将数学模型中的连续变量离散化,转化成一系列相应的算法步 骤,编制出正确的计算程序,再上机计算得出满意的数值结果。
略去高阶项:
A A f( x 1 ,,x n ) f( x 1 ,,x n )
n j1
f
(x) xj

数值分析课件3

数值分析课件3

1 Y = ln y , X = x , A = ln a , B = − b 就是个线性问题 Y ≈ A + BX 就是个线性问题
将 ( x i , y i ) 化为 ( X i , Y i ) 后易解 A 和B
a = e , b = − B , P( x) = a e
A
−b/ x
一般的最小二乘法 二、 一般的最小二乘法
i =1
m
i =1 m
最小二乘拟合多项式 一、 最小二乘拟合多项式
对于一组数据(x 确定多项式 P ( x ) = a0 + a1 x + ... + an x n ,对于一组数据 i, yi)
(i = 1, 2, …, m)
达到极小, 使得 ϕ = ∑ [ P ( x i ) − yi ]2 达到极小,这里 n << m。 极小 。
I (a0 , a1 , ⋯ , a n ) = ∑ ω ( x i )[∑ a jϕ j ( x i ) − f ( x i )]2
i =0 j =0 m n
ω ( x ) > 0 是[a,b]上的权函数,它表示不同点(xi, f(xi))的数据比 [a,b]上的权函数 它表示不同点(x 上的权函数,它表示不同点 ))的数据比
m
在 ϕ 的极值点应有 ∂ϕ = 0 , k = 0, ... , n
[
]
2
ΣΣ
=2
Σ Σ
j =0
n
m
aj
x
i =1
j+k i

m
Σ
i =1
m
yi xik
记 bk = Σ xik , ck = Σ yi xik

数值分析讲义

数值分析讲义

第1章数值分析中的误差一、重点内容误差设精确值x* 的近似值x,差e=x-x* 称为近似值x 的误差(绝对误差)。

误差限近似值x 的误差限 是误差e 的一个上界,即|e|=|x-x*|≤ε。

相对误差e r是误差e 与精确值x* 的比值,。

常用计算。

相对误差限是相对误差的最大限度,,常用计算相对误差限。

绝对误差的运算:ε(x1±x2)=ε(x1)+ε(x2)ε(x1x2)≈|x1|ε(x2)+|x2|ε(x1)有效数字如果近似值x 的误差限ε 是它某一个数位的半个单位,我们就说x 准确到该位。

从这一位起到前面第一个非0 数字为止的所有数字称为x 的有效数字。

关于有效数字:(1) 设精确值x* 的近似值x,x=±0.a1a2…a n×10ma1,a2,…,a n是0~9 之中的自然数,且a1≠0,|x-x*|≤ε=0.5×10m-l,1≤l≤n则x 有l位有效数字.(2) 设近似值x=±0.a1a2…a n×10m有n 位有效数字,则其相对误差限(3) 设近似值x=±0.a1a2…a n×10m的相对误差限不大于则它至少有n 位有效数字。

(4) 要求精确到10-3,取该数的近似值应保留4 位小数。

一个近似值的相对误差是与准确数字有关系的,准确数字是从一个数的第一位有效数字一直数到它的绝对误差的第一位有效数字的前一位,例如具有绝对误差e=0.0926 的数x=20.7426 只有三位准确数字2,0,7。

一般粗略地说,具有一位准确数字,相对于其相对误差为10% 的量级;有二位准确数字,相对于其相对误差为1% 的量级;有三位准确数字,相对于其相对误差为0.1% 的量级。

二、实例例1 设x*= =3.1415926…近似值x=3.14=0.314×101,即m=1,它的误差是0.001526…,有|x-x*|=0.001526…≤0.5×101-3即l=3,故x=3.14 有 3 位有效数字。

数值分析课件第3章1-2节

数值分析课件第3章1-2节
8
对连续函数 f ( x) C[a, b],它不能用有限个线性无关的 函数表示,故 C[a, b] 是无限维的,但它的任一元素 f (x) 均可用有限维的 p( x) H n 逼近,使误差
max f ( x) p( x)
a x b
( 为任给的小正数),这就是著名的魏尔斯特拉斯定理.
j 1 j 1 n n
即 u1 , u2 ,, un 线性无关. 在内积空间X上,可以由内积导出一种范数,即对于 n u 1u1 2u2 nun 0 u X j j ,记
9
定理1
设 f ( x) C[a, b] , 则对任何 0 ,总存在一
个代数多项式 p (x) , 使
f ( x) p ( x )


在 [a, b] 上一致成立. 伯恩斯坦1912年给出的证明是一种构造性证明. 他根据函数整体逼近的特性构造出伯恩斯坦多项式
k Bn ( f , x) f ( ) Pk ( x), n k 0
27
从以上等价关系知,det G 0 等价于从(1.8)推出
1 2 n 0,
而后者等价于从(1.9)推出 j 1 0, k , n(1.8) ( j u j , uk ) (u j , uk ) 2 1,2, n 0,
(1.5)
函数逼近问题就是对任何 f ( x) C[a, b], 在子空间Φ中
* * 找一个元素 ( x) , 使 f ( x) ( x)在某种意义下最小.
14
3.1.2
范数与赋范线性空间
为了对线性空间中元素大小进行衡量,需要引进范数 定义,它是 R n空间中向量长度概念的直接推广.

数值分析课件第3章

数值分析课件第3章
0
x
y
2 4 6
8 6 4 2

骄行札或务旷恰洗大而非仆椒鸿孜襟儡和跟浪陪痕骚树认邻异镍屠丰逃臃数值分析课件第3章数值分析课件第3章
初每孟缅家邱拙货另崇屎慑芝骋磨雨鹏苯核碉断策占悲异贺碴察鸿旧岿父数值分析课件第3章数值分析课件第3章
例3-4 已知实测数据表如下,确定数学模型 y=aebx, 用最小二乘法确定a,b。
帜尸砚损讹祖邱帆迄攫让汕芽柔造兔优伐具猪购冈琅高蹄熊嫌第凸貉楚章数值分析课件第3章数值分析课件第3章
伸姜积升斯钳更相傍抒匣替讯蔽炽恋喉爱著殷都皂孵羌邹捞谎寐池骇织狱数值分析课件第3章数值分析课件第3章
i
0 1 2 3 4
拙猪囤犀缎孩甸萤捷褐番舍倪酌月迢飘沟锰乡橙波旗骨渠虎偷朋袒夹惹胳数值分析课件第3章数值分析课件第3章
新隆培润已描苍淬霖绪册防嚷拇痘掂腹坏蕉吁咳洞烷携敦玻腔同翻坎镀讨数值分析课件第3章数值分析课件第3章
宽烹呼境眺泡狞瑞怕敝斧厨寞贝砚妄特痒福踊阁监桐却挠伸井竟哇含野劲数值分析课件第3章数值分析课件第3章
囊铭徒庄裸课爹压屏滴插百盗万武廷校船卿肪没弹溃想镊茨壳峨孽信骗跨数值分析课件第3章数值分析课件第3章
i
0 1 2 3 4
xi yi yi
1.00 1.25 1.50 1.75 2.00 5.10 5.79 6.53 7.45 8.46 1.629 1.756 1.876 2.008 2.135
3.1基本概念
x0
x
x
x
x
x
x
x
f(x)
p(x)
虐座韦龄椽加腕槽晶僵壤漱键椒赏琢芭尊校榆唤著里钙治纹改瞥宁岁坛草数值分析课件第3章数值分析课件第3章
2、范数与赋范线形空间

数值分析讲义

数值分析讲义

由于除数很小,将导致商很大,有可能出现“溢出”现 象另外. ,设x* ,y* 的近似值分别为x,y,则z=x÷y是z*=x*÷y*
的近似值.此时,z的绝对误差满足估计式
e(z) z* z (x* x) y x( y y* ) y e(x) x e( y)
yy*
y2
可见,若除数太小,则可能导致商的绝对误差很大。
n k, k 1,...2,1
类似地可得
Ik
I
* k
(1) nk
k!( n!
I
n
I
* n
)
,
k n, n 1,...,1,0
可见,近似误差Ik-I*k是可控制的,算法是数值稳定的。
例如,由于
e 1 10
01 x9e1dx
I9
01 x9dx
1 10
取近似值 I9
1 (e1 1 ) 0.0684 2 10 10
§3 绝对误差、相对误差和有效数字
设x是精确值x*的一个近似值,记 e=x*-x
称e为近似值x的绝对误差,简称误差。如果满足 |e|≤
则称为近似值x的绝对误差限,简称误差限。 精确值x* 、近似值x和误差限之间满足: x-≤x*≤x+
通常记为 x*=x±
绝对误差有时并不能很好地反映近似程度的好坏,如
随着计算机的飞速发展,数值分析方法已深入到计算 物理、计算力学、计算化学、计算生物学、计算经济学等 各个领域。本课仅限介绍最常用的数学模型的最基本的数 值分析方法。
§2 误差的来源和分类
误 1.差模是型描误述差数值数计学算模之型中通近常似是值由的实精际确问程题度抽,象在得数到值的, 计一般算带中有十误分差重,要这,种误误差差按称来为源模可型分误为差模。型误差、观测误差、 截断误2.差观和测舍误入差误差数四学种模。型中包含的一些物理参数通常是 通过观测和实验得到的,难免带有误差,这种误差称为观 测误差。

课件-数值分析(第五版)1-3章

课件-数值分析(第五版)1-3章
2017/3/12
x x
f ( x) f ( x* ) f ( x)
x x

xf ( x) f ( x)
C p 10 即认为是病态
f ( x) x n
9 第1章 数值分析与科学计算引论
研究对象 作用特点
数值计算 误差
误差分析 避免危害
数值计算 算法设计
数学软件
2. 算法的数值稳定性 定义3 一个算法如果输入数据有误差,而在计算过程中舍入误 差不增长,则称此算法是数值稳定的,否则称此算法为不稳定 的。 例1.1:P.9 I n e
x 0.003
y 1
2017/3/12

1000
1.00314 , y * 1.003
6 第1章 数值分析与科学计算引论
研究对象 作用特点
数值计算 误差
误差分析 避免危害
数值计算 算法设计
数学软件
注: 有效位数与小数点后有多少位无关; m相同情况下,有效位数越多,误差限越小; 相对误差及相对误差限是无量纲的,绝对误差及误差限是有量纲的。
数值计算 算法设计
数学软件
1.1 数值分析的对象、作用与特点
1 研究对象
用计算机求解数学问题的数值计算方法、理论及软件实现
实际问题 数学模型 数值计算方法 程序设计(数学软件) 上机计算求出结果
应用数学
计算数学即数值分析
数值分析(计算方法) 插值与函数逼近(2、3)数值微分与数值积分(4) 的研究对象
第一章习题
1, 5,7,12,14

谢 !
2017/3/12
14 第1章 数值分析与科学计算引论
第2章 插值法
引言
拉格朗日(Lagrange)插值 均差与牛顿(Newton)插值 埃尔米特(Hermite)插值 分段低次插值 三次样条插值

数值分析第3章108页

数值分析第3章108页
3.1 函数逼近的基本概念
3.1.1 函数逼近与函数空间
问题 1、数值计算中经常要计算函数值,如计算机中计算 基本初等函数及其他特殊函数;
2、当函数只在有限点集上给定函数值,要在包含该 点集的区间上用公式给出函数的简单表达式.
这些都涉及到在区间 [上a, b用] 简单函数逼近已知复杂 函数的问题, 这就是函数逼近问题.
称为连续函数空间.
2
函数类B通常为 n次多项式,有理函数或分段低次多项 式等.
数学上常把在各种集合中引入某些不同的确定关系称为 赋予集合以某种空间结构,并将这样的集合称为空间.
例如将所有实 n维向量组成的集合,按向量加法及向量 与数的乘法构成实数域上的线性空间, 记作 R n ,称为 n维 向量空间.
9
定义2 设 S为线性空间,xS,若存在唯一实数‖·‖, 满足条件:
(1) x 0, 当且仅当 x 0 时,x 0; (正定性)
(2) xx, R;
(齐次性)
(3) xyxy, x,y S . (三角不等式)
则称‖·‖为线性空间 S上的范数,S与‖·‖一起称为赋范
线性空间,记为 X .
10
例如,在 R n上的向量 x (x1,,xn)T R n,三种常 用范数为

n
其元素
p(x)Hn 表示为
p (x ) a 0 a 1 x a n x n ,
(1.2)
它由n 1个系数(a0,a1,,an) 唯一确定.
1, x, , xn 是线性无关的,它是 H n 的一组基,故
H nspan{ 1 ,x,L,xn},
且 (a0,a1,,an)是 p( x) 的坐标向量,H n 是 n 1维的.
满足‖·‖∞ =1 ,即 max1 x ,x{ 2}1 的向量为单位正 方形,

数值分析课件(第3章)

数值分析课件(第3章)
y m a 0 a 1 x m 1 a 2 x m 2 a k x mk
“最好”函数。
定义3.2 以“偏差的平方和达到最小”作为原则来选择近似 函数的方法称为最小二乘法。
例3-1 已知一组数据如下表所示,用单变量数据拟合法求其拟 合函数.
x -1 0 1 2 3 4 5 6
y f (x) 10 9 7 5 4 3 0 -1

先画出散点图(如图3-1所示).
从图3-1可以看到,点 (xi , yi ) (i1,2, ,8) 在一条直线附近, 这些点大体上满足直线方程。因此,可以选择线性函数来拟
表中数据的一般趋势,然后使用最小二乘法来确定其中的未
知参数,从而得到的近似函数 F(x).
F(x) 通常称为拟合函数,f (x) 通常称为被拟合函数。
什么是“最F好(”x) 的函不数一,定“要最经好过”点的函(x数i , y以i ) 什么标准来 衡量?
定义3.1 若记 i f(xi)F(xi) (i1,2,,n),则称
若假设这些自变量为 x1,x2,,xk和因变量为y ,则每经过一次
实验或测量就会得到一组数据 x1,x2,,xk,y ,而经过n次实验 或测量就会得到n组数据,由这n组数据构成一个数据表:
第m次实验或测量
x1
1
x11
2
x21


x2

x12

x22

……
xk yf(x1,x2, ,xk)x1ky1x来自kns1 x i
i 1
n
s3 xi 2 i 1
n
s2 yi i 1
n
s4 xi yi i 1
a ③ 解正规方程组
na s1a

数值分析讲稿

数值分析讲稿
i 10i 0
而0 2 1.41 0.004 ,所以计算到 y10 误差大于 4 107 ,这个过程不稳定。
3. 给定 g(x) 10 7 (1 cos x) ,试用四位数学用表求 g(2 ) 的近似值。
甲方法: cos 2 0.9994 , g(2 ) 10 7 (1 cos 2 ) 6000
{x (k ) }
x(k)

(
x1( k
)
,
x
(k 2
)
,,
xn(k
)
)T


lim
k
xi(k
)

xi , (i
1,2,, n)
计算数学教研室:周富照
5
数值分析
长沙理工大学备课纸
则 lim x(k) k
x : x (x1, x2 ,, xn )T

x(k) x
0(k )
4. 减少运算次数
这样可以减少误差积累. 如计算多项式可用秦九韶算法: p (x) = an x n + an –1 x n –1 + … + a1x + a0 = (…((an x + an –1) x + an –2) x + … +a1) x + a0 例 2 x3 – 3 x2 + 4 x – 5 = ((2 x – 3) x + 4) x – 5. 5. 避免除数绝对值太小 6. 编程时避免用等式条件

xi
i
i 1
问题是:当 e(xi ) ( i 1,2,, n )很小时, e(u ) 是否很小?
当 (xi ) ( i 1,2,, n )很小时, (u ) 是否很小?

数值分析课件第三章

数值分析课件第三章
2 内积 ( x , y ) xi yi;范数 || x ||2 xi i 1 i 1
n n 1/2
.
若给定 i 0( i 1, , n),称{ i }为权系数 , 则定义
加权内积 2 ( x , y ) i xi yi;范数 ||x||2 i xi i 1 i 1
称为Gram 矩阵,则 G非奇异的充要条件是 u1 , u2 ,, un线性
在内积空间X 上可以由内积导出一种范数,即对u X , 记 || u || ( u, u), (1.10) 易证它满足范数定义的正定性,齐次性和三角不等式 .
例1 考察R n与Cn的内积. 设x ( x1 ,, xn )T , y ( y1 ,, yn )T R n,则定义
min
pn ( x )H n

b
a
[ f ( x ) pn ( x )]2dx ,
* ( x )为f ( x )在[a , b]上的最佳平方逼近多项式 . 则称pn
2. 若f ( x ) 是[a ,b]上的一个列表函数,在 a x0 x1 xm b上 给出f ( xi )( i 0,1, , m ),要求p * ( x ) span{ 0 , , n }, 使得
n n 1/2
.
若x , y Cn,则定义加权内积
( x , y ) i xi y i .
i 1
n
定义4 设 ( x )是区间[a , b]上的非负函数 , 如果满足条件
(1)
b k a x ( x )dx存在,
k 0,1,2,;
可以有限或 无限区间
(2) 对于[a , b]上的非负连续函数 g ( x ), 若 a g ( x ) ( x )dx 0, 则在[a , b]上g ( x ) 0; 就称 ( x )为[a , b]上的权函数 .

《数值分析》ppt课件

《数值分析》ppt课件

7.
er

a b


er
(a)

er
(b)
30
例4
ε(p)
设有三个近似数
p ≈ 6.6332
≈0.02585
a=2.31,b=1.93,c=2.24
它们都有三位有效数字,试计算p=a+bc,e ( p)和e r ( p) 并问:p的计算结果能有几位有效数字?
2位
例5
设f (x, y) cos y , x 1.30 0.005, y 0.871 0.0005. x
er

e x

x x x
.
由于精确值 x 未知, 实际上总把
e x
作为x*的
相对误差,并且仍记为er , 即
er

e x
.
❖定义 近似值 x* 的相对误差上限(界) (relative accuracy)
εr

|
ε x
|.
注:相对误差一般用百分比表示.
17
例1 用最小刻度为毫米的卡尺测量直杆甲和直杆
注:理论上讲,e 是唯一确定的, 可能取正, 也可能取负.
e > 0 不唯一,当然 e 越小越具有参考价值。
15
提问:绝对误差限的大小能否完全地 表示近似值的好坏? 例如:有两个量
x 10 1 , y 1000 5
思考
问:谁的近似程度要好一些?
16
❖定义 近似值 x* 的相对误差 (relative error)
a 2.18
e r(b) e (b) 0.00005 0.0024%
b 2.1200
19
➢有效数字 ( significant digits)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

件有
aj
(xj
)
(axj
b)l
2 j
(xj
)
1,
aj (x j ) l j (x j )[al j (x j ) 2(ax j b)lj (x j )] 0,
整理得
axj b 1
a
2l
' j
(
x
j
)
0
a 2lj (xj ), b 1 2xjlj (xj ).
由于
l

j
(x)
(x x0 )L (x (xj x0 )L (xj
可利用拉格朗日插值基函数 lj (x) 。
lj
(x)
(x x0 )L (x (xj x0 )L (xj
xj1)(x x j1)L (x x j1)(x j x j1)L (x j
xn ) xn
)

j
(
x)
(ax
b)l
2 j
(
x),
其中
lj (x)
是拉格朗日
插值基函数。由要构造的Hermite插值基函数条
j (xk ) 0, j (xk ) jk ( j, k 0, 1, L , n),
j
(
x)
c(
x
x
j
)l
2 j
(
x).
又由于
' j
(x
j
)
1
,有
lj
(x)
(x x0)L (x (xj x0)L (xj
xj1)(x xj1)L (x xj1)(xj xj1)L (xj
xn ) xn
)
'
j
(x
j
)
cl
2 j
(
x
j
)
1.
即 c 1 ,故有
j
(
x)
(
x
x
j
)l
2 j
(
x).
• Hermite插值多项式是唯一的 用反证法,假设 H2n1(x) 及 H 2n1(x) 均满足 Hermite插值条件,于是由
(x) H2n1(x) H2n1(x)

(xk ) H2n1(xk ) H 2n1(xk ) 0
k1(xk ) 0, k1(xk1) 1, k1(xk ) k1(xk1) 0; k1(xk ) k1(xk1) 0, k1(xk ) 0, k1(xk1) 1.
由所要构造的基函数满足的条件,显然 有 H2n1(xk ) yk , H2n1(xk ) mk , (k 0, 1, L , n) 。下面的 问题就是求满足条件的基函数 j (x) 及 j (x) 。
• 确定基函数:
j (xk ) jk
0, 1,
j k, j k,
j (xk ) 0,
H3 (xk ) yk , H3(xk1) yk1; H3(xk ) mk , H3(xk1) mk1.
相应的插值基函数为 k (x), k (x),k1(x), k1(x) , 它们满足条件
k (xk ) 1, k (xk1) 0, (xk ) k (xk1) 0, k (xk ) k (xk1) 0, k (xk ) 1, k(xk1) 0,
§4 埃尔米特插值
• 问题的提出: 不少实际问题不但要求在节点上函数值相等,而且
还要求它的导数值也相等(即要求在节点上具有一阶光 滑度),甚至要求高阶导数也相等,满足这种要求的插 值多项式就是埃尔米特(Hermite)插值多项式。下面 只讨论函数值与导数值个数相等的情况。
• 数学描述:
设在节点 a x0 x1 L xn b 上,y j f (xj ) ,
x x
j1)(x x j1)L (x j1)(x j x j1)L (x j
xn ) xn
)
利用两端取对数再求导,得
n
lj (x j )
k 0
1 x j xk
,
k j
ln(l j (x)) ln(x x0) ... ln(x xj1) ln(x xj1) ... ln(x xn) ln(xj x0) ...
H2n1(x) a0 a1x L a2n1x2n1
如根据上面的条件来确定2n+2个系数, a0, a1, L , a2n1 显然非常复杂,因此,我们仍采 用求拉格朗日插值多项式的基函数方法。
先求插值基函数 j (x) 及 j (x) ( j 0, 1, L , n) , 共有个2n+2,每一个基函数都是2n+1次多项式, 且满足条件
j (xk ) jk
0, 1,
j k, j k,
j
(
xk
)
0,
j (xk ) jk
j (xk ) 0,
( j, k 0, 1, L , n),
于是满足Hermite插值条件的插值多项式 H (x) H2n1(x) 可写成用插值基函数表示的形式
n
H2n1(x) [ y j j (x) m j j (x)]. j0
在 (a, b) 内的2n+2阶导数存在,则其插值余项
R(x)
f (x) H2n1(x)
f (2n2) ( )
(2n 2)!
2 n1
(
x),
其中 (a,b) 且与 x 有关。
• 三次Hermite插值:
Rn
(x)
(n
1 1) !
f
( n 1)
(
)n 1 ( x)
作为Hermite插值多项式的重要特例是n=1的 情形。这时可取节点 xk 及 xk 1 ,插值多项式 为 H3(x) ,满足条件
mj f (x j ) ( j 0, 1, L , n) ,要求插值多项式 H (x) , 满足条件
H (x j ) y j , H (x j ) mj ( j 0, 1, L , n)
• 求解的思想: 这里给出了2n+2个条件,可唯一确定一个次
数不超过2n+1的多项式 H2n1(x) H (x) ,其形式为
' (xk
)
H
' 2n
1
(
xk
)
H
' 2
n1
(
xk
)
0
(k 0,1,L , n)
在每个节点 xk 上均有二重根,即 (x) 有 2n+2重根。但 (x) 是不高于2n+1次的多项式, 故 (x) 0 。
唯一性得证。
• Hermite插值多项式余项: 仿照拉格朗日插值余项的证明方法,若 f (x)
l
' j
(x)
(x
x0 )'
...
1
1
... 1
l j (x) x x0
x x j1 x x j1
x xn
于是
a
j
(
x)
1
2(x
x
j
n
)
k 0 k j
xj
1
xk
l
2 j
(
x).
j
(
x)
(ax
b)l
2 j
(x),
a 2lj (xj ), b 1 2xjlj (xj ).
同理,由于 j (x) 在 xi (i j) 处函数值与导数值 均为0,而 j (x j ) 0 ,故可设
相关文档
最新文档