第五讲 函数的基本概念与性质

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五讲 函数的基本概念与性质

函数是中学数学中的一条主线,也是数学中的一个重要概念.它使我们从研究常量发展到研究变量之间的关系,这是对事物认识的一大飞跃,而且对于函数及其图像的研究,使我们把数与形结合起来了.学习函数,不仅要掌握基本的概念,而且要把解析式、图像和性质有机地结合起来,在解题中自觉地运用数形结合的思想方法,从图像和性质对函数进行深入的研究.

1.求函数值和函数表达式

对于函数y=f(x),若任取x=a(a为一常数),则可求出所对应的y值f(a),此时y的值就称为当x=a时的函数值.我们经常会遇到求函数值与确定函数表达式的问题.

例1 已知f(x-1)=19x2+55x-44,求f(x).

解法1 令y=x-1,则x=y+1,代入原式有

f(y)=19(y+1)2+55(y+1)-44

=19y2+93y+30,

所以 f(x)=19x2+93x+30.

解法2 f(x-1)=19(x-1)2+93(x-1)+30,所以f(x)=19x2+93x+30.

可.

例3 已知函数f(x)=ax5-bx3+x+5,其中a,b为常数.若f(5)=7,求f(-5).

解 由题设

f(-x)=-ax5+bx3-x+5

=-(ax5-bx3+x+5)+10

=-f(x)+10, 所以

f(-5)=-f(5)+10=3.

例4 函数f(x)的定义域是全体实数,并且对任意实数x ,y ,有f(x+y)=f(xy).若f(19)=99,求f(1999). 解 设f(0)=k ,令y=0代入已知条件得

f(x)=f(x+0)=f(x ·0)=f(0)=k ,

即对任意实数x ,恒有f(x)=k .所以

f(x)=f(19)=99,

所以f(1999)=99. 2.建立函数关系式

例5 直线l1过点A(0,2),B(2,0),直线l 2:y=mx +b 过点C(1,0),且把△AOB 分成两部分,其中靠近原点的那部分是一个三角形,如图3-1.设此三角形的面积为S ,求S 关于m 的函数解析式,并画出图像.

解 因为l 2过点C(1,0),所以m +b=0,即b=-m .

设l 2与y 轴交于点D ,则点D 的坐标为(0,-m),且0<-m ≤2(这是因为点D 在线段OA 上,且不能与O 点重合),即-2≤m <0.

故S 的函数解析式为

例6 已知矩形的长大于宽的2倍,周长为12.从它的一个顶点作一条射线,将矩形分成一个三角形和一个梯形,且这条射线与矩形一边

x ,试写出梯形面积S 关于x 的函数关系

式.

解 设矩形ABCD 的长BC 大于宽AB 的2倍.由于周长为12,故长与宽满足4<BC <6,0<AB <2. 由题意,有如下两种情形:

CE 1=x ,BE 1=BC-x ,AB =CD =2(BC-x),所以

(2AB +x)+AB=6,

所以

3.含绝对值的函数

一次函数的图像是一条直线,含有绝对值符号的函数所对应的图像是由若干条线段和射线所组成的折线;二次函数的图像是抛物线,而y=|ax2+bx+c|的图像是将y=ax2+bx+c在x轴下方的图像按x轴为对称轴翻到x轴的上方.对于一些其他的含绝对值符号的函数和方程的图像,需要按区间分段讨论.

例7 作函数y=|3-x|+|x-1|的图像.

解 当x<1时,y=(3-x)+(1-x)=-2x+4;

当1≤x<3时,y=(3-x)+(x-1)=2;当x≥3时,y=(x-3)+(x-1)=2x-4.所以

它的图像如图3-3所示.

例8 作函数y=|x2-5x+6|的图像.

解当x≤2或x≥3时,x2-5x+6≥0,于是y=x2-5x+6;当2<x<3时,x2-5x+6<0,于是y=-(x2-5x+6).所以

于是,得图像如图3-4所示.

例9 点(x,y)满足方程

|x-1|+|y+2|=2,

求它的图像所围成区域的面积.

解 当x≥1,y≥-2时,x-1+y+2=2,即

y=-x+1.

当x≥1,x<-2时,x-1-(y+2)=2,即

y=x-5.

当x<1,y≥-2时,-x+1+y+2=2,即

y=x-1.

当x<1,y<-2时,-x+1-(y+2)=2,即

y=-x-3.

于是,所得图像如图3-5所示.

由此可知,|x-1|+|y+2|=2的图像是一个对角线长为4,边长为

2

例10 m是什么实数时,方程x2-4|x|+5=m有四个互不相等的实数根?

解法1 将原方程变形为

x2-4|x|+4=m-1.

令y=x2-4|x|+4=m-1,则

它的图像如图3-6,而y=m-1是一条与x轴平行的直线.原方程有四个互不相等的实根,即直线应与曲线有四个不同的交点.由图像可知,当0<m-1<4,即1<m<5时,直线与曲线有四个不同的交点,所以,当1<m<5时,方程x2-4|x|+5=m有四个互不相等的实数根.

说明 本题是一个方程问题,我们利用图形来研究,这是一种非常重要的思想方法——数形结合法.当然,本题不用图像也是可以解的,下面给出解法,请读者比较一下.

解法2 原方程变形为

(|x|-2)2=m-1,

练习五

1.填空:

(1)已知f(x-1)=19x2+55x-44,则f(x)=_______.

(2)对所有实数x,f(x2+1)=x4+5x2+3,那么对所有实数x,f(x2-1)=_______.

(3)设x与y2成反比例,y与z2成正比例.当x=24时,y=2;当y=18时,z=3,则z=1时,x=_______.

(4)已知y=2x2+mx+5的值恒为正,且m为实数,则m的范围是_______.

相关文档
最新文档