比较实数大小的八种方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比较实数大小的八种方法

生活中,我们经常会遇到下面的问题:比较一个企业不同季度的产值,国家去年与前年的国民生产总值等实际问题的大小,转化成数学问题,就就是比较两个或多个实数的大小,比较实数大小的方法比较多,也比较灵活,现采撷几种常用的方法供大家参考。

一、法则法

比较实数大小的法则就是:正数都大于零,零大于一切负数,两个负数相比较,绝对值大的反而小。

例1 比较与的大小。

析解:由于,且,所以。

说明:利用法则比较实数的大小就是最基本的方法,对于两个负数的大小比较,可将它转化成正数进行比较。

二、平方法

用平方法比较实数大小的依据就是:对任意正实数a、b有:。

例2 比较与的大小。

析解:由于,而,所以。

说明:本题也可以把外面的因数移到根号内,通过比较被开方数大小来比较原数的大小,目的就是把含有根号的无理数的大小比较实数转化成有理数进行比较。

三、数形结合方法

用数形结合法比较实数大小的理论依据就是:在同一数轴上,右边的点表示的数总比左边的点表示的数大。

例3 若有理数a、b、c对应的点在数轴上的位置如图1所示,试比较a、-a、b、-b、c、-c的大小。

析解:如图2,利用相反数及对称性,先在数轴上把数a、-a、b、-b、c、-c表示的点画

出来,容易得到结论:

四、估算法

用估算法比较实数的大小的基本思路就是:对任意两个正实数a、b,先估算出a、b两数的取值范围,再进行比较。

例4 比较与的大小。

析解:由于,故,所以

五、倒数法

用倒数法比较实数的大小的依据就是:对任意正实数a、b有:

例5 比较与的大小

析解:因为,

又因为,

所以

所以

说明:对于两个形如(,且k就是常数)的实数,常采用倒数法来比较它们的大小。

六、作差法

用作差法比较实数的大小的依据就是:对任意实数a、b

有:

例6 比较与的大小。

析解:设,

所以

七、作商法

用作商法比较实数的大小的依据就是:对任意正数a、b

有:

例7 比较与的大小。

析解:设,

,则

八、放缩法

用放缩法比较实数的大小的基本思想方法就是:把要比较的两个数进行适当的放大或缩小,使复杂的问题得以简化,来达到比较两个实数的大小的目的。

例8 比较与198的大小。

析解:由于

所以

取n=2,3,4…10000代入上式,并将所得的不等式相加得:

所以

两个实数大小的比较,方法多种多样,在实际操作时,根据要比较的数的特点来选择适当的方法进行比较,才能方便快捷地取得准确的结果。

相关文档
最新文档