初一数学绝对值难点突破(含答案)
部编数学七年级上册专题绝对值压轴题(最值与化简)专项讲练重难题型技巧提升专项精练(人教版)含答案
专题03 绝对值压轴题(最值与化简)专项讲练专题1. 最值问题最值问题一直都是初中数学中的最难点,但也是高分的必须突破点,需要牢记绝对值中的最值情况规律,解题时能达到事半功倍的效果。
题型1. 两个绝对值的和的最值【解题技巧】b x a x -+-目的是在数轴上找一点x ,使x 到a 和b 的距离和的最小值:分类情况(x 的取值范围)图示b x a x -+-取值情况当a x <时无法确定当b x a ≤≤时b x a x -+-的值为定值,即为b a -当b x >无法确定结论:式子b x a x -+-在b x a ≤≤时,取得最小值为b a -。
例1.(2021·珠海市初三二模)阅读下面材料:数轴是数形结合思想的产物.有了数轴以后,可以用数轴上的点直观地表示实数,这样就建立起了“数”与“形”之间的联系.在数轴上,若点A ,B 分别表示数a ,b ,则A ,B 两点之间的距离为AB a b =-.反之,可以理解式子3x -的几何意义是数轴上表示实数x 与实数3两点之间的距离.则当25x x ++-有最小值时,x 的取值范围是()A .2x <-或5x >B .2x -≤或5x ≥C .25x -<<D .25x -≤≤【答案】D【分析】根据题意将25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,分三种情况分别化简,根据解答即可得到答案.【解析】方法一:代数法(借助零点分类讨论)当x<-2时,25x x ++-=(-2-x )+(5-x )=3-2x ;当25x -≤≤时,25x x ++-=(x+2)+(5-x )=7;当x>5时,25x x ++-=(x+2)+(x-5)=2x-3;∴25x x ++-有最小值,最小值为7,此时25x -≤≤,故选:D.方法二:几何法(根据绝对值的几何意义)25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,通过数轴分析反现当25x -≤≤时,25x x ++-有最小值,最小值为7。
七年级数学上册难点突破04绝对值试题含解析新版北师大版
专题04 绝对值【专题说明】1.掌握一个数的绝对值的求法和性质;2.进一步学习使用数轴,借助数轴理解绝对值的几何意义;3.会求一个数的绝对值,并会用绝对值比较两个负有理数的大小;4. 理解并会熟练运用绝对值的非负性进行解题.【知识点总结】一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a |.要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:绝对值具有非负性,即任何一个数的绝对值总是正数或0.二、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下: 两数同号同为正号:绝对值大的数大同为负号:绝对值大的反而小两数异号 正数大于负数 (0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小:(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a -b >0,则a >b ;若a -b =0,则a =b ;若a -b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.【精典例题】一、绝对值的概念1、求下列各数的绝对值.112-,-0.3,0,132⎛⎫-- ⎪⎝⎭【思路点拨】112,-0.3,0,132⎛⎫-- ⎪⎝⎭在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解.【答案与解析】方法1:因为112-到原点距离是112个单位长度,所以111122-=. 因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3.因为0到原点距离为0个单位长度,所以|0|=0.因为132⎛⎫-- ⎪⎝⎭到原点的距离是132个单位长度,所以113322⎛⎫--= ⎪⎝⎭. 方法2:因为1102-<,所以111111222⎛⎫-=--= ⎪⎝⎭. 因为-0.3<0,所以|-0.3|=-(-0.3)=0.3.因为0的绝对值是它本身,所以|0|=0因为1302⎛⎫-->⎪⎝⎭,所以113322⎛⎫--=⎪⎝⎭【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解(如方法1),一种是利用绝对值的代数意义求解(如方法2),后种方法的具体做法为:首先判断这个数是正数、负数还是零.再根据绝对值的意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是零.从而求出该数的绝对值.2、已知一个数的绝对值等于2009,则这个数是________.【答案】2009或-2009【解析】根据绝对值的定义,到原点的距离是2009的点有两个,从原点向左侧移动2009个单位长度,得到表示数-2009的点;从原点向右侧移动2009个单位长度,得到表示数2009的点.【总结升华】已知绝对值求原数的方法:(1)利用概念;(2)利用数形结合法在数轴上表示出来.无论哪种方法都要注意若一个数的绝对值是正数,则此数有两个,且互为相反数.3、计算:(1)145--(2)|-4|+|3|+|0| (3)-|+(-8)|【答案与解析】运用绝对值意义先求出各个绝对值再计算结果.(1)111444555⎡⎤⎛⎫--=---=-⎪⎢⎥⎝⎭⎣⎦,(2)|-4|+|3|+|0|=4+3+0=7,(3)-|+(-8)|=-[-(-8)]=-8.【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解,一种是利用绝对值的代数意义求解,后种方法的具体做法为:首先判断这个数是正数、负数还是零.再根据绝对值的代数意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是零.从而求出该数的绝对值.4、如果|x|=6,|y|=4,且x<y.试求x、y的值.【思路点拨】6和-6的绝对值都等于6,4和-4的绝对值都等于4,所以要注意分类讨论.【答案与解析】因为|x|=6,所以x=6或x=-6;因为|y|=4,所以y=4或y=-4;由于x<y,故x只能是-6,因此x=-6,y=±4.【总结升华】已知绝对值求原数的方法:(1)利用概念;(2)利用数形结合法在数轴上表示出来.无论哪种方法但要注意若一个数的绝对值是正数,则此数有两个,且互为相反数.此外,此题x=-6,y=±4,就是x=-6,y=4或x=-6,y=-4.二、比较大小1、比较下列有理数大小:(1)-1和0; (2)-2和|-3| ;(3)13⎛⎫-- ⎪⎝⎭和12- ;(4)1--______0.1-- 【答案】(1)0大于负数,即-1<0;(2)先化简|-3|=3,负数小于正数,所以-2<3,即-2<|-3|;(3)先化简1133⎛⎫--= ⎪⎝⎭,1122-=,1123>,即1132⎛⎫--<- ⎪⎝⎭. (4)先化简11--=-,0.10.1--=-,这是两个负数比较大小:因为11-=,0.10.1-=,而10.1>, 所以10.1-<-,即1--<0.1--【解析】(2)、(3)、(4)先化简,再运用有理数大小比较法则.【点评】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断.2、比较下列每组数的大小:(1)-(-5)与-|-5|;(2)-(+3)与0;(3)45-与34--;(4)π-与| 3.14|--. 【思路点拨】先化简符号,去掉绝对值号再分清是“正数与零、负数与零、正数与负数、两个正数还是两个负数”,然后比较.【答案与解析】 (1)化简得:-(-5)=5,-|-5|=-5.因为正数大于一切负数,所以-(-5)>-|-5|.(2)化简得:-(+3)=-3.因为负数小于零,所以-(+3)<0.(3)化简得:3344--=-.这是两个负数比较大小,因为44165520-==,33154420-==,且16152020>.所以4354-<--. (4)化简得:-|-3.14|=-3.14,这是两个负数比较大小,因为 |-π|=π,|-3.14|=3.14,而π>3.14,所以-π<-|-3.14|.【总结升华】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断.三、绝对值非负性的应用1、已知|2-m|+|n-3|=0,试求m-2n的值.【思路点拨】由|a|≥0即绝对值的非负性可知,|2-m|≥0,|n-3|≥0,而它们的和为0.所以|2-m|=0,|n-3|=0.因此,2-m=0,n-3=0,所以m=2,n=3.【答案与解析】因为|2-m|+|n-3|=0且|2-m|≥0,|n-3|≥0所以|2-m|=0,|n-3|=0即2-m=0,n-3=0所以m=2,n=3故m-2n=2-2×3=-4.【总结升华】若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+…+|m|=0时,则a=b=…=m=0.2、已知a、b为有理数,且满足:12,则a=_______,b=________.【答案与解析】由,,,可得∴【总结升华】由于任何一个数的绝对值大于或等于0,要使这两个数的和为0,需要这两个数都为0.几个非负数的和为0,则每一个数均为0.四、含有字母的绝对值的化简1、把下列各式去掉绝对值的符号.(1)|a-4|(a≥4);(2)|5-b|(b>5).【答案与解析】(1)∵ a≥4,∴a-4≥0,∴ |a-4|=a-4.(2)∵ b>5,∴ 5-b<0,∴ |5-b|=-(5-b)=b-5.【总结升华】由字母的取值范围来判断绝对值里面的符号情况,再根据绝对值的意义去掉绝对值的符号.五、绝对值的实际应用1、正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数.检测结果(单位:克):-25,+10,-20,+30,+15,-40.裁判员应该选择哪个足球用于这场比赛呢?请说明理由.【答案】因为|+10|<|+15|<|-20|<|-25|<|+30|<|-40|,所以检测结果为+10的足球的质量好一些.所以裁判员应该选第二个足球用于这场比赛.【解析】根据实际问题可知,哪个足球的质量偏离规定质量越小,则足球的质量越好.这个偏差可以用绝对值表示,即绝对值越小偏差也就越小,反之绝对值越大偏差也就越大.【点评】绝对值越小,越接近标准.。
七上数学绝对值压轴题
七上数学【绝对值压轴题】三种题型汇总,含例题解析例题1、【归纳】(1)观察下列各式的大小关系:|-2|+|3|>|-2+3||-6|+|3|>|-6+3||-2|+|-3|=|-2-3||0|+|-8|=|0-8|归纳:|a|+|b|_____|a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)【应用】(2)根据上题中得出的结论,若|m|+|n|=13,|m+n|=1,求m的值.【延伸】(3)a、b、c满足什么条件时,|a|+|b|+|c|>|a+b+c|.参考答案:(1)≥(2)由上题结论可知,因为|m|+|n|=13,|m+n|=1,|m|+|n|≠|m +n|,所以m、n异号.当m为正数,n为负数时,m-n=13,则n=m-13,|m+m-13|=1,m=7或6当m为负数,n为正数时,-m+n=13,则n=m+13,|m+m+13|=1,m=-7或-6综上所述,m为±6或±7(3)分析:若按a、b、c中0的个数进行分类,可以分成四类:第一类:a、b、c三个数都不等于0①1个正数,2个负数,此时|a|+|b|+|c|>|a+b+c|②1个负数,2个正数,此时|a|+|b|+|c|>|a+b+c|③3个正数,此时|a|+|b|+|c|=|a+b+c|,故排除④3个负数,此时|a|+|b|+|c|=|a+b+c|,故排除第二类:a、b、c三个数中有1个0 【结论同第(1)问】①1个0,2个正数,此时|a|+|b|+|c|=|a+b+c|,故排除②1个0,2个负数,此时|a|+|b|+|c|=|a+b+c|,故排除③1个0,1个正数,1个负数,此时|a|+|b|+|c|>|a+b+c|第三类:a、b、c三个数中有2个0①2个0,1个正数:此时|a|+|b|+|c|=|a+b+c|,故排除②2个0,1个负数:此时|a|+|b|+|c|=|a+b+c|,故排除第四类:a、b、c三个数都为0,此时|a|+|b|+|c|=|a+b+c|,故排除综上所述:1个负数2个正数、1个正数2个负数、1个0,1个正数和1个负数.例题2、已知:b是最小的正整数,且a、b满足(c-5)^2 +|a+b|=0 (1)请求出a、b、c的值;(2)a、b、c所对应的点分别为A、B、C,线段AB的中点为M,线段BC的中点为N,P为动点,其对应的数为x,点P在线段MN上运动(包括端点).①求x的取值范围.②化简式子|x+1|-|x-1|+2|x-4/9|(写出化简过程).详细解析考点:数轴的定义,绝对值的性质分析:本题考查了数轴与绝对值,需掌握绝对值的性质,正确理解AB,BC的变化情况是关键;第(1)题根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;第②题以①为分界点,根据x的范围分0≤x≤4/9、4/9<x≤1、1<x≤3确定x+1,x-1,x-4/9的符号,然后根据绝对值的意义即可化简.解答:(1)根据题意得:c-5=0,a+b=0,b=1,∴a=-1,b=1,c=5. (2)①(-1+1)÷2=0,(1+5)÷2=3,∴x的取值范围为:0≤x≤3.②当0≤x≤4/9时,x+1>0,x-1<0,x-4/9≤0,∴|x+1|-|x-1|+2|x-4/9|=x+1+(x-1)-2(x-4/9)=x+1+x-1-2x+8/9=8/9;当4/9<x≤1时,x+1>0,x-1≤0,x-4/9>0.∴|x+1|-|x-1|+2|x-4/9|=x+1+(x-1)+2(x-4/9)=x+1+x-1+2x-8/9=4x-8/ 9;当1<x≤3时,x+1>0,x-1>0,x-4/9>0.∴|x+1|-|x-1|+2|x-4/9|=x+1-(x-1)+2(x-4/9)=x+1-x+1+2x-8/9=2x-10 /9;例题3、数轴上从左到右的三个点A,B,C 所对应数的分别为a,b,c.其中AB=2017,BC=1000,如图所示.(1)若以B为原点,写出点A,C所对应的数,并计算a+b+c 的值.(2)若原点O在A,B两点之间,求|a|+|b|+ |b-c| 的值.(3)若O是原点,且OB=17,求a+b-c的值.参考答案(1)以B为原点,点A,C对应的数分别-2017,1000,a+b+c=-2017+0+1000=-1017.(2)当原点O在A,B两点之间时,|a|+|b|=2017,|b-c|=1000,∴|a|+|b|+|b-c|2017 +1000 = 3017 .附另解:点A,B,C 对应的数分别b-2017,b,b+1000,∴ |a|+|b|+|b-c|=2017-b+b+1000= 3017 .(3)若原点O在点B的左边,则点A,B,C 所对应数分别是a=-2000,b=17,c=1017,则a+b-c=-2000+17-1017=-3000;若原点O在点B的右边,则点A,B,C所对应数分别是a=-2034,b=-17,c=983,则a+b-c=-2034+(-17)-983=-3034。
专题1.6 绝对值-重难点题型(学生版)七年级数学上册举一反三系列(人教版)
专题1.6 绝对值-重难点题型【人教版】【题型1 绝对值的定义】【例1】(郯城县期中)下列说法错误的个数是()①一个数的绝对值的相反数一定是负数;②只有负数的绝对值是它的相反数;③正数和零的绝对值都等于它本身;④互为相反数的两个数的绝对值相等.A.3个B.2个C.1个D.0个【变式1-1】(吴江区期中)若|x|=﹣(﹣8),则x=.【变式1-2】(长安区校级月考)已知|a|=2,|b|=3,且b<a,试求a、b的值.【变式1-3】(怀宁县期末)如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q =0,则m,n,p,q四个有理数中,绝对值最小的一个是()A.p B.q C.m D.n【题型2 绝对值的化简求值】【例2】(成都校级期中)化简|π﹣4|+|3﹣π|= .【变式2-1】(澧县校级期中)若﹣1<x <4,化简|x +1|+|4﹣x |.【变式2-2】(邗江区校级月考)在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如: |6+7|=6+7;|6﹣7|=7﹣6;|7﹣6|=7﹣6;|﹣6﹣7|=6+7;根据上面的规律,把下列各式写成去掉绝对值符号的形式:(1)|7﹣21|= ;(2)|−12+0.8|= ;(3)|717−718|= ;(4)用合理的方法计算:|15−12014|+|12014−12|﹣|−12|+11007. 【变式2-3】(锦江区校级期末)若x =120192020,则|x |+|x ﹣1|+|x ﹣2|+|x ﹣3|= .【题型3 绝对值的非负性】【例3】(达孜区期末)已知|x ﹣4|+|5﹣y |=0,则12(x +y )的值为 . 【变式3-1】(青羊区校级月考)当a = 时,|1﹣a |+2会有最小值,且最小值是 .【变式3-2】(江岸区校级月考)若|2x ﹣4|与|y ﹣3|互为相反数,求3x ﹣y 的值.【变式3-3】(灞桥区校级月考)已知|a -3|+|b ﹣5|=0,x ,y 互为相反数,求3(x +y )﹣a +2b 的值.【题型4 与绝对值有关的求值问题】【例4】(海安县月考)列式计算:﹣213的相反数比−23的绝对值的相反数大多少? 【变式4-1】(盐津县校级月考)已知a =﹣2,b =3,c =﹣7,d =616,回答下列问题: (1)求a 、b 的相反数;(2)求c 、d 的绝对值;(3)求a +b +c +d 的值.【变式4-2】(盐城月考)|a |=2,b 与﹣3互为相反数,c 是绝对值最小的有理数,a <c ,求a ,b ,c 的值.【变式4-3】(文登区校级期中)设a 是绝对值大于1而小于5的所有整数的和,b 是不大于2的非负整数的和,求a 、b ,以及b ﹣a 的相反数.【题型5 绝对值在实际问题中的应用】【例5】(海淀区校级期末)厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的足球是 .【变式5-1】(河源校级月考)一条直线流水线上依次有5个机器人,它们站的位置在数轴上依次用点A 1,A 2,A 3,A 4,A 5表示,如图:(1)站在点 上的机器人表示的数的绝对值最大,站在点 和点 、 和 上的机器人表示的数到原点距离相等;(2)怎样将点A 3移动,使它先到达A 2点,再到达A 5点,请用文字语言说明.(3)若原点是零件供应点,那5个机器人分别到达供应点取货的总路程是多少?【变式5-2】(临沭县期中)如果一个物体某个量的实际值为a ,测量值为b ,我们把|a ﹣b |称为绝对误差,把|a−b|a 称为相对误差.例如,某个零件的实际长度为10cm ,测量得9.8cm ,那么测量的绝对误差为0.2cm ,相对误差为0.02.若某个零件测量所产生的绝对误差为0.3,相对误差为0.02,则该零件的测量值b 是 .【变式5-3】(宽城区期中)已知零件的标准直径是100mm ,超过标准直径长度的数量(mm )记作正数,不足标准直径长度的数量(mm )记作负数,检验员某次抽查了五件样品,检查结果如下:序号1 2 3 4 5 直径长度( mm )+0.1 ﹣0.15 0.2 ﹣0.05 +0.25(1)指出哪件样品的大小最符合要求;(2)如果规定误差的绝对值在0.18mm 之内是正品,误差的绝对值在0.18~0.22mm 之间是次品,误差的绝对值超过0.22mm 是废品,那么这五件样品分别属于哪类产品? 【题型6 绝对值的几何意义】【例6】(随州校级月考)同学们都知道,|3﹣(﹣1)|表示3与﹣1之差的绝对值,实际上也可理解为3与﹣1两数在数轴上所对的两点之间的距离.试探索:(1)求|3﹣(﹣1)|= .(2)找出所有符合条件的整数x ,使得|x ﹣3|+|x ﹣(﹣1)|=4,这样的整数是 .【变式6-1】(抚顺县期中)结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 ;表示﹣3和2两点之间的距离是 ;一般地,数轴上表示数m 和数n 的两点之间的距离等于|m ﹣n |.(2)如果|x +1|=3,那么x = ;(3)若|a ﹣3|=2,|b +2|=1,且数a 、b 在数轴上表示的数分别是点A 、点B ,则A 、B 两点间的最大距离是 ,最小距离是 .(4)若数轴上表示数a 的点位于﹣4与2之间,则|a +4|+|a ﹣2|= .【变式6-2】(思明区校级期末)同学们都知道|5﹣(﹣2)|表示5与(﹣2)之差的绝对值,也可理解为5与﹣2两数在数轴上所对的两点之间的距离,试探索:(1)求|5﹣(﹣2)|=.(2)找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7成立的整数是.(3)由以上探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.【变式6-3】(龙泉驿区期中)我们知道,在数轴上,|a|表示数a到原点的距离.进一步地,点A,B在数轴上分别表示有理数a,b,那么A,B两点之间的距离就表示为|a﹣b|;反过来,|a﹣b|也就表示A,B两点之间的距离.下面,我们将利用这两种语言的互化,再辅助以图形语言解决问题.例,若|x+5|=2,那么x为:①|x+5|=2,即|x﹣(﹣5)|=2.文字语言:数轴上什么数到﹣5的距离等于2.②图形语言:③答案:x为﹣7和﹣3.请你模仿上题的①②③,完成下列各题:(1)若|x+4|=|x﹣2|,求x的值;①文字语言:②图形语言:③答案:(2)|x﹣3|﹣|x|=2时,求x的值:①文字语言:②图形语言:③答案:(3)|x﹣1|+|x﹣3|>4.求x的取值范围:①文字语言:②图形语言:③答案:(4)求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值.①文字语言:②图形语言:③答案:。
初一第一章的《绝对值》的几个难题(答案)
初一第一章的《绝对值》的几个难题(答案)解:根据题意,我们可以列出方程组:a-b = 2008kc-a = 2008(1-k)其中k为整数。
将XXX代入原方程可得:a-b + c-a = 2化XXX:c-b = 2008k+1或c-b = 2008(1-k)-1因为a、b、c为整数,所以k只能为0或1.当k=0时,c-b=1,a-b=2008,b-c=-2007,所以c-a+a-b+b-c=2.当k=1时,c-b=-1,a-b=-2008,b-c=2007,所以c-a+a-b+b-c=2.因此,c-a+a-b+b-c的值为2.3、解方程:x-2+2x-1=8.答:将x-2和2x-1括起来,得到(x-2)+(2x-1)=8,化简得3x-3=8,解得x=11/3.4、已知:关于x的方程x-ax=1,同时有一个正根和一个负根,求整数a的值。
答:设正根为x1,负根为x2,则有x1-x2=2|a|。
因为x1和x2都是根,所以x1-ax1=1,x2-ax2=1.将两式相减得到x1-x2=a(x1-x2),因为x1和x2不相等,所以a=1或a=-1.当a=1时,方程化为x-x=1无解;当a=-1时,方程化为x+x=1,解得x=-1/2,符合要求。
因此,a=-1.5、已知:a、b、c是非零有理数,且a+b+c=0,求:abc/(abc)的值。
答:由a+b+c=0可得abc=-(ab+bc+ca),因此abc/(abc)=-1.6、设abcde是一个五位数,其中a、b、c、d、e是阿拉伯数字,且a<b<c<d,试求y=a-b+b-c+c-d+d-e的最大值。
答:因为a<b<c<d,所以b-a≥1,c-b≥1,d-c≥1,e-d≥1,将y拆开得到y=(b-a)+(c-b)+(d-c)+(e-d),因此y≥4.当a=1,b=2,c=3,d=4,e=5时,y=4,所以y的最大值为4.7、求关于x的方程x-2-1=a(0<a<1)所有解的和。
【初中数学】绝+对+值+考点梳理及难点突破+课件++人教版(2024)数学七年级上册
破 ,C 的距离相等,此时点B 表示的数是-1;
(3)因为点 P 表示的数到原点的距离是 3,所以点 P
表示的数是3 或-3.又因为 P,Q 在数轴上表示的数互为相
反数,所以点 Q 表示的数是-3 或 3.
返回目录
变式衍生 数轴上点 A 表示的数的绝对值是 3,且在
重
难
题 原点的左侧,B,C 两点表示的数互为相反数,且点 B 到
D.-[-(+8)]=8,故 D 项错误.
[答案]B
返回目录
重 ■题型一 绝对值非负性的应用
难
例 1 已知 |a-3| 与 |2b-4| 互为相反数.
题
型
(1)求 a 与 b 的值;
突
破
(2)若|x|=2a+4b,求 x 的相反数.
返回目录
重
难
题
型
突
破
[答案] 解:(1)因为|a-3|与 |2b-4|互为相反数,
错
易 正确;若 a<0,则 |a| =-a,故②正确;③若|a|=|b| ,则
混
分 a=±b,故③错误;④正确.
析
[答案] C
[易错] D
[错因]|a| = |b| ,忽略了 a=-b 这种情况.
返回目录
易错警示 两个数的绝对值相等时,这两个数可能相等
易
错
易 也可能互为相反数.
混
分
领悟提能 求含字母的式子的绝对值时,要根据式子的
A. 2
C. 2 或-2
B. -2
D. 2 或-
)
返回目录
考
点
清
单
解
读
[解题思路]
初一难题集锦(方程与绝对值)答案-(解题过程)
答案与评分标准一、解答题(共18小题,满分150分)1、a,b为实数,下列各式对吗?若不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a﹣b|=|b﹣a|;(4)若|a|=b,则a=b;(5)若|a|<|b|,则a<b;(6)若a>b,则|a|>|b|.考点:绝对值;不等式的性质。
分析:根据绝对值和不等式的性质对每一小题进行分析.解答:解:(1)错误.当a,b同号或其中一个为0时成立.(2)正确.(3)正确.(4)错误.当a≥0时成立.(5)错误.当b>0时成立.(6)错误.当a+b>0时成立.点评:本题主要考查了绝对值和不等式的有关内容.需熟练掌握和运用绝对值和不等式的性质.2、已知有理数a、b、c在数轴上的对应点如图所示,化简:|b﹣a|+|a+c|﹣2|c﹣b|.考点:整式的加减;数轴;绝对值。
分析:解决此题关键要对a,b,c与0进行比较,进而确定b﹣a,a+c,c﹣b与0的关系,从而很好的去掉绝对值符号.解答:解:由数轴可知:a>b>0>c,|a|>|c|,则b﹣a<0,a+c>0,c﹣b<0.∴|b﹣a|+|a+c|﹣2|c﹣b|=﹣(b﹣a)+(a+c)﹣2[﹣(c﹣b)]=﹣b+a+a+c+2c﹣2b=2a﹣3b+3c.点评:在去绝对值符号时要注意:大于0的数值绝对值是它本身,小于零的数值绝对值是它的相反数.3、已知x<﹣3,化简:|3+|2﹣|1+x|||.考点:绝对值。
专题:计算题。
分析:这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解答:解:∵x<﹣3,∵1+x<0,3+x<0,∴原式=|3+|2+(1+x)||,=|3+|3+x||,=|3﹣(3+x)|,=|﹣x|,=﹣x.点评:本题考查了绝对值的知识,注意对于含有多层绝对值符号的问题,要从里往外一层一层地去绝对值符号.考点:绝对值。
专题:计算题;分类讨论。
初一数学绝对值含答案
绝对值中考要求重难点绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号. ②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. ③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5. 求字母a 的绝对值:①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩②(0)(0)a a a a a ≥⎧=⎨-<⎩ ③(0)(0)a a a a a >⎧=⎨-≤⎩ 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小. 绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c =绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-;(2)若a b =,则a b =或a b =-;(3)ab a b =⋅;a ab b =(0)b ≠; (4)222||||a a a ==;a 的几何意义:在数轴上,表示这个数的点离开原点的距离.a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.课前预习例题精讲【例1】到数轴原点的距离是2的点表示的数是()A、±2 B、2 C、-2 D、4【难度】1星【解析】此题要全面考虑,原点两侧各有一个点到原点的距离为2,即表示2和-2的点.【答案】根据题意,知到数轴原点的距离是2的点表示的数,即绝对值是2的数,应是±2.故选A.点评:利用数轴可以直观地求出两点的距离或解决一些与距离有关的问题,体现了数形结合的数学思想.【例2】下列说法正确的有()①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数.A、②④⑤⑥B、③⑤C、③④⑤D、③⑤⑥【难度】2星【解析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【答案】①0是有理数,|0|=0,故本小题错误;②互为相反数的两个数的绝对值相等,故本小题错误;③互为相反数的两个数的绝对值相等,故本小题正确;④有绝对值最小的有理数,故本小题错误;⑤由于数轴上的点和实数是一一对应的,所以所有的有理数都可以用数轴上的点来表示,故本小题正确;⑥只有符号不同的两个数互为相反数,故本小题错误.所以③⑤正确.故选B.点评:本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.【例3】如果a的绝对值是2,那么a是()A、2B、-2C、±2D、【难度】1星【解析】根据题意可知:绝对值等于2的数应该是±2.【答案】2的绝对值是2,-2的绝对值也是2,所以a的值应该是±2.故选C.点评:本题考查了绝对值的概念,学生要熟练掌握.【例4】若a<0,则4a+7|a|等于()A、11aB、-11aC、-3aD、3a【难度】2星【解析】:本题考查有理数的绝对值问题,如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零【答案】:解:∵a<0,∴|a|=-a.4a+7|a|=4a+7|-a|=4a-7a=-3a.选C.【例5】一个数与这个数的绝对值相等,那么这个数是()A、1,0B、正数C、非正数D、非负数【难度】1星【解析】:根据绝对值的性质进行解答即可.【答案】解:因为一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,所以一个数与这个数的绝对值相等,那么这个数是非负数.故选D .【例6】已知|x|=5,|y|=2,且xy >0,则x-y 的值等于( )A 、7或-7B 、7或3C 、3或-3D 、-7或-3【难度】2星【解析】先根据绝对值的定义求出x 、y 的值,再由xy >0可知x 、y 同号,根据此条件求出x 、y 的对应值即可.【答案】解:∵|x|=5,|y|=2,∴x=±5,y=±2,∵xy >0,∴当x=5时,y=2,此时x-y=5-2=3;当x=-5时,y=-2,此时x-y=-5+2=-3.故选C .点评:本题考查的是绝对值的性质及有理数的加减法,熟知绝对值的性质是解答此题的关键.【例7】若1-=x x,则x 是( )A 、正数B 、负数C 、非负数D 、非正数【难度】2星【解析】本题作为选择题可用排除法进行解答,由于是分式,所以x ≠0,故可排除C 、D ;再根据x 的取值范围进行讨论即可.【答案】:解:∵ 是分式, ∴x ≠0,∴可排除C 、D ,∵当x >0时,原式可化为 =1,故A 选项错误.故选B .点评:本题考查的是绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【例8】已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A、1-b>-b>1+a>aD、1-b>1+a>-b>aC、1+a>1-b>a>-bB、1+a>a>1-b>-b【难度】3星【解析】根据绝对值的定义,可知a>0,b<0时,|a|=a,|b|=-b,代入|a|<|b|<1,得a<-b<1,由不等式的性质得-b>a,则1-b>1+a,又1+a>1,1>-b>a,进而得出结果.【答案】∵a>0,∴|a|=a;∵b<0,∴|b|=-b;又∵|a|<|b|<1,∴a<-b<1;∴1-b>1+a;而1+a>1,∴1-b>1+a>-b>a.故选D.点评:本题主要考查绝对值的定义:一个正数的绝对值是它本身;一个负数的绝对值是是它的相反数;0的绝对值是0;互为相反数的绝对值相等.【例9】已知a、b互为相反数,且|a-b|=6,则|b-1|的值为()A、2B、2或3C、4D、2或4【难度】2星【解析】根据互为相反数的两数和为0,又因为|a-b|=6,可求得b的值,代入即可求得结果判定正确选项.【答案】∵a、b互为相反数,∴a+b=0,∵|a-b|=6,∴b=±3,∴|b-1|=2或4.故选D.点评:此题把相反数和绝对值的运算结合求解.先根据相反数求出b的值,再确定绝对值符号中代数式的正负,去绝对值符号.【例10】a<0,ab<0,计算|b-a+1|-|a-b-5|,结果为()A、6B、-4C、-2a+2b+6D、2a-2b-6【难度】2星【解析】:根据已知条件先去掉绝对值即可求解.【答案】解:∵a<0,ab<0,∴b-a+1>0,a-b-5<0,∴|b-a+1|-|a-b-5|=b-a+1+a-b-5=-4.故选A.【例11】若|x+y|=y-x,则有()A、y>0,x<0B、y<0,x>0C、y<0,x<0D、x=0,y≥0或y=0,x≤0【难度】4星【解析】根据绝对值的定义,当x+y≥0时,|x+y|=x+y,当x+y≤0时,|x+y|=-x-y.从中得出正确答案.:【答案】解:∵|x+y|=y-x,又当x+y≥0时,|x+y|=x+y,可得x=0,y≥0或者y=0,x≤0又当x+y≤0时,|x+y|=-x-y,可得y=0,x≤0或x=0,y≥0∴x=0,y≥0或y=0,x≤0选D.点评:此题主要考查了绝对值的性质,能够根据已知条件正确地判断出x,y的值是解答此题的关键.【例12】已知:x<0<z,xy>0,且|y|>|z|>|x|,那么|x+z|+|y+z|-|x-y|的值()A、是正数B、是负数C、是零D、不能确定符号【难度】4星【解析】:先根据已知条件确定x、y、z的符号及其绝对值的大小,再画出数轴确定出各点在数轴上的位置,根据绝对值的性质即可去掉原式的绝对值,使原式得到化简.【答案】:解:由题意可知,x、y、z在数轴上的位置如图所示:所以|x+z|+|y+z|-|x-y|=x+z-(y+z)-(x-y)=0【例11】给出下面说法:(1)互为相反数的两数的绝对值相等;(2)一个数的绝对值等于本身,这个数不是负数;(3)若|m|>m,则m<0;(4)若|a|>|b|,则a>b,其中正确的有()A、(1)(2)(3)B、(1)(2)(4)C、(1)(3)(4)D、(2)(3)(4)【难度】3星【解析】:分别根据绝对值的性质、相反数的定义进行解答.【答案】解:(1)正确,符合绝对值的性质;(2)正确,符合绝对值的性质;(3)正确,符合绝对值的性质;(4)错误,例如a=-5,b=2时,不成立.故选A.(1)相反数的定义:只有符号不同的两个数,叫互为相反数;(2)绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.【例12】已知a,b,c为三个有理数,它们在数轴上的对应位置如图所示,则|c-b|-|b-a|-|a-c|= _________【难度】3星【解析】:根据图示,可知有理数a,b,c的取值范围b>1>a>0>c>-1,然后根据它们的取值范围去绝对值并求|c-b|-|b-a|-|a-c|的值.【答案】:解:根据图示知:b>1>a>0>c>-1,∴|c-b|-|b-a|-|a-c|=-c+b-b+a-a+c=0故答案是0.点评:本题主要考查了关于数轴的知识以及有理数大小的比较.【例13】若x<-2,则|1-|1+x||=______若|a|=-a,则|a-1|-|a-2|= ________【难度】3星【解析】根据已知x<-2,则可知1+x<0,x+2<0;再根据绝对值的定义|1-|1+x||逐步去掉绝对值可转化为-2-x根据已知|a|=-a与绝对值的定义,那么a≤0,则|a-1|-|a-2|可去掉绝对值后【答案】∵x<-2,∴1+x<0,x+2<0,则|1-|1+x||=|1-[-(1+x)]|=|2+x|=-2-x;∵|a|=-a,∴a≤0,∴a-1<0,a-2<0,,则|a-1|-|a-2|=1-a-(2-a),=1-a-2+a,=-1.故答案为:-2-x,-1.点评:此题主要考查了绝对值的性质,能够根据已知条件正确地判断出1+x<0、x+2<0、a≤0进而得出a-1<0、a-2<0,这些是解答此题的关键【例14】()2120a b ++-=,分别求a b ,的值【难度】3星【解析】根据平方和绝对值的非负性解决。
七年级数学上学期 绝对值重难点突破(含解析)
初中数学人教版七年级上学期第一章有理数绝对值重难点突破一、解答题1.(8分)(2020七上·硚口期中)已知是有理数.(1)当时,先判断的正、负符号,再求的值;(2)当时,直接写出的值.2.(8分)(2021七上·相城月考)已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|3.(10分)(2021七上·苏州月考)如图所示,有理数a,b,c在数轴上的对应点分别是A、B、C,原点为点O.①化简:|a﹣c|+2|c﹣b|﹣|b﹣a|.②若B为线段AC的中点,OA=6,OA=4OB,求c的值.4.(12分)(2020七上·金华期中)数轴是一个非常重要的数学工具,实数和数轴上的点能建立一一对应的关系,它建立了数与形的联系,是初中“数形结合”的基础。
我们知道一个数在数轴上对应的点到原点的距离叫做这个数的绝对值,如:,:表示数的点到原点的距离。
同样的,:表示数的点到表示数3的点的距离。
请结合数轴解决下列问题:①当时,表示什么意思?________;②若,则________;③若,则的值是________;④求使的值最小的所有符合条件的整数.二、综合题5.(10分)(2021七上·薛城期中)数轴上两点之间的距离等于这两个点所对应的数的差的绝对值,例如:点A、B在数轴上对应的数分别是a、b,则点A、B两点间的距离表示为.利用上述结论,回答以下问题(1)若点A在数轴上表示-3,点B在数轴上表示1,那么AB=;(2)若数轴上两点C、D表示的数为x、-1①C、D两点之间的距离可用含x的式子表示为;②若该两点之间的距离是3,那么x值为;(3)若数轴上表示a的点位于-5和2之间,化简.6.(11分)(2021七上·建昌期中)“数形结合”是重要的数学思想.如:表示与差的绝对值,实际上也可以理解为与在数轴上所对应的两个点之间的距离.进一步地,数轴上两个点A,B所对应的数分别用,表示,那么A,B两点之间的距离表示为.利用此结论,回答以下问题:(1)数轴上表示和两点之间的距离是.(2)可理解为与两数在数轴上所对应的两点之间的距离;可理解为与两数在数轴上所对应的两点之间的距离.(3)若,则.(4)若表示一个有理数,的最小值为.(5)直接写出所有符合条件的整数x,使得,的值为7.(10分)(2021七上·温岭期中)点A、B在数轴上分别表示数a,b,A、B两点之间的距离表示为|AB|.数轴上A、B两点之间的距离|AB|=|a-b|回答下列问题:(1)数轴上表示-1和-4的两点之间的距离是;(2)数轴上表示x和-1的两点A之和B之间的距离是,如果|AB|=2,那么x的值是;(3)若x表示一个有理数,且﹣1<x<3,则|x﹣3|+|x+1|=;(4)若x表示一个有理数,且|x﹣1|+|x+2|>3,则有理数x的取值范围是.8.(15分)(2020七上·武汉期中)(问题背景)在数轴上,点表示数在原点的左边,点表示的数在原点的右边,如图1,所示,则有:①;②线段的长度等于.(问题解决)点、点、点在数轴上的位置如图2所示,三点对应的数分别为,、.①线段的长度为▲;②若点为线段的中点,则点表示的数是▲;③化简:.(关联运用)①已知:点、点、点、点在数轴上的位置如图3所示,点对应的数为,点对应的数为,若定长线段沿数轴正方向以每秒个单位长度匀速运动,经过原点需要1秒,完全经过线段需要2秒,求的值;②已知,当式子取最小值时,相应的的取值范围是▲,式子的最小值是▲.(用含、的式子表示)9.(16分)(2020七上·孝南期中)已知是最小的正整数,且,满足,请回答:(1)请直接写出,,的值:=,=,=;(2)在(1)的条件下,若点为一动点,其对应的数为,点在0到1之间运动,即时,化简:;(3)在(1)(2)的条件下,,,分别对应的点、、开始在数轴上运动,若点以每秒1个单位长度的速度向左运动,同时,点和点分别以每秒2个单位长度和5个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为,点与点之间的距离表示为.请问:的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.答案解析部分一、解答题1.【答案】(1)解:,;(2)解:当同正时,;当两正一负时,;当一正两负时,;当同负时,;综上:或±1.【考点】绝对值及有理数的绝对值,代数式求值【解析】【分析】(1)利用有理数的乘法法则可知a,b同号,再利用有理数的加法法则,结合已知可得到a,b同为负数,然后化简绝对值,可求出结果。
初一第一章的《绝对值》的几个难题(答案)
初一第一章的《绝对值》的几个难题:1、若01a <<,21b -<<-,则12_____12a b a b a b a b-++-+=-++。
2、若a 、b 为整数,且200820081a b c a -+-=;试求:c a a b b c -+-+-的值。
3、解方程:2218x x -+-=。
4、已知:关于x 的方程1x ax -=,同时有一个正根和一个负根,求整数a 的值。
5、已知:a 、b 、c 是非零有理数,且a +b +c =0;求:a b c abc a b c abc+++。
6、设abcde 是一个五位数,其中a 、b 、c 、d 、e 是阿拉伯数字,且a <b 〈c 〈d ,试求y a b b c c d d e =-+-+-+-的最大值。
7、求关于x 的方程21(01)x a a --=<<所有解的和.8、若1x 、2x 都满足条件:21234x x -++=且12x x <,则12x x -的取值范围是 .9、已知:(12)(21)(31)36x x y y z z ++--++-++=;求:x +2y +3z 的最大值和最小值。
10、解方程: ①314x x -+=; ②311x x x +--=+; ③134x x ++-=。
初一第一章的《绝对值》的几个难题(的解答):知识点:1、绝对值的定义:表示一个数的点到原点的距离就叫做这个数的绝对值。
2、绝对值的代数意义:(0)(0)a a a a a ≥⎧=⎨-<⎩ 3、绝对值的基本性质: ①非负性:0a ≥; ②ab a b =; ③(0)a a b b b =≠; ④22a a =; ⑤a b a b a b -≤+≤+; ⑥a b a b a b -≤-≤+。
难题:1、若01a <<,21b -<<-,则12_____12a b a b a b a b-++-+=-++。
初一数学期末复习数轴绝对值动点压轴题难题(附答案详解)
初一数学数轴绝对值动点压轴题(附答案详解)一、解答题(共20小题)1. 如图,数轴的原点为O,点A,B,C是数轴上的三点,点B对应的数为1,AB=6,BC=2,动点P,Q同时从A,C出发,分别以每秒2个单位长度和每秒1个单位长度的速度沿数轴正方向运动.设运动时间为t秒(t>0).(1)求点A,C分别对应的数;(2)求点P,Q分别对应的数(用含t的式子表示).(3)试问当t为何值时,OP=OQ?2. 已知点P,Q是数轴上的两个动点,且P,Q两点的速度比是1:3.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴负方向运动,同时,动点Q也从原点出发向数轴正方向运动,4秒时,两点相距16个单位长度.求两个动点的速度,并在数轴上标出P,Q两点从原点出发运动4秒时的位置.(2)如果P,Q两点从(1)中4秒时的位置同时向数轴负方向运动,那么再经过几秒,点P,Q到原点的距离相等?3. 阅读下面材料:如图,点A,B在数轴上分别表示有理数a,b,则A,B两点之间的距离可以表示为∣a−b∣.根据阅读材料与你的理解回答下列问题:(1)数轴上表示3与−2的两点之间的距离是.(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为.(3)代数式∣x+8∣可以表示数轴上有理数x与有理数所对应的两点之间的距离;若∣x+8∣=5,则x=.(4)求代数式∣x+1008∣+∣x+504∣+∣x−1007∣的最小值.4. 如图1,在平面直角坐标系中,A(6,a),B(b,0)且(a−6)2+√b−2=0.(1)求点A,B的坐标;(2)如图1,P点为y轴正半轴上一点,连接BP,若S△PAB=15,请求出P点的坐标;(3)如图2,已知AB=√52,若C点是x轴上一个动点,是否存在点C,使BC=AB,若存在,请直接写出所有符合条件的点C的坐标;若不存在,请说明理由.5. 如图,A,B分别为数轴上的两点,A点对应的数为−5,B点对应的数为55,现有一动点P以6个单位/秒的速度从B点出发,同时另一动点Q恰好以4个单位/秒的速度从A点出发:(1)若P向左运动,同时Q向右运动,在数轴上的C点相遇,求C点对应的数.(2)若P向左运动,同时Q向左运动,在数轴上的D点相遇,求D点对应的数.(3)若P向左运动,同时Q向右运动,当P与Q之间的距离为20个单位长度时,求此时Q点所对应的数.6. 数轴上从左到右有A,B,C三个点,点C对应的数是10,AB=BC=20.(1)点A对应的数是,点B对应的数是;(2)若数轴上有一点D,且BD=4,则点D表示的数是什么?(3)动点P从A出发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.当点P和点Q间的距离为8个单位长度时,求t的值.7. 如图,已知点O是原点,点A在数轴上,点A表示的数为−6,点B在原点的右侧,且OB=4OA.3(1)点B对应的数是,在数轴上标出点B.(2)已知点P、点Q是数轴上的两个动点,点P从点A出发,以1个单位/秒的速度向右运动,同时点Q从点B出发,以3个单位/秒的速度向左运动;①用含t的式子分别表示P,Q两点表示的数:P是;Q是;②若点P和点Q经过t秒后在数轴上的点D处相遇,求出t的值和点D所表示的数;③求经过几秒,点P与点Q分别到原点的距离相等?8. 如图,半径为1个单位的圆片上有一点A与数轴的原点重合,AB是圆片的直径.(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是数(填“无理”或“有理”),这个数是;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,−1,−5,+4,+3,−2.当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?9. 结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示−3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于∣m−n∣.如果表示数a 和−1的两点之间的距离是3,那么a=.(2)若数轴上表示数a的点位于−4与2之间,则∣a+4∣+∣a−2∣的值为;(3)利用数轴找出所有符合条件的整数点x,使得∣x+2∣+∣x−5∣=7,这些点表示的数的和是.(4)当a=时,∣a+3∣+∣a−1∣+∣a−4∣的值最小,最小值是.10. 如图,数轴上的点O和A分别表示0和10,点P是线段OA上一动点,沿O→A→O以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t秒(0≤t≤10).(1)线段BA的长度为;(2)当t=3时,点P所表示的数是;(3)求动点P所表示的数(用含t的代数式表示);(4)在运动过程中,当PB=2时,求运动时间t.11. A,B,C为数轴上的三点,动点A,B同时从原点出发,动点A每秒运动x个单位,动点B每秒运动y个单位,且动点A运动到的位置对应的数记为a,动点B运动到的位置对应的数记为b,定点 C 对应的数为8.(1)若2秒后,a,b满足∣a+8∣+(b−2)2=0,则x=,y=,并请在数轴上标出A,B两点的位置.(2)若动点A,B在(1)运动后的位置上保持原来的速度,且同时向正方向运动z秒后使得∣a∣=∣b∣,使得z=.(3)若动点A,B在(1)运动后的位置上都以每秒2个单位向正方向运动继续运动t秒,点A 与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,点A与点B之间的距离为AB,且AC+BC=1.5AB,则t=.12. 探索研究:(1)比较下列各式的大小(用“<”或“>”或“=”连接).①∣+1∣+∣4∣∣+1+4∣;②∣−6∣+∣−3∣∣−6−3∣;③∣10∣+∣−3∣∣10−3∣;④∣8∣+∣−5∣∣8−5∣;⑤∣0∣+∣+2∣∣0+2∣;⑥∣0∣+∣−8∣∣0−8∣.(2)通过以上比较,请你分析、归纳出当a,b为有理数时,∣a∣+∣b∣∣a+b∣(用“<”或“>”或“=”或“≥”或“≤”连接).(3)根据(2)中得出的结论,当∣x∣+2017=∣x−2017∣时,则x的取值范围是;若x>0,且∣x∣+∣y∣=10,∣x+y∣=2,则y=.13. 阅读下面材料并回答问题.I阅读:数轴上表示−2和−5的两点之间的距离等于(−2)−(−5)=3;数轴上表示1和−3的两点之间的距离等于1−(−3)=4.一般地,数轴上两点之间的距离等于右边点对应的数减去左边点对应的数.II问题:如图,O为数轴原点,A,B,C是数轴上的三点,A,C两点对应的数互为相反数,且A点对应的数为−6,B点对应的数是最大负整数.(1)点B对应的数是,并请在数轴上标出点B位置;PC,求线段AP中点对应的数;(2)已知点P在线段BC上,且PB=25⋅x2−bx+2的值(a,b,c是点(3)若数轴上一动点Q表示的数为x,当QB=2时,求a+c100A,B,C在数轴上对应的数).14. 如图,已知数轴上点A表示的数为6,点B表示的数为−4,C为线段AB的中点,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)点C表示的数是;(2)当t=秒时,点P到达点A处;(3)点P表示的数是(用含字母t的代数式表示);(4)当t=秒时,线段PC的长为2个单位长度;(5)若动点Q同时从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动,那么,当t=秒时,PQ的长为1个单位长度.15. 阅读理解.小红和小明在研究绝对值的问题时,碰到了下面的问题:“当式子∣x+1∣+∣x−2∣取最小值时,相应的x的取值范围是,最小值是”.小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:x<−1,−1≤x≤2和x>2,经研究发现,当−1≤x≤2时,值最小为3.请你根据他们的解题解决下面的问题:(1)当式子∣x−2∣+∣x−4∣+∣x−6∣+∣x−8∣取最小值时,相应的x的取值范围是,最小值是.(2)已知y=∣2x+8∣−4∣x+2∣,求相应的x的取值范围及y的最大值.写出解答过程.16. 阅读思考:小聪在复习过程中,发现可以用“两数的差”来表示“数轴上两点间的距离”,探索过程如下:如图甲所示,三条线段的长度可表示为AB=4−2=2,CB=4−(−2)=6,DC=(−2)−(−4)=2,于是他归纳出这样的结论:当b>a时,AB=b−a(较大数−较小数).(1)思考:你认为小聪的结论正确吗? .(2)尝试应用:①如图乙所示,计算:EF=,FA=.②把一条数轴在数m处对折,使表示−14和2014两数的点恰好互相重合,则m=.(3)问题解决:①如图丙所示,点A表示数x,点B表示−2,点C表示数2x+8,且BC=4AB,问:点A和点C分别表示什么数?②在上述①的条件下,在如图丙所示的数轴上是否存在满足条件的点D,使DA+DC=3DB?若存在,请直接写出点D所表示的数;若不存在,请说明理由.17. 如图,数轴上有A、B、C、D四个点,分别对应的数为a、b、c、d,且满足a,b是方程∣x+9∣=1的两解(a<b),(c−16)2与∣d−20∣互为相反数.(1)求a、b、c、d的值;(2)若A、B两点以每秒6个单位的速度向右匀速运动,同时C、D两点以每秒2个单位的速度向左匀速运动,并设运动时间为t秒,问t为多少时,A、B两点都运动在线段CD上(不与C、D两个端点重合)?(3)在(2)的条件下,A、B、C、D四个点继续运动,当点B运动到点D的右侧时,问是否存在时间t,使B与C的距离是A与D的距离的4倍,若存在,求时间t;若不存在,请说明理由.18. 已知在数轴上有A,B两点,点A表示的数为8,点B在A点的左边,且AB=12.若有一动点P从数轴上点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒2个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒.(1)写出数轴上点B,P所表示的数(可以用含t的代数式表示);(2)若点P,Q分别从A,B两点同时出发,问点P运动多少秒与Q相距2个单位长度?(3)若M为AQ的中点,N为BP的中点.当点P在线段AB上运动过程中,探索线段MN与线段PQ的数量关系.19. 在数轴上依次有 A ,B ,C 三点,其中点 A ,C 表示的数分别为 −2,5,且 BC =6AB .(1)在数轴上表示出 A ,B ,C 三点;(2)若甲、乙、丙三个动点分别从 A ,B ,C 三点同时出发,沿数轴负方向运动,它们的速度分别是 14,12,2(单位长度/秒),当丙追上甲时,甲乙相距多少个单位长度?(3)在数轴上是否存在点 P ,使 P 到 A ,B ,C 的距离和等于 10?若存在求点 P 对应的数;若不存在,请说明理由.20. 已知数轴上三点 M ,O ,N 对应的数分别为 −3,0,1,点 P 为数轴上任意一点,其对应的数为x .(1)如果点 P 到点 M 、点 N 的距离相等,那么 x 的值是 . (2)当 x = 时,使点 P 到点 M ,点 N 的距离之和是 5;(3)如果点 P 以每秒钟 3 个单位长度的速度从点 O 向左运动时,点 M 和点 N 分别以每秒钟 1个单位长度和每秒钟 4 个单位长度的速度也向左运动,且三点同时出发,那么 秒钟时点 P 到点 M ,点 N 的距离相等.答案第一部分1. (1)∵点B对应的数为1,AB=6,BC=2,∴点A对应的数是1−6=−5,点C对应的数是1+2=3.(2)∵动点P,Q分别同时从A,C出发,分别以每秒2个单位长度和1个单位长度的速度沿数轴正方向运动,∴点P对应的数是−5+2t,点Q对应的数是3+t.(3)①当点P与点Q在原点两侧时,若OP=OQ,则5−2t=3+t,解得:t=23;②当点P与点Q在原点同侧时,若OP=OQ,则−5+2t=3+t,解得:t=8;当t为23或8时,OP=OQ.2. (1)设P的速度为x单位长度/秒,Q的速度为3x单位长度/秒.依题意,得4(x+3x)=16,∴x=1.∴P的速度为1单位长度/秒,Q的速度为3单位长度/秒.4秒时,P的位置在−4,Q的位置在12.(2)设再经过y秒时,点P,Q到原点的距离相等,①当点P,Q位于原点两侧时,12−3y=4+y,解得,y=2.②当点P,Q位于原点同侧时,3y−12=4+y,解得,y=8.所以再经过2秒或8秒时点P,Q到原点的距离相等.3. (1)5【解析】∣3−(−2)∣=5.(2)∣x−7∣(3)−8;−3或−13(4)如图,∣x+1008∣+∣x+504∣+∣x−1007∣的最小值即∣1007−(−1008)∣=2015.4. (1)∵(a−6)2+√b−2=0,又∵(a−6)2≥0,√b−2≥0,∴a=6,b=2,∴A(6,6),B(2,0).(2)设P(0,m)(m>0),∵S△PAB=S△POA+S△ABO−S△POB,∴15=12×m×6+12×2×6−12×2×m,9).∴P(0,92(3)C(2+2√13,0)或(2−2√13,0).【解析】∵AB=√52=2√13,B(2,0),∴BC=AB=2√13,∴C(2+2√13,0)或(2−2√13,0).5. (1)设相遇时间为x秒,4x+6x=55−(−5),解得:x=6,因此C点对应的数为−5+4×6=19.(2)设追及时间为y秒,6y−4y=55−(−5),解得:y=30,点D对应的数为−5−4×30=−125.(3)①相遇前PQ=20时,设相遇时间为a秒,4a+6a=55−(−5)−20,解得:a=4,因此Q点对应的数为−5+4×4=11,②相遇后PQ=20时,设相遇时间为b秒,4b+6b=55−(−5)+20,解得:b=8,因此C点对应的数为−5+4×8=27,故Q点对应的数为11或27.6. (1)−30;−10【解析】∵AB=BC=20,点C对应的数是10,点A在点B左侧,点B在点C左侧,∴点B对应的数为10−20=−10,点A对应的数为−10−20=−30.(2)由于点B对应的数为−10,BD=4,∴点D表示的数为−14或−6.(3)当运动时间为t秒时,点P对应的数是4t−30,点Q对应的数是t−10,依题意,得:∣t−10−(4t−30)∣=8,∴20−3t=8或3t−20=8,解得:t=4或t=28.3.∴t的值为4或2837. (1)8数轴表示如图所示:【解析】∵点A表示的数为−6,∴OA=6,OA,∵OB=43∵点B在原点的右侧,∴点B对应的数是8.(2)①−6+t;8−3t②∵点P和点Q经过t秒后在数轴上的点D处相遇,∴−6+t=8−3t,∴t=7,2=−2.5.∴点D所表示的数=−6+72③∵P是−6+t;Q是8−3t,∴OP=∣−6+t∣,OQ=∣8−3t∣,∵点P与点Q分别到原点的距离相等,∴∣−6+t∣=∣8−3t∣,∴−6+t=8−3t或−6+t=3t−8,或t=1,∴t=72秒或1秒,点P与点Q分别到原点的距离相等.∴经过72【解析】①∵P的路程为t,Q的路程为3t,∴P是−6+t;Q是8−3t.8. (1)无理;−2π【解析】把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是无理数,这个数是−2π.(2)±4π【解析】把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是±4π.(3)2+1+5+4+3+2=17,故A点运动的路程共有34π,+2−1−5+4+3−2=1,故此时点A所表示的数是2π.9. (1)3;5;−4或2【解析】∣1−4∣=3,∣−3−2∣=5,∣a−(−1)∣=3,所以,a+1=3或a+1=−3,解得a=−4或a=2.(2)6【解析】因为表示数a的点位于−4与2之间,所以a+4>0,a−2<0,所以∣a+4∣+∣a−2∣=(a+4)+[−(a−2)]=a+4−a+2=6.(3)12【解析】使得∣x+2∣+∣x−5∣=7的整数点有−2,−1,0,1,2,3,4,5,−2−1+0+1+2+ 3+4+5=12.故这些点表示的数的和是12.(4)1;7【解析】a=1有最小值,最小值=∣1+3∣+∣1−1∣+∣1−4∣=4+0+3=7.10. (1)5【解析】∵B是线段OA的中点,∴BA=12OA=5.(2)6【解析】当t=3时,点P所表示的数是2×3=6.(3)当0≤t≤5时,动点P所表示的数是2t;当5≤t≤10时,动点P所表示的数是20−2t.(4)①当0≤t≤5时,动点P所表示的数是2t,∵PB=2,∴∣2t−5∣=2,∴2t−5=2或2t−5=−2,解得t=3.5或t=1.5;②当5≤t≤10时,动点P所表示的数是20−2t,∵PB=2,∴∣20−2t−5∣=2,∴20−2t−5=2或20−2t−5=−2,解得t=6.5或t=8.5.综上所述,所求t的值为1.5或3.5或6.5或8.5.11. (1)4;1(2)103或56(3)2.75或9.2512. (1)=;=;>;>;=;=(2)≥(3)x≤0;−6或−413. (1)−1点B位置如图:【解析】点B对应的数是−1.(2)设点P对应的数为p,∵点P在线段BC上,∴PB=p−(−1)=p+1,PC=6−p,∵PB=25PC,∴p+1=25(6−p),∴p=1.设AP中点对应的数为t,则t−(−6)=1−t,∴t=−2.5,∴AP中点对应的数为−2.5.(3)由题意:a+c=0,b=−1,当点Q在点B左侧时,−1−x=2,x=−3,∴a+c100−x2−bx+2=0=0−(−1)×(−3)+2=−1,当点Q在点B左侧时,x−(−1)=2,x=1,∴a+c100−x2−bx+2=0−(−1)×1+2=3.14. (1)1【解析】(6−4)÷2 =2÷2= 1.故点C表示的数是1.(2)5【解析】[6−(−4)]÷2 =10÷2=5(秒).答:当t=5秒时,点P到达点A处.(3)2t−4【解析】点P表示的数是2t−4.(4)1.5秒或3.5【解析】P在点C左边,[1−2−(−4)]÷2=3÷2= 1.5(秒).P在点C右边,[1+2−(−4)]÷2=7÷2= 3.5(秒).答:当t=1.5秒或3.5秒时,线段PC的长为2个单位长度.(5)3秒或113【解析】点P,Q相遇前,依题意有(2+1)t=6−(−4)−1,解得t=3;点P,Q相遇后,依题意有(2+1)t=6−(−4)+1,解得t=113.答:当t=3秒或113秒时,PQ的长为1个单位长度.15. (1)4≤x≤6;8.(2)当x≥−2时,y=∣2x+8∣−4∣x+2∣=−2x,当−4≤x≤−2时,y=∣2x+8∣−4∣x+2∣=6x+16,当x≤−4时,y=∣2x+8∣−4∣x+2∣=2x,所以x=−2时,y有最大值y=4.16. (1)正确【解析】∵当b>a时,b−a的值为线段AB的实际长度.(2)2;3;1000(3)①∵BC=2x+8−(−2)=2x+10,AB=−2−x,又∵BC=4AB,∴2x+10=4(−2−x),解得x=−3,∴点A表示数−3,点C表示数2.②存在.设点D所表示的数为y,则(a)当y<−3时,DA=−3−y,DC=2−y,DB=−2−y,若DA+DC=3DB,则−3−y+2−y=3(−2−y),解得y=−5,满足条件;(b)当−3≤y<−2时,DA=y−(−3)=y+3,DC=2−y,DB=−2−y,若DA+DC=3DB,则y+3+2−y=3(−2−y),解得y=−113<−3,不符合题意;(c)当−2≤y<2时,DA=y−(−3)=y+3,DC=2−y,DB=y−(−2)=y+2,若DA+DC=3DB,则y+3+2−y=3(y+2),解得y=−13,满足条件;(d)当y≥2时,DA=y−(−3)=y+3,DC=y−2,DB=y−(−2)=y+2,若DA+DC=3DB,则y+3+y−2=3(y+2),解得y=−5,不符合题意.综上可知,存在点D表示的数为−5或−13时满足条件.17. (1)∵a,b是方程∣x+9∣=1的两根(a<b),∴a=−10,b=−8 .∵(c−16)2与∣d−20∣互为相反数,(c−16)2≥0,∣d−20∣≥0,∴c−16=0,d−20=0.∴c=16,d=20 .(2)可知:AC=26,BD=28,AB=2,CD=4.∵A、B两点以每秒6个单位的速度向右匀速运动,C、D两点以每秒2个单位的速度向左匀速运动,∴点A、C相遇时间t=26÷(6+2)=134,点B、D的相遇时间t=28÷(6+2)=72.∵点A、C相遇之后到B、D相遇之前,A、B两点都运动在线段CD上,∴当134<t<72时,A、B两点都运动在线段CD上.(3) 存在时间,使得 BC =4AD .理由:(1) 当 t =72 时,点 B 与点 D 相遇,此时 AD =AB =2,BC =CD =4; 当 A 、 D 相遇时 t =30÷8=154; 当 72<t <154 时,点 A 在线段 CD 上,此时 BC =4+8(t −72)=8t −24,AD =2−8(t −72)=30−8t . 若 BC =4AD ,则 8t −24=4(30−8t ),解得 t =3.6;(2) 当 t =154 时,点 A 与点 D 相遇,此时 BC =CD +AB =6,AD =0; 当 t >154 时,点 A 在 CD 的延长线上,此时 BC =8t −24,AD =8t −30 .若 BC =4AD ,则 8t −24=4(8t −30),解得 t =4.综上所述,t =3.6 或 t =4 时,BC =4AD .18. (1) ∵ 点 A 表示的数为 8,B 在 A 点左边,AB =12,∴ 点 B 表示的数是 8−12=−4.∵ 动点 P 从点 A 出发,以每秒 3 个单位长度的速度沿数轴向左匀速运动,设运动时间为 t (t >0)秒, ∴ 点 P 表示的数是 8−3t .(2) 设点 P 运动 x 秒时,与 Q 相距 2 个单位长度.则 AP =3x ,BQ =2x .∵AP +BQ =AB −2,∴3x +2x =10.解得:x =2.∵AP +BQ =AB +2,∴3x +2x =14.解得:x =145.∴ 点 P 运动 2 秒或 145 秒时与点 Q 相距 2 个单位长度.(3) 如图:当 P 在 Q 的左侧时,MN =MQ +NP −PQ =12AP +12BP −PQ =12(AP +BP )−PQ =12AB −PQ =6−PQ . 即 MN +PQ =6.如图当 P 在 Q 的右侧时,MN =MQ +NP −PQ =12AP +12BP −PQ =12(AP +BP )−PQ =12AB −PQ =6−PQ . 综上,MN +PQ =6.19. (1)(2) 7÷(2−14)=4(秒),4×(12−14)−1=0.答:丙追上甲时,甲乙相距 0 个单位长度.(3) 设 P 点表示的数为 x ,由题意可得 ∣x +2∣+∣x +1∣+∣x −5∣=10.当 x <−2 时,−x −2−x −1−x +5=10.解得 x =−83. 当 −2<x <−1 时,x +2−x −1−x +5=10.解得 x =−4,不属于上述范围(舍).当 −1<x <5 时,x +2+x +1−x +5=10.解得 x =2.当 x >5 时,x +2+x +1+x −5=10.解得 x =4,不属于上述范围(舍).结合数轴,解得 x =−83,2,∴P 点表示的数为 −83 或 2.20. (1) −1(2) −3.5 或 1.5(3) 43 或 2 【解析】提示:①当点 M 和点 N 在点 P 同侧时,因为 PM =PN ,所以点 M 和点 N 重合. ②当点 M 和点 N 在点 P 两侧时,有两种情况.情况 1:如果点 M 在点 N 左侧;情况 2:如果点 M 在点 N 右侧.。
初中数学绝对值重点难点突破(含练习题和答案)
初中数学知识点绝对值重点难点突破(含练习题和答案)一、绝对值定义数轴上表示数a的点与原点的距离,叫做数a的绝对值。
数a的绝对值记作|a|,读作a的绝对值.二、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即(1)如果a>0,那么|a|=a;(2)如果a=0,那么|a|=0;(3)如果a<0,那么|a|=-a.用式子可表示为:三、重点归纳①绝对值为正数的数有两个,它们互为相反数.②两个互为相反数的数的绝对值相等.反之,绝对值相等的两个数相等或互为相反数。
③求一个数的绝对值就是去绝对值符号,所以求一个数的绝对值,必须先判断绝对值符号里的数,再去绝对值符号.如果绝对值里的数是非负数,那么这个数的绝对值就是它本身,如果绝对值里面的数是负数,那么这个数的绝对值就是它的相反数,当绝对值里面的数的正负性不能确定时,要分类讨论,即将其分成大于0、小于0、等于0、这三类来计论。
例题1|x-2|的绝对值为答案解析(1)如果x-2>0,即x>2,那么|x-2|=x-2(2)如果x-2=0,即x=2,那么|x-2|=0(3)如果x-2<0,即x<2,那么|x-2|=2-x④一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大,离原点的距离越近,绝对值越小。
⑤在数轴上,由于距离总是正数和零,则有理数的绝对值不可能是负数,因此任何一个有理数的绝对值都是非负数,即a取任意有理数,都有|a|≥0.绝对值的这一性质表现为:(1) |a|≥0,即 |a| 有最小值;(2)若几个非负数的和为零,则每一个非负数都为零,即|a|+|b| +|c|+…+|z|=0,则a=b=c=…=z=0.例题2已知|3-x|+(2x-y)²=0,那么x+y的值为答案 9解析由绝对值和偶次幂的非负性可得3-x=0,x=3;2x-y=0,y=6,所以x+y=9.练习题1、检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,4个足球检测质量分别是,+0.9,-3.6,-0.8,+2.5,从轻重的角度看,最接近标准的是。
初一数学绝对值难题解析完整版
初一数学绝对值难题解析Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】初一数学绝对值难题解析绝对值是初一数学的一个重要知识点,它的概念本身不难,但却经常拿来出一些难题,考验的是学生对基本概念的理解程度和基本性质的灵活运用能力。
绝对值有两个意义:(1)代数意义:非负数(包括零)的绝对值是它本身,负数的绝对值是它的相反数。
即|a|=a(当a≥0),|a|=-a(当a<0)(2)几何意义:一个数的绝对值等于数轴上表示它的点到原点的距离。
灵活应用绝对值的基本性质:(1)|a|≥0;(2)|ab|=|a|·|b|;(3)|a/b|=|a|/|b|(b≠0)(4)|a|-|b|≤|a+b|≤|a|+|b|;(5)|a|-|b|≤|a-b|≤|a|+|b|;思考:|a+b|=|a|+|b|,在什么条件下成立?|a-b|=|a|-|b|,在什么条件下成立?常用解题方法:(1)化简绝对值:分类讨论思想(即取绝对值的数为非负数和负数两种情况)(2)运用绝对值的几何意义:数形结合思想,如绝对值最值问题等。
(3)零点分段法:求零点、分段、区段内化简、综合。
例题解析:第一类:考察对绝对值代数意义的理解和分类讨论思想的运用1、在数轴上表示a、b两个数的点如图所示,并且已知表示c的点在原点左侧,请化简下列式子:(1)|a-b|-|c-b|解:∵a<0,b>0∴a-b<0c<0,b>0∴c-b<0故,原式=(b-a)-(b-c)=c-a(2)|a-c|-|a+c|解:∵a<0,c<0∴a-c要分类讨论,a+c<0当a-c≥0时,a≥c,原式=(a-c)+(a+c)=2a当a-c<0时,a<c,原式=(c-a)+(a+c)=2c2、设x<-1,化简2-|2-|x-2||。
解:∵x<-1∴x-2<0原式=2-|2-(2-x)|=2-|x|=2+x3、设3<a<4,化简|a-3|+|a-6|。
部编数学七年级上册专题1.2绝对值(压轴题专项讲练)(人教版)(解析版)含答案
专题1.2 绝对值【典例1】结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 ;表示﹣3和2两点之间的距离是 ;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x= ;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是 ,最小距离是 .(4)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|= .(1)根据数轴,观察两点之间的距离即可解决;(2)根据绝对值可得:x+1=±3,即可解答;(3)根据绝对值分别求出a,b的值,再分别讨论,即可解答;(4)根据|a+4|+|a﹣2|表示数a的点到﹣4与2两点的距离的和即可求解.解:(1)数轴上表示4和1的两点之间的距离是:4﹣1=3;表示﹣3和2两点之间的距离是:2﹣(﹣3)=5,故答案为:3,5;(2)|x+1|=3,x+1=3或x+1=﹣3,x=2或x=﹣4.故答案为:2或﹣4;(3)∵|a﹣3|=2,|b+2|=1,∴a=5或1,b=﹣1或b=﹣3,当a=5,b=﹣3时,则A、B两点间的最大距离是8,当a=1,b=﹣1时,则A、B两点间的最小距离是2,则A、B两点间的最大距离是8,最小距离是2;故答案为:8,2;(4)若数轴上表示数a的点位于﹣4与2之间,|a+4|+|a﹣2|=(a+4)+(2﹣a)=6.故答案为:6.1.(2022•高邮市模拟)若|x|+|x﹣4|=8,则x的值为( )A.﹣2B.6C.﹣2或6D.以上都不对【思路点拨】根据绝对值的意义得出,|x|+|x﹣4|=8表示到原点和4的距离和是8的数,分两种情况求出x的值即可.【解题过程】解:∵|x|+|x﹣4|=8,∴当x>4时,x+x﹣4=8,解得x=6,当x<0时,﹣x+4﹣x=8,解得x=﹣2,故选:C.2.(2021秋•西峡县期末)|x+8|+|x+1|+|x﹣3|+|x﹣5|的最小值等于( )A.10B.11C.17D.21【思路点拨】由|x+8|+|x+1|+|x﹣3|+|x﹣5|所表示的意义,得出当﹣1≤x≤3时,这个距离之和最小,再根据数轴表示数的特点进行计算即可.【解题过程】解:|x+8|+|x+1|+|x﹣3|+|x﹣5|表示数轴上表示数x的点,到表示数﹣8,﹣1,3,5的点的距离之和,由数轴表示数的意义可知,当﹣1≤x≤3时,这个距离之和最小,最小值为|5﹣(﹣8)|+|3﹣(﹣1)|=13+4=17,故选:C.3.如果有理数a,b,c满足|a﹣b|=1,|b+c|=2,|a+c|=3,那么|a+2b+3c|等于( )A.5B.6C.7D.8【思路点拨】通过对式子|a+c|=3的变形,确定已知之间的关系,再进行分类讨论,结合对所求式子的变形,找到已知所求之间的关系,再进行求解.【解答过程】解:|a+c|=|a﹣b+b+c|=3,∵|a﹣b|=1,|b+c|=2,∴a﹣b=1,b+c=2或a﹣b=﹣1,b+c=﹣2,分两种情况讨论:①若a﹣b=1,b+c=2,则两式相加,得a+c=3,∴|a+2b+3c|=|a+c+2(b+c)|=|3+2×2|=7;②若a﹣b=﹣1,b+c=﹣2,则两式相加,得a+c=﹣3,∴|a+2b+3c|=|a+c+2(b+c)|=|﹣3+2×(﹣2)|=7.故选:C.4.(2021秋•洛川县校级期末)已知:m=|a b|c+2|b c|a+3|c a|b,且abc>0,a+b+c=0.则m共有x个不同的值,若在这些不同的m值中,最大的值为y,则x+y=( )A.4B.3C.2D.1【思路点拨】根据绝对值的意义分情况说明即可求解.【解题过程】解:∵abc>0,a+b+c=0,∴a、b、c为两个负数,一个正数,a+b=﹣c,b+c=﹣a,c+a=﹣b,m=|−c|c+2|−a|a+3|−b|b∴分三种情况说明:当a<0,b<0,c>0时,m=1﹣2﹣3=﹣4,当a<0,c<0,b>0时,m=﹣1﹣2+3=0,当a>0,b<0,c<0时,m=﹣1+2﹣3=﹣2,∴m共有3个不同的值,﹣4,0,﹣2,最大的值为0.∴x=3,y=0,∴x+y=3.故选:B.5.我们知道|x|=x,(x>0)0,(x=0)−x,(x<0),所以当x>0时,x|x|=xx=1;当x<0时,x|x|=x−x=−1.下列结论序号正确的是( )①已知a,b是有理数,当ab≠0时,a|a|+b|b|的值为0或±2;②已知a,b是不为0的有理数,当|ab|=﹣ab时,则2a|a|+b|b|的值为±1;③已知a,b,c是有理数,a+b+c=0,abc<0,则b c|a|+a c|b|+a b|c|=−1或3;④已知a,b,c是非零的有理数,且|abc|abc=−1,则|a|a+|b|b+|c|c的值为1或﹣3;⑤已知a,b,c是非零的有理数,a+b+c=0,则a|a|+b|b|+c|c|+abc|abc|的所有可能的值为0.A.①③④B.②③⑤C.①②④⑤D.①②④【思路点拨】关于绝对值化简的问题,就要严格利用绝对值的定义来化简,要考虑全面,有时可以用特殊值法.【解题过程】解:①因为ab≠0,所以有以下几种情况:a>0,b<0,原式值是0;a>0,b>0,原式值是2;a<0,b>0,原式值是0;a<0,b<0,原式值是﹣2.故①正确;②∵|ab|=﹣ab,a,b是不为0的有理数,∴ab <0,有以下两种情况:a >0,b <0,此时原式值是1;a <0,b >0,此时原式值是﹣1,故②正确;③已知a ,b ,c 是有理数且a +b +c =0,abc <0,则b +c =﹣a ,a +c =﹣b ,b +c =﹣a ,∴原式化为−a |a|+−b |b|+−c |c|a ,b ,c 两正一负,有四种情况:a >0,b >0,c <0,原式值为﹣1;a >0,b <0,c >0,原式值为﹣1;a <0,b >0,c >0,原式值为﹣1;故③错误;④∵|abc|abc=−1,∴abc <0,分四种情况(同③)∴原式值是﹣1和3,故④正确;⑤分两种情况:当一正两负时,a |a|,b |b|.c |c|有一个1,两个﹣1,而abc >0,所以abc |abc|=1,此时和为1+1﹣1﹣1=0;当一负两正时,a |a|,b |b|.c |c|有一个﹣1,两个1,而abc <0,所以abc |abc|=−1,此时和为﹣1+1+1﹣1=0.故⑤正确.故选:C .6.(2021秋•常州期末)已知x =20212022,则|x ﹣2|﹣|x ﹣1|+|x |+|x +1|﹣|x +2|的值是 20212022 .【思路点拨】根据x 的值,判断x ﹣2,x ﹣1,x +1,x +2的符号,再根据绝对值的定义化简后即可得到答案.【解题过程】解:∵x=20212022,即0<x<1,∴x﹣2<0,x﹣1<0,x+1>0,x+2>0,∴|x﹣2|﹣|x﹣1|+|x|+|x+1|﹣|x+2|=2﹣x﹣(1﹣x)+x+x+1﹣x﹣2=2﹣x﹣1+x+x+x+1﹣x﹣2=x=2021 2022,故答案为:2021 2022.7.(2021秋•绵竹市期末)代数式|x+1009|+|x+506|+|x﹣1012|的最小值是 2021 .【思路点拨】利用绝对值的定义,结合数轴可知最小值为1012到﹣1009的距离.【解题过程】解:∵|x+1009|=|x﹣(﹣1009)|,|x+506|=|x﹣(﹣506)|,由绝对值的定义可知:|x+1009|代表x到﹣1009的距离;|x+506|代表x到﹣506的距离;|x﹣1012|代表x到1012的距离;结合数轴可知:当x在﹣1009与1012之间,且x=﹣506时,距离之和最小,∴最小值=1012﹣(﹣1009)=2021,故答案为:2021.8.(2021春•杨浦区校级期末)已知a,b,c为整数,且|a﹣b|2021+|c﹣a|2020=1,则|a﹣b|+|b﹣c|+|c﹣a|= 0或2 .【思路点拨】因为a、b、c都为整数,而且|a﹣b|2021+|c﹣a|2020=1,所以|a﹣b|与|c﹣a|只能是0或者1,于是进行分类讨论即可得出.【解题过程】解:∵a、b、c为整数,且|a﹣b|2021+|c﹣a|2020=1,∴有|a﹣b|=1,|c﹣a|=0或|a﹣b|=0,|c﹣a|=1①若|a﹣b|=1,|c﹣a|=0,则a﹣b=±1,a=c,∴|b﹣c|=|c﹣b|=|a﹣b|=1,∴|a﹣b|+|b﹣c|﹣|c﹣a|=1+1+0=2,②|a﹣b|=0,|c﹣a|=1,则a=b,c﹣a=±1,∴|b﹣c|=|c﹣b|=|c﹣a|=1,∴|a﹣b|+|b﹣c|﹣|c﹣a|=0+1﹣1=0,故答案为:0或2.9.(2021秋•大田县期中)三个整数a,b,c满足a<b<c,且a+b+c=0.若|a|<10,则|a|+|b|+|c|的最大值为 34 .【思路点拨】根据a+b+c=0,a<b<c,可得a<0,c>0,a+b<0,则|a|>|b|,再由|a|<10,a,b,c都是整数,得到|a|≤9,则|b|≤8,根据|a+b|=﹣(b+a)=﹣b﹣a,|b|≥﹣b,|a|≥a,即可得到|c|=|﹣a﹣b|=|a+b|≤|a|+|b|≤17,由此求解即可.【解题过程】解:∵a+b+c=0,a<b<c,∴a<0,c>0,a+b<0,∴|a|>|b|,∵|a|<10,a,b,c都是整数,∴|a|≤9,∴|b|≤8,∵|a+b|=﹣(b+a)=﹣b﹣a,|b|≥﹣b,|a|≥a,∴|c|=|﹣a﹣b|=|a+b|≤|a|+|b|≤17,∴|a|+|b|+|c|的值最大为9+8+17=34,故答案为:34.10.(2021秋•雁塔区校级期中)如果|a+3|+|a﹣2|+|b﹣4|+|b﹣7|=8,则a﹣b的最大值等于 ﹣2 .【思路点拨】根据题意可得|a+3|+|a﹣2|=5,|b﹣4|+|b﹣7|=3,此时﹣3≤a≤2,4≤b≤7,可求得﹣10≤a﹣b≤﹣2,即可求解.【解题过程】解:|a +3|+|a ﹣2|≥5,|b ﹣4|+|b ﹣7|≥3,∴|a +3|+|a ﹣2|+|b ﹣4|+|b ﹣7|≥8,∵|a +3|+|a ﹣2|+|b ﹣4|+|b ﹣7|=8,∴|a +3|+|a ﹣2|=5,|b ﹣4|+|b ﹣7|=3,∴﹣3≤a ≤2,4≤b ≤7,∴﹣10≤a ﹣b ≤﹣2,∴a ﹣b 的最大值等于﹣2,故答案为:﹣2.11.(2021秋•江岸区校级月考)设有理数a ,b ,c 满足a >b >c ,这里ac <0且|c |<|b |<|a |,则|x−a b 2|+|x−b c 2|+|x +a c 2|的最小值为 2a b c 2 .【思路点拨】根据ac <0可知a ,c 异号,再根据a >b >c ,以及|c |<|b |<|a |,即可确定a ,﹣a ,b ,﹣b ,c ,﹣c 在数轴上的位置,而|x −a b 2|+|x −b c 2|+|x +a c 2|表示到 a b 2,b c 2,−a c 2三点的距离的和,根据数轴即可确定.【解题过程】解:∵ac <0,∴a ,c 异号,∵a >b >c ,∴a >0,c <0,又∵|c |<|b |<|a |,∴﹣a <﹣b <c <0<﹣c <b <a ,又∵|x −a b 2|+|x −b c 2|+|x +a c 2|表示到 a b 2,b c 2,−a c 2三点的距离的和,当x 在b c 2时距离最小,即|x −a b 2|+|x −b c 2|+|x +a c 2|最小,最小值是a b 2与−a c 2之间的距离,即2a b c 2.故答案为:2a b c 2.12.(2020秋•海曙区期末)已知a ,b ,c 为3个自然数,满足a +2b +3c =2021,其中a ≤b ≤c ,则|a ﹣b |+|b ﹣c |+|c ﹣a |的最大值是 1346 .【思路点拨】根据绝对值的性质化简式子,再确定a,b,c的值,由此解答即可.【解题过程】解:由题意知b≥a,则|a﹣b|=b﹣a,b≤c,则|b﹣c|=c﹣b,a≤c,则|c﹣a|=c﹣a,故|a﹣b|+|b﹣c|+|c﹣a|=b﹣a+c﹣b+c﹣a=2(c﹣a),上式值最大时,即c最大,且a最小时,(即c﹣a最大时),又a+2b+3c=2021,2021=3×673+2,故c的最大值为673,此时a+2b=2,a≤b,且a,b均为自然数,a=0时,b=1,此时a最小,故2(c﹣a)的最大值即c=673,a=0时的值,即:2×(673﹣0)=1346.故答案为:1346.13.设x是有理数,y=|x﹣1|+|x+1|.有下列四个结论:①y没有最小值;②有无穷多个x的值,使y取到最小值;③有x的值,使y=1.8;④使y=2.5的x有两个值.其中正确的是 (填序号).【思路点拨】依据绝对值的几何意义,|x﹣1|可以看成是x与1的距离,|x+1|可以看出是x与﹣1的距离,这样y可以看成两个距离之和,即在数轴上找一点x,使它到1和﹣1 的距离之和等于y.要从三个情形分析讨论:①x 在﹣1的左侧;②x在﹣1和1之间(包括﹣1,1);③x在1的右侧.【解答过程】解:∵|x﹣1|是数轴上x与1的距离,|x+1是数轴上x与﹣1的距离,∴y=|x﹣1|+|x+1|是数轴上x与1和﹣1的距离之和.∴当x在﹣1和1之间(包括﹣1,1)时,y的值总等于2.如下图:当x在﹣1的左侧时,y的值总大于于2.如下图:当x在1的右侧时,y的值总大于于2.如下图:综上,y有最小值2,且此时﹣1≤x≤1.∴①③不正确,②正确.∵使y=2.5的x有﹣1,25和1,25两个值,∴④正确.故答案为②④.14.有理数a,b满足|a+1|+|2﹣a|=6﹣|b+2|﹣|b+5|,a2+b2的最大值为 ,最小值为 .【思路点拨】将|a+1|+|2﹣a|以及|b+2|+|b+5|拆分开来看,从而分别得到他们的最值小均为3,而根据已知知道,它们的和为6,从而得到|a+1|+|2﹣a|以及|b+2|+|b+5|的值均为3,从而得到a和b的取值范围,进而可以求出a2+b2的最大值和最小值.【解答过程】解:|a+1|+|2﹣a|=6﹣|b+2|﹣|b+5|,∴|a+1|+|2﹣a|+|b+2|+|b+5|=6,∵|a+1|表示a到﹣1的距离,|2﹣a|表示a到2的距离,∴|a+1|+|2﹣a|≥3,又∵|b+2||表示b到﹣2的距离,|b+5|表示b到﹣5的距离,∴|b+2|+|b+5|≥3,又∵|a+1|+|2﹣a|+|b+2|+|b+5|=6,∴|a+1|+|2﹣a|=3,|b+2|+|b+5|=3,此时﹣1≤a≤2,﹣5≤b≤﹣2,∴a2的最大值为4,最小值为0,b2的最大值为25,最小值为4,∴a2+b2的最大值为29,最小值为4.故答案为:29,4.15.(2021秋•梁子湖区期中)已知|ab ﹣2|与|b ﹣2|互为相反数,求b 1a 1−b 2a−2+b 3a 3的值.【思路点拨】根据绝对值的非负性求出a ,b 的值,代入代数式求值即可.【解题过程】解:根据题意得|ab ﹣2|+|b ﹣2|=0,∵|ab ﹣2|≥0,|b ﹣2|≥0,∴ab ﹣2=0,b ﹣2=0,∴a =1,b =2,∴原式=32−4−1+54=32+4+54=274.16.(2021秋•贡井区期中)如图,数轴上的点A ,B ,C ,D ,E 对应的数分别为a ,b ,c ,d ,e ,且这五个点满足每相邻两个点之间的距离都相等.(1)填空:a ﹣c < 0,b ﹣a > 0,b ﹣d < 0(填“>“,“<“或“=“);(2)化简:|a ﹣c |﹣2|b ﹣a |﹣|b ﹣d |;(3)若|a |=|e |,|b |=3,直接写出b ﹣e 的值.【思路点拨】(1)根据数轴得出a <b <c <d <e ,再比较即可;(2)先去掉绝对值符号,再合并同类项即可;(3)先求出b 、e 的值,再代入求出即可.【解题过程】解:(1)从数轴可知:a <b <c <d <e ,∴a ﹣c <0,b ﹣a >0,b ﹣d <0,故答案为:<,>,<;(2)原式=|a ﹣c |﹣2|b ﹣a |﹣|b ﹣d |=﹣a +c ﹣2(b ﹣a )﹣(d ﹣b )=﹣a+c﹣2b+2a﹣d+b=a﹣b+c﹣d;(3)|a|=|e|,∴a、e互为相反数,∵|b|=3,这五个点满足每相邻两个点之间的距离都相等,∴b=﹣3,e=6,∴b﹣e=﹣3﹣6=﹣9.17.(2021秋•铜山区期中)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离记为d,请回答下列问题:(1)数轴上表示﹣3和1两点之间的距离d为 4 ;(2)数轴上表示x和﹣5两点之间的距离d为 |x+5| ;(3)若x表示一个有理数,且x大于﹣3且小于1,则|x﹣1|+|x+3|= 4 ;(4)若x表示一个有理数,且|x+2|+|x+3|>1,则有理数x的取值范围为 x<﹣2或x>﹣3 .【思路点拨】(1)根据数轴上两点间的距离公式进行计算;(2)根据数轴上两点间距离公式列式;(3)根据绝对值的意义进行化简计算;(4)根据绝对值的意义和数轴上两点间的距离进行分析求解.【解题过程】解:(1)d=1﹣(﹣3)=1+3=4,∴数轴上表示﹣3和1两点之间的距离d为4,故答案为:4;(2)数轴上表示x和﹣5两点之间的距离d=|x﹣(﹣5)|=|x+5|,故答案为:|x+5|;(3)∵﹣3<x<1,∴x﹣1<0,x+3>0,∴|x﹣1|+|x+3|=1﹣x+x+3=4,故答案为:4;(4)|x+2|+|x+3|表示数轴上数x到数﹣2和数﹣3的距离之和,∵﹣2﹣(﹣3)=1,且|x+2|+|x+3|>1,∴x<﹣2或x>﹣3,故答案为:x<﹣3或x>﹣2.18.x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣1997|取最小值,最小值是多少?【思路点拨】利用绝对值的几何意义分析:x为数轴上的一点,|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣1997|表示:点x到数轴上的1997个点(1、2、3、…、1997)的距离之和,进而分析得出最小值为:|999﹣1|+|999﹣2|+|999﹣3|+…|999﹣1997|求出即可.【解题过程】解:在数轴上,要使点x到两定点的距离和最小,则x在两点之间,最小值为两定点为端点的线段长度(否则距离和大于该线段);所以:当1≤x≤1997时,|x﹣1|+|x﹣1997|有最小值1996;当2≤x≤1996时,|x﹣2|+|x﹣1996|有最小值1994;…当x=999时,|x﹣999|有最小值0.综上,当x=999时,|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣1997|能够取到最小值,最小值为:|999﹣1|+|999﹣2|+|999﹣3|+…|999﹣1997|=998+997+996+…+0+1+2+998=(1998)×9982×2=997002.19.(2021秋•金乡县期中)我们知道:在研究和解决数学问题时,当问题所给对象不能进行统一研究时,我们就需要根据数学对象的本质属性的相同点和不同点,将对象区分为不同种类,然后逐类进行研究和解决,最后综合各类结果得到整个问题的解决,这一思想方法,我们称之为“分类讨论的思想”.这一数学思想用处非常广泛,我们经常用这种方法解决问题.例如:我们在讨论|a|的值时,就会对a进行分类讨论,当a≥0时,|a|=a;当a<0时,|a|=﹣a.现在请你利用这一思想解决下列问题:(1)8|8|= 1 .−3|−3|= ﹣1 (2)a|a|= 1或﹣1 (a≠0),a|a|+b|b|= 2或0 (其中a>0,b≠0)(3)若abc≠0,试求a|a|+b|b|+c|c|+abc|abc|的所有可能的值.【思路点拨】(1)根据绝对值的定义即可得到结论;(2)分类讨论:当a>0时,当a<0时,当b>0时,当b<0时,根据绝对值的定义即可得到结论;(3)分类讨论:①当a>0,b>0,c>0时,②当a,b,c三个字母中有一个字母小于0,其它两个字母大于0时,③当a,b,c三个字母中有一个字母大于0,其它两个字母小于0时,④当a<0,b<0,c<0时,根据绝对值的定义即可得到结论.【解题过程】解:(1)8|8|=1,−3|−3|=−1,故答案为:1,﹣1;(2)当a>0时,a|a|=1;当a<0时,a|a|=−1;当b>0时,a|a|+b|b|=1+1=2;当b<0时,a|a|+b|b|=1﹣1=0;故答案为:1或﹣1,2或0;(3)①当a>0,b>0,c>0时,a|a|+b|b|+c|c|+abc|abc|=1+1+1+1=4,②当a,b,c三个字母中有一个字母小于0,其它两个字母大于0时,a|a|+b|b|+c|c|+abc|abc|=−1+1+1﹣1=0,③当a,b,c三个字母中有一个字母大于0,其它两个字母小于0时,a|a|+b|b|+c|c|+abc|abc|=1﹣1﹣1+1=0,④当a<0,b<0,c<0时,a|a|+b|b|+c|c|+abc|abc|=−1﹣1﹣1﹣1=﹣4,综上所述,a|a|+b|b|+c|c|+abc|abc|的所有可能的值为±4,0.20.(2021秋•江岸区期中)阅读下列材料.我们知道|x|=x(x>0)0(x=0)−x(x<0),现在我们可以利用这一结论来化简含有绝对值的代数式.例如:化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1和x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在有理数范围内,零点值x=﹣1和x=2可将全体有理数分成不重复且不遗漏的如下3种情况:x<﹣1;﹣1≤x<2;x≥2.从而在化简|x+1|+|x﹣2|时,可分以下三种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=(x+1)﹣(x﹣2)=3;③当x≥2时,原式=(x+1)+(x﹣2)=2x﹣1.∴|x+1|+|x﹣2|=−2x+1(x<−1)3(−1≤x<2)2x−1(x≥2),通过以上阅读,解决问题:(1)|x﹣3|的零点值是x= 3 (直接填空);(2)化简|x﹣3|+|x+4|;(3)关于x,y的方程|x﹣3|+|x+4|+|y﹣2|+|y+1|=10,直接写出x+y的最小值为 ﹣5 .【思路点拨】(1)根据零点值的概念领x﹣3=0,求解;(2)仿照材料例题分x<﹣4;﹣4≤x<3;x≥3三种情况结合绝对值的意义化简求解;(3)仿照材料例题,分原式为|x﹣3|+|x+4|与|y﹣2|+|y+1|两部分进行分析求其最小值.【解题过程】解:(1)令x﹣3=0,解得:x=3,∴|x﹣3|的零点值是x=3,故答案为:3;(2)令x﹣3=0,x+4=0,解得:x=3,x=﹣4,①当x<﹣4时,原式=3﹣x﹣4﹣x=﹣2x﹣1,②当﹣4≤x<3时,原式=3﹣x+x+4=7,③当x>3时,原式=x﹣3+x+4=2x+1,综上,|x﹣3|+|x+4|=−2x−1(x<−4) 7(−4≤x<3)2x+1(x>3);(3)令x﹣3=0,x+4=0,y﹣2=0,y+1=0,解得:x=3,x=﹣4,y=2,y=﹣1,由(2)可得,当x<﹣4时,|x﹣3|+|x+4|=﹣2x﹣1,又∵x<﹣4,∴﹣2x>8,则﹣2x﹣1>7,当x>3时,|x﹣3|+|x+4|=2x+1,又∵x>3,∴2x>6,则2x+1>7,∴当﹣4≤x<3时,|x﹣3|+|x+4|取得最小值为7,同理,可得当﹣1≤y<2时,|y﹣2|+|y+1|取得最小值为3,∴当|x﹣3|+|x+4|+|y﹣2|+|y+1|=10时,﹣4≤x<3,﹣1≤y<2,∴此时x+y的最小值为﹣4+(﹣1)=﹣5,故答案为:﹣5.。
七年级绝对值问题易错题总结(含答案)
七年级绝对值问题易错题总结(含答案)一、选择题(本大题共6小题,共18.0分)1.若ax=ay,那么下列等式一定成立的是()A. x=yB. x=|y|C. (a−1)x=(a−1)yD. 3−ax=3−ay【答案】D【解析】解:A、当a=0时,x与y不一定相等,故本选项错误;B、当a=0时,x与|y|不一定相等,故本选项错误;C、当a=0时,x与y不一定相等,故本选项错误;D、等式ax=ay的两边同时乘−1,再同时加上3,该等式仍然成立,故本选项正确.故选:D.利用等式的性质对每个式子进行变形即可找出答案.本题主要考查等式的性质.运用等式性质2时,必须注意等式两边所乘的(或除以的)数或式子不为0,才能保证所得的结果仍是等式.2.数轴上A,B,C三点所表示的数分别是a,b,c,且满足|c−b|−|a−b|=|a−c|,则A,B,C三点的位置可能是()A. B.C. D.【答案】C【解析】【分析】本题主要考查绝对值性质:正数绝对值等于本身,0的绝对值是0,负数绝对值等于其相反数.由A、B、C在数轴上的位置判断出a、b、c的大小关系,根据绝对值的性质去绝对值符号,判断左右两边是否相等即可.【解答】解:A.当a<c<b时,|c−b|−|a−b|=b−c+a−b=a−c,|a−c|=c−a,此选项错误;B.当a<b<c时,|c−b|−|a−b|=c−b+a−b=c+a−2b,|a−c|=c−a,此选项错误;C.当c<a<b时,|c−b|−|a−b|=b−c+a−b=a−c,|a−c|=a−c,故此选项正确;D.当c<b<a时,|c−b|−|a−b|=b−c−a+b=−c−a+2b,|a−c|=a−c,此选项错误.故选C.3.如果|x+y−3|=2x+2y,那么(x+y)3的值为()A. 1B. −27C. 1或−27D. 1或27【答案】A【解析】【分析】先根据|x+y−3|=2x+2y=2(x+y)≥0,得到x+y≥0,再根据绝对值的性质,分类讨论即可得出x+y的值.本题主要考查了绝对值的性质以及乘方的运用,解题时注意:任意一个有理数的绝对值是非负数.【解答】解:∵|x+y−3|=2x+2y=2(x+y),∴x+y≥0,当x+y−3=2(x+y)时,x+y=−3(舍去),当x+y−3=−2(x+y)时,x+y=1,(符合题意),∴(x+y)3的值为1.故选:A.4.下列说法正确的是()①一个数的绝对值一定是正数;②绝对值是同一个正数的数有两个,它们互为相反数;③任何有理数小于或等于它的绝对值;④绝对值最小的自然数是1.A. ①②B. ①②③C. ②③D. ②③④【答案】C【解析】解:∵一个数的绝对值是正数或0,∴选项①不符合题意;∵绝对值是同一个正数的数有两个,它们互为相反数,∴选项②符合题意;∵任何有理数小于或等于它的绝对值,∴选项③符合题意;∵绝对值最小的自然数是0,∴选项④不符合题意.故选:C.根据有理数的定义和分类,以及相反数、绝对值的含义和求法,逐项判断即可.此题主要考查了有理数的定义和分类,以及相反数、绝对值的含义和求法,要熟练掌握.5.数轴上A,B,C三点所表示的数分别是a,b,c,且满足|c−b|=|a−b|+|a−c|,则A,B,C三点的位置可能是()A. B.C. D.【答案】A【解析】略6.符号语言“|a|=−a(a≤0)”所表达的意思是()A. 正数的绝对值等于它本身B. 负数的绝对值等于它的相反数C. 非正数的绝对值等于它的相反数D. 负数的绝对值是正数【答案】C【解析】【分析】此题主要考查了绝对值和相反数,关键是掌握绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值等于0.根据a的取值范围可得a为非正数,再根据等式|a|=−a可得非正数的绝对值等于它的相反数.【解答】解:“|a|=−a(a≤0)”所表达的意思非正数的绝对值等于它的相反数,故选C.二、填空题(本大题共4小题,共12.0分)7.数a,b在数轴上的位置如图所示,化简:|2a−b|−|b−a|+|b|=_______.【答案】a−b【解析】【分析】此题考查有理数的大小比较和绝对值的化简,解题的关键是根据数轴得出有关字母的大小进行解答.先根据有理数的大小比较比较大小,再根据绝对值的化简解答即可.【解答】解:∵−2<b<−1<0<a<1,∴2a−b>0,b−a<0,b<0,∴|2a−b|−|b−a|+|b|=2a−b+b−a−b=a−b.故答案为:a−b.8.有理数a、b、c在数轴上的位置如图,则|a+c|+|c−b|−|a+b|=.【答案】0【解析】略9.若实数m,n,p满足m<n<p(mp<0)且|p|<|n|<|m|,则|x−m|+|x+n|+|x+p|的最小值是______.【答案】−m−n【解析】解:∵mp<0,∴m、p异号,∵m<p,∴p>0,m<0,∵m<n<p且|p|<|n|<|m|,∴n<0,如图所示:∴当x=−p时,|x−m|+|x+n|+|x+p|有最小值,其最小值是:|x−m|+|x+n|+ |x+p|=|−p−m|+|−p+n|+|−p+p|=−p−m−n+p=−m−n,则|x−m|+|x+n|+|x+p|的最小值是−m−n,故答案为:−m−n.先根据mp<0,确认p>0,m<0,再根据已知可得:n<0,并画数轴标三个实数的位置及−n和−p的位置,根据图形可知:当x=−p时,|x−m|+|x+n|+|x+p|有最小值,代入可得最小值.本题考查绝对值的几何意义,即这个数表示的点到原点的距离.10.数a,b在数轴上的位置如图所示,化简:|2a−b|−|b−a|+|b|=______.【答案】a−b【解析】解:∵−2<b<−1<0<a<1,∴2a−b>0,b−a<0,b<0,∴|2a−b|−|b−a|+|b|=2a−b+b−a−b=a−b.故答案为:a−b.先根据有理数的大小比较比较大小,再根据绝对值的化简解答即可.此题考查有理数的大小比较和绝对值的化简,解题的关键是根据数轴得出有关字母的大小进行解答.三、解答题(本大题共2小题,共16.0分)11.定义:关于x的两个一次二项式,其中任意一个式子的一次项系数都是另一个式子的常数项,则称这两个式子互为“申花式”.例如,式子3x+4与4x+3互为“申花式”.(1)判断式子−5x+2与−2x+5______(填“是”或“不是”)互为“申花式”;(2)已知式子ax+b的“申花式”是3x−4且数a、b在数轴上所对应的点为A、B.①化简|x+a|+|x+b|的值为7,则x的取值范围是______;②数轴上有一点P到A、B两点的距离的和PA+PB=11,求点P在数轴上所对应的数.【答案】解:(1)∵−5x+2与−2x+5的其中一个式子的一次项系数不是另一个式子的常数项,∴它们不互为“申花式”,故答案为:不是;(2)①∵式子ax+b的“申花式”是3x−4,∴a=−4,b=3,∵|x+a|+|x+b|=7,∴|x−4|+|x+3|=7,当x<−3时,4−x−x−3=7,解得x=−3(舍去);当−3≤x≤4时,4−x+x+3=7,解得,x为−3≤x≤4中任意一个数;当x>4时,x−4+x+3=7,解得x=4(舍去).综上,−3≤x≤4.故答案为:−3≤x≤4.②∵PA+PB=11,∴当P点在A作左边时,有PA+PA+AB=11,即2PA+7=11,则PA=2,于是P为−4−2=−6;当P点在A、B之间时,有PA+PB=AB=7≠11,无解;当P点在B点右边时,有2PB+AB=11,则PB=2,于是P为3+2=5,综上,点P在数轴上所对应的数是−6或5【解析】(1)根据定义的特征:任意一个式子的一次项系数都是另一个式子的常数项,(2)①把a、b的值代入|x+a|+|x+b|=7,解绝对值方程便可;②分三种情况:当P点在A作左边时,当P点在A、B之间时,当P点在B点右边时,由线段和差关系求得PA或PB的值,进而得P点表示的数;本题主要考查了新定义,数轴,两点间的距离,一元一次方程的应用,关键是正确理解新定义,把新的知识转化为常规知识进行解答.12.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示3和1的两点之间的距离是________;表示−3和4两点之间的距离是_______;所以,一般地数轴上表示数m和数n的两点之间的距离是________.(2)若数轴上一点表示为数a,化简|a+4|+|a−2|.(3)已知数轴上点B,C所表示的数分别是−4,5.在数轴上有两个动点P,Q,P的速度为1个单位长度/秒,Q的速度为2个单位长度/秒,点P,Q分别从点B,C 同时出发相向而行,在数轴上运动,则经过多少时间后P,Q两点相距4个单位长度?【答案】解:(1)2;7;|m−n|;(2)当a<−4时,原式=−a−4+2−a=−2a−2;当−4⩽a<2时,原式=4+a+2−a=6;当a⩾2时,原式=a+4+a−2=2a+2;(3)设经过t秒后P,Q两点相距4个单位长度,则P:−4+t,Q:5−2t,|PQ|=|−4+t−5+2t|=|3t−9|=4,解得:t=133或t=53.【解析】【分析】本题考查了数轴,绝对值,一元一次方程的应用,两点间的距离.(1)根据数轴的概念,即可求得答案;(2)分不同情况,结合两点之间的距离,即可求得答案;(3)设经过t秒后P,Q两点相距4个单位长度,则P:−4+t,Q:5−2t,利用两点之间的距离可得方程,解方程即可求得答案.【解答】解:(1)数轴上表示3和1的两点之间的距离是2;表示−3和4两点之间的距离是7;所以,一般地数轴上表示数m和数n的两点之间的距离是|m−n|.故答案为2;7;|m−n|;。
初一数学绝对值难点突破(含答案)
绝对值难点突破1.|x+1|+|x﹣2|+|x﹣3|的值为.2.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.第1页(共9页)3.当式子|x+1|+|x﹣3|+|x﹣4|+|x+6|取最小值时,求相应x的取值范围,并求出最小值.4.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是,(2)数轴上表示x与2的两点之间的距离可以表示为.(3)如果|x﹣2|=5,则x=.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.5.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.(1)点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A 到C的距离之和可表示为(用含绝对值的式子表示).(2)利用数轴探究:①找出满足|x﹣3|+|x+1|=6的x的所有值是,②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是;当x的值取在的范围时,|x|+|x﹣2|取得最小值,这个最小值是.(3)求|x﹣3|+|x﹣2|+|x+1|的最小值为,此时x的值为.(4)求|x﹣3|+|x﹣2|+|x+1|+|x+2|的最小值,求此时x的取值范围.6.如果a、b、c是非零有理数,且a+b+c=0,那么+++的所有可能的值为.7.已知|a|=5,|b|=6,且|a+b|=a+b,求a﹣b的值.8.阅读材料:我们知道,若点A、B在数轴上分别表示有理数a、b(如图所示),A、B两点间的距离表示为AB,则AB=|a﹣b|.所以式子|x﹣2|的几何意义是数轴上表示x的点与表示2的点之间的距离.根据上述材料,解答下列问题:(1)若点A表示﹣2,点B表示1,则AB=;(2)若点A表示﹣2,AC=4,则点C表示的数是;(3)若|x﹣3|=4,求x的值.9.同学们都发现|5﹣(﹣2)|它的意义是:数轴上表示5的点与表示﹣2的点之间的距离,试探索:(1)求|5﹣(﹣2)|=;(2)|5+3|表示的意义是;(3)|x﹣1|=5,则x在数轴上表示的点对应的有理数是.10.已知a,b,c在数轴上的位置如图所示,且|a|=|c|.(1)比较a,﹣a,b,﹣b,c,﹣c的大小关系.(2)化简|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|.参考答案与试题解析1.【分析】根据x的取值范围结合绝对值的意义分情况进行计算.【解答】解:当x≤﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;当﹣1<x≤2时,|x+1|+|x﹣2|+|x﹣3|=x+1﹣x+2﹣x+3=﹣x+6;当2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2﹣x+3=x+2;当x>3时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2+x﹣3=3x﹣4.综上所述,|x+1|+|x﹣2|+|x﹣3|的值为.故答案为:.2.【分析】(1)令x﹣5=0,x﹣4=0,解得x的值即可;(2)分为x<4、4≤x<5、x≥5三种情况化简即可;(3)根据(2)中的化简结果判断即可.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|的零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x<5时,原式=5﹣x+x﹣4=1;当x≥5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x<5时,原式=1;当x≥5时,原式=2x﹣9>1.故代数式的最小值是1.3.【分析】根据线段上的点与线段的端点的距离最小,可得答案.【解答】解:当式子|x+1|+|x﹣3|+|x﹣4|+|x+6|取最小值时,相应x的取值范围是﹣1≤x≤3,最小值是14.4.【分析】(1)根据距离公式即可解答;(2)利用距离公式求解即可;(3)利用绝对值求解即可;(4)利用绝对值及数轴求解即可;(5)根据数轴及绝对值,即可解答.【解答】解:(1)数轴上表示5与﹣2两点之间的距离是|5﹣(﹣2)|=|5+2|=7,故答案为:7;(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,故答案为:|x﹣2|;(3)∵|x﹣2|=5,∴x﹣2=5或x﹣2=﹣5,解得:x=7或x=﹣3,故答案为:7或﹣3;(4)∵|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x﹣1|=4,∴这样的整数有﹣3、﹣2、﹣1、0、1,故答案为:﹣3、﹣2、﹣1、0、1;(5)有最小值是3.5.【分析】(1)根据两点间的距离公式,可得答案;(2)根据两点间的距离公式,点在线段上,可得最小值;(3):|x﹣3|+|x﹣2|+|x+1|=(|x﹣3|+|x+1|)+|x﹣2|,根据问题(2)中的探究②可知,要使|x﹣3|+|x+1|的值最小,x的值只要取﹣1到3之间(包括﹣1、3)的任意一个数,要使|x﹣2|的值最小,x应取2,显然当x=2时能同时满足要求,把x=2代入原式计算即可;(4)根据两点间的距离公式,点在线段上,可得答案.【解答】解:(1)A到B的距离与A到C的距离之和可表示为|x+2|+|x﹣1|;(2)①满足|x﹣3|+|x+1|=6的x的所有值是﹣2、4,②这个最小值是4;当x的值取在不小于0且不大于2的范围时,|x|+|x﹣2|取得最小值,这个最小值是2;(3)由分析可知,当x=2时能同时满足要求,把x=2代入原式=1+0+3=4;(4)|x﹣3|+|x﹣2|+|x+1|+|x+2|=(|x﹣3|+|x+2|)+(|x﹣2|+|x+1|)要使|x﹣3|+|x+2|的值最小,x的值取﹣2到3之间(包括﹣2、3)的任意一个数,要使|x﹣2|+|x+1|的值最小,x取﹣1到2之间(包括﹣1、2)的任意一个数,显然当x取﹣1到2之间(包括﹣1、2)的任意一个数能同时满足要求,不妨取x=0代入原式,得|x﹣3|+|x﹣2|+|x+1|+|x+2|=3+2+1+2=8;方法二:当x取在﹣1到2之间(包括﹣1、2)时,|x﹣3|+|x﹣2|+|x+1|+|x+2|=﹣(x﹣3)﹣(x﹣2)+(x+1)+(x+2)=﹣x+3﹣x+2+x+1+x+2=8.故答案为:|x+2|+|x﹣1|;﹣2,4;4;不小于0且不大于2;2;4,2.6.【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(﹣1)+(﹣1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(﹣1)+(﹣1)+1=0,综上,的值为0,故答案为:0.7.【分析】根据绝对值的概念可得a=±5,b=±6,然后分类讨论,就可求出符合条件“|a+b|=a+b”时的a﹣b的值.【解答】解:∵|a|=5,|b|=6,∴a=±5,b=±6.①当a=5,b=6时,a+b=11,满足|a+b|=a+b,此时a﹣b=5﹣6=﹣1;②当a=5,b=﹣6时,a+b=﹣1,不满足|a+b|=a+b,故舍去;③当a=﹣5,b=6时,a+b=1,满足|a+b|=a+b,此时a﹣b=﹣5﹣6=﹣11;④当a=﹣5,b=﹣6时,a+b=﹣11,不满足|a+b|=a+b,故舍去.综上所述:a﹣b的值为﹣1或﹣11.8.【分析】(1)根据题中的方法确定出AB的长即可;(2)根据A表示的数字,以及AC的长,确定出C表示的数即可;(3)原式利用绝对值的代数意义化简即可求出x的值.【解答】解:(1)根据题意得:AB=|﹣2﹣1|=3;(2)根据题意得:|x﹣(﹣2)|=4,即|x+2|=4,可得x+2=4或x+2=﹣4,解得:x=2或﹣6;(3)∵|x﹣3|=4,∴x﹣3=4或x﹣3=﹣4,解得:x=7或﹣1.故答案为:(1)3;(2)2或﹣69.【分析】(1)根据5与﹣2两数在数轴上所对的两点之间的距离为7得到答案;(2)把|5+3|变形为|5﹣(﹣3)|,而|5﹣(﹣3)|表示5与﹣3之差的绝对值;(3)根据绝对值的性质可求x在数轴上表示的点对应的有理数.【解答】解:(1)|5﹣(﹣2)|=|7|=7.(2)|5+3|表示的意义是点5与﹣3的点之间的距离.(3)|x﹣1|=5,x﹣1=﹣5,x﹣1=5,解得x=﹣4或x=6.则x在数轴上表示的点对应的有理数是﹣4或x=6.故答案为:7;点5与﹣3的点之间的距离;﹣4或6.10.【分析】根据互为相反数的两数的几何意义:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等.在数轴上找出﹣a,﹣b,﹣c的对应点,依据a,b,c,﹣a,﹣b,﹣c在数轴上的位置比较大小.在此基础上化简给出的式子.【解答】解:(1)解法一:根据表示互为相反数的两个点在数轴上的关系,分别找出﹣a,﹣b,﹣c对应的点如图所示,由图上的位置关系可知﹣b>a=﹣c>﹣a=c>b.解法二:由图知,a>0,b<0,c<0且|a|=|c|=|b|,∴﹣b>a=﹣c>﹣a=c>b.(2)∵a>0,b<0,c<0,且|a|=|c|<|b|,∴a+b<0,a﹣b>0,b﹣c<0,a+c=0,∴|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|=﹣(a+b)﹣(a﹣b)﹣(b﹣c)+0=﹣a﹣b﹣a+b﹣b+c=﹣2a﹣b+c.。
初一数学绝对值含答案
绝对值中考要求重难点1.掌握绝对值的概念与化简2.绝对值的几何意义3.分类讨论思想在绝对值中的应用课前预习外尔斯特拉斯现在通用的绝对值符号“| |”,是德国数学家外尔斯特拉斯在1841年率先引用的,后来为人们所广泛接受。
德国数学家外尔斯特拉斯也算业余高手,后来走上了职业数学家的道路。
他开始是学习法律和财经,一度在在中学任教。
这大概是中学数学教师中最杰出的一位了。
德国是一个多出哲学家的国度,德国人又以严格认真见长,外尔斯特拉斯也是一样,他的品性最能体现德国人对待真理的态度了。
他最大的贡献是在微积分严格化上作出了杰出的贡献。
外尔斯特拉斯还告诉我们,直观有时是靠不住甚至是完全错误的。
从前人们直观上一直认为连续曲线肯定是光滑的,或者大多数点都是光滑的。
用在函数上,就是一直认为连续函数是可导的,或者在多数点是可导的。
可是外尔斯特拉斯却举出一个反例,在每一个点都连续,却有在任何点都不可导。
他举出这个函数是画不出图像的,当时作为一个中学教师,的确令数学家们大跌了眼镜。
例题精讲模块一绝对值的意义及其化简1.绝对值的几何意义:一个数a的绝对值就是数轴上表示a的点与原点的距离。
数a的绝对值记作a2.绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.绝对值的性质:①(0)0(0)(0)a aa aa a>⎧⎪==⎨⎪-<⎩,②(0)(0)a aaa a≥⎧=⎨-<⎩或(0)(0)a aaa a>⎧=⎨-≤⎩4.绝对值其他的重要性质:①任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥且a a ≥- ②若a b =,则a b =或a b =- ③a b a b ⋅=⋅,a ab b=(0b ≠) ④222a a a ==☞绝对值的意义【例1】 在数轴上表示数a 的点到原点的距离是13,那么a = 【难度】1星【解析】绝对值的代数意义,几何意义 【答案】13a =±【巩固】绝对值等于2的数有 个,是 【难度】1星【解析】绝对值的代数意义,几何意义 【答案】2个,2±【巩固】绝对值不大于7且大于4的整数有 个,是 【难度】2星【解析】绝对值的代数意义,几何意义 【答案】6个,5±、6±、7±☞绝对值化简【例2】 计算:3π-= ,若23x -=,则x = 【难度】1星 【解析】绝对值化简 【答案】3π-,5x =或1-【巩固】若220x x -+-=,则x 的取值范围是 【难度】2星 【解析】绝对值化简【答案】2x ≤【巩固】已知:①52a b ==,,且a b <;分别求a b ,的值【难度】3星 【解析】绝对值化简【答案】解:∵5a =,2b =∴5a =±,2b =±∵a b < ∴5a =-,2b =±【例3】 如果有理数a 、b 、c 在数轴上的位置如图所示,求11a b b a c c +------的值.【难度】3星 【解析】绝对值化简【答案】解:如图所示,得0a b <<,01c <<∴0a b +<,10b -<,0a c -<,10c ->∴原式=()(1)()(1)a b b a c c -++-+---=11a b b a c c --+-+--+=2-【巩固】已知00x z xy y z x <<>>>,,,那么x z y z x y +++--= 【难度】3星 【解析】绝对值化简【答案】解:∵ 0x z <<,0xy > ∴0y <∵y z x >> ∴y z x ->>- ∴0x z +>,0y z +<,0x y -> ∴原式=()()()0x z y z x y x z y z x y +-+--=+---+=【巩固】数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--【难度】3星 【解析】绝对值化简【答案】解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2a b b a b a a a b b a b a b -++-+-+=--+-++=【例4】 设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+- 【难度】3星 【解析】绝对值化简【答案】解: ∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b < ∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=【巩固】已知a a =-,0b <,化简22442(2)24323a b a b a b b a +--+++-- 【难度】3星 【解析】绝对值化简【答案】解:∵a a =- ∴0a ≤ ∵0b < ∴20a b +<,230a -<∴原式=22(2)42(2)24323a b a b a b b a -++-++++-=242222a b a b a b -+++++=42a b+模块二 绝对值的非负性1. 非负性:若有几个非负数的和为0,那么这几个非负数均为02. 绝对值的非负性;若0a b c ++=,则必有0a =,0b =,0c =【例5】 若42a b -=-+,则_______a b +=【难度】2星【解析】绝对值的非负性【答案】解:∵42a b -=-+ ∴420a b -++=∵40a -≥,20b +≥ ∴40a -=,20b += 则4a =,2b =-【巩固】若7322102m n p ++-+-=,则23_______p n m +=+ 【难度】2星【解析】绝对值的非负性 【答案】解:∵30m +≥,702n -≥,210p -≥ ∴30m +=,702n -=,210p -= 则3m =-,72n =,12p = ∴3232p n m ++=-【例6】 设a 、b 同时满足①2(2)|1|1a b b b -++=+;②|3|0a b +-=.那么ab = 【难度】3星【解析】绝对值化简与非负性【答案】解:∵2(2)0a b -≥,10b +≥,且2(2)|1|1a b b b -++=+∴10b +≥ ∴2(2)11a b b b -++=+ 则2(2)0a b -= ∴2a b =∵30a b +-= ∴230b b +-= 则1b =,2a = ∴2ab =【巩固】已知2()55a b b b +++=+,且210a b --=,那么ab =_______ 【难度】3星【解析】绝对值化简与非负性【答案】解:∵2()0a b +≥,50b +≥,且2()55a b b b +++=+∴50b +≥ ∴2()55a b b b +++=+ 则2()0a b += ∴a b =-∵210a b --= ∴210b b ---= ∴13b =-,13a = 则19ab =-模块三 零点分段法1. 零点分段法的一般步骤:①找零点→②分区间→③定符号→④去绝对值符号.【例7】 阅读下列材料并解决相关问题:我们知道()()()0000x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,可令10x +=和20x -=,分别求得12x x =-=,(称12-,分别为1x +与2x -的零点值),在有理数范围内,零点值1x =-和2x =可将全体有理数分成不重复且不易遗漏的如下3中情况:⑴当1x <-时,原式()()1221x x x =-+--=-+ ⑵当12x -<≤时,原式()123x x =+--= ⑶当2x ≥时,原式1221x x x =++-=-综上讨论,原式()()()211312212x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥通过阅读上面的文字,请你解决下列的问题: ⑴分别求出2x +和4x -的零点值 ⑵化简代数式24x x ++-【难度】3星 【解析】零点分段法【答案】解:⑴令20x +=,40x -=,则2x =-,4x =⑵零点为2x =-,4x =,则可分三段进行讨论:2x <-,24x -≤<,4x ≥ ①当2x <-时,则20x +<,40x -<∴2(2)2x x x +=-+=--,4(4)4x x x -=--=-+ ∴原式=24x x ---+=22x -+②当24x -≤<时,则20x +≥,40x -< ∴22x x +=+,4(4)4x x x -=--=-+∴原式=24x x +-+=6③当4x ≥时,则20x +>,40x -≥ ∴22x x +=+,44x x -=- ∴原式=24x x ++-=22x -综上所述,当2x <-时,24x x ++-=22x -+当24x -≤<时,24x x ++-=6 当4x ≥时,24x x ++-=22x -【巩固】化简12m m m +-+-的值 【难度】3星 【解析】零点分段法【答案】解:令0m =,10m -=,20m -=,则零点为0m =,1m =,2m =则可分四段进行讨论:0m <,01m ≤<,12m ≤<,2m ≥ ①当0m <时,10m -<,20m -<∴m m =-,11m m -=-+,22m m -=-+ ∴原式=12m m m --+-+=33m -+ ②当01m ≤<时,10m -<,20m -< ∴m m =,11m m -=-+,22m m -=-+ ∴原式=12m m m -+-+=3m -+ ③当12m ≤<时,10m -≥,20m -< ∴m m =,11m m -=-,22m m -=-+ ∴原式=12m m m +--+=1m + ④当2m ≥时,10m -≥,20m -≥ ∴m m =,11m m -=-,22m m -=- ∴原式=12m m m +-+-=33m -综上所述:当0m <时,12m m m +-+-=33m -+当01m ≤<时,12m m m +-+-=3m -+ 当12m ≤<时,12m m m +-+-=1m + 当2m ≥时,12m m m +-+-=33m -【巩固】化简:121x x --++. 【难度】4星 【解析】零点分段法【答案】解:令10x -=,120x --=,10x +=,∴120x --=,则3x =或1x =-∴零点有1x =-,1x =,3x =∴分四段进行讨论1x <-,11x -≤<,13x ≤<,3x ≥ ①当1x <-时,则10x -<,10x +<,10x --> ∴11x x -=-+,11x x +=--,11x x --=--∴原式=121x x -+---=11x x ----=11x x ----=22x -- ②当11x -≤<时,则10x -<,10x +≥,10x --≤ ∴11x x -=-+,11x x +=+,11x x --=+∴原式=121x x -+-++=11x x --++=11x x +++=22x + ③当13x ≤<时,10x -≥,10x +>,30x -< ∴11x x -=-,11x x +=+,33x x -=-+ ∴原式=121x x --++=31x x -++=31x x -+++=4 ④当3x ≥时,10x ->,10x +>,30x -≥ ∴11x x -=-,11x x +=+,33x x -=-∴原式=121x x --++=31x x -++=31x x -++=22x -综上所述,当1x <-时,121x x --++=22x --当11x -≤<时,121x x --++=22x + 当13x ≤<时,121x x --++=4 当3x ≥时,121x x --++=22x -模块四 绝对值的几何意义的拓展1. a 的几何意义:在数轴上,表示这个数的点离开原点的距离.2. a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.【例8】 m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离⑴ x 的几何意义是数轴上表示 的点与 之间的距离;x 0-(>,=,<); ⑵ 21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则21-= ; ⑶ 3x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若31x -=,则x = .⑷ 2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若22x +=, 则x = .⑸ 当1x =-时,则22x x -++=【难度】3星【解析】绝对值的几何意义【答案】解:⑴x 、原点、=;⑵1;⑶x 、3、4或2;⑷x 、2-、4-或0;⑸设2-、2、x 在数轴代表的点为A 、B 、P ,如图P B A 2则2x PA +=,2x PB -=,∴224x x PA PB AB ++-=+==【例9】 已知m 是实数,求12m m m +-+-的最小值 【难度】4星【解析】绝对值的几何意义【答案】解:令0m =,10m -=,20m -=,则零点有0m =,1m =,2m =设0、1、2、m 在数轴上分别用A 、B 、C 、P 表示,如图PC B A①当点P 在点A 左侧时,12m m m +-+-=PA PB PC ++=32PA AB BC ++=33PA + ∴当0PA =时,即点P 与点A 重合时,原式取得最小值为3 ∵点P 在点A 左侧 ∴原式3>PC B A②当点P 在线段AB 上时(不包含点B ),12m m m +-+-=PA PB PC ++=2PB AC PB +=+ ∴当0PB =时,原式取得最小值 ∵此时不包含点B ,∴原式2>P CB A③当点P 在线段BC 上时(不包含点C ),12m m m +-+-=PA PB PC ++=2PB AC PB +=+∴当0PB =时,即当点P 与点B 重合时,原式取得最小值,最小值为2C B A④当点P 在点C 及点C 右侧时,12m m m +-+-=PA PB PC ++=32PC BC AB ++=33PC + ∴当0PC =时,即点P 与点C 重合时,原式取得最小值,最小值为3 综上所述,当点P 与点B 重合时,即1m =时,原式取得最小值为2【巩固】已知m 是实数,求2468m m m m -+-+-+-的最小值 【难度】4星【解析】绝对值的几何意义【答案】解:令20m -=,40m -=,60m -=,80m -=则零点有2m =,4m =,6m =,8m =设2、4、6、8、m 在数轴上分别用A 、B 、C 、D 、P ∴2468m m m m PA PB PC PD -+-+-+-=+++①当点P 在点A 左侧时,43241212PA PB PC PD PA AB BC CD PA +++=+++=+> ②当点P 在线段AB 上时,(不包含点B ),2288PA PB PC PD PB BC AD PB +++=++=+> ③当点P 在线段BC 上时(不包含点C ),8PA PB PC PD BC AD +++=+=④当点P 在线段CD 上时(不包含点D ),2288PA PB PC PD PC BC AD PC +++=++=+≥ 当点P 与点C 重合时,取等号⑤当点P 在点D 及点D 右侧时,43241212PA PB PC PD PD CD BC AB PD +++=+++=+≥ 综上所述,当点P 在线段BC 上时,即46m ≤≤时,原式取得最小值为8【例10】如图所示,在一条笔直的公路上有7个村庄,其中A 、B 、C 、D 、E 、F 到城市的距离分别为4、10、15、17、19、20千米,而村庄G 正好是AF 的中点.现要在某个村庄建一个活动中心,使各村到活动中心的路程之和最短,则活动中心应建在什么位置?【难度】3星【解析】绝对值的几何意义【答案】解:活动中心应该建在村庄C ,使各村到活动中心的路程之和最短【巩固】如图所示为一个工厂区的地图,一条公路(粗线)通过这个地区,7个工厂1A ,2A ,…,7A 分布在公路的两侧,由一些小路(细线)与公路相连.现在要在公路上设一个长途汽车站,车站到各工厂(沿公路、小路走)的距离总和越小越好,那么这个车站设在什么地方最好?如果在P 点又建立了一个工厂,并且沿着图上的虚线修了一条小路,那么这时车站设在什么地方好?FED C BP A 7A 6A 5A 4A 3A 2A 1【难度】3星【解析】绝对值的几何意义【答案】解:长途汽车站应该设在点D ,如果在点P 又建了一个工厂,那么此时长途汽车站应该设在DE之间课堂检测1. 4x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若42x -=,则x = .【难度】2星【解析】绝对值的几何意义【答案】x 、4、2或62. 化简:212x x x -++-【难度】4星【解析】零点分段法 【答案】解:令10x -=,20x +=,0x =,∴零点为1x =、2x =-、0x =∴可分四段讨论:2x <-、20x -≤<、01x ≤<、1x ≥①当2x <-时,则10x -<,20x +< ∴11x x -=-+,22x x +=--,x x =-∴原式=2(1)2()222x x x x x x -+----=-+--+=2x -②当20x -≤<时,则10x -<,20x +≥ ∴11x x -=-+,22x x +=+,x x =-∴原式=2(1)2()222x x x x x x -+++--=-++++=4③当01x ≤<时,则10x -<,20x +> ∴11x x -=-+,22x x +=+,x x =∴原式=2(1)2222x x x x x x -+++-=-+++-24x =-+④当1x ≥时,10x -≥,20x +> ∴11x x -=-,22x x +=+,x x =∴原式=2(1)22222x x x x x x x -++-=-++-=综上所述,当2x <-时,212x x x -++-=2x -当20x -≤<时,212x x x -++-=4当01x ≤<时,212x x x -++-=24x =-+当1x ≥时,212x x x -++-=2x3. 化简124x x --+-【难度】4星【解析】零点分段法 【答案】解:令10x -=,40x -=,12x -=, ∴零点有1x =,4x =,3x =,1x =-则可以分五段来分类讨论:1x <-,11x -≤<,13x ≤<,34x ≤<,4x ≥ ①当1x <-时,10x -<,40x -<,10x --> ∴11x x -=-+,44x x -=-+,11x x --=--∴原式=124x x -+--+=14x x ---+=14x x ---+=23x -+②当11x -≤<时,10x -<,40x -<,10x --≤ ∴11x x -=-+,44x x -=-+,11x x --=+∴原式=124x x -+--+=14x x ---+=14x x +-+=5③当13x ≤<时,10x -≥,40x -<,30x -< ∴11x x -=-,44x x -=-+,33x x -=-+∴原式=124x x ---+=34x x --+=34x x -+-+=27x -+④当34x ≤<时,10x ->,40x -<,30x -≥ ∴11x x -=-,44x x -=-+,33x x -=-∴原式=124x x ---+=34x x --+=34x x --+=1⑤当4x ≥时,10x ->,40x -≥,30x -> ∴11x x -=-,44x x -=-,33x x -=-∴原式=124x x --+-=34x x -+-=34x x -+-=27x -综上所述,当1x <-时,124x x --+-=23x -+当11x -≤<时,124x x --+-=5当13x ≤<时,124x x --+-=27x -+当34x ≤<时,124x x --+-=1当4x ≥时,124x x --+-=27x -总结复习1.通过本堂课你学会了 .2.掌握的不太好的部分 .3.老师点评:① .② . ③ .课后作业1. 化简:2121x x x -++--【难度】3星【解析】零点分段法 【答案】解:令210x -=,20x +=,10x -=, ∴零点有12x =,2x =-,1x = 则可分四段进行讨论:2x <-,122x -≤<,112x ≤<,1x ≥ ①当2x <-时,210x -<,20x +<,10x -< ∴2121x x -=-+,22x x +=--,11x x -=-+∴原式=212(1)x x x -+----+=2121x x x -+--+-=22x -- ②当122x -≤<时,210x -<,20x +≥,10x -< ∴2121x x -=-+,22x x +=+,11x x -=-+∴原式=212(1)x x x -+++--+=2121x x x -++++-=2 ③当112x ≤<时,210x -≥,20x +>,10x -< ∴2121x x -=-,22x x +=+,11x x -=-+∴原式=212(1)x x x -++--+=2121x x x -+++-=4x④当1x ≥时,210x ->,20x +>,10x -≥∴2121x x -=-,22x x +=+,11x x -=- ∴原式=212(1)x x x -++--=2121x x x -++-+=22x +综上所述,当2x <-时,2121x x x -++--=22x -- 当122x -≤<时,2121x x x -++--=2 当112x ≤<时,2121x x x -++--=4x 当1x ≥时,2121x x x -++--=22x +。
初一数学:绝对值难题解析(完整版)
初一数学:绝对值难题解析(完整版)绝对值是初一数学的一个重要知识点,它的概念本身不难,但却经常拿来出一些难题,考验的是学生对基本概念的理解程度和基本性质的灵活运用能力。
绝对值有两个意义:(1)代数意义:非负数(包括零)的绝对值是它本身,负数的绝对值是它的相反数。
即|a|=a(当a≥0) , |a|=-a (当a<0)(2)几何意义:一个数的绝对值等于数轴上表示它的点到原点的距离。
灵活应用绝对值的基本性质:(1)|a|≥0;(2)|ab|=|a|·|b|;(3)|a/b|=|a|/|b|(b≠0)(4)|a|-|b|≤ |a+b|≤|a|+|b|;(5)|a|-|b|≤ |a-b|≤|a|+|b|;思考:|a+b|=|a|+|b|,在什么条件下成立?|a-b|=|a|-|b|,在什么条件下成立?常用解题方法:(1)化简绝对值:分类讨论思想(即取绝对值的数为非负数和负数两种情况)(2)运用绝对值的几何意义:数形结合思想,如绝对值最值问题等。
(3)零点分段法:求零点、分段、区段内化简、综合。
例题解析:第一类:考察对绝对值代数意义的理解和分类讨论思想的运用1、在数轴上表示a、b两个数的点如图所示,并且已知表示c的点在原点左侧,请化简下列式子:(1)|a-b|-|c-b|解:∵a<0,b>0 ∴a-b<0c<0,b>0 ∴c-b<0故,原式=(b-a)-(b-c) =c-a(2)|a-c|-|a+c|解:∵a<0,c<0 ∴ a+c<0,但是a-c 要分类讨论当a-c≥0时,a≥c,原式=(a-c)+(a+c)=2a当a-c<0时,a<c,原式=(c-a)+(a+c)=2c2、设x<-1,化简2-|2-|x-2|| 。
解:∵x<-1 ∴x-2<0原式=2-|2-(2-x)|=2-|x|=2+x3、设3<a<4,化简|a-3|+|a-6| 。
解:∵3<a<4 ∴a-3>0,a-6<0原式=(a-3)-(a-6) =34、已知|a-b|=a+b,则以下说法:(1)a一定不是负数;(2)b可能是负数;哪个是正确的?答:当a-b≥0时,a≥b,|a-b|=a-b,由已知|a-b|=a+b,得a-b=a+b,解得b=0,这时a≥0;当a-b<0时,a<b,|a-b|=b-a,由已知|a-b|=a+b,得b-a=a+b,解得a=0,这时b>0;综上所述,(1)是正确的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对值难点突破1.|x+1|+|x﹣2|+|x﹣3|的值为.2.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.3.当式子|x+1|+|x﹣3|+|x﹣4|+|x+6|取最小值时,求相应x的取值范围,并求出最小值.4.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是,(2)数轴上表示x与2的两点之间的距离可以表示为.(3)如果|x﹣2|=5,则x=.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.5.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B 之间的距离可表示为|a﹣b|.(1)点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A 到C的距离之和可表示为(用含绝对值的式子表示).(2)利用数轴探究:①找出满足|x﹣3|+|x+1|=6的x的所有值是,②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是;当x的值取在的范围时,|x|+|x﹣2|取得最小值,这个最小值是.(3)求|x﹣3|+|x﹣2|+|x+1|的最小值为,此时x的值为.(4)求|x﹣3|+|x﹣2|+|x+1|+|x+2|的最小值,求此时x的取值范围.6.如果a、b、c是非零有理数,且a+b+c=0,那么+++的所有可能的值为.7.已知|a|=5,|b|=6,且|a+b|=a+b,求a﹣b的值.8.阅读材料:我们知道,若点A、B在数轴上分别表示有理数a、b(如图所示),A、B两点间的距离表示为AB,则AB=|a﹣b|.所以式子|x﹣2|的几何意义是数轴上表示x的点与表示2的点之间的距离.根据上述材料,解答下列问题:(1)若点A表示﹣2,点B表示1,则AB=;(2)若点A表示﹣2,AC=4,则点C表示的数是;(3)若|x﹣3|=4,求x的值.9.同学们都发现|5﹣(﹣2)|它的意义是:数轴上表示5的点与表示﹣2的点之间的距离,试探索:(1)求|5﹣(﹣2)|=;(2)|5+3|表示的意义是;(3)|x﹣1|=5,则x在数轴上表示的点对应的有理数是.10.已知a,b,c在数轴上的位置如图所示,且|a|=|c|.(1)比较a,﹣a,b,﹣b,c,﹣c的大小关系.(2)化简|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|.参考答案与试题解析1.【分析】根据x的取值范围结合绝对值的意义分情况进行计算.【解答】解:当x≤﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;当﹣1<x≤2时,|x+1|+|x﹣2|+|x﹣3|=x+1﹣x+2﹣x+3=﹣x+6;当2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2﹣x+3=x+2;当x>3时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2+x﹣3=3x﹣4.综上所述,|x+1|+|x﹣2|+|x﹣3|的值为.故答案为:.2.【分析】(1)令x﹣5=0,x﹣4=0,解得x的值即可;(2)分为x<4、4≤x<5、x≥5三种情况化简即可;(3)根据(2)中的化简结果判断即可.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|的零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x<5时,原式=5﹣x+x﹣4=1;当x≥5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x<5时,原式=1;当x≥5时,原式=2x﹣9>1.故代数式的最小值是1.3.【分析】根据线段上的点与线段的端点的距离最小,可得答案.【解答】解:当式子|x+1|+|x﹣3|+|x﹣4|+|x+6|取最小值时,相应x的取值范围是﹣1≤x≤3,最小值是14.4.【分析】(1)根据距离公式即可解答;(2)利用距离公式求解即可;(3)利用绝对值求解即可;(4)利用绝对值及数轴求解即可;(5)根据数轴及绝对值,即可解答.【解答】解:(1)数轴上表示5与﹣2两点之间的距离是|5﹣(﹣2)|=|5+2|=7,故答案为:7;(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,故答案为:|x﹣2|;(3)∵|x﹣2|=5,∴x﹣2=5或x﹣2=﹣5,解得:x=7或x=﹣3,故答案为:7或﹣3;(4)∵|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x﹣1|=4,∴这样的整数有﹣3、﹣2、﹣1、0、1,故答案为:﹣3、﹣2、﹣1、0、1;(5)有最小值是3.5.【分析】(1)根据两点间的距离公式,可得答案;(2)根据两点间的距离公式,点在线段上,可得最小值;(3):|x﹣3|+|x﹣2|+|x+1|=(|x﹣3|+|x+1|)+|x﹣2|,根据问题(2)中的探究②可知,要使|x﹣3|+|x+1|的值最小,x的值只要取﹣1到3之间(包括﹣1、3)的任意一个数,要使|x﹣2|的值最小,x应取2,显然当x=2时能同时满足要求,把x=2代入原式计算即可;(4)根据两点间的距离公式,点在线段上,可得答案.【解答】解:(1)A到B的距离与A到C的距离之和可表示为|x+2|+|x﹣1|;(2)①满足|x﹣3|+|x+1|=6的x的所有值是﹣2、4,②这个最小值是4;当x的值取在不小于0且不大于2的范围时,|x|+|x﹣2|取得最小值,这个最小值是2;(3)由分析可知,当x=2时能同时满足要求,把x=2代入原式=1+0+3=4;(4)|x﹣3|+|x﹣2|+|x+1|+|x+2|=(|x﹣3|+|x+2|)+(|x﹣2|+|x+1|)要使|x﹣3|+|x+2|的值最小,x的值取﹣2到3之间(包括﹣2、3)的任意一个数,要使|x﹣2|+|x+1|的值最小,x取﹣1到2之间(包括﹣1、2)的任意一个数,显然当x取﹣1到2之间(包括﹣1、2)的任意一个数能同时满足要求,不妨取x=0代入原式,得|x﹣3|+|x﹣2|+|x+1|+|x+2|=3+2+1+2=8;方法二:当x取在﹣1到2之间(包括﹣1、2)时,|x﹣3|+|x﹣2|+|x+1|+|x+2|=﹣(x﹣3)﹣(x﹣2)+(x+1)+(x+2)=﹣x+3﹣x+2+x+1+x+2=8.故答案为:|x+2|+|x﹣1|;﹣2,4;4;不小于0且不大于2;2;4,2.6.【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(﹣1)+(﹣1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(﹣1)+(﹣1)+1=0,综上,的值为0,故答案为:0.7.【分析】根据绝对值的概念可得a=±5,b=±6,然后分类讨论,就可求出符合条件“|a+b|=a+b”时的a﹣b的值.【解答】解:∵|a|=5,|b|=6,∴a=±5,b=±6.①当a=5,b=6时,a+b=11,满足|a+b|=a+b,此时a﹣b=5﹣6=﹣1;②当a=5,b=﹣6时,a+b=﹣1,不满足|a+b|=a+b,故舍去;③当a=﹣5,b=6时,a+b=1,满足|a+b|=a+b,此时a﹣b=﹣5﹣6=﹣11;④当a=﹣5,b=﹣6时,a+b=﹣11,不满足|a+b|=a+b,故舍去.综上所述:a﹣b的值为﹣1或﹣11.8.【分析】(1)根据题中的方法确定出AB的长即可;(2)根据A表示的数字,以及AC的长,确定出C表示的数即可;(3)原式利用绝对值的代数意义化简即可求出x的值.【解答】解:(1)根据题意得:AB=|﹣2﹣1|=3;(2)根据题意得:|x﹣(﹣2)|=4,即|x+2|=4,可得x+2=4或x+2=﹣4,解得:x=2或﹣6;(3)∵|x﹣3|=4,∴x﹣3=4或x﹣3=﹣4,解得:x=7或﹣1.故答案为:(1)3;(2)2或﹣69.【分析】(1)根据5与﹣2两数在数轴上所对的两点之间的距离为7得到答案;(2)把|5+3|变形为|5﹣(﹣3)|,而|5﹣(﹣3)|表示5与﹣3之差的绝对值;(3)根据绝对值的性质可求x在数轴上表示的点对应的有理数.【解答】解:(1)|5﹣(﹣2)|=|7|=7.(2)|5+3|表示的意义是点5与﹣3的点之间的距离.(3)|x﹣1|=5,x﹣1=﹣5,x﹣1=5,解得x=﹣4或x=6.则x在数轴上表示的点对应的有理数是﹣4或x=6.故答案为:7;点5与﹣3的点之间的距离;﹣4或6.10.【分析】根据互为相反数的两数的几何意义:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等.在数轴上找出﹣a,﹣b,﹣c的对应点,依据a,b,c,﹣a,﹣b,﹣c在数轴上的位置比较大小.在此基础上化简给出的式子.【解答】解:(1)解法一:根据表示互为相反数的两个点在数轴上的关系,分别找出﹣a,﹣b,﹣c对应的点如图所示,由图上的位置关系可知﹣b>a=﹣c>﹣a=c>b.解法二:由图知,a>0,b<0,c<0且|a|=|c|=|b|,∴﹣b>a=﹣c>﹣a=c>b.(2)∵a>0,b<0,c<0,且|a|=|c|<|b|,∴a+b<0,a﹣b>0,b﹣c<0,a+c=0,∴|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|=﹣(a+b)﹣(a﹣b)﹣(b﹣c)+0=﹣a﹣b﹣a+b﹣b+c=﹣2a﹣b+c.。