第七章非线性控制系统精品PPT课件

合集下载

自动控制原理课件 第7章 非线性控制系统

自动控制原理课件 第7章 非线性控制系统
描述函数法是基于频率域的等效线性化方法。该法不受系统 阶次的限制,但系统必须满足一定的假设条件,且只能提供系 统稳定性和自激振荡的信息。 3. 波波夫法
波波夫法是一个关于系统渐近稳定充分条件的频率域判据。 它可以应用于高阶系统,并且是一个准确判定稳定性的方法。
2020年11月17日
EXIT
第7章第16页
4.可以用频率特性的概念来研究和分析线性系统的固 有特性。不能用频率特性、传递函数等线性系统常用的 方法来研究非线性系统。
2020年11月17日
EXIT
第7章第15页
7.1.4 非线性系统的分析和设计方法
1. 相平面法 相平面法是求解一阶或二阶非线性系统的图解法。这种方法
既能提供的稳定性信息,又能提供时间响应信息。其缺点是只 限于一阶和二阶系统。 2. 描述函数法
齿轮传动的齿隙特性,液压传动的的油隙特性等均属于 这类特性。
当系统中有间隙特性存在时,将使系统输出信号在相位 上产生滞后,从而使系统的稳定裕度减少,动态特性变坏。
间隙的存在常常是系统产生自持振荡的主要原因。
2020年11月17日
EXIT
第7章第9页
4.继电器特性
0 y(t) b0sgn e(t)
在控制系统中若存在饱和特性,将使系统在大信号
作用下的等效放大倍数降低,从而引起瞬态过程时间 的延长和稳态误差的增加。对于条件稳定系统,甚至 可能出现小信号时稳定,而大信号时不稳定的情况。
2020年11月17日
EXIT
第7章第7页
2.死区(不灵敏区)特性
y (t )
0
k
e(t)
a sgn
e(t)
e(t) a e(t) a
2. 线性系统的稳定性与输入响应的性质只由系统本身的 结构及参量决定,而与系统的初始状态无关。而非线性 系统的稳定性及零输入响应的性质不仅取决于系统本身 的结构和参量,而且还与系统的初始状态有关。

第7章非线性系统分析

第7章非线性系统分析

描述函数的定义是:输入为正弦函数时,输 出的基波分量与输入正弦量的复数比。
其数学表达式为
N
X
R
X
Y1
sin(t X sint
1)
Y1 X
1
A12 B12 arctan A1
A1
1
2
y(t) costdt
0
X
B1
1
B1
2
y(t ) sin tdt
0
7.3 非线性特性的描述函数法
(2)举例说明描述函数
(1) 降低了定位精度,增大了系统的静差。 (2) 使系统动态响应的振荡加剧,稳定性变坏。
7.2 非线性环节及其对系统结构的影响
4.摩擦特性
Mf
M1 •
M2

M f 摩擦力矩
转速
M1 静摩擦力矩
M 2 动摩擦力矩
7.2 非线性环节及其对系统结构的影响
摩擦特性的影响
(1)对随动系统而言,摩擦会增加静差,降低精 度。
7.2 非线性环节及其对系统结构的影响
2.饱和特性
x1 a ,等效增益 为常值,即线性段 斜率;
而 x1 a ,输出饱
和,等效增益随输 入信号的加大逐渐 减小。
7.2 非线性环节及其对系统结构的影响
饱和特性的影响
(1) 饱和特性使系统开环增益下降, 对动态响应的 平稳性有利。
(2) 如果饱和点过低,则在提高系统平稳性的同时, 将使系统的快速性和稳态跟踪精度有所下降。
7.3 非线性特性的描述函数法
KX sint
y(t) Ka
0 t 1 1 t / 2
∵ y(t) 单值奇对称, A0 0 A1 0
B1
4

自动控制原理 第七章 非线性系统

自动控制原理 第七章 非线性系统

实质上是应用谐波线性化的方法,将非线性特性线性化, 然后用频域法的结论来研究非线性系统,它是线性理论 中的频率法在非线性系统中的推广,不受系统阶次的限 制。
(2)相平面法(本质非线性):图解法。通过在相平 面上绘制相轨迹,可以求出微分方程在任何初始条件下 的解。是一种时域分析法,仅适用于一阶和二阶系统。
1
ωt
y1 (t ) B1 sint
由式(7-15)可得饱和特性的描述函数为
B1 2k a a a 2 N ( A) arcsin 1 ( ) A A A A

M sin td ( t )
yMFra bibliotek0 π2π
ωt
所以基波分量为:
y1 ( t )
4M

sin t
故理想继电器特性的描述函数为
Y1 4M N ( A) 1 A A
2.饱和特性
请牢记!
即 N(A)的相位角为零度,幅值是输入正弦信号A的函数.
当输入为x(t)=Asinωt,且A大于线性区宽度a 时, 饱和特性的输出波形如图7-10所示。
7.1.3
非线性系统的分析方法
非线性的数学模型为非线性微分方程,大多数尚无
法直接求解。到目前为止,非线性系统的研究还不成熟, 结论不能像线性系统那样具有普遍意义,一般要针对系 统的结构,输入及初始条件等具体情况进行分析。工程 上常用的方法有以下几种:
(1)描述函数法(本质非线性):是一种频域分析法,
r(t)=0 x
N
y
G(s)
c(t)
图7-8 非线性系统典型结构图
(2)非线性环节的输入输出静特性曲线是奇对称的,即 y(x)=-y(-x),以保证非线性元件在正弦信号作用下的输出不 包含直流分量。 (3)系统的线性部分具有良好的低通滤波特性。能较好的滤 除非线性环节在正弦输入下输出中的高次谐波,于是可以认 为在闭环通道中只有基波分量在流通,此时应用描述函数法 所得的分析结果才是比较准确的。实际系统基本都能满足。

非线性控制系统的分析课件.ppt

非线性控制系统的分析课件.ppt

法求解有困难时,可用图解法绘制。
▪ 对于式(9.2-1)xf(x,x),令 x1x、 x2x ,

有 x 2f(x1、 x2),所以 可得 dx2 f (x1、x2)
d d x t2d dx x1 2d d x t1x2d dx x1 2f(x1、 x2)
(9.2-5)

dx1
x2
式(9.2-5)是关于
y
-b 0
k
x
b
a.
b.
图9.1-4 齿轮传动及其间隙特性
y(x)k[xs g x)n b](|y/kx|b y (x)0、 y(x)C |y/kx|b
▪ 系统中若有间隙特性元件,不仅会使系统的输出产生相位滞后,导致 系统稳定裕量的减小,使动态性能恶化,容易产生自振;而且间隙区 会降低定位精度、增大非系线统性控静制差系统。的分析课件
▪ 由于相平面只能表示 x(t ) 和 x(t ) 两个独立变量,所以相 平面法只能用来研究一、二阶线性或非线性系统。
▪ 2)相轨迹的绘制方法
▪ (1)二阶线性系统的相轨迹 ▪ (2)相轨迹的绘制
非线性控制系统的分析课件
j
[s]
2 1
0
a.
j 1 [s]
0
2
d.
x2
j
x2
1
[s]
x1
0
0
0
稳定 节点
x
(
t
)
和 x (t ) 的一阶微分方程,即二阶非线性
系统的相轨迹方程。

由式(9.2-5),令
dx2 f (x1,x2)
dx1
x2
,即有

f (x1, x2 )
(9.2-6)

第七章非线性控制系统

第七章非线性控制系统
自动控制理论
第七章
第七章 非线性控制系统
第一节 非线性系统的基本概念
第二节 非线性特性的一种线性近似表示--描述函数 第三节 典型非线性特性的描述函数 第四节 分析非线性系统的谐波平衡分析法 第五节 非线性系统性能改进及非线性应用 小结
CHANG’AN UNIVERSITY
长安大学信息工程学院
自动控制理论
CHANG’AN UNIVERSITY
长安大学信息工程学院
自动控制理论
第七章
式中:A0

1
2
2
y(t)dt
0
1
An
2
y(t) cos ntdt
0
Bn

1

2
y(t) sin ntdt
0Байду номын сангаас
Yn An2 Bn2
n

arctan
An Bn
对于奇对称函数
A0 0

k 2 )[sin
1
a A

a A
1 ( a )2 ] A
(A a)
CHANG’AN UNIVERSITY
非线性增益II
N(A)

k3

2
(k1

k2
)[sin1
a A

a A
1 ( a )2 ] A

2
(k 2

k3)[sin1
s A

s A
1 ( s )2 ] A
(A s)
特征:当输入信号在零位附近变化时,系统没有输出。当
输入信号大于某一数值时才有输出,且与输入呈线性关。
死区特性对系统性能的影响: 各系测类统量液的变压库送阀伦装的摩置正擦的重;不叠灵量敏; 区;(了定1)位增精大度了。系统的稳态误差,降低 调节器和执行机构的死区; (2)减小了系统的开环增益,提高

自动控制原理第七章非线性系统ppt课件

自动控制原理第七章非线性系统ppt课件

7.1.3 非线性系统的分析方法
非线性的数学模型为非线性微分方程,大多数尚无 法直接求解。到目前为止,非线性系统的研究还不成熟, 结论不能像线性系统那样具有普遍意义,一般要针对系 统的结构,输入及初始条件等具体情况进行分析。工程 上常用的方法有以下几种:
(1)描述函数法(本质非线性):是一种频域分析法,
实质上是应用谐波线性化的方法,将非线性特性线性化, 然后用频域法的结论来研究非线性系统,它是线性理论 中的频率法在非线性系统中的推广,不受系统阶次的限 制。
(2)相平面法(本质非线性):图解法。通过在相平 面上绘制相轨迹,可以求出微分方程在任何初始条件下 的解。是一种时域分析法,仅适用于一阶和二阶系统。
4M
sin t
故理想继电器特性的描述函数为
N ( A)
Y1 A
1
4M
A
请牢记!
即 N(A)的相位角为零度,幅值是输入正弦信号A的函数.
2.饱和特性
当输入为x(t)=Asinωt,且A大于线性区宽度a 时,
饱和特性的输出波形如图7-10所示。
y
x
N
M
k 0a
x
yy
0 ψ1
π

ωt
0 x
ψ1
π
A sin 1
x(t) Asint
则其输出一般为周期性的非正弦信号,可以展成傅氏级 数:
y(t ) A0 ( An cos nt Bn sin nt ) n1
若系统满足上述第二个条件,则有A0=0
An
1
2 y(t ) cos ntd t
0
Bn
1
2 y(t ) sin ntd t
0
由于在傅氏级数中n越大,谐波分量的频率越高,An,Bn

非线性控制系统分析教学课件

非线性控制系统分析教学课件

航天器控制系统
航天器控制系统是一个高度复杂的非线性控制系统,它涉及到轨道控制、姿态控制和推进系 统控制等多个方面。
航天器控制系统需要处理各种动态特性和非线性特性,如气动力、引力扰动和热效应等,以 确保航天器能够精确地完成预定任务。
航天器控制系统的设计需要运用非线性控制理论和方法,如自适应控制、鲁棒控制等,以提 高航天器的稳定性和精度。
非线性控制系统分析 教学课件
contents
目录
• 非线性控制系统概述 • 非线性控制系统的基本理论 • 非线性控制系统的分析与设计 • 非线性控制系统的应用实例 • 非线性控制系统的发展趋势与挑战
CHAPTER 01
非线性控制系统概述ห้องสมุดไป่ตู้
非线性控制系统的定义与特点
总结词
非线性、动态、输入与输出关系复杂
详细描述
反馈线性化方法是一种通过引入适当的反馈控制律,将非线性系统转化为线性系统的设 计方法。它通过调整系统的输入和输出,使得系统的动态行为变得线性化,从而可以利
用线性控制理论进行设计和分析。
滑模控制方法
总结词
一种用于处理非线性控制系统不确定性 的方法
VS
详细描述
滑模控制方法是一种通过设计滑模面和滑 模控制器,使得系统状态在滑模面上滑动 并达到期望目标的方法。它利用滑模面的 设计,使得系统对不确定性具有鲁棒性, 能够有效地处理非线性系统中的不确定性 和干扰。
非线性控制系统的基本理论
状态空间模型
状态空间模型是描述非线性控制系统动态特性的数学模型,由状态方程和输出方程 组成。
状态变量是描述系统内部状态的变量,输出变量是描述系统外部输出的变量。
建立状态空间模型需要考虑系统的非线性特性,包括死区、饱和、非线性函数等。

自动控制原理(第三版)第7章非线性控制系统(1)

自动控制原理(第三版)第7章非线性控制系统(1)
大连民族学院机电信息工程学院
自动控制原理
4)当非线性输入的信号为正弦作用时,由 于非线性其输出将不再是正弦信号,而包 含有各种谐波分量,发生非线性畸变。
大连民族学院机电信息工程学院
自动控制原理
5)混沌
大连民族学院机电信息工程学院
自动控制原理
非线性系统运动的特殊性
• 不满足叠加原理 — 线性系统理论原则上不能运用 (区别) • 稳定性问题 — 不仅与自身结构参数,且与输入, 初条件有关,平衡点可能不惟一,可以稳定且可以 在多个平衡点稳定,可能不稳定—发散、衰减等 nonlinear • 自振运动— 非线性系统特有的运动形式,产生自 持振荡 • 发生频率激变—频率响应的复杂性 — 跳频响应, 倍/分频响应,组合振荡
大连民族学院机电信息工程学院
自动控制原理
3、滞环(非单值特性)
) x 0 , 且y 0 k ( x a sgn x y =0 y x2 m sgn x
滞环特性会 使系统的相 角裕度减小, 动态性能恶 化,甚至产生 自持振荡。
x2
x2m
x2
x2m
a
0
x1
a
x2m
7.3 描述函数法 7.4 相平面法
7.5 Matlab 在本章中的应用
大连民族学院机电信息工程学院
自动控制原理
7.1 非线性控制系统概述
如果一个控制系统包含一个或一个以上具有非 线性特性的元件或环节,则此系统即为非线性系统。
• 前面研究的线性系统满足叠加性和齐次性; • 严格地说,由于控制元件或多或少地带有非线性特 性,所以实际的自动控制系统都是非线性系统; • 一些系统作为线性系统来分析: ①系统的非线性 不明显,可近似为线性系统。②某些系统的非线性 特性虽然较明显,但在某些条件下,可进行线性化 处理; • 但当系统的非线性特征明显且不能进行线性化处理 时,就必须采用非线性系统理论来分析。这类非线 大连民族学院机电信息工程学院 性称为本质非线性。

非线性系统课件

非线性系统课件

N (A )N (A )ej N (A )Y 1ej1B 1j1 A
A
A
非线性系统
2. 描述函数的求取步骤 (1) 取输入信号为,根据非线性环节的静态特性绘
制出输出非正弦周期信号的曲线形式,根据曲线形式 写出输出y(t)在一周期内的数学表达式。 (2)据非线性环节的静态特性及输出y(t)的数学表达 式,求相关系数A1、B1。 (3)用式(7-8)计算描述函数。
必须指出,长时间大幅度的振荡会造成机械磨损,增加
控制误差,因此在通常情况下,不希望系统产生自振,必
须设法抑制它。
非线性系统
3.频率响应复杂
线性系统的频率响应,即正弦信号作用下系统的稳态输 出是与输入同频率的正弦信号。而非线性系统的频率响应 除了含有与输入同频率的正弦信号分量(基频分量)外, 还含有关于ω的高次谐波分量。
形称为相平面图。
非线性系统
二、绘制相轨迹的方法
解析法
采用解析法绘制相轨迹通常有两种作法。一种方法是通过积分法, 直接由微分方程求解x(t)和的解析关系式。
0
2 Msintdt
1
2M
(c
os 1
c
os2
)
=2M
1- mh2 A
1-
h
2
A
非线性系统
3) 死区滞环继电特性的描述函数为
N (A )= 2 M A1-m A2h1-A h2j2 M A2(m Ah -≥1h )(7-17)
取h=0可得理想继电特性的描述函数为
N(A)=4M
取m=1可得死区继电特性的A描述函数为
足结构要求的一类非线性系统,通过谐波线性化,将非线性特性近似表 示为复变增益环节,分析非线性系统的稳定性或自激振荡 3.李亚普诺夫第二法

《非线性系统分析》PPT课件

《非线性系统分析》PPT课件

0
M
x h2 h2 x h1
x h1
(7 4a)
.
当x 0:
M
y
0
M
x h1 h1 x h2
x h2
(7 4b)
19
图(b)所示继电特性的数学描述由 读者自行导出。
20
4、间隙特性
传动机构的间隙也是控制系统中常见的非线性 特性,齿轮传动是典型的间隙特性,图7-4(a) 表示齿轮传动原理,图7-4(b)表示主动轮位移 与从动轮位移的关系。设主动轮与从动轮间的最 大间隙为2b,那么当主动轮改变方向时,主动轮 最大要运动2b从动轮才能跟随运动。间隙特性类 似于线性系统的滞后环节,但不完全等价,它对 控制系统的动态、稳态特性都不利。设齿轮传动 速比为,则图7-4间隙特性的数学描述为:
22相平面法是庞加莱poincare1885年首先提出的本来它是一种求解二元一阶非线性微分方程组的图解法两个变量构成的直角坐标系称为相平面方程组的解在相平面上的图象称为相轨这里是将相平面法用于分析一阶尤其是二阶非线性控制系统并形成了一种特定的相平面法它对弄清非线性系统的稳定性稳定域等基本属性解释极限环等特殊现象起到了直观形象的作23因为绘制两维以上的相轨迹是十分困难的所以相平面法对于二阶以上的系统几乎无能为力
一点在 x x平面上绘出的曲线,表征了系统的
运动过程,这个曲线就是相轨迹。我们用一个二 阶线性时不变系统来体验一下相平面和相轨迹。
26
例7-1 考虑二阶系统:
..
x ax 0 , a 0, x(t0 ) x0 ,
将它写成微分方程组:
dx
.
x
dt.
d x ax
dt
两式相除得到:
.
dx dx

第七章非线性系统的分析方法1_2

第七章非线性系统的分析方法1_2

C(s)
Gc(s)
Go(s)
-M
死区(不灵敏区)
➢死区特性
f (e)
-e k e 0 +e
f (e)
+M
-e
e
0 +e -M
f (e) +M +e0
-e k e
0 +e
-e0
-M
线性+死区 继电+死区 饱和+死区
f
(e)
0, ke,
e e
e f(ee)
M ,
0,
M ,
M ,
eefe(e)eeek0Me,, ,
x 0 x 1
在奇点邻域,其线性化方程为
在奇点
x 0 邻域
x 0
f
(x, x) x
x0 0 x0 0
0.5
f (x, x)
x
x0 0 2x 1 x0 0 1
x0 0
x0 0
线性化方程为 x 0.5x x 0
特征根为
0.5 j 3.75
s1,2
2
奇点类型为不稳定焦点
6. 极限环

相平面
x&
x 0
➢等倾线法作图
••

x f (x, x) 0
思路:以切线代替曲线
相轨迹的斜率方程


d x f (x, x)
dx

x



x f (x, x) 0

相轨迹的等倾线方程 • f (x, x) x

• f (x, x) x
A
如何画出所有相轨迹?

• f (x, x) x

自动控制原理课程第7章-非线性系统分析

自动控制原理课程第7章-非线性系统分析

有时从系统安全性的考虑,常常加入各种限幅装置,其
特性也属饱和特性。
3.间隙特性(回环特性)
y
b
a
k
0 a
x
bsign. y y K ( x asign y )
y0 y0


-b
间隙特性对系统的影响: 一般来说,间隙使系统输出相位滞后,降低了系统的稳 定裕量,控制系统的动态特性变坏,甚至使系统振荡; 间隙的存在使系统的稳态误差扩大,稳态特性变差。
M y M
(2)死区继电器特性
x0 x0
M y 0 M
x a x a xa
(3)回环继电器特性
x<a M M x>a y x<-a M x<-a M
(4)死区加回环继电器特性
0 M M y 0 M M a1 x a2 x a2 x a1 a2 x a1 x a1 x a2
7.3.1 相平面的基本概念 设二阶非线性系统的微分方程为:
f ( x, x ) 0 x
若令 x1 x, x2 x
则二阶系统可写成两个一阶微分方程,即
1 x2 x 2 f ( x1 , x2 ) x
dx2 f ( x1 , x2 ) dx1 x2
0 x
0 x
0 x
0 x
7.3 相平面分析法 相平面法是庞加莱(Poincare)提出的,它是一种求 解二阶非线性微分方程组的图解法,它比较直观、准
确地反映系统的稳定性、平衡状态的特性、不同初始
状态和输入信号下系统的运动形式。虽然相平面法适 用一阶、二阶非线性控制系统的分析,但它形成特定 的相平面法,它对弄清高阶非线性系统的稳定性、极 限环等特殊现象,也起到了直观形象的作用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
但当系统的非线性特征明显且不能进行线性化处理 时,就必须采用非线性系统理论来分析。这类非线性称
为本质非线性。
定义:如果一个控制系统包含一个或一个以上具有非线
性特性的元件或环节,则此系统即为非线性系统。
2
7.1 概述
3
一、典型非线性特性
1、饱和特性
ke(t)
e(t) a
x ka
e(t) >a
ka e(t) a
n
tg 1
An Bn
x(e) x(e)
A0 0
13
★ 由于x(t)的高次谐波幅值小于基波幅
值,且系统的线性部分 G(s) 具有低通滤
波性质,可以假设只有基波分量起作用, 而将高次谐波忽略不计。
基波分量为
x1(t) A1 cost B1 sin t X1 sin(t 1)
A1
1
2 0
x(t) cost
5
3、间隙特性
k e(t) a x k e(t) a
b signe(t)
特点
x(t) 0 x(t) 0 x(t) 0
x
b a 0 k
ae b
常见于齿轮传动机构、铁磁元件的磁滞现象。可 使系统的稳态误差增大,也使系统的动态特性变差。
cn
6
主动齿轮
从动齿轮
4、继电器特性
x(t) b
0 e(t)
③系统中的线性部分具有较好的低通滤波特性。
设 e(t) Asin t ,则
x(t) A0 ( An cos nt Bn sin nt) n1 A0 X n sin(nt n ) n1
An
1
2 0
x(t) cos nt
d (t)
Bn
1
2 0
x(t) sin
nt
d (t)
X n An2 Bn2
d (t)
B1
1
2 0
x(t) sin t
d (t)
X1 A12 B12
1
tg 1
A1 B1
谐波线性化
14
e(t) Asin t
x1(t) A1 cost B1 sin t X1 sin(t 1)
定义
描述函数为非线性特性输出的一次基波分量与输入正 弦量的复数比 。即
注意
N ( A) X1 e j1 A
a1
式中
a1
sin 1
a A
t
x(t)是单值奇函数
A0 0, A1 0
B1
1
2 0
x(t) sin t
d (t)
?
N ( A)
2k
sin
1
a A
a A
1
(
a A
)2
(A a)
16
2、死区特性的描述函数
N ( A)
2k
2
sin1
a A
a A
1
(
a A
)
2
3、间隙特性的描述函数
(A a)
① 非线性元件含有储能元件时,描述函数记作 N ( A,)
②非线性特性为单值奇函数时, N ( A) B1
A
为什么?
15
二、典型非线性特性的描述函数
1、饱和特性的描述函数
x
x
x(t)
kAsin t 0 t a1
a k
0 ae
0 a1 a1
t
ka a1 t a1
0A
a1
e
kAsin t -a1 t
r 0 - e G1(s) x N (A) y G2(s) c
x
y
N (A)
G(s)
G(s) G1(s)G2 (s)
19
1、非线性系统的稳定性分析
经谐波线性化后系统的 闭环频率特性为
C( j) N ( A)G( j) R( j) 1 N ( A)G( j)
11
一、描述函数的基本概念
★ 描述函数是非线性特性的一种近似表示,是一种谐波线
性化方法,忽略非线性环节输出中的高次谐波,用基波分量 表示其输出。
描述函数法要求系统满足下列条件:
①系统结构图可化为下列典型形式
r0 e
x
- N (A) G(s)
c
N ( A)
非线性环节特性, G(s)
线性环节特性
12
②非线性环节的输入输出特性是奇对称的,即 x(e) x(e)
件和外加输入信号无关。
2、非线性系统除了发散和收敛两种运动形式外,即使无外界作用,也
可能会发生自持振荡 。
线性系统只有两种基本运动形式:发散(不稳定)和收敛(稳定)。
8
3、在正弦输入下,线性系统的输出是同频率正弦信号。非线性系统的
输出将不再是同频率的正弦信号,而是包含有各种谐波分量的非正弦周期 函数。
e(t )
x(t )
N ( A)
N ( A) N1( A) N2 ( A) ⑵非线性特性的串联
e(t )
N1( A)
x(t
x(t )
N ( A)
× N ( A) N1( A)N2 ( A)
参见P194 死区+饱和 18
三、非线性系统的描述函数分析
非线性系统结构图的化简
第七章 非线性控制系统
1
引言:
前面研究的线性系统满足叠加性 和齐次性;
严格地说,由于控制元件或多或少地带有非线性特 性,所以实际的自动控制系统都是非线性系统;
一些系统作为线性系统来分析: ①系统的非线性 不明显,可近似为线性系统。②某些系统的非线性特性 虽然较明显,但在某些条件下,可进行线性化处理;
4、非线性系统不能使用叠加原理
9
三、非线性系统的分析方法和研究内容
分析方法
数值解法
描述函数法 √ 相平面法 √
李雅普诺夫直接法 波波夫法
对非线性系统分析研究的重点是:(1)系统是否稳定;
(2)有无自持振荡;(3)若存在自持振荡,确定自持振 荡的频率和振幅;(4)研究消除或减弱自持振荡的方法。
10
7.2 描述函数法
b
(a)
x(t)
b
a
0
a e(t)
b
(c)
x(t) b
a 0 a e(t)
b
(b)
x(t) b
a ma 0 ma a e(t)
b
(d )
7
二、非线性系统的特点
1、非线性系统的稳定性 不仅取决于系统的结构、参数,而且与系统
的初始条件和外加输入信号无关。 线性系统的稳定性只取决于系统的结构、参数,而和系统的初始条
N ( A) B1 j A1 AA
k
2
sin1(1
2a ) 2(1 A
2a ) A
a A
(1
a) A
j 4ka ( a 1)
A A
4、理想继电器特性的描述函数
( A a)
N ( A) 4b
A
17
5、组合非线性特性的描述函数 ⑴非线性特性的并联
e(t )
N1( A)
x(t )
N2 ( A)
其中:e(t) 输入,x 输出
特点
常见于放大器中,在大信 号作用下,放大倍数小,因而 降低了稳态精度。
x k a 0a e
K k a 0 a e
4
2、死区特性
0
x k e(t) a k e(t) a
e(t) a e(t) >a e(t) < a
x
a k 0a e
特点
常见于测量、放大元件中。死区非线性特性导致系 统产生稳态误差,且用提高增益的方法也无法消除。
相关文档
最新文档