2015年全国大学生数学建模竞赛A题.

合集下载

2015年数学建模国赛A题

2015年数学建模国赛A题

二、 问题分析
问题一要建立直杆影子长度变化的数学模型, 首先需知道太阳影子长度计算 公式,故引入太阳高度角[1]这个概念。即若已知某时刻太阳高度角的大小和直 杆高度,根据其满足的三角函数关系便可得到此时太阳影子长度。太阳高度角与 观测地地理纬度、地方时角和太阳的赤纬[2]相关。其中太阳赤纬是太阳直射点 所在纬度,与日期有关;时角由当地经度及其所用时区时间决定,故根据影长、 太阳赤纬、时角计算公式可求得直杆影子长度变化模型,并根据模型分析影子长 度关于各参数的变化规律。将附件一中直杆的有关数据直杆影长变化模型中,可 求出该直杆的具体影长变化公式。根据所建立的模型,运用 MATLAB 软件便可得 到影子长度随时间的变化曲线。 问题二需根据某固定直杆在水平地面上的太阳影子顶点坐标数据, 建立数学 模型确定直杆所处的地点。首先由问题一可推测影子长度与时间的关系,故可将 太阳影子长度与对应时间进行拟合,得到影长与时间关系模型。当某个时刻影长 得到极小值时,该时刻为太阳与直杆距离最近,即地方时正午 12 时,结合当地 所使用的标准时间便可得到当地经度。 最后利用太阳高度角与直杆长度以及影长 满足的三角关系式,便可得到影长关于直杆高度、直杆所在地点的纬度的函数关 系式,即得到了有关太阳影子顶点坐标与直杆地点经纬度的模型。将附件一中影 子顶点坐标数据应用于该直杆位置模型,可得到直杆所在位置。用相对误差分析 法分析误差[3](168-169 页),若所得的相对误差小于 2.5%,认为得到的模型合 理。 问题三可根据光照成影原理和太阳高度角计算公式建立影长与时间变 化模型,根据相关数据,运用 MATLAB 软件拟合可得到直杆所在位置的经纬 度。令年份均为 2015 年,根据太阳赤纬角计算公式,可求解具体的日期。 将附件 2 和附件 3 时间和对应直杆影长数据分别代入模型中,通过拟合计

2015数学建模国赛论文A题

2015数学建模国赛论文A题

利用影子确定视频拍摄地点和日期的建模和算法摘要本文研究的问题是如何通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期。

建模整体思路是,先建立一系列分析用到的物理量,设定一些假设和约束条件,使得问题求解有可行性,之后对这些物理量进行演绎。

建模使用的软件平台主要是matlab ,分析用到的主要参量是太阳赤纬、时角、高度角、方位角、纬度,分析过程当中用到的方法有,建立物理概念,明确物理意义,比如引用天球坐标系的概念,在天球坐标系的基础上进行物理分析,通过对建立的参变量进行物理关系的推导,形成公式体系进行求解,对题目所给予的影子坐标数据进行适当变换处理,使用matlab 进行合理的拟合,对于用公式法和方程法没法顺利解决的问题使用穷举法作为解题的补充,对于视频中坐标的取法用到了坐标转换的思想。

其中主要公式有 1.cos sin sin coshA δω= 2.tanh H L= 3. sinh sin sin cos cosh cos A ϕδϕ-= 4. sinh=cos Ωcos φcos δ+sin φsin δ第一问,通过物理量变换,先求出高度角,进而得到影子长度与时间变化关系。

第二问,拟合点求经度,取点套公式求纬度。

第三问,方程思想,过程复杂,采用穷举法近似实现求解。

第四问,难点在于通过视频分析,得到影子端点的变化坐标,进而将问题转化成第二问,已知日期(太阳赤纬),时间(时角),求解经度纬度。

关键词:天球坐标系 物理量演绎分析 matlab 数据拟合分析 二元方程组近似穷举法 坐标转换思想1.问题重述与分析如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。

1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用你们建立的模型画出2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。

2015年全国大学生数学建模竞赛A题

2015年全国大学生数学建模竞赛A题

§ 3 模型的假设
1、所收集的数据资料都是真实可靠的;
2
2、文章所统计的出租车均正常运营; 3、出租车和乘客不会中途中断交易; 4、假设乘客使用打车软件均呼叫出租车; 5、匹配程度只与乘客对打车软件服务平台的需求量与司机对打车软件服务平台的供给 量有关。
§ 4 名词解释与符号说明
一、名词解释 出行强度:每人每天出行次数,它可以反映城市交通服务水平; 出租车使用率:在各种出行方式中,选择出租车出行所占比例; 二、符号说明 序号 符号 含义 1 2 3 4 5 6 7 8 9 10 11 12 13 qij xi λi ci tj pij bj Amn α β y1 y2 te 表示第 i 个城市第 j 个时段出租车的需求量 表示第 i 个城市的人口数 表示第 i 个城市出行强度 表示第 i 个城市出租车使用率 表示第 j 个时段出租车需求比 表示第 i 个城市第 j 时段的匹配程度 表示第 j 个城市出租车总量 表示准则层对方案层的判断矩阵 表示乘客使用打车软件打车意愿 表示司机使用打车软件接单意愿 表示打车软件公司对乘客的补贴金额 表示打车软件公司对司机的补贴金额 表示某一时段出租车需求比
§ 5 模型的建立与求解
问题一的分析与求解 1、匹配程度时间函数模型 日常生活中,当需求与供给越接近,既不会造成需求得不到满足,也不会造成资源
3
浪费,同时表示此时匹配程度较好。由此说明匹配程度由需求和供给共同决定。所以建 立出租车匹配程度时间函数,需要出租车在所有出行方式中的占用率和出租车的总量。 查阅相关文献[1-2]可得以下数据,如表格 1 所示。 表格 1 基本数据 人口数 (万人) 出行强度 (次/人.天) 出 租 车 占 用 率 出租车总量(万 (%) 辆) 北京(1) 1917 2.64 9.01 6.6646 广州(2) 625.33 1.86 6.25 2.0300 成都(3) 533.96 2.56 7.60 1.4898 济南(4) 360 1.88 15.04 0.8043 哈尔滨(5) 495 2.54 18.23 1.4300 人们每日日常生活,相对比较规律,所以在出行规律也存在一定的相似性。我们通 过查阅相关文献[3],做出每天从早上 6:30 至晚上 22:00 每隔半小时的出租车需求百分比 图,如图 1 所示。

2015年全国大学生数学建模竞赛A题

2015年全国大学生数学建模竞赛A题

太阳影子定位(一)摘要根据影子的形成原理和影子随时间的变化规律,可以建立时间、太阳位置和影子轨迹的数学模型,利用影子轨迹图和时间可以推算出地点等信息,从而进行视频数据分析可以确定视频的拍摄地点。

本文根据此模型求解确定时间地点影子的运动轨迹和对于已知运动求解地点或日期。

直立杆的影子的位置在一天中随太阳的位置不断变化,而其自身的所在的经纬度以及时间都会影响到影子的变化。

但是影子的变化是一个连续的轨迹,可以用一个连续的函数来表达。

我们可以利用这根长直杆顶端的影子的变化轨迹来描述直立杆的影子。

众所周知,地球是围绕太阳进行公转的,但是我们可以利用相对运动的原理,将地球围绕太阳的运动看成是太阳围绕地球转动。

我们在解决问题一的时候,利用题目中所给出的日期、经纬度和时间,来解出太阳高度角h,太阳方位角Α,赤纬角δ,时角Ω,直杆高度H和影子端点位置(x0,y o),从而建立数学模型。

影子的端点坐标是属于时间的函数,所以可以借助时间写出参数方程来描述影子轨迹的变化。

问题二中给出了日期和随时间影子端点的坐标变化,可以根据坐标变化求出运用软件拟合出曲线找到在正午时纵坐标最小,横坐标最大,影子最短的北京时间,根据时差与经度的关系,求出测量地点的经度。

根据太阳方位角Α,赤纬角δ,时角Ω,可以求出太阳高度角h。

再结合问题一中的表达式,建立方程求解测量地点的纬度Ф。

我们在求解第三问的思路也是沿用之间的模型,但第三问上需要解出日期。

对于问题四的求解,先获取自然图像序列或者视频帧,并对每一帧图像检测出影子的轨迹点;然后确定多个灭点,并拟合出地平线;拟合互相垂直的灭点,计算出仿射纠正和投影纠正矩阵;进而还原出经过度量纠正的世界坐标;在拟合出经过度量纠正世界坐标中的影子点的轨迹,利用前面几问中的关系求出经纬度。

关键字:太阳影子轨迹Matlab曲线拟合(二)问题重述确定视频拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。

2015全国大学生数学建模竞赛A题解析

2015全国大学生数学建模竞赛A题解析

V
是' 无变位时的显示储油量。
i
以下为附加内容
不需要的朋友下载后 可以编辑删除,谢谢
让更多的农民成为新型职业农民 中央农业广播电视学校 刘天金
2013˙05˙07 陕西
农业部部长韩长赋: 这是一项基础性工程、创新性工作,
要大抓特抓、坚持不懈。
——让更多的农民成为新型职业农民(目标) ——生产更多更好更安全的农产品供给社会(方向)
由于本问较复杂,需要分情况建立模型,可以先考 虑只发生纵向变位的情况。
三、解题思路(续)
球冠Ⅰ的体积表达式为:
其中
三、解题思路(续)
球冠III的体积表达式为:
其中
三、解题思路(续)
圆柱体II的体积表达式为:
其中
三、解题思路(续)
在不考虑罐体横向变位的情况下(即 ) ,0 储油罐 的体积与辅助变量 的H 关1 系表达式为:
2r,
r(1cos)h纵2r
由于罐体只产生纵向变位时油位高度 与h 纵储油量 V (, h纵) 的对应关系已得到,再根据上面推导出的 h 与纵 同 时发生纵向和横向变位时油位高h,就可以求出一般情 况下,即罐体同时产生纵向和横向变位的油位高h与储
油量V之间的关系模型 VF(。,,h)
三、解题思路(续)
二、问题分析(续)
(3)对于(2)得到的实验罐在纵向倾斜变位情形 下油位高度与储油量的模型,将变位参数 4.1 代入 计算,得出修正后的油位高度间隔为1cm的罐容表标定 值。并与原标定值比较,分析罐体变位的影响。
第二部分:根据实际检测数据,识别实际储油罐罐 体是如何变位的,估计出变位参数,给出实际罐罐容表 的修正标定方法和结果。并分析检验模型的正确性和方 法的可靠性。

太阳影子定位-2015年全国数学建模比赛a题全国二等奖论文

太阳影子定位-2015年全国数学建模比赛a题全国二等奖论文

太阳影子定位摘要本文研究的问题是分析直杆在太阳的照射下,影子的角度和长度的变化,再结合相关地理知识和数学几何模型,推算出具体的所在地点和具体日期。

该模型可以用于太阳影子定位技术中,根据物体在阳光照射下影子的变化进行定位。

对于问题一,我们首先根据地球与太阳的位置关系列出太阳赤纬角,太阳高度角,太阳时角的计算式,其中需对较粗略的太阳赤纬角计算式进行修正,得出精准的计算式。

再建立数学几何模型,根据太阳高度角,影长与杆长形成的角边关系,列出影长的计算式。

最后建立一个太阳日照影长模型,该模型以太阳高度角计算式,太阳赤纬角计算式,太阳时角计算式为子函数,以太阳赤纬角,太阳日角,太阳时角,时间初值为中间变量,以当地经纬度,从1月1日到测量日的天数,时间,杆长,年份为自变量的复合函数数学模型。

然后采用由内到外计算法对此复合函数进行求解,计算出从九点到十五点的影长和太阳高度角的变化,得出直杆的太阳影子长度的变化曲线。

对于问题二,我们首先分析因为时间日期已给出,所以根据太阳赤纬角计算式可知太阳赤纬角为已知量,接着我们将影长的计算式进行等式移项变换,得到一个拟合杆长及经纬度的非线性最小二乘模型,该模型将问题一中太阳日照影长模型作为参数拟合对象,以杆长和影长与太阳高度角正切值之积的差值最小误差平方和为目标函数,以太阳高度角计算式,太阳时角计算式为约束条件,以测量时间,天数,影长为已知量。

将该模型在1stopt 软件中运行,采用麦夸尔特算法和通用全局最优化法对该模型进行迭代计算,对实验结果统计分析后得出该直杆相应的北纬为19.29392848度,东经为108.7225248度(海南岛的西海岸)。

对于问题三,除了需要拟合杆长和经纬度以外,还需拟合日期,同样参照影长等式移项变换公式,得到一个拟合杆长、经纬度及日期的非线性最小二乘模型。

同样采用问题二的计算方法得到多组结果,其中附件二最优解地点为新疆维吾尔自治区喀什地区巴楚县(40.0025°N,79.6587°E),附件三最优解地点为湖北省十堰市郧西县(32.9638°N,110.277°E )。

2015年全国大学生数学建模竞赛A题

2015年全国大学生数学建模竞赛A题

太阳影子定位技术问题的数学模型摘要本文涉及的是太阳影子定位技术问题。

在已知视频中物体的太阳影子变化的情况下,要确定视频的拍摄地点和拍摄日期。

首先,分析了文中四个问题的关系,发现前三个问题的已知条件逐步减少,问题难度依次递进。

第四问则给出一个实际问题,该问题需要转化成数学模型利用前三问的方法求解;随后,建立了L-G模型、MinZ-模型等,并应用非线性最小二乘法、遗传算法等算法对模型求解。

得到基于模型的合理结果。

最后,将第四问的实际问题转化数学模型并求解,进而解决问题。

对于问题一,要解决的问题是杆长与影子长度的关系,根据天文、几何知识,我们建立了模型来刻画问题给出的参数之间联系,如赤纬角模型、时角模型、太阳高度角模型、影子长度模型(L-G模型)等;分析了各参数对影子长度的影响;最后运用MATLAB绘制出具体给定参数下的3米高直杆的影子变化曲线;从曲线可以看出在9:00到15:00这段时间里,影子长度先变短后变长,最短为3.627米,最长为7.182米。

问题二提供了一个关于时间、影子坐标的附件1,杆长未知,为了确定直杆所处的地点,本问建立了MinZ-模型,首先将经度、纬度、杆长离散化,搜索出大概的可行解,然后运用非线性最小二乘算法,选取matlab中的lsqcurvefit命令,以可行解为初值,再运用非线性最小二乘算法,选取MATLAB中的lsqcurvefit命令,在控制残差在10−8之内范围的情况下得到了三个可能地点皆在海南省昌江县内,最小误差的地点为海南省江黎族自治县,北纬19.3025°,东经108.6988°,此时对应直杆高度为2.0219m。

同时,将结果代入问题一的模型进行检验,验证了模型的稳定性和算法的合理性。

问题三沿用问题一的模型和问题二的算法,由于一个已知量变成一个变量,根据算法特点,在增加一个变量的情况下,算法搜索影长差时只需要增加一重循环。

关于附件2数据,残差最小对应的位置为北纬39.8926°,东经79.7438°,具体地点在新疆维吾尔自治区喀什地区巴楚县。

2015年全国大学生数学建模竞赛A题优秀论文太阳影子定位模型教程

2015年全国大学生数学建模竞赛A题优秀论文太阳影子定位模型教程
5.1. 旗杆影长的求解 5.1.1. 模型建立
我们依据太阳位置算法[2]( SPA)得到太阳位置的几何模型图如图 1 所示:
图 1 太阳位置的几何模型
图中 为高度角, 为方位角, 为纬度角, 为赤纬角, 为太阳时角, 和 能由下列式子计算得到(公式来源:/1GU1iS):
(1.2)
其中 为一个参数,能通过如下公式得到
2 (d 1) 365
(1.3)
式中, h 为北京时间, 为当地经度, d 为日期,即 1 月 1 日就用 d 1来表
示,假设一年为 365 天,则 d 365表示 12 月 31 日。由式(1.1)可知,相邻两天的赤
纬角 差值几乎为 0,因此当闰年时,我们设定 2 月 28 日的 d 59 ,29 日时 d 59 ,
g( ) (0.006918 - 0.399912 cos( ) 0.070257 sin( ) - 0.006758 cos(2 ) 0.000907 sin(2 ) - 0.002697 cos(3 ) 0.00148 sin(3 ))
(1.1 )
h15 300
关键词:太阳位置算法 最小二乘法 遗传算法 太阳影子定位模型
一. 问题重述
1.1. 问题背景 如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位
技术就是通过分析视频中物体的太阳影子变化来确定视频拍摄的地点和日期的一种方 法。 1.2. 问题提出 1. 建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用建
5.1.2. 模型求解
首先根据问题分析和模型,我们将观测日期代入得到赤纬角 21.8985 ,负号表
示太阳直射点在南半球,然后代入求出太阳时角 和高度角 在不同时刻的值,得到表

2015年数学建模国赛A题全国优秀论文40

2015年数学建模国赛A题全国优秀论文40

三.模型假设
1.假设一天中的太阳赤纬角保持不变; 2.假设附件 4 中视频里的时间为北京时间; 3.假设大气层对太阳光的折射率保持不变; 4.假设影子长度和角度与该点的海拔无关;
四.符号说明
符号
h
表示含义 表示太阳高度角 表示修正后的太阳高度角 表示杆子的长度 表示杆子的影长 表示太阳赤纬角 表示某点的地理纬度 表示某点的地理经度 表示太阳时角 表示大气层的折射率 表示日期 表示某一具体时刻 表示太阳方位角
1
一.问题的背景与重述
1.1 问题的背景 早在 15 世纪时, 定位技术就已经随着海洋探索的开始而产生。 随着社会和科技的不 断发展,我们对定位的需求已不再局限于航海、航空等领域,对于地球上的精确坐标定 位已逐渐成为人们关注的热点问题。对于地球表面经纬度的精确定位,可利用变化的太 阳影子来进行分析,其作为一种直观简便的定位技术,已受到广泛关注。 1.2 问题的重述 太阳影子定位技术是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和 日期的一种方法,请建立合理的数学模型解决以下问题: 1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并根据 建立的模型画出 2015 年 10 月 22 日北京时间 9:00-15:00 之间天安门广场 (北纬 39 度 54 分 26 秒,东经 116 度 23 分 29 秒)3 米高的直杆的太阳影子长度的变化曲线。 2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆 所处的地点,并将模型应用于附件 1 的影子顶点坐标数据,给出若干个可能的地点。 3. 根据某固定直杆在水平地面上的太阳影子顶点坐标数据, 建立数学模型确定直杆 所处的地点和日期,并将模型分别应用于附件 2 和附件 3 的影子顶点坐标数据,给出若 干个可能的地点与日期。 4.附件 4 为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估计出直 杆的高度为 2 米。请建立确定视频拍摄地点的数学模型,并应用该模型给出若干个可能 的拍摄地点。如果拍摄日期未知,是否可以根据视频确定出拍摄地点与日期。

2015高教社杯全国大学生数学建模竞赛A题评阅要点

2015高教社杯全国大学生数学建模竞赛A题评阅要点

2015高教社杯全国大学生数学建模竞赛A题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。

本题要求根据视频中物体的太阳影子,建立数学模型确定视频拍摄地点和日期。

主要考察学生关于空间几何问题的建模能力以及非线性优化问题的求解能力,对求解精度具有一定的要求。

评阅时应注意:“北京时间”与“北京当地时间”的不同,经度与时间的关系,日期关于春分、秋分、冬至、夏至的近似对称性等。

大气折射会导致太阳高度角产生一定偏转,所以考虑大气折射情形的模型更佳。

对能够自行构造数据进行模型检验的论文,应给予较好的评价。

问题1在已知视频拍摄时间及地点的条件下求影子的数学模型,并分析长度关于日期、时间、经纬度等参数的变化规律。

有较多的参考文献给出这一问题的模型,若直接采用文献中的模型,需指明出处。

问题2在已知物体影子顶点真实坐标及拍摄日期与北京时间的条件下,根据问题1得到的影子长度变化模型,反解出纬度及当地时间,根据当地时间和北京时间之间的关系确定经度。

附件1的位置是(109.5°E, 18.3°N)海南三亚。

评阅时应以模型和方法为主,结果仅作为参考。

要尽可能使用所给数据的全部信息。

问题3与问题2相比,问题3中拍摄日期未知,反演难度有所增加,同时使用长度和角度信息反演效果更好。

附件2的位置是(79.75°E, 39.52°N)新疆,日期是7月20日;附件3的位置是(110.25°E, 29.39°N)湖南省张家界,日期是1月20日。

由于日期相近的影子长度和角度变化较小,导致参数反演问题的近似解较多。

可以将日期、经纬度一定范围内的结果都认为是近似正确的。

评阅时应以模型和方法为主,结果仅作为参考。

问题4建立影子顶点大地坐标与视频坐标之间的关系,然后反演模型中的参数。

由于反演参数的增加,以及视频数据提取时产生的误差,导致模型求解精度下降、确定拍摄地点的难度增加。

2015年数模A题

2015年数模A题
合理的假设1假设论文的抽样网评是完全随机的具有代表性2假设评委打分数据是客观真实有效的出现偏差是评委水平导致3假设当时评委的精神处于最佳状态评委分数可信度不受客观因素影响4假设论文的网评和集中评审的评阅信息是相互独立的各评委打分之间没有相互交流影响个评委对第j份试卷打分份论文的第j份试卷的平均分数份论文的第j份试卷平均分数矩阵数据的预处理51初步分析数据根据数据文件给出的数据分别算出某一个评委所评阅的所有论文的平均分为x均方差为并利用附录给出的公式算出该评委的第k份论文的标准分具体数据见下表1
2.2问题二的分析
第二个问题根据对竞赛评委有不同的基本素质要求,给出合理的度量评委基本素质的指标体系。我们根据题目附件给出的数据,去发掘测评评委基本素质要求的一些指标体系。测评基本素质指标体系主要三个方面构成:指标一是评委打分的准确度,指标二是评委打分的稳定度,指标三是评委打分的偏差度。为了使指标准确可靠,需要把不同的论文的结果分为两大类,一个是得奖论文,另一个是未得奖论文。为简化问题的复杂度,我们从得奖论文入手,分别找到这三个指标的评价标准:
序号
阅卷号
评委
打分
标准分
1
A1
评委A04
35
46.25937
2
A2
评委A11
53
55.66406
3
A3
评委A06
46
60.54732
……
……
……
……
……
353
A9020
评委A03
62
61.27679
354
A9021
评委A12
28
46.8965
355
A9022
评委A11
30
36.32556

2015数学建模竞赛A题:太阳影子定位技术研究

2015数学建模竞赛A题:太阳影子定位技术研究
针对问题三,题中虽然没有给出采样日期,但其整体思路与问题二是一致的。 在选取假设采样点后,将经度、纬度和日期作为变量,使用问题一中的模型求出 该假设采样点的影子长度。最后使用最小二乘法将这些假设采样点数据与原始影 子长度数据进行拟合,在 MATLAB 中编程计算,得到的结果为:附件 2 中的采样 点在东经 79°,北纬 43°,采样日期为 6 月 12 日;附件 3 中的采样点在东经 107°, 北纬 28°,采样日期为 11 月 25 日。
针对问题二,首先,我们通过影子的顶点坐标得到各个时刻的影子长度。之 后进行数据标准化,消除直杆长度对影子长度的影响。任意选取某一经纬度为假 设采样点,将经度、纬度作为变量,使用问题一中的模型求出该假设采样点的影 子长度。最后使用最小二乘法将这些假设采样点数据与原始影子长度数据进行拟 合,在 MATLAB 中编程计算,得到的最小目标函数值������ = 1.2981 × 10−7 ,该假设 采样点为东经 109°,北纬 17°(见正文图 11),其周边海南三亚市、越南沿海地 区都可以认为是采样点的可能位置。
太阳影子定位技术的研究
摘要
本文针对太阳影子定位问题,通过运用天球模型和最小二乘法,研究了直杆 太阳影子长度与直杆长度、太阳高度角、采样点经纬度、采样日期和采样时间等 参数的关系,实现了利用物体的太阳影子变化来确定视频拍摄地点和日期。
针对问题一,在已知直杆长度的情况下,太阳影子长度和太阳高度角满足一 个确定的函数关系。因此,我们可以将研究对象从太阳影子长度转换为太阳高度 角。引入天球模型后,使用天球坐标系统中的赤道坐标系和地平坐标系来描述太 阳的运动和位置,得到了太阳高度角与采样地点经度、纬度、日期和当天具体时 间的函数关系,进而得到了影子长度与各参数的关系。之后,使用控制变量法分 别得到了影子长度关于直杆长度、经度、纬度、日期和时间这 5 个参数的变化规 律(见正文图 5、6、7、8、9)。最后,运用该模型画出了天安门广场上 3 米高的 直杆的太阳影子长度的变化曲线(见正文图 10)。

2015年数学建模a题

2015年数学建模a题

将其带入方程⑤
a=2.9721
b=-18.6741
c=30.4846
由于 a、b、c 为时角状态,为了更清晰的表示出不同时间下影子长度的变化,将其
重新转换为北京时间,得到新的 a、b、c 数据:
a=0.2037
b=-4.8888
c=30.4843
5.1.3 模型的解决
将得到 a、b、c 带入方程⑤中,得到:
东经 116 度 23 分 29 秒),所以观测地地理纬度为北纬 39 度 54 分 26 秒,东经度 116 度
23 分 29 秒。在本文中为了计算方便,将纬度度数转化为弧度制。
(4)时角:一个天体的时角被定义为该天体的赤经与当地的恒星时的差值。
5.1.2 模型的建立
由太阳高度角的求法可知:tan ℎ = ������(杆长)
1.2 问题的提出
围绕太阳照射下物体的影子长度的动态变化过程、设计参数,本文依次提出如下问 题:
1.通过建立物体影子长度变化的数学模型,分析影子长度在各个参数影响下的变化 规律,并用建立的数学模型描绘出 2015 年 10 月 22 日北京时间 9:00-15:00 之间天安门 广场(北纬 39 度 54 分 26 秒,东经 116 度 23 分 29 秒)3 米高的直杆的太阳影子长度的 变化曲线。
针对问题三,对附件二与附件三分别求出非线性回归方程,建立模型,通过正午太 阳高度所在的北京时间推导经度,在杆长一并已知的情况下,将分散的未知数整体凝聚, 在问题二所做模型的基础上进一步优化,使其达到同求纬度与日期的目的。
针对问题四,借助 photoshop 软件对视频截图中影长进行测量,将测量的数据根据 测量杆长与实际杆长的比例计算出真实影长,并拟合出影长和北京时间的回归方程,推 导出观测地经度,接着进行筛选,去除异常数据,对残缺数据进行适当补充,并从中抽取 了 20 组数据进行数据模拟,结果显示,理论结果与数据模拟结果吻合。通过新建立的 数据模型得出具体纬度,确定地点。

2015年全国数学建模竞赛A题全国一等奖论文14

2015年全国数学建模竞赛A题全国一等奖论文14
阳光线的影响; 6、假设春分日为每年的 3 月 21 日,夏至日为每年的 6 月 22 日,秋分日为每年
的 9 月 23 日,冬至日为每年的 12 月 22 日。
三、符号说明
符号 R
含义 地球半径,6371km
2

测量地点的纬度
(南纬为负,北纬为正)

测量地点的经度
(西经为负,东经为正)

太阳赤纬角
到各个点的空间坐标:A R cos,0, Rsin ,BR cos cos, R cos sin, Rsin , C R cos, Rsin,0 , D R,0,0 。
Z
N
E
阳光
B βO
A α
Y
C
θ
D
X S
图 1 太阳光直射地球正面图(1)
通过对包含点 A,B 的最大圆进行几何学分析,我们得到长度为 AE 的物体在 太阳光的照射下,投影长度为 AF,则:
子与 Y 轴夹角 arctan(xi / yi ),进一步求出 20 组相邻时刻的影子之间的夹角 i arctan(xi / yi ) arctan(xi1 / yi1) 作为实际值。接着再引入影子与正北方向的 夹角 作为参数。我们运用几何学知识可以求出 与各参数, , 之间的函数关 系。并且与上一模型类似,我们对直杆所在地点的经度 ,纬度 ,测量时间 t 进行穷举法遍历,通过建立的模型对于每一组 ( , ) 求解出 20 组 i i i1 作
1
一、问题重述
确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位 技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一 种方法。
1、建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律, 并用建立的模型画出 2015 年 10 月 22 日北京时间 9:00-15:00 之间天安门广场(北 纬 39 度 54 分 26 秒,东经 116 度 23 分 29 秒)3 米高的直杆的太阳影子长度的变 化曲线。

2015数学建模A题

2015数学建模A题

嫦娥三号软着陆轨道设计与控制策略摘要在整个“嫦娥三号”软着陆过程中发动机的燃耗问题是整个着陆过程的关键问题之一,其利用率直接影响到整个着陆过程的成果与否,本文主要利用数学建模的方法对整个软着陆过程进行分析,使得整个软着陆过程发动机能耗最优。

针对问题一,首先需建立一个三维立体坐标系,根据牛顿第二定律,结合科氏定律整理得到嫦娥三号在月固定坐标系中的运动方程,再以卫星运行轨道切面为基面建立二维平面坐标系,将嫦娥三号软着陆问题简化为平面几何问题,求解出主减速阶段嫦娥三号水平位移的距离。

通过坐标变换求得位置。

最后根据天体运动规律得到近日点与远日点速度分别为s6226.1。

km.1、skm7006针对问题二,通过寻找一个制导律u,来调整推力的大小和方向,使嫦娥三号在月面实现燃耗最优着陆轨道,应用极大值原理设计这个最优制导律。

在障碍规避过程中,将动力学模型进行进一步简化,忽略了月球的自转角速度等相关因素。

再利用双线性插值的方法求取规则的采样点处的高程值,这样有利于方便的建立障碍检测算法并对着陆区表面的障碍进行提取,最后利用基于平面拟合的障碍检测算法取得着陆区域内某局部区域内的地形平面,我们将利用这个地表平面来对障碍物进行识别,达到安全着陆的目的。

针对问题三,影响制导精度的误差源主要有偏离标准飞行轨迹的初始条件误差和导航与控制传感器误差。

初始条件误差由主制动段以前的任务决定,传感器误差则由导航系统和传感器本身决定,通过建立误差模型,可以很好地对初始状态偏差、传感器测量偏差等不同因素造成的误差进行分析。

关键词:月球着陆轨道能耗最优打靶法最优制导律控制策略一问题重述嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。

嫦娥三号在着陆准备轨道上的运行质量为2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。

【数学建模国赛获奖】2015年全国数学建模竞赛A题全国一等奖论文14

【数学建模国赛获奖】2015年全国数学建模竞赛A题全国一等奖论文14
针对问题四,我们将平面倾斜的照片与现实建立联系,通过将影子分解为竖 直方向与水平方向求解影子的长度,然后继续使用问题二的方法进行求解,在不 知道日期的情况下,也可以通过问题三的方法进行求解。最后结果在东经 163.5 度,北纬 24 度。
关键字: 枚举法 微元法 直杆影对角 小孔成像 牛顿莱布尼兹公式
间的变化规律。
针对问题二,建立确定直杆所处地点的数学模型。分别从影子实际长度 l 和 相邻时刻影子的夹角 两个方面考虑直杆所在地点。一方面,通过对附件 1 中的 数据分析,求出实际影子长度比值 li / li1 。根据问题一中 与各参数, , 之间 的关系,对直杆所在地点的经度 ,纬度 采用枚举法,对每一组 ( , ) 求解出 li / li1 tani / tani1 的比值,找出实际值与理论值之间的最小方差,即得到若 干最优解 ( , ) 。另一方面,利用附件 1 中的数据求出相邻时刻影子之间的夹角 i ,再重新定义参数 为影子与正北方向的夹角。与上一方法类似,我们应用参 数 通过对直杆所在地点的经度 ,纬度 采用枚举法,对于每一组 ( , ) 求解 出 i i i1 作为模拟值,用类似的方法得到若干最优解。最后比较两种方法
4、建立确定视频拍摄地点的数学模型,根据附件 4 为一根直杆在太阳下的 影子变化的视频,给出若干个可能的拍摄地点。已通过某种方式估计出该直杆的 高度为 2 米。若拍摄日期未知,试根据视频确定出拍摄地点与日期。
二、问题假设
1、 假设地球为规则的球体,半径为 R=6371km; 2、 假设南纬为负,北纬为正,西经为负,东经为正; 3、 假设地球公转的周期为 365 天,地球自转的周期为 24 小时; 4、假设题目中给出的所有数据都是准确的,忽略测量时出现的误差; 5、假设太阳为点光源,发出的光线为平行光线直射地球,忽略大气层折射对太

2015数学建模国赛A题论文Word版

2015数学建模国赛A题论文Word版

太阳影子定位摘要太阳影子定位技术[1]是解决拍摄视频的地点和时间的重要手段,因此对太阳影子定位技术进行定性与定量的研究具有重要的理论和实际价值。

我们建立了直杆的影子长度,北京时间,日期等变量之间的关系模型,并应用模型解决了题目所列的四个问题。

对于问题一我们利用空间几何学建立数学模型,确定了(太阳光线与直杆之间的)夹角、直杆和太阳直射点位置之间的关系。

进一步地,我们得到了直杆影子长度与直杆、太阳直射点[2]位置(经纬度)之间的关系方程。

我们分两种情况进行讨论,一种情况是太阳直射点与直杆同处于南、北半球,另一种情况是太阳直射点与直杆分别处于南、北半球。

最后我们由方程和matlab软件作图得到2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。

对于问题二我们根据附件一给出的数据建立了多个关于直杆经度和纬度的非线性方程组,利用基于matlab的遗传算法[3]求解非线性方程组[4],得到杆子的几个可能的位置。

对于问题三我们根据附件二和三给出的数据建立了多个关于直杆经度、纬度和日期的非线性方程组,利用基于matlab的遗传算法求解非线性方程组,得到若干个可能的地点和日期。

对于问题四我们首先利用图像模拟方法,测得杆子在一些特定时刻的影子的实际长度值,再利用视频给出的数据建立了多个关于直杆经度和纬度的非线性方程组,利用基于matlab的遗传算法求解非线性方程组,得到杆子的几个可能的位置。

【关键字】:直杆影子长度,经纬度,非线性方程一、问题重述太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。

本题就是利用物体影子随时间的变化规律来求解拍摄地点与拍摄日期。

1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用你们建立的模型画出2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太阳影子定位(一)摘要根据影子的形成原理和影子随时间的变化规律,可以建立时间、太阳位置和影子轨迹的数学模型,利用影子轨迹图和时间可以推算出地点等信息,从而进行视频数据分析可以确定视频的拍摄地点。

本文根据此模型求解确定时间地点影子的运动轨迹和对于已知运动求解地点或日期。

直立杆的影子的位置在一天中随太阳的位置不断变化,而其自身的所在的经纬度以及时间都会影响到影子的变化。

但是影子的变化是一个连续的轨迹,可以用一个连续的函数来表达。

我们可以利用这根长直杆顶端的影子的变化轨迹来描述直立杆的影子。

众所周知,地球是围绕太阳进行公转的,但是我们可以利用相对运动的原理,将地球围绕太阳的运动看成是太阳围绕地球转动。

我们在解决问题一的时候,利用题目中所给出的日期、经纬度和时间,来解出太阳高度角h,太阳方位角Α,赤纬角δ,时角Ω,直杆高度H和影子端点位置(x0,y o),从而建立数学模型。

影子的端点坐标是属于时间的函数,所以可以借助时间写出参数方程来描述影子轨迹的变化。

问题二中给出了日期和随时间影子端点的坐标变化,可以根据坐标变化求出运用软件拟合出曲线找到在正午时纵坐标最小,横坐标最大,影子最短的北京时间,根据时差与经度的关系,求出测量地点的经度。

根据太阳方位角Α,赤纬角δ,时角Ω,可以求出太阳高度角h。

再结合问题一中的表达式,建立方程求解测量地点的纬度Ф。

我们在求解第三问的思路也是沿用之间的模型,但第三问上需要解出日期。

对于问题四的求解,先获取自然图像序列或者视频帧,并对每一帧图像检测出影子的轨迹点;然后确定多个灭点,并拟合出地平线;拟合互相垂直的灭点,计算出仿射纠正和投影纠正矩阵;进而还原出经过度量纠正的世界坐标;在拟合出经过度量纠正世界坐标中的影子点的轨迹,利用前面几问中的关系求出经纬度。

关键字:太阳影子轨迹Matlab 曲线拟合(二)问题重述确定视频拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。

针对问题一,地球的运动可以看成是在进行年复一年相同的转动,此问题中给出了确切的时间,假设在一天当中,地球不进行公转。

即太阳与地球的相对位置是确定,太阳直射点的纬度是已知条件。

同时题给出了确切的地点在天安门广场即已知经纬度,而且已知直杆的高度,在北京时间9:00-15:00之间求解太阳影子长度的变化。

针对问题二,只给出了测量的日期和随时间变化,要求解出,测量地点的经纬度,确定观测点。

针对上诉问题建立模型,在确定的日期,假设地球在一天内不存在公转,则在确定的日期内太阳直射点的纬度是已知的。

其他的角度就需要运用对数据的分析来求解。

针对问题三,要求格局直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点和日期。

并根据附件2和附件3中的影子顶点坐标数据求出可能的观测地点和日期。

针对问题四,给出了一根直杆在太阳的影子变化的视频,并且已知杆的高度为2米,视频中给出了拍摄的日期要求建立数学模型,通过对视频的分析和处理求解出可能的拍摄地点。

之后还问到,如果拍摄日期未知求解拍摄地点和日期。

(三)模型的假设,符号说明1)模型的假设1.在一天当中,地球只存在自转,不会围绕太阳进行公转,即赤纬角角度保持不变。

2.直杆在测量过程中一直保持直立在坚硬的地面上。

3.测量过程中天气一直晴朗,不存在其他光的介入,从而导致影子的变化。

4.不考虑太阳光线在通过大气层的过程中的反射和折射。

5.太阳和地球的距离足够远,故假设照射到地球的太阳光为平行光2)符号说明Ф……………………………………所在地的地理纬度θ……………………………………所在地的地理经度Ο……………………………………直杆地球位置点H……………………………………直杆的高度Ω……………………………………时角(地球自转随时间变化的角度)δ……………………………………赤纬角(垂直照射光线和赤道投影线的夹角)h……………………………………太阳高度角(太阳光入射方向和地平面间的夹角)Α……………………………………太阳方位角(太阳光在地面投影与当地经线夹角)L……………………………………太阳位置点(地心与日心连线和地球球面的交点)ω……………………………………地球自转的角速度t ……………………………………太阳某位置的方位时间n ……………………………………24h制的时间数T ……………………………………北京时间N ……………………………………日期序数(四)模型的建立在问题一的条件下进行建模一根直立的杆,其影子的位置在一天中随太阳的位置不断变化。

不妨假设太阳的位置在确定的某一天某一时刻位置如图一所示,杆高为H,太阳的光线通过杆的顶点P,在地面上形成的影子点P’,影子的长度即为OP’,记为L,可以假设太阳的光线与地面的夹角∠PP,O=β则夹角应满足:L=cotβH地球的自转和围绕太阳公转引起地球上物体受到光照的方向不同,从而引起影子的变化,在24h当中地球自转一周360°,平均每小时旋转15°(其自转的角速度ω=15°/h)造成太阳的位置也随时间不断变化,所以杆的顶点P在地面上的影子P’在一天中会形成一条轨迹线。

太阳的位置点L在天体中相对地球的位置点O上某一点的相对位置,由该点的地理纬度、季节(月、日)和时间3个因素决定。

图2 各角度参数关系图问题一中给出了确切的地点坐标纬度为Φ,经度为Θ,由此可知在此经度上的时间(即地方是)应满足下列表达式:θ−120n−T=ω正午的时候,太阳直射地面,此时太阳在此位置的方位时间为t:t=n−12假设在确定的某一天中,地球只存在自转,不存在公转,那自转所转过的时角表达式为:Ω=ωt地球赤道平面与太阳和地球中心的连线之间的夹角,称为赤纬角,又称太阳赤纬赤纬角是由于地球绕太阳运行造成的现象,它随时间而变,因为地轴方向不变,所以赤纬角随地球在运行轨道上的不同点具有不同的数值。

这个角度大部分是空间角度,为异面直线的夹角。

其计算公式为δ=23.45sin(2π(284+N)365)(度)(其中N代表日期序号。

)某地太阳光线与通过该地与地心相连的地表切线的夹角,即太阳光入射方向和地平面间的夹角,也就是所说的太阳高度角h满足下列表达式:sinℎ=sinФ∙sinδ+cosФ∙cosδ∙cosΩ[1]太阳方位角即太阳所在的方位,指太阳光线在地平面上的投影与当地经线的夹角,可近似地看作是竖立在地面上的直线在阳光下的阴影与正南方的夹角。

sin A=cosδ∙sinΩcosℎ由此,就可以建立由太阳位置和直杆的高度与影子端点P’位置坐标的数学模型。

在问题二的条件下进行建模问题二中给出了确定的日期、北京时间和直杆端点影子的具体坐标,给出了确切的日期可以知道日期序数N,通过公式δ=23.45sin(2π(284+N)365)(度)可以解得此时的赤纬角δ的值,通过对于直杆影子端点坐标的数据拟合,对于纵坐标在一天当中应该是先减小再增大,而题目中给出的是增大的一部分。

对于横坐标来说,是一个一直在增大的值,因为太阳在一天当中东升西落,从而导致在正午的时候,影子只在Y轴有分量,横坐标为0.同时正午的时候,太阳的影子是最短的。

我们拟合的曲线在北京时间14:07的时候出现转折,由此可以推算测量地点与东经120°相差2小时7分钟。

由表达式:θ−120n−T=ω由此可以解得测量地点的经度为88.1682°.利用经度和给出的数据,在某一确定的时间,即可求出T,利用公式:Ω=ωtt=n−12可以解得时角Ω。

已知直杆的端点坐标(x0,y o)满足下列关系式,从而可以知道此时太阳的方位角A,y0=tan A∙x0可解得太阳的方位角A。

因为太阳的方位角A,赤纬角δ,太阳高度角h以及时角Ω满足下列等式sin A=cosδ∙sinΩcosℎ从上式中可以解得太阳高度角h,同时,太阳的高度角h,赤纬角δ,时角Ω满足下列关系式:sinℎ=sinФ∙sinδ+cosФ∙cosδ∙cosΩ从而解得Ф。

在问题三的条件下进行建模问题三中给出了在北京时间确定的直杆影子端点的坐标变化,与问题二的模型建立一致。

通过对于直杆影子端点坐标的数据拟合,对于纵坐标在一天当中应该是先减小再增大,而题目中给出的是增大的一部分。

对于横坐标来说,是一个一直在增大的值,因为太阳在一天当中东升西落,从而导致在正午的时候,影子只在Y轴有分量,横坐标为0.同时正午的时候,太阳的影子是最短的。

由表达式:θ−120n−T=ω由此可以解得测量地点的经度。

利用经度和给出的数据,在某一确定的时间,即可求出T ,利用公式:Ω=ωtt =n −12可以解得时角Ω。

已知直杆的端点坐标(x 0,y o )满足下列关系式,从而可以知道此时太阳的方位角A ,y 0=tan A ∙x 0可解得太阳的方位角A 。

假设直杆的高度为H ,故可以根据公式:H ∙cot ℎ=√x 02+y 02求解出太阳高度角h 。

因为太阳的方位角A ,赤纬角δ,太阳高度角h 以及时角Ω满足下列等式sin A =cos δ∙sin Ωcos ℎ通过上式求解出赤纬角δ的值。

通过公式δ=23.45sin (2π(284+N )365)(度)可以解得此时的时间序数N ,即可解得日期。

从上式中可以解得赤纬角δ,同时,太阳高度角h,太阳的高度角h ,时角Ω满足下列关系式:sin ℎ=sin Ф∙sin δ+cos Ф∙cos δ∙cos Ω从而解得Ф。

在问题四的条件下进行建模需要获取同一场景中含有至少两个影子轨迹的自然图像序列或视频帧,每一幅图像运用技术找到阴影区域的二进制掩膜,并且得到主轴,进而可以计算出影子点,计算灭点,用随机采样一致性算法提出掉灭点异常点后还原出地平线,计算仿射纠正和投影纠正矩阵,还原出影子点经过度量纠正的世界坐标,拟合出影子轨迹的曲线,找到转折点求出经度,在利用前几问的模型求出纬度。

(五) 模型的求解问题一的求解假设影子的端点P’点(x 0,y 0),所以影子端点到原点O 的距离L 可用下列式子来表达,与上述表达式联立,则:{L =OP ′=√(x 0−0)2+(y 0−0)2L H =cot β(此时的β为太阳高度角h)H ∙cot ℎ=√x 02+y 02 求解上述方程可解得:x 0=±H ∙cot ℎ√1+(tan A )2同时太阳的方位角方程满足: y 0=tan A ∙x 0将上述方程综合可以得到P’点的坐标:x 0=H ∙cot(sin −1(sin Φ∙sin δ+cos Φ∙cos δ∙cos(15×(n −12))))√1+(tan (sin −1(cos δ∙sin(15×(n −12))cos(sin −1(sin Φ∙sin δ+cos Φ∙cos δ∙cos(15×(n −12)))))))2y 0=tan A ∙x 0将数值代入利用Matlab 软件即可画出图像,其中H=3m ,T 的变化范围在9:00-15:00,北纬(Ф)39度54分26秒,东经(θ)116度23分29秒,日期为2015年10月22日,即N=295。

相关文档
最新文档