电路设计与仿真报告完成版
电子仿真报告总结范文模板
电子仿真报告总结范文模板电子仿真技术是现代电子工程中不可或缺的重要工具,通过建立电子电路的数学模型,利用计算机软件进行仿真计算和分析,可以大大提高电路设计的效率和准确性。
为了更好地总结电子仿真报告的特点和技巧,以下是一个电子仿真报告总结的范文模板。
一、实验目的本次仿真实验的目的是通过使用电子仿真软件,设计并分析一个特定的电子电路,在给定条件下得到所需的电路性能。
通过仿真实验,我们能够更好地了解电子电路的特性、性能和限制。
二、仿真步骤本次仿真实验的步骤如下:1. 制定仿真方案:根据实验要求,确定所需的电路拓扑结构、元器件参数和仿真参数。
2. 建立电路模型:利用仿真软件建立电子电路的数学模型,包括元器件的数学描述和连接关系。
3. 参数设定:根据实验要求,设定电路中各个元器件的参数,如电阻值、电容值、放大倍数等。
4. 仿真运行:通过运行仿真软件,对建立的电路模型进行仿真计算,得到电路的频率响应、电压波形、电流波形等结果。
5. 结果分析:对仿真结果进行深入分析,比较仿真结果与预期目标之间的差距,并确定可能的原因。
三、实验结果及分析根据仿真实验得到的结果,可以进行详细的分析和总结。
1. 频率响应:通过仿真计算得到电路的频率响应曲线,分析电路在不同频率下的增益、相位等参数变化情况。
2. 电压波形:通过仿真计算得到电路中关键节点的电压波形,分析电路在不同工作状态下的稳定性和波形畸变情况。
3. 电流波形:通过仿真计算得到电路中关键元器件的电流波形,分析电路中各个元器件的功耗、能效等性能指标。
四、实验结论通过本次仿真实验,我们得出了以下结论:1. 根据仿真结果,我们确认了所设计电路的性能目标是否达到,并对性能差距进行了分析和原因推测。
2. 仿真实验结果与理论预期相比较,可能存在的误差来源包括元器件参数的不确定性、仿真模型的简化以及仿真软件的计算误差等。
3. 基于本次仿真实验的结果和分析,可以对电子电路进行改进和优化,以达到更高的性能和更好的稳定性。
通电电子电路仿真实验之实验四 FM鉴频器的设计与仿真实验报告
将变换网络加到设计电路中,通过 PSpice 仿真,可得到运放输出电压波形,如下图所示:
由图可知通过查分运算放大电路,可以将差分输出转化为单端输出,并且比较经过低通滤波器后的解调波形和运放 输出的电压波形图,可知输出电压幅度增加 2 倍,与实际符合。
仿真结果
信号源 V1 的波形如下所示:
通过两个失谐的谐振回路后,将会转化为 AM-FM 信号,仿真结果如下图所示:
对于 AM-FM 信号,通过二极管包络检波后,将后输出与 AM-FM 信号包络一致的波形,即进行了解调。最终解调输 出信号的波形图如下图所示:
为了得到更为平滑的正弦波,在解调输出再加入一个低通滤波器,可以得到经过低通滤波器后的解调波形如下图所 示:
实验四 FM 鉴频器的设计与仿真实验报告
设计电路
要求及主要指标: 1、 采用二极管完成一个鉴频器的设计; 2、 设计 FM-AM 变换电路; 3、 输入调频波,观测鉴频器的输入、输出波形; 4、 完成双端输出到单端输出的变换; 5、 载波频率ω0 = 2MHz ;载波信号的电压幅度Vm = 4V;调制信号频率Ω = 50KHz ;调频指数mf = 10;
电路实验仿真实验报告
1. 理解电路基本理论,掌握电路分析方法。
2. 掌握电路仿真软件(如Multisim)的使用方法。
3. 分析电路参数对电路性能的影响。
二、实验内容本次实验主要针对一阶RC电路进行仿真分析,包括零输入响应、零状态响应和全响应的规律和特点。
三、实验原理一阶RC电路由一个电阻R和一个电容C串联而成,其电路符号如下:```+----[ R ]----[ C ]----+| |+---------------------+```一阶RC电路的传递函数为:H(s) = 1 / (1 + sRC)其中,s为复频域变量,R为电阻,C为电容,RC为电路的时间常数。
根据传递函数,可以得到以下结论:1. 当s = -1/RC时,电路发生谐振。
2. 当s = 0时,电路发生零输入响应。
3. 当s = jω时,电路发生零状态响应。
四、实验仪器与设备1. 电脑:用于运行电路仿真软件。
2. Multisim软件:用于搭建电路模型和进行仿真实验。
1. 打开Multisim软件,创建一个新的仿真项目。
2. 在项目中选择“基本电路库”,搭建一阶RC电路模型。
3. 设置电路参数,如电阻R、电容C等。
4. 选择合适的激励信号,如正弦波、方波等。
5. 运行仿真实验,观察电路的响应波形。
6. 分析仿真结果,验证实验原理。
六、实验结果与分析1. 零输入响应当电路处于初始状态,即电容电压Uc(0-) = 0V时,给电路施加一个初始电压源,电路开始工作。
此时,电路的响应为电容的充电过程。
通过仿真实验,可以得到以下结论:(1)随着时间t的增加,电容电压Uc逐渐增大,趋于稳态值。
(2)电容电流Ic先减小后增大,在t = 0时达到最大值。
(3)电路的时间常数τ = RC,表示电路响应的快慢。
2. 零状态响应当电路处于初始状态,即电容电压Uc(0-) = 0V时,给电路施加一个激励信号,电路开始工作。
此时,电路的响应为电容的放电过程。
通过仿真实验,可以得到以下结论:(1)随着时间t的增加,电容电压Uc逐渐减小,趋于0V。
实验一实验报告单级放大电路的设计与仿真
EDA设计(一) 实验报告——实验一单级放大电路的设计与仿真一.实验内容1.设计一个分压偏置的单管电压放大电路,要求信号源频率2kHz(峰值5mV) ,负载电阻Ω,电压增益大于50。
2.调节电路静态工作点,观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
3.调节电路静态工作点,要求输入信号峰值增大到10mV电路输出信号均不失真。
在此状态下测试:①电路静态工作点值;②三极管的输入、输出特性曲线和 、r be 、r ce值;③电路的输入电阻、输出电阻和电压增益;④电路的频率响应曲线和f L、f H值。
二.单级放大电路原理图单级放大电路原理图三.饱和失真、截止失真和不失真1、不失真不失真波形图不失真直流工作点静态工作点:i BQ=, i CQ=, v CEQ=2、饱和失真饱和失真电路图饱和失真波形图饱和失真直流工作点静态工作点:i BQ=,i CQ=,v CEQ=3、截止失真截止失真电路图截止失真波形图截止失真直流工作点静态工作点:i BQ=,i CQ=,v CEQ=四.三极管输入、输出特性曲线和 、r be 、r ce值1、β值静态工作点:i BQ=,i CQ=,v CEQ=V BEQ=β=i C/i B=2、输入特性曲线及r be值:由图:dx=,dy=r be=dx/dy=输入特性曲线3、输出特性曲线及r ce值:由图dx=, 1/dy=r ce=dx/dy=输出特性曲线五.输入电阻、输出电阻和电压增益1、输入电阻测输入电阻电路图由图:v= ,i=μAR i=v/i=μA=Ω2、输出电阻测输出电阻电路图1测输出电阻电路图2 由图:v o’= v o=R o=(v o’/v o-1)R L==Ω3、电压增益测电压增益电路图由图可得A V=六.幅频和相频特性曲线、f L、f H值由图可得f L= f H=Δf= f H - f L=七.实验结果分析1、R iR i理论=[r be+(1+β)R E]//R b1//R b2 =[2976+(1+220)x10]//127k//110k=ΩE1=、R oR o理论=R c=3 kΩE2=/3=1%3、AvI E理论=V B/R E=[ V cc R5/(R2+R5)]/( R6+R1)=[10x110/(127+110)]/2010=r be理论=200+26(1+β)/ I E =2976ΩAv理论=β(R C//R L)/[ r be+(1+β)R E]=220(3kΩ//Ω)/[2976+(220+1)x10]= E3=、V1=10mV时,会出现失真,但加一个小电阻即可减少偏差。
MOS放大电路设计仿真与实现实验报告
MOS放大电路设计仿真与实现实验报告实验报告:MOS放大电路设计、仿真与实现一、实验目的本实验的主要目的是通过设计、仿真和实现MOS放大电路来加深对MOSFET的理解,并熟悉模拟电路的设计过程。
二、实验原理MOSFET是一种主要由金属氧化物半导体场效应管构成的电流驱动元件。
与BJT相比,MOSFET具有输入阻抗高、功率损耗小、耐电压高、尺寸小等优点。
在MOS放大电路中,可以采用共源共源极放大电路、共栅共栅极放大电路等不同的电路结构。
三、实验步骤1.根据实验要求选择合适的电路结构,并计算所需材料参数(参考已知电流源和负载阻抗)。
2.选择合适的MOS管,并仿真验证其工作参数。
3.根据仿真结果确定电路的放大倍数、频率响应等。
4.根据电路需求,设计电流源电路和源极/栅极电路。
5.仿真整个电路的性能,并调整参数以优化电路性能。
6.根据仿真结果确定电路的工作参数,并进行电路的实现。
7.通过实验测量电路性能,验证仿真结果的正确性。
8.对实验结果进行分析,总结实验的过程和经验。
四、实验设备和材料1.计算机及电子仿真软件。
2.实验电路板。
3.集成电路元器件(MOSFET、电阻等)。
4.信号发生器。
5.示波器。
6.万用表等实验设备。
五、实验结果与分析通过仿真和实验,可以得到MOS放大电路的电压增益、输入输出阻抗、频率响应等参数。
根据实验结果,可以验证设计的合理性,并进行参数调整优化。
在实际应用中,MOS放大电路被广泛应用于音频放大器、功率放大器、运算放大器等场合。
因为MOSFET具有较大输入阻抗,所以MOS放大电路可以在输入端直接连接信号源,而不需要额外的输入电阻。
此外,MOS放大电路的功率损耗较小,适用于各种功率要求不同的应用场合。
六、实验心得通过设计、仿真和实现MOS放大电路的实验,我更加深入地理解了MOSFET的原理和应用。
在实验过程中,我通过不断调整电路参数和元器件选择,逐步提高了电路的性能。
通过与实验结果的对比,我发现仿真和实验结果基本吻合,验证了仿真的准确性。
Multisim电路仿真实验报告
Multisim电路仿真实验报告谢永全1 实验目的:熟悉电路仿真软件Multisim的功能,掌握使用Multisim进行输入电路、分析电路和仪表测试的方法。
2使用软件:NI Multisim student V12。
(其他版本的软件界面稍有不同)3 预习准备:提前安装软件熟悉其电路输入窗口和电路的编辑功能、考察其元件库中元件的分类方式、工具栏的定制方法、仪表的种类、电路的分析方法等;预习实验步骤,熟悉各部分电路。
4熟悉软件功能(1)了解窗口组成:主要组建包括:电路图编辑窗口、主菜单、元件库工具条、仪表工具条。
初步了解各部分的功能。
(2)初步定制:定制元件符号:Options|Global preferences,选择Components标签,将Symbol Standard区域下的元件符号改为DIN。
自己进一步熟悉全局定制Options|Global preferences窗口中各标签中的定制功能。
(3)工具栏定制:选择:View|Toolbars,从显示的菜单中可以选择显示或者隐藏某些工具栏。
通过显示隐藏各工具栏,体会其功能和工具栏的含义。
关注几个主要的工具栏:Standard(标准工具栏)、View(视图操作工具栏)、Main(主工具栏)、Components(元件工具栏)、Instruments (仪表工具栏)、Virtual(虚拟元件工具栏)、Simulation(仿真)、Simulation switch(仿真开关)。
(4)Multisim中的元件分类元件分两类:实际元件(有模型可仿真,有封装可布线)、虚拟元件(有模型只能仿真、没有封装不能布线)。
另有一类只有封装没有模型的元件,只能布线不能仿真。
在本实验中只进行仿真,因此电源、电阻、电容、电感等使用虚拟元件,二极管、三极管、运放和其他集成电路使用实际元件。
元件库的结构:元件库有三个:Master database(主库)、Corporate database(协作库)和User database(用户库)。
multisim使用及电路仿真实验报告_范文模板及概述
multisim使用及电路仿真实验报告范文模板及概述1. 引言1.1 概述引言部分将介绍本篇文章的主题和背景。
在这里,我们将引入Multisim的使用以及电路仿真实验报告。
Multisim是一种强大的电子电路设计和仿真软件,广泛应用于电子工程领域。
通过使用Multisim,可以实现对电路进行仿真、分析和验证,从而提高电路设计的效率和准确性。
1.2 文章结构本文将分为四个主要部分:引言、Multisim使用、电路仿真实验报告以及结论。
在“引言”部分中,我们将介绍文章整体结构,并简要概述Multisim的使用与电路仿真实验报告两个主题。
在“Multisim使用”部分中,我们将详细探讨Multisim软件的背景、功能与特点以及应用领域。
接着,在“电路仿真实验报告”部分中,我们将描述一个具体的电路仿真实验,并包括实验背景、目的、步骤与结果分析等内容。
最后,在“结论”部分中,我们将总结回顾实验内容,并分享个人的实验心得与体会,同时对Multisim软件的使用进行评价与展望。
1.3 目的本篇文章旨在介绍Multisim的使用以及电路仿真实验报告,并探讨其在电子工程领域中的应用。
通过对Multisim软件的详细介绍和电路仿真实验报告的呈现,读者将能够了解Multisim的基本特点、功能以及实际应用场景。
同时,本文旨在激发读者对于电路设计和仿真的兴趣,并提供一些实践经验与建议。
希望本文能够为读者提供有关Multisim使用和电路仿真实验报告方面的基础知识和参考价值,促进他们在这一领域的学习和研究。
2. Multisim使用2.1 简介Multisim是一款功能强大的电路仿真软件,由National Instruments(国家仪器)开发。
它为用户提供了一个全面的电路设计和分析工具,能够模拟各种电子元件和电路的行为。
使用Multisim可以轻松地创建、编辑和测试各种复杂的电路。
2.2 功能与特点Multisim具有许多强大的功能和特点,使其成为研究者、工程师和学生选择使用的首选工具之一。
交流大电流测量电路的设计与仿真实验报告
交流大电流测量电路的设计与仿真实验报告
设计大电流测量电路时,以下是一些常用的步骤和建议:
1. 定义需求:明确大电流测量的范围和精度要求,以及测量电路所处的工作环境条件。
2. 选择传感器:根据需求选择合适的电流传感器,常见的传感器类型包括霍尔效应传感器、电阻分流器等。
考虑到大电流的测量,可能需要使用霍尔效应传感器。
3. 电流信号调理:选择适当的放大器、滤波器和增益调节电路来调整和稳定电流信号,并保证符合测量要求。
4. 参考电压源:根据需求,选用合适的参考电压源,用于校准和稳定电流测量电路的输出。
5. 模拟仿真:使用电路仿真软件(如Multisim、LTspice等)对电流测量电路进行仿真,以评估其性能和稳定性。
请注意,在进行实验报告时,确保以下内容:
1. 描述设计目的和原理:解释为什么需要设计大电流测量电路,介绍所选择的传感器和电路组件,并说明其工作原理。
2. 设计过程:详细说明设计和选择电路的步骤,并解释每个选择的理由。
3. 仿真结果:展示仿真软件中的电路图和模拟结果,并解释结果的意义。
包括电流范围、精度、稳定性等方面。
4. 结论:总结设计过程中的主要结果,并讨论可能的改进空间。
EDA实验报告单极放大电路的设计和仿真
EDA实验报告单极放大电路的设计和仿真一、实验目的本实验旨在通过设计和仿真单极放大电路,掌握电路设计及仿真的方法和技巧,了解单极放大电路的工作原理以及参数的计算方法。
二、实验设备和材料1.EDA仿真软件2.电脑三、实验原理在单极放大电路中,电源电压通过电阻分压形成集电极电压,而输入信号通过耦合电容经过耦合电容C1进入晶体管的基极,从而实现对输入信号的增强。
四、实验步骤及数据记录1.确定电源电压:根据实验要求,选择适当的电源电压。
2.选择晶体三极管型号:根据实验要求和设计要求,选择适合的晶体三极管型号。
3.计算电阻值:根据单极放大电路的工作原理,计算电阻的取值范围,并选择合适的电阻值。
4.设计电路连接方式:将电源、电阻、晶体三极管按照电路原理进行连接并设计电路图。
5.仿真电路:使用EDA仿真软件,将设计好的电路连接到仿真软件中。
6.设置仿真参数:设置仿真参数,包括电源电压、工作频率等。
7.运行仿真:运行仿真程序,获取仿真结果。
8.分析结果:根据仿真结果,分析电路的工作情况,包括输出电压增益、输入输出阻抗等。
9.修改参数:根据分析结果,对电路参数进行调整,重新进行仿真。
10.重复步骤6-9,直到仿真结果满足设计要求。
五、实验结果分析通过仿真,得到了单极放大电路的工作情况如下:1.输出电压增益:根据仿真结果,计算得到了单极放大电路的输出电压增益为X。
2.输入输出阻抗:根据仿真结果,计算得到了单极放大电路的输入阻抗为Y,输出阻抗为Z。
3.波形分析:通过仿真软件,获取到了输入信号和输出信号的波形,并进行比较分析。
六、实验结论通过设计和仿真单极放大电路,了解了电路设计及仿真的方法和技巧。
掌握了单极放大电路的工作原理以及参数的计算方法,并通过仿真分析得到了相关结果。
电路仿真实验报告
电路仿真实验报告本次实验旨在通过电路仿真软件进行电路实验,以加深对电路原理的理解,掌握电路仿真软件的使用方法,以及提高实验操作能力。
1. 实验目的。
通过电路仿真软件进行电路实验,掌握电路原理,加深对电路知识的理解。
2. 实验仪器与设备。
电脑、电路仿真软件。
3. 实验原理。
电路仿真软件是一种利用计算机进行电路仿真的工具,可以模拟各种电路的性能,包括直流电路、交流电路、数字电路等。
通过电路仿真软件,可以方便地进行电路实验,观察电路中各种参数的变化,从而加深对电路原理的理解。
4. 实验步骤。
(1)打开电路仿真软件,创建新的电路实验项目。
(2)按照实验要求,设计电路图并进行仿真。
(3)观察电路中各种参数的变化,并记录实验数据。
(4)分析实验数据,总结实验结果。
5. 实验结果与分析。
通过电路仿真软件进行实验,我们可以方便地观察电路中各种参数的变化,比如电压、电流、功率等。
通过对实验数据的分析,我们可以得出一些结论,加深对电路原理的理解。
6. 实验总结。
通过本次实验,我们掌握了电路仿真软件的使用方法,加深了对电路原理的理解,提高了实验操作能力。
电路仿真软件为我们进行电路实验提供了便利,让我们可以更直观地观察电路中各种参数的变化,从而更好地理解电路知识。
7. 实验心得。
通过本次实验,我深刻体会到了电路仿真软件的重要性,它为我们进行电路实验提供了极大的便利。
通过电路仿真软件,我们可以更直观地观察电路中各种参数的变化,从而更好地理解电路原理。
我相信,在今后的学习和工作中,我会继续利用电路仿真软件进行电路实验,不断提高自己的实验操作能力和电路知识水平。
8. 参考文献。
[1] 《电路原理》,XXX,XXX出版社,200X年。
负反馈放大电路的设计与仿真实验报告-V1
负反馈放大电路的设计与仿真实验报告-V1【正文】负反馈放大电路的设计与仿真实验报告一、引言负反馈是现代电子学中常用的一种技术手段,可用于提高放大电路的稳定性、增加带宽、降低失真等。
本实验旨在通过设计和仿真一个负反馈放大电路,比较其与未加负反馈的放大电路的性能差异,并验证负反馈对电路的改善作用。
二、设计与仿真1.设计要求本实验设计的放大电路要求如下:①输入阻抗大于10kΩ;②输出阻抗小于1kΩ;③增益要求10倍左右;④带宽大于10kHz。
2.电路设计本实验采用非反相输入的共射极放大电路(图1),电路由电压放大和电流放大两部分构成。
图1 非反相输入共射极放大电路其中,Vi为输入信号,C1为耦合电容,R1为输入电阻,R2为电路的DC偏压电阻,Q1为NPN晶体管,Rc为集电极负载电阻,C2为旁路电容,Re为发射极电阻,VCC为电源电压,RL为输出负载电阻。
为了实现负反馈,本实验在放大电路中串联了一个反馈电阻Rf(图2)。
图2 负反馈放大电路3.电路仿真为了验证电路设计的正确性,本实验通过仿真软件Multisim对放大电路进行仿真。
结果显示,电路有很好的放大效果,输入输出波形相位相同,且波形幅值增益约为10倍。
经过仿真后,输出信号稳定,未出现失真等问题。
三、实验结果为了验证负反馈对电路的改善作用,本实验对比了带负反馈和不带负反馈两种放大电路的性能差异。
实验结果如下:1.带负反馈电路性能带入一个2V的正弦信号作为输入信号,测量输入电阻、输出电压、输出阻抗及增益等参数,结果如下:输入电阻:17.5kΩ输出电压:19.5V输出阻抗:751Ω增益:9.752.不带负反馈电路性能带入一个2V的正弦信号作为输入信号,测量输入电阻、输出电压、输出阻抗及增益等参数,结果如下:输入电阻:16.8kΩ输出电压:10.2V输出阻抗:3.04kΩ增益:5.1通过以上测量参数可知,带负反馈电路与不带负反馈电路相比,具有更高的增益、更低的输出阻抗和更好的稳定性。
电路仿真实验实验报告
电路仿真实验实验报告电路仿真实验实验报告一、引言电路仿真实验是电子工程领域中重要的实践环节,通过计算机软件模拟电路的运行情况,可以帮助学生深入理解电路原理和设计方法。
本次实验旨在通过使用电路仿真软件,验证并分析不同电路的性能和特点。
二、实验目的1. 掌握电路仿真软件的基本操作方法;2. 理解并验证基本电路的性能和特点;3. 分析电路中各元件的作用和参数对电路性能的影响。
三、实验内容1. 简单电路的仿真通过电路仿真软件,搭建并仿真简单电路,如电阻、电容、电感等基本元件的串并联组合电路。
观察电路中电流、电压的变化情况,分析电路中各元件的作用。
2. 放大电路的仿真搭建并仿真放大电路,如共射放大电路、共集放大电路等。
通过改变输入信号的幅值和频率,观察输出信号的变化情况,分析放大电路的增益和频率响应。
3. 滤波电路的仿真搭建并仿真滤波电路,如低通滤波器、高通滤波器等。
通过改变输入信号的频率,观察输出信号的变化情况,分析滤波电路的截止频率和滤波特性。
四、实验步骤1. 下载并安装电路仿真软件,如Multisim、PSPICE等;2. 学习软件的基本操作方法,包括搭建电路、设置元件参数、设置输入信号等;3. 根据实验要求,搭建并仿真所需的电路;4. 运行仿真,观察电路中各元件的电流、电压变化情况;5. 改变输入信号的参数,如幅值、频率等,观察输出信号的变化情况;6. 记录实验数据和观察结果。
五、实验结果与分析1. 简单电路的仿真结果通过搭建并仿真电路,观察到电路中电流、电压的变化情况。
例如,在串联电路中,电压随着电阻值的增大而增大,电流保持不变;在并联电路中,电流随着电阻值的增大而减小,电压保持不变。
这说明了电阻对电流和电压的影响。
2. 放大电路的仿真结果通过搭建并仿真放大电路,观察到输入信号的幅值和频率对输出信号的影响。
例如,在共射放大电路中,输入信号的幅值增大时,输出信号的幅值也相应增大,但频率不变;在共集放大电路中,输入信号的频率增大时,输出信号的幅值减小,但频率不变。
电路仿真模拟实验报告
综合设计设计1:设计二极管整流电路。
条件:输入正弦电压,有效值 220v ,频率50Hz ;要求:输出直流电压 20V+/-2V 电路图:结果:通过电路,将 220V 的交流电转化成了大约 20V 的直流电。
先用变压器将220V 的交流电转化为20V 的交流电,再用二极管将20V 交流 电的负值滤掉,电容充当电源放电而且电压保持不变,因为一直有来自二极管的电流充电,而且周期为0.02秒,即电容两端电压能维持不变的放电到输 出端。
将电容的C 调的小一点可以使充放电的速度加快,就可以使得输出电压变化幅度很小。
设计2:设计风扇无损调速器。
波形图如下:结论分析:条件:风扇转速与风扇电机的端电压成正比;风扇电机的电感线圈的内阻为200欧姆,线圈的电感系为500mH风扇工作电源为市电,即有效值220V,频率50Hz的交流电。
要求:无损调速器,将风扇转速由最高至停止分为4档,即0,1,2,3档,其中0档停止,3档最高。
电路图:(开关从下至上依次为0,1,2,3档)开关置0档,风扇停止,其两端电压波形如下图:开关置1档,风扇转速最慢,其两端电压波形如下图:开关置2档,风扇转速适中,其两端电压波形如下图:开关置3档,风扇转速最快,其两端电压波形如下图:结果:由图可知,当开关分别置0, 1, 2,3时,风扇两端的电压依次增大,其中当风扇置0档时,电压为零,满足风扇转速与风扇电机的端电压成正比的条件。
结论分析:设计3 :设计1阶RC 滤波器。
条件:一数字电路的工作时钟为5MHz 工作电压5V 。
但是该数字电路的+5v 电源上存在一个 100MHz 的高频干扰。
要求:设计一个简单的 RC 电路,将高频干扰滤除。
电路图:结果:由图知,滤过的波形的频率与 5MHz 基本一致,将高频 100MHz 滤去,符合题意要求。
结论分析:通过简单的 RC 电路,用低通函数 H (jw )=HWc/(jw+Wc),计 算出了电路中所需的电阻大小及电容大小。
模电仿真实验报告
模拟电路仿真实验报告一、实验目的本次模拟电路仿真实验旨在通过使用专业仿真软件,掌握模拟电路的基本原理和设计方法,提高分析和解决问题的能力。
二、实验原理模拟电路是用于模拟真实世界中的各种信号的电子电路。
它能够复制或放大这些信号,以便更好地进行研究和分析。
模拟电路通常由电阻、电容、电感、二极管、三极管等元件组成。
三、实验步骤1. 打开仿真软件,创建一个新的模拟电路设计。
2. 根据实验要求,添加所需的电子元件和电源。
3. 连接各元件,构成完整的模拟电路。
4. 调整电源和各元件的参数,观察并记录电路的输出结果。
5. 根据实验要求,对电路进行测试和调整,直到达到预期效果。
6. 记录实验数据和结果,分析电路的工作原理。
7. 完成实验报告,总结实验过程和结果。
四、实验结果与分析1. 实验结果:在本次模拟电路仿真实验中,我们设计了一个简单的RC振荡电路。
通过调整电阻和电容的值,我们观察到了不同频率的振荡波形。
实验结果表明,该电路能够有效地产生振荡信号,并且可以通过改变电阻和电容的值来调整振荡频率。
2. 结果分析:本次实验中,我们使用了RC振荡电路来模拟一个简单的振荡器。
当电流通过电阻和电容时,会产生一个随时间变化的电压。
该电压在电容两端累积,直到达到某个阈值,才会发生振荡。
通过调整电阻和电容的值,我们可以改变电压累积的速度和阈值,从而调整振荡频率。
此外,我们还发现,当改变电阻或电容的值时,振荡波形也会发生变化。
这表明该电路具有较好的频率特性和波形质量。
五、实验总结与建议本次模拟电路仿真实验让我们深入了解了模拟电路的基本原理和设计方法。
通过使用仿真软件,我们能够方便地进行电路设计和测试,并且可以随时调整元件参数来优化电路性能。
建议在今后的实验中,可以尝试设计更加复杂的模拟电路,以进一步提高我们的实验技能和解决问题的能力。
同时,也需要注意遵守实验规则和安全操作规程,确保实验过程的安全性。
负反馈放大电路的设计与仿真实验报告
负反馈放大电路的设计与仿真实验报告一.实验报告1.掌握两种耦合方式的多级放大电路的静态工作点的调试方法。
2.掌握多级放大电路的电压放大倍数, 输入电阻, 输出电阻的测试方法。
3.掌握负反馈对放大电路动态参数的影响。
二.实验原理三.实际放大电路由多级组成, 构成多级放大电路。
多级放大电路级联而成时, 会互相产生影响。
故需要逐级调整, 使其发挥发挥放大功能。
四.实验步骤1.两级阻容耦合放大电路(无反馈)两级阻容耦合放大电路图(1)测输入电阻及放大倍数由图可得输入电流Ii=107.323nA输入电压Ui=1mA输出电压Uo=107.306mV.则由输入电阻Ri=Ui/Ii=9.318kOhm.放大倍数Au=Uo/Ui=107.306(2)测输出电阻输出电阻测试电路由图可得输出电流Io=330.635nA.则输出电阻Ro=Uo/Io=3.024kOhm.(3)频率响应幅频响应与相频响应由左图可知当放大倍数下降到中频的0.707倍对应的频率为上限频率或下限频率。
由下表可知, 中频对应的放大倍数是601.1943则上限频率或下限频率对应的放大倍数应为425.044左右。
故下限频率为f L=50.6330kHZ上限频率为f H=489.3901kHZ则频带宽度为438.7517kHZ(4)非线性失真当输入为10mA时开始出现明显失真, 输出波形如下图所示2.有串联电压负反馈的两级阻容耦合放大电路有串联电压负反馈的两级阻容耦合放大电路图(1)测输入电阻及放大倍数由图可得输入电流Ii=91.581nA.输入电压Ui=1mA.输出电压Uo=61.125mV. 则由输入电阻Ri=Ui/Ii=10.919kOhm.放大倍数Au=Uo/Ui=61.125(2)测输出电阻由图可得输出电流Io=1.636uA.则输出电阻Ro=Uo/Io=611.247Ohm(3)频率响应幅频相应与相频相应由图可知当放大倍数下降到中频的0.707倍对应的频率为上限频率或下限频率。
电路设计与仿真项目过程总结报告
电路设计与仿真项目过程总结报告项目概述本项目旨在设计和仿真一个电路,以满足特定的功能要求。
项目组成员包括电路设计师、仿真工程师和项目经理。
项目时间为一个月,主要分为电路设计、仿真验证和最终调试三个阶段。
项目过程1. 项目准备在项目开始之前,项目组成员集体讨论项目目标和要求,明确每个成员的任务分工。
项目经理负责制定项目计划和时间表,并跟踪项目进展。
2. 电路设计电路设计师根据项目需求和要求,首先选择合适的元器件,然后通过电路图设计软件绘制电路原理图。
设计师需要考虑电路中各个元件的连接方式和电气特性,并确保电路设计满足功能要求和性能指标。
在设计过程中,设计师需要遵守电路设计原则,考虑信号传输和功率供给的稳定性。
设计师还需要注意电路中可能存在的干扰和噪声问题,并采取相应的措施进行抑制。
3. 仿真验证设计师将设计好的电路原理图导入到仿真软件中进行电路仿真验证。
通过仿真软件,可以模拟电路中各个元件的电气行为和信号传输情况。
仿真结果可以帮助设计师检查电路的稳定性、干扰抑制能力和工作性能等。
在仿真过程中,设计师需要根据仿真结果进行参数调整和优化,以使电路满足设计要求。
4. 最终调试仿真验证完成后,设计师将设计好的电路原理图制作成实物电路板。
电路板上焊接好元件后,设计师对电路进行最终调试。
在调试过程中,设计师需要使用示波器、信号发生器等仪器,检查电路中的信号波形、频率响应和功率传输情况。
如果发现问题,设计师需要进行故障排除,并做出相应的改进。
项目总结通过本项目,我们获得了丰富的电路设计和仿真经验。
我们深入了解了电路设计的基本原理和方法,掌握了电路仿真软件的使用技巧。
在项目执行过程中,我们熟悉了团队合作和项目管理的流程,提高了沟通和协作能力。
在项目执行过程中,我们也面临了一些挑战。
在电路设计阶段,由于对某些元件的性能特性了解不足,导致设计中出现了一些问题。
在仿真过程中,由于仿真软件的限制,我们无法完全模拟电路中的实际工作环境,可能会导致仿真结果与实际电路存在差异。
带隙基准电路设计与仿真设计报告(西安邮电大学)
一、研究现状总结分析1.题目:带隙基准电压源设计2.小组成员:3.所选课题电路系统的研究现状总结和分析基准源是模拟和混合信号集成电路的重要组成部分,它广泛的用于电源管理芯片、温度传感器、数据转换器(包括模数转换器ADC和数模转换器DAC)、电压稳压器和存储器中。
作为整个电路或者系统的“基准”,其性能直接影响整个电路或者系统的性能。
基准源应该具有良好的抗干扰能力,如:在整个工作温度内,受温度变化影响很小;在一定的电源电压变化范围内的变化很小;受工艺影响较小等。
事实上,由于大多数工艺参数都是随着温度变化的,所以如果-一个基准是与温度无关的,那么通常它也是与工艺无关的。
所以,一般而言基准源最重要的两个参数指标即温度特性和电源抑制特性。
随着集成电路规模的不断扩大,电路的结构和功能也日趋复杂,片上系统(SoC)必将成为大势所趋,而将如此多的电路模块集成到一起,对基准源的抗干扰能力提出了更加苛刻的要求。
与此同时,集成电路的特征尺寸伴随着工艺的进步越来越小,相应的电源电压也越来越低,然而,阈值电压的降低却滞后于电源电压的降低,因此对基准源的设计提出了更大的挑战。
不仅如此,越来越多的高精度数据转换器的广泛使用,无疑也大大提高了基准源的设计难度。
综上所述,随着电路规模、精度的提高和尺寸的减小,对基准源的设计提出了越来越大的挑战。
因此,研究在深亚微米条件下的高性能基准源电路具有十分重要的意义。
1.低温度系数的带隙基准源低温度系数的基准源在高精度系统中具有广泛应用,如:高精度的模数转换器、数模转换器和线性稳压器等。
一般只采用一阶温度补偿策略的基准源能达到20-50ppm/C""l,要进一步降低温度系数,就必须采用高阶温度补偿策略。
可通过分段线性补偿的方法,它将基准源的工作温度分为若干个子区间,对每个区间分别进行补偿,从而在整个工作温度内获得较低的温度系数。
曲率补偿的方法是通过在基准源输出电压上叠加一个温度的指数函数,从而实现高阶补偿的目的。
实验报告一 单极放大电路的设计与仿真
实验报告一单极放大电路的设计与仿真1.实验目的(1)使用Multisim软件进行原理图仿真。
(2)掌握仿真软件调整和测量基本放大电路静态工作点的方法。
(3)掌握仿真软件观察静态工作点对输出波形的影响。
(4)掌握利用特性曲线测量三极管小信号模型参数的方法。
(5)掌握放大电路动态参数的测量方法。
2.实验内容1. 设计一个分压偏置的单管共射放大电路,要求信号源频率5kHz(峰值10mV),负载电阻5.1kΩ,电压增益大于50。
2.调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
3.调节电路静态工作点(调节电位计),使电路输出信号不失真,并且幅度最大。
在此状态下测试:①电路静态工作点值;②三极管的输入、输出特性曲线和β、rbe、rce值;③电路的输入电阻、输出电阻和电压增益;④电路的频率响应曲线和fL、fH值。
3.实验步骤单管共射放大电路示意图图1.1(1)非线性失真分析放大器要求输出信号和输入信号之间是线性关系,不能产生失真。
由于三极管存在非线性,使输出信号产生了非线性失真。
从三极管的输出特性曲线可以看出,当静态工作点处于放大区时,三极管才能处于放大状态;当静态工作点接近饱和区或截止区时,都会引起失真。
放大电路的静态工作点因接近三极管的饱和区而引起的非线性失真称为饱和失真,对于NPN管,输出电压表现为顶部失真。
不过由于静态工作点达到截止区,三极管几乎失去放大能力,输出的电流非常小,于是输出电压波形也非常小,因此有时候很难看到顶部失真的现象,而只能观察到输出波形已经接近于零。
①饱和失真由于饱和失真的静态工作点偏高,也就是IBQ的值偏大,所以调小滑动变阻器至0%时产生饱和失真,信号幅度最大时的输出信号波形图如下:图1.32.截止失真调节滑动变阻器,增加基极偏置电阻,那么基极的电流IB逐渐减小,同时集电极电流也逐渐减小并趋于零,从而使得集电极的电位越发接近直流电源VCC,三极管近似于短路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一用硬件描述语言设计电路
一、实验目的
用硬件描述语言AHDL(Altera HardwareDescription Language)、Verilog HDL等自主设计电路,完成相应功能。
二、实验程序
1、比较器设计(采用VerilogHDL语言)
modulecompare_n(x,y,xey,xgy,xsy);
input [3:0]x,y;
outputxey,xgy,xsy;
regxey,xgy,xsy;
always@(x or y)
begin
if (x==y)
xey=1;
elsexey=0;
if (x>y)
xgy=1;
elsexgy=0;
if (x<y)
xsy=1;
elsexsy=0;
end
endmodule
实验波形
从上面波形可以看出,比较器的功能实现,但是输出波形存在一定的延时。
2、三分频器设计(采用VerilogHDL语言)
module fredevider3 (clockin,clockout);
inputclockin;
outputclockout;
reg temp1,temp2;
reg [1:0] count;
always@(posedgeclockin)
begin
if(count==2)
begin
count<=0;
temp1<=~temp1;
end
else
count<=count+1;
end
always@(negedgeclockin)
begin
if(count==1)
temp2<=~temp2;
end
assignclockout=temp1^temp2;
endmodule
实验波形
给定的时钟clockin周期为20ns,经过MAX+plusⅡ仿真后得到如下波形:
从上面的波形可以看出,输出信号的频率变为输入时钟信号频率的三分之一,实现了三分频。
实验二用Multisim设计电路
(一)四脉冲发生器
一、设计内容:
设计一个四脉冲发生器,要求信号输出用发光二极管显示,输出波形如下所示:
二、设计要求:
①周期要求如上图所示。
②脉冲峰值大于8V。
三、各部分原理:
本实验需要两个方波发生器,分别用与非门构成的方波发生器和集基耦合多谐振荡器来实现,原理如下:
(1)与非门构成的方波发生器
A
上述电路有两种过程。
其一是正反馈过程。
非门G1和非门G2均处于非高电平或低电平,而A点电压u A上升时,G1输出电压u~Q下降,通过C1的耦合使B点电压u B下降,使G2输出电压u Q上升,又通过C2的耦合使u A再上升,最终使~Q降到降到低电平,Q升到高电平。
这个过程时间极短,是瞬间完成的;
其二是暂稳态过程。
正反馈过程完成后,两个电容开始按指数规律充放电,当其中之一达到阈值电压时,电路又进入正反馈,结果是达到另一个暂稳态,如次往复循环,形成振荡。
若电路对称,即R1=R2=R,C1=C2=C,则输出方波,其重复周期为:T=2t=1.4RC
为得到周期为40ms的方波,选取参数R7=R8=61kΩ C1=C2=0.47uF
仿真如下图所示:
实际仿真调试时调整电阻大小,发现40K的电阻得到的方波周期更接近40ms。
(2)集基耦合多谐振荡器
集基耦合多谐振荡器如左图所示,它是一种典型的分立元件脉冲产生电路。
通常,电路两边是对称的。
接通电源后,两管均应导通。
为便于分析,假定因某种因素影响,i C1有上升趋势,那么就会发生如下的正反馈循环过程:
i C1↑→u R C1↑→u A1↓→u b2↓→i b2↓→i C2↓→u R C2↓→u A2↑┐
i b1↑←u b1↑←┘
致使T1迅速饱和,u A1为低电平;T2迅速截止,u A2为高电平。
此后,一方面
C2将通过R C2、T1的be结构成的回路充电(电压极性左负右正);另一方面,C1将通过T1、R1构成的回路,将本身贮存的电荷(左正右负)逐渐释放。
这样u b2逐渐上升,当u b2高于晶体三极管导通电压后,将发生如下的正反馈循环:u b2↑→i b2↑→i C2↑→u R C2↑→u A2↓→u b1↓→i b1↓→i c1↓┐
u A1↑← u R C1↓←┘
致使T2迅速导通u A2为低电平;T1迅速截止,u A1为高电平。
此后,一方面C1将通过R C1、T2的be结构成的回路充电(电压极性左正右负),另一方面,C2将通过T2、R2构成的回路放电,u b1相应提高。
当u b1高于三极管导通电压后,又发生使T1导通,T2截止的正反馈过程,于是形成振荡。
从T1、T2集电极输出的输出电压是矩形脉冲。
可以证明,集基耦合多谐振荡电路的振荡周期T=0.7R1C1+0.7R2C2=1.4RC,输出幅度接近电源电压。
为得到周期为5ms的方波,选取参数R3=R4=110kΩ C1=C2=33nF
(3)整体电路的工作原理:
下图的左边上下两个是方波发生器,左上方的是用NPN三极管组成的集基多谐振荡器,左下方是由与非门构成的方波发生电路,它们产生方波的原理在前面已经叙述过了。
根据实验的设计要求,用集基多谐振荡器产生周期为5ms的方波A,用与非门构成的振荡器产生周期为40ms的方波B。
然后用40ms的方波通过由两个D触发器构成的二分频器。
经过第一个分频器时,输出一个80ms 的方波C,在经过一个分频器后产生一个周期为160ms的方波D。
然后将这四个方波进行逻辑与,就可得到一个周期大于100ms的含有四个周期为5ms小脉冲的四脉冲发生器,但按照实验要求,在最后加上一个有三极管构成的共射放大电路进行放大,即可得到满足课题要求的输出大于10V的条
件。
由于实验元件的限制,图中用每两个与非门当做一个与门来用。
由于共射电路是倒相放大,所以最后一个与非门之后直接连上三极管。
在输出端接一个发光二极管来显示输出结果。
四、仿真
实验原理图:
经过第一个分频器后输出80ms的方波:
经过第二个分频器后输出160ms的方波:
实验最终波形:
由仿真结果可以看出,所设计的电路最终产生符合设计要求的四脉冲波形。
(二)水位指示及水满报警器
一、设计思路
分别用几个电极浸入水中不同深度,当水没过电极时,电极之间由于水的导电作用而导通,相应的指示灯亮,当水达到容器口时,所有指示灯均亮并且蜂鸣器发出报警。
二、主要元件及分析
本电路由四双向模拟开关集成电路CD4066、电阻、发光二极管及蜂鸣器组成。
采用6V直流电源供电。
当水箱无水时,由于180k电阻的作用,CD4066的控制端5,6,13,12保持低电平,芯片内部的开关不导通,指示灯不亮。
当水位达到水箱的四分之一处,13端变为高电平,芯片内部开关导通,L1亮,当水位逐渐增加时,L2,L3,L4依次发光。
当L4发光时,三极管8050导通,蜂鸣器发出报警,提示水箱已满。
设计时可以参照上图。
三、仿真电路
四、仿真过程分析
用开关J1A、J2A、J3A、J4A来表示水位,当J1A闭合时,代表水位达到最高水位的四分之一,LED1亮;当J2A闭合时,代表水位达到最高水位的二分之一,LED2亮;当J3A闭合时,代表水位达到最高水位的四分之三,LED3亮;当J4A闭合时,代表水位达到最高水位,LED4亮,同时蜂鸣器报警。