2014年数学二真题及答案解析

合集下载

2014年山东专升本(数学)真题试卷(题后含答案及解析)

2014年山东专升本(数学)真题试卷(题后含答案及解析)

2014年山东专升本(数学)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题 4. 综合题 5. 证明题一、选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.函数y=的定义域为( )。

A.m(-∞,-2]∪[3,+∞)B.[-3,6]C.[-2,3]D.[-3,-2]∪[3,6]正确答案:D解析:(用试探法解即可)2.下列各组中,两个函数为同一函数的组是( )。

A.f(x)=lgx+lg(x+1),g(x)=lg[x(x+1)]B.y=f(x),g(x)=fC.f(x)=?1-x?+1,g(x)=D.正确答案:C解析:(注意两方面,定义域和对应法则)3.函数y=?xcos x?( )。

A.有界函数B.偶函数C.单调函数D.周期函数正确答案:B解析:(简单判定即可选出答案)4.直线x—1==z+8与直线的夹角为( )。

A.B.C.D.正确答案:C解析:(两直线的夹角即为两方向向量之间的夹角,取锐角)5.下列结论正确的是( )。

A.若级数均收敛,则级数(an+bn)2收敛B.若级数?anbn?收敛,则级数均收敛C.若级数an发散,则an≥D.若级数an收敛,an≥bn,则级数bn收敛正确答案:A解析:(对于选项A,因an2+bn2≥2?anbn?,且(an2+bn2)收敛,故?anbn?收敛,所以根据绝对收敛的性质,anbn也收敛,所以(an+bn)2收敛;选项B无法推出;选项C的一个反例为;选项D必须为正项级数结论才正确,一个反例为an=)二、填空题6.函数y=[x]=n,n≤x<n+1,n=0,±1,±2,……的值域为________.正确答案:{0,±1,±2,…} (或填写Z也可以,即全体整数的集合)7.设则f(x)=________.正确答案:8.=________.正确答案:0 (无穷小与有界函数的乘积仍是无穷小)9.曲线y=ln(1+ex)的渐近线为________.正确答案:y=0,y=x解析:因ln(1+e2)=0,故y=0为水平渐近线;又k==1,b=[f(x)一kx]=[ln(1+ex)-x]=[ln(1+ex)-lnex]==0,故y=X为斜渐近线.10.函数y=的间断点为________.正确答案:x=kπ,x=kπ+.三、解答题解答时应写出推理、演算步骤。

2014年辽宁省高考数学试卷真题及答案(理科)

2014年辽宁省高考数学试卷真题及答案(理科)

2014年辽宁省高考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}2.(5分)设复数z满足(z﹣2i)(2﹣i)=5,则z=()A.2+3i B.2﹣3i C.3+2i D.3﹣2i3.(5分)已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a4.(5分)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α5.(5分)设,,是非零向量,已知命题p:若•=0,•=0,则•=0;命题q:若∥,∥,则∥,则下列命题中真命题是()A.p∨q B.p∧q C.(¬p)∧(¬q)D.p∨(¬q)6.(5分)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.247.(5分)某几何体三视图如图所示,则该几何体的体积为()A.8﹣2πB.8﹣πC.8﹣D.8﹣8.(5分)设等差数列{a n}的公差为d,若数列{}为递减数列,则()A.d<0 B.d>0 C.a1d<0 D.a1d>09.(5分)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递减B.在区间[,]上单调递增C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增10.(5分)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为()A.B.C.D.11.(5分)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()A.[﹣5,﹣3]B.[﹣6,﹣] C.[﹣6,﹣2]D.[﹣4,﹣3]12.(5分)已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|<|x﹣y|.若对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,则m的最小值为()A.B.C. D.二、填空题:本大题共4小题,每小题5分。

2014年考研数学二真题及答案解析

2014年考研数学二真题及答案解析

一、选择题:1 8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项符合题
目要求的,请将所选项前的字母填在答.题.纸.指定位置上.
1
(1) 当 x 0 时,若 ln (1 2x) ,(1 cos x) 均是比 x 高阶的无穷小,则 的取值范围是( )
(A) (2, )
()10(A)50 Nhomakorabea10
(B)
100
(C)10 10
(D) 5 10
(5)
设函数
f (x)
arctan x ,若
f
(x)
xf
(
)
,则
lim
x0
x
2 2
()
(A)1
(B) 2 3
(C) 1 2
(D) 1 3
(6) 设函数 u(x, y) 在有界闭区域 D 上连续,在 D 的内部具有 2 阶连续偏导数,且满足 2u 0 xy
()
(A) 当 f (x) 0 时, f (x) g(x) (C) 当 f (x) 0 时, f (x) g(x)
(B) 当 f (x) 0 时, f (x) g(x) (D) 当 f (x) 0 时, f (x) g(x)
(4)
曲线
x y
t2 t2
7 4t
1
上对应于
t
1的点处的曲率半径是
lim x0
1
1
1 x
2
3x2
1 3
故选 D.
(D) 1 3
()
(6) 设函数 u(x, y) 在有界闭区域 D 上连续,在 D 的内部具有 2 阶连续偏导数,且满足 2u 0 xy

2u x2

考研数学二(高等数学)历年真题试卷汇编14(题后含答案及解析)

考研数学二(高等数学)历年真题试卷汇编14(题后含答案及解析)

考研数学二(高等数学)历年真题试卷汇编14(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.等于A.∫01ln2xdxB.2∫12lnxdxC.2∫12ln(1+x)dxD.∫12ln2(1+x)dx正确答案:B解析:故应选(B).2.设F(x)是连续函数f(x)的一个原函数,“MN”表示“M的充分必要条件是N”,则必有A.F(x)是偶函数f(x)是奇函数.B.F(x)是奇函数f(x)是偶函数.C.F(x)是周期函数f(x)是周期函数.D.F(x)是单调函数f(x)是单调函数.正确答案:A解析:直接法若F(x)是连续函数f(x)的原函数,且F(x)是偶函数,则F(一x)=F(x),式两端对x求导得一F’(一x)=F(x)即一f(一x)=f(x)故f(x)为奇函数.反之,若f(x)为奇函数,则G(x)=∫0xf(t)dt是f(x)的一个原函数,又G(一x)=∫0一xf(x)dt∫0xf(u)du=G(x)则G(x)是偶函数,由于F(x)也是f(x)的原函数,则F(x)=G(x)+CF(x)亦是偶函数,故应选(A).3.设f(x)是奇函数,除x=0外处处连续,x=0是其第一类间断点,则∫0xf(t)dt 是A.连续的奇函数.B.连续的偶函数.C.在x=0间断的奇函数.D.在x=0间断的偶函数.正确答案:B解析:直接法由于f(x)是奇函数,则∫0x(t)dt是偶函数,又由于f(x)除x=0外处处连续,且x=0是其第一类间断点,则f(x)在任何一个有限区间上可积,从而∫0xf(t)出为连续函数,故应选(B).4.如图,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]上的图形分别是直径为2的下、上半圆周,设F(x)=f∫0x(t)dt,则下列结论正确的是A.B.C.D.正确答案:C解析:根据定积分的几何意义知,也可用排除法:由定积分的几何意义知也可利用f(x)是奇函数,则F(x)=∫0xf(t)出为偶函数,从而则(A)(B)(D)均不正确,故应选(C).5.如图,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分∫0xxf’(x) dx等于A.曲边梯形ABOD的面积.B.梯形ABOD的面积.C.曲边三角形ACD的面积.D.三角形ACD面积.正确答案:C解析:∫0a(x)dx=∫0af(x)=xf(x)|0a一∫0af(x)dx=af(a)一∫0af(x) dx其中af(a)应等于矩形ABOC的面积,∫0af(x)如应等于曲边梯形ABOD的面积,则∫0axf’(x)dx应等于曲边三角形ACD的面积.6.设函数y=f(x)在区间[一1,3]上的图形为则函数F(x)=∫0xf(t)dt的图形为A.B.C.D.正确答案:D解析:由题设知,当x∈(一1,0)时F’(x)=f(x),而当x∈(一1,0)时f(x)=1>0,即F’(x)>0,从而F(x)单调增,显然(A)选项是错误的,因为(A)选项中F(x)在(一1,0)中单调减.由于F(x)=∫0xf(t)dt,则F(0)=0,显然(C)选项错误.由于当x∈(2,3]时f(x)=0,则当x∈(2,3]时F(x)=∫0xf(t)dt=∫02f(t)dt+∫2xf(t)dt=∫02f(t) dt+∫2x0dt=F(2)则(B)是错误的,(D)是正确的.7.设m,n均是正整数,则反常积分的收敛性A.仅与m的取值有关.B.仅与n的取值有关.C.与m,n的取值都有关.D.与m,n的取值都无关.正确答案:D解析:故原反常积分的敛散性与m和n的取值无关.8.设则I,J,K的大小关系为A.I<J<K.B.I<K<J.C.J<I<K.D.K<J<I.正确答案:B解析:当x∈(0,)时,sinx<cosx<1<cotx,而lnx为单调增的函数,则lnsinx <lncosx <lncotx x∈故应选(B).填空题9.=________.正确答案:解析:10.设函数f(x)=在x=0处连续,则a=________.正确答案:解析:由于f(x)在x=0处连续,则f(x)=a,而11.广义积分=________.正确答案:解析:12.∫01e一xsinnxdx=________.正确答案:0.解析:13.已知∫一∞+∞ek|x|dx=1,则k=________.正确答案:一2.解析:1=∫一∞+∞ek|x| dx=2∫0+∞ekxdx=,(k<0)k=一2.14.当0≤θ≤π时,对数螺线r=eθ的弧长为________.正确答案:(eπ一1).解析:所求弧长为解答题解答应写出文字说明、证明过程或演算步骤。

2014年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)

2014年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)

2014年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2} 2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.54.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.15.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.456.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.78.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.39.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.210.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出集合N的元素,利用集合的基本运算即可得到结论.【解答】解:∵N={x|x2﹣3x+2≤0}={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2},∴M∩N={1,2},故选:D.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】根据复数的几何意义求出z2,即可得到结论.【解答】解:z1=2+i对应的点的坐标为(2,1),∵复数z1,z2在复平面内的对应点关于虚轴对称,∴(2,1)关于虚轴对称的点的坐标为(﹣2,1),则对应的复数,z2=﹣2+i,则z1z2=(2+i)(﹣2+i)=i2﹣4=﹣1﹣4=﹣5,故选:A.【点评】本题主要考查复数的基本运算,利用复数的几何意义是解决本题的关键,比较基础.3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.4.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.1【考点】HR:余弦定理.【专题】56:三角函数的求值.【分析】利用三角形面积公式列出关系式,将已知面积,AB,BC的值代入求出sinB的值,分两种情况考虑:当B为钝角时;当B为锐角时,利用同角三角函数间的基本关系求出cosB的值,利用余弦定理求出AC的值即可.【解答】解:∵钝角三角形ABC的面积是,AB=c=1,BC=a=,∴S=acsinB=,即sinB=,当B为钝角时,cosB=﹣=﹣,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2+2=5,即AC=,当B为锐角时,cosB==,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2﹣2=1,即AC=1,此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,则AC=.故选:B.【点评】此题考查了余弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.5.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.【解答】解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,解得p=0.8,故选:A.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.8.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.3【考点】6H:利用导数研究曲线上某点切线方程.【专题】52:导数的概念及应用.【分析】根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.【解答】解:,∴y′(0)=a﹣1=2,∴a=3.故选:D.【点评】本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.9.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.2【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.【考点】K8:抛物线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A,B 两点的直线方程,和抛物线方程联立后化为关于y的一元二次方程,由根与系数关系得到A,B两点纵坐标的和与积,把△OAB的面积表示为两个小三角形AOF与BOF的面积和得答案.【解答】解:由y2=2px,得2p=3,p=,则F(,0).∴过A,B的直线方程为y=(x﹣),即x=y+.联立,得4y2﹣12y﹣9=0.设A(x1,y1),B(x2,y2),则y 1+y 2=3,y 1y 2=﹣.∴S△OAB =S △OAF +S△OFB =×|y 1﹣y 2|==×=.故选:D .【点评】本题考查直线与抛物线的位置关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,是中档题.11.(5分)直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成角的余弦值为( ) A .B .C .D .【考点】LM :异面直线及其所成的角.【专题】5F :空间位置关系与距离.【分析】画出图形,找出BM 与AN 所成角的平面角,利用解三角形求出BM 与AN 所成角的余弦值.【解答】解:直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,如图:BC 的中点为O ,连结ON ,,则MN0B 是平行四边形,BM 与AN 所成角就是∠ANO ,∵BC=CA=CC 1,设BC=CA=CC 1=2,∴CO=1,AO=,AN=,MB===, 在△ANO 中,由余弦定理可得:cos ∠ANO===.故选:C .【点评】本题考查异面直线对称角的求法,作出异面直线所成角的平面角是解题的关键,同时考查余弦定理的应用.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【考点】H4:正弦函数的定义域和值域.【专题】57:三角函数的图像与性质.【分析】由题意可得,f(x0)=±,且=kπ+,k∈Z,再由题意可得当m2最小时,|x0|最小,而|x0|最小为|m|,可得m2 >m2+3,由此求得m的取值范围.【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.【点评】本题主要正弦函数的图象和性质,函数的零点的定义,体现了转化的数学思想,属于中档题.二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得x7的系数,再根据x7的系数为15,求得a的值.【解答】解:(x+a)10的展开式的通项公式为T r=•x10﹣r•a r,+1令10﹣r=7,求得r=3,可得x7的系数为a3•=120a3=15,∴a=,故答案为:.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为1.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】56:三角函数的求值.【分析】由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sinx,从而求得函数的最大值.【解答】解:函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)=sin[(x+φ)+φ]﹣2sinφcos (x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ﹣2sinφcos(x+φ)=sin(x+φ)cosφ﹣cos(x+φ)sinφ=sin[(x+φ)﹣φ]=sinx,故函数f(x)的最大值为1,故答案为:1.【点评】本题主要考查两角和差的正弦公式、余弦公式的应用,正弦函数的最值,属于中档题.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是(﹣1,3).【考点】3N:奇偶性与单调性的综合.【专题】51:函数的性质及应用.【分析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.【解答】解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,将不等式等价转化为f(|x﹣1|)>f(2)是解决本题的关键.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1] .【考点】J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】根据直线和圆的位置关系,画出图形,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN≤1,∴x0的取值范围是[﹣1,1].【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.【考点】87:等比数列的性质;8E:数列的求和.【专题】14:证明题;54:等差数列与等比数列.【分析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n}的通项公式;(Ⅱ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.【解答】证明(Ⅰ)==3,∵≠0,∴数列{a n+}是以首项为,公比为3的等比数列;∴a n+==,即;(Ⅱ)由(Ⅰ)知,当n≥2时,∵3n﹣1>3n﹣3n﹣1,∴<=,∴当n=1时,成立,当n≥2时,++…+<1+…+==<.时,++…+<.∴对n∈N+【点评】本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E﹣ACD的体积.【解答】(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,∴CD⊥MD.∵二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AE=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.【点评】本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.【考点】BK:线性回归方程.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b的值,再求出a的值,写出线性回归方程.(Ⅱ)根据上一问做出的线性回归方程,代入所给的t的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.【解答】解:(Ⅰ)由题意,=×(1+2+3+4+5+6+7)=4,=×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∴== =0.5,=﹣=4.3﹣0.5×4=2.3.∴y关于t的线性回归方程为=0.5t+2.3;(Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入=0.5t+2.3,得:=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.【点评】本题考查线性回归分析的应用,本题解题的关键是利用最小二乘法认真做出线性回归方程的系数,这是整个题目做对的必备条件,本题是一个基础题.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【考点】K4:椭圆的性质.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).【考点】6B:利用导数研究函数的单调性.【专题】16:压轴题;53:导数的综合应用.【分析】对第(Ⅰ)问,直接求导后,利用基本不等式可达到目的;对第(Ⅱ)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g′(x)>0是否成立”的问题;对第(Ⅲ)问,根据第(Ⅱ)问的结论,设法利用的近似值,并寻求ln2,于是在b=2及b>2的情况下分别计算,最后可估计ln2的近似值.【解答】解:(Ⅰ)由f(x)得f′(x)=e x+e﹣x﹣2,即f′(x)≥0,当且仅当e x=e﹣x即x=0时,f′(x)=0,∴函数f(x)在R上为增函数.(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g′(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x+2﹣2b).①∵e x+e﹣x>2,e x+e﹣x+2>4,∴当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即,得,此时,g′(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)∵1.4142<<1.4143,根据(Ⅱ)中g(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,为了凑配ln2,并利用的近似值,故将ln即代入g(x)的解析式中,得.当b=2时,由g(x)>0,得,从而;令,得>2,当时,由g(x)<0,得,得.所以ln2的近似值为0.693.【点评】1.本题三个小题的难度逐步增大,考查了学生对函数单调性深层次的把握能力,对思维的要求较高,属压轴题.2.从求解过程来看,对导函数解析式的合理变形至关重要,因为这直接影响到对导数符号的判断,是解决本题的一个重要突破口.3.本题的难点在于如何寻求ln2,关键是根据第(2)问中g(x)的解析式探究b的值,从而获得不等式,这样自然地将不等式放缩为的范围的端点值,达到了估值的目的.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.【专题】17:选作题;5Q:立体几何.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【考点】QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。

2014年考研数二真题及答案解析(完整版)

2014年考研数二真题及答案解析(完整版)
时,取极小值 。
(17)【答案】
(18)【答案】
令 ,
则 ,

由 得
(19)【答案】
证明:1)因为 ,所以有定积分比较定理可知, ,即

2)令
由1)可知 ,
所以 。
由 是单调递增,可知
由因为 ,所以 , 单调递增,所以 ,得证。
(20)【答案】
因为
所以
所以
(21)【答案】
(22)【答案】① ②
(23)【答案】利用相似对角化的充要条件证明。
(9)
(10)
(11)
(12)
(13)
(14)[-2,2]
三、解答题:15—23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.
(15)【答案】
(16)【答案】
因为
,①
得到

, 。
所以 时,取极大值 。
时,取极小值 。由①可Fra bibliotek,,因为 ,所以 , 。
所以 时,取极大值 。
2014年全国硕士研究生入学统一考试
数学二试题答案
一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.
(1)B
(2)B
(3)D
(4)C
(5)D
(6)A
(7)B
(8)A
二、填空题:914小题,每小题4分,共24分,请将答案写在答题纸指定位置上.

2014年考研数学二真题(含解析)

2014年考研数学二真题(含解析)

2014年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合 题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1、当0x +→时,若ln (12)x α+,1(1cos )x α-均是比x 高阶的无穷小,则α的取值范围是( )(A )(2,)+∞ (B )(1,2) (C )1(,1)2 (D )1(0,)2【答案】B【考点】等价无穷小、高阶无穷小 【详解】当0x +→时,ln (12)~(2)x x αα+,1121(1cos )~2x x αα⎛⎫-⎪⎝⎭因为它们都是比x 高阶的无穷小,故12,1>>αα,即21<<α2、下列曲线中有渐近线的是( )(A )sin y x x =+ (B )2sin y x x =+ (C )1sin y x x =+ (D )21sin y x x=+ 【答案】C【考点】函数的渐近线 【详解】对于选项A , lim(sin )x x x →∞+ 不存在,因此没有水平渐近线,同理可知,选项A 没有铅直渐近线, 而sinxlimlimx x y x x x→∞→∞+=不存在,因此选项A 中的函数没有斜渐近线; 对于选项B 和D ,我们同理可知,对应的函数没有渐近线;对于C 选项,1siny x x=+.由于1sin lim lim1x x x yx x x→∞→∞+==,又()1lim 1limsin0x x y x x →∞→∞-⋅==.所以1sin y x x=+存在斜渐近线y x =.故选C.(4)设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]内( ) (A )当()0f x '≥时,()()f x g x ≥ (B )当()0f x '≥时,()()f x g x ≤ (C )当()0f x ''≥时,()()f x g x ≥ (D )当()0f x ''≥时,()()f x g x ≤ 【答案】D【考点】函数单调性的判别、函数图形的凹凸性 【详解】 【解法一】令)()()(x f x g x F -=则)()1()0()(x f f f x F '-+-='由拉格朗日中值定理知,存在)1,0(∈ξ,使得)()()01()0()1(ξξf f f f '='-=- 即0)(='ξF又因为)()(x f x F ''-=''若()0f x ''≥,则()0F x ''≤,所以)(x F '单调递减, 当(0,),()0,()x F x F x ξ'∈>单调递增, 当(,1),()0,()x F x F x ξ'∈<单调递减,又0)1(.0)0(==F F ,所以()0F x ≥,即()()f x g x ≤,故选D 【解法二】令2()f x x =,则函数()f x 具有2阶导数,且()0f x ''≥所以()(0)(1)(1)g x f x f x x =-+= 当]1,0[∈x 时,()()f x g x ≤,故选D4、曲线227,41x t y t t ⎧=+⎪⎨=++⎪⎩上对应于1t =的点处的曲率半径是( ) (A(B(C)(D)【答案】C【考点】参数方程求导、曲率及曲率半径 【详解】2223212133222233222242222(24)8(2)2(2)3,1"1(1')(13)1(13)10t t dy dy t dt dx dx tdtt t d y t dx t t dy d y dx dx y k y R k==+==⋅-+-==∴==-∴==++∴==+==Q5、设函数()arctan f x x =,若()()f x xf ξ'=,则22limx x ξ→=( )(A )1 (B )23 (C )12(D )13【答案】D【考点】函数求导、函数求极限 【详解】2()arctan 11f x x x x ξ==+Q.2arctan arctan x xx ξ-∴=.22230arctan arctan limlimlim rctan x x x x x x xx x a x x ξ→→→--∴==⋅22222001111limlim 33(1)3x x x x x x x →→-+===+. 6、设函数(,)u x y 在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满足20ux y ∂≠∂∂及22220u ux y ∂∂+=∂∂,则( ) (A )(,)u x y 的最大值和最小值都在D 的边界上取得 (B )(,)u x y 的最大值和最小值都在D 的内部取得(C )(,)u x y 的最大值在D 的内部取得,(,)u x y 的最小值在D 的边界上取得 (D )(,)u x y 的最小值在D 的内部取得,(,)u x y 的最大值在D 的边界上取得 【答案】A【考点】二元函数极值的充分条件 【详解】因为22220u u x y ∂∂+=∂∂,故22u A x ∂=∂与22uC y∂=∂异号.又20u B x y ∂=≠∂∂, 则20AC B -<,所以函数(,)u x y 在区域D 内没有极值.又连续函数在有界闭区域内有最大值和最小值,故最大值和最小值在D 的边界点取到.7、行列式0000000ab a bcd c d=( )(A )2()ad bc - (B )2()ad bc --(C )2222a d b c - (D )2222b c a d - 【答案】B【考点】分块矩阵的行列式运算、行列式的性质、行列式按行(列)展开定理 【详解】 【解法一】132320000000000000000000000()()()a b b a b a a b a b d c c c r r c dd c a b c dc dc db a a b bc ad ad bc ad bc d c c d↔-↔=⋅=--=--故选B 【解法二】2141332320a 0000000(1)0(1)00000(1)(1)()()b a b c d c d a ba ba c dc bd c d a b a ba d cbcd c da b a b adbc c d c da b bc ad c d ad bc ++++=⨯-+⨯-=-⨯⨯--⨯⨯-=-+=-=--8、设123,,ααα为3维向量,则对任意常数,k l ,向量组1323,k l αααα++线性无关是向量组123,,ααα线性无关的( )(A )必要非充分条件 (B )充分非必要条件 (C )充分必要条件(D )既非充分也非必要条件 【答案】A【考点】向量组的线性相关性 【详解】1231132231122123121213231323123123+k )()0++k )00+k ++k +100=0=1=0000l l k l l l αααλααλααλαλαλλαλλλλαααααααααααααα++=+=⇒==+=⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭已知,,无关设(即(从而,无关反之,若,无关,不一定有,,无关例如,,,二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. 9、12125dx x x -∞=++⎰ .【答案】π83【考点】无穷限的反常积分 【详解】()11221211125141111221()21113arctan |[()]222428dx dx x x x xd x x πππ-∞-∞-∞-∞=+++++=+++==--=⎰⎰⎰ 10、设)(x f 是周期为4的可导奇函数,且]2,0[),1(2)(∈-='x x x f ,则=)7(f【答案】1【考点】一阶微分方程、周期函数【详解】()22'2(1)[0,2]()2()(0)00()2[0,2]()4(7)(3)(1)(1)(12)1f x x x f x x x c f x f c f x x x x f x f f f f =-∈∴=-+∴=∴=∴=-∈∴==-=-=--=Q 又是奇函数的周期为11、设(,)z z x y =是由方程22274yzex y z +++=确定的函数,则11(,)22dz = . 【答案】)(21dy dx +-【考点】隐函数求偏导、全微分 【详解】221111(,)(,)222211(,)2211,022,(2)20(22)2011,221()2yzyz x y z x y z z e y x x x z z e z y y y y z z x y dz dx dy ===∂∂⎧⋅++=⎪∂∂⎪⎨∂∂⎪+++=∂∂⎪⎩∂∂=-=-∂∂=-+当时,代入方程解得方程两边对分别求偏导得,解得:故12、曲线L 的极坐标方程是r θ=,则L 在点(,)(,)22r ππθ=处的切线的直角坐标方程是 . 【答案】22ππ+-=x y【考点】参数方程求导、极坐标与直角坐标的转化、切线方程 【详解】把极坐标方程化为直角坐标方程令cos cos sin sin x r y r θθθθθθ==⎧⎨==⎩2sin cos cos sin 1022012cos 02sin 22()(0)222dy dy d dx dx d dy dxx y y x y x πθθθθθθθθθπππθθπθπθθππππ=+==-+⋅==--⋅==⎧⎪=⎨==⎪⎩-=--=-+则当时,则切线方程为:化简为: 13、一根长为1的细棒位于x 轴的区间[0,1]上,若其线密度2()21x x x ρ=-++,则该细棒的质心坐标x = . 【答案】2011 【考点】质心坐标 【详解】质心横坐标公式:⎰⎰=b aba dxx dx x x x )()(ρρ 所以:43212123201121()(21)4320111201(21)()30x x x x x x dx x x x dx x x x -++-++===-++-++⎰⎰14、设二次型22123121323(,,)24f x x x x x ax x x x =-++的负惯性指数为1,则a 的取值范围是 .【答案】]2,2[-【考点】二次型的规范形、矩阵的特征值、配方法化二次型为标准形 【详解】 【解法一】二次型对应的系数矩阵为:O a a ≠⎪⎪⎪⎭⎫ ⎝⎛-0221001,记特征值为321,,λλλ则0011)(321=+-==++A tr λλλ,即特征值必有正有负,共3种情况; 因二次型的负惯性指数为⇔1特征值1负2正或1负1正1零;0402210012≤+-=-⇔a aa ,即]2,2[-∈a【解法二】221231213232222221133223322221323322221232(,,)2424()(2)(4)(4)140[2,2]f x x x x x ax x x x x ax x a x x x x a x x ax x x a x y y a y a a =-++=++-+-=+--+-=-+--≥∈-若负惯性指数为,则,三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. 15、(本题满分10分)求极限1212[(1)]lim1ln(1)xtx t e t dt x x→+∞--+⎰【考点】函数求极限、变限积分函数求导、等价无穷小、洛必达法则 【详解】111221221122200((1))((1))(1)1limlimlim lim (1)111ln(1)1111lim lim 22xxttxx x x x x t t t t t e t dtt e t dtx e x x e xx x x xe t e t x t t ++→+∞→+∞→+∞→+∞→→------===--+⋅---===⎰⎰令16、(本题满分10分)已知函数()y y x =满足微分方程221x y y y ''+=-,且(2)0y =,求()y x 的极大值与极小值.【考点】微分方程、函数的极值 【详解】22222222333322'1'1'1(1)(1),(1)(1)11332(2)031123331'0,11(,1),'0,(11),'0,(1+),'0,x y y y x y y y dy x dx y dy x dx y y x x c y c y y x x x y x y x y x y x y +=--∴=+∴+=-+=-∴+=-+=∴=∴+=-+-===±+∈-∞-<∈->∈∞<⎰⎰Q 积分得又 令得时函数单调递减,时函数单调递增,时函数单调递减所以函11(1)0,(1)1()1,0x x y y y x =-=-==数在时取得极小值,在时取得极大值由函数方程解得:故:的极大值是极小值是17、(本题满分10分)设平面区域{}22(,)14,0,0D x y x y x y =≤+≤≥≥,计算D.【考点】二重积分的计算、轮换对称性 【详解】积分区域D 关于y x =对称,利用轮对称行,121sin(2D D D Ddxdy ==+=⎰⎰222011221111sin()d cos()2411cos()|cos()d 44113244d r r r rd r r r r r πθππππ==-=-+=--=-⎰⎰⎰⎰18、(本题满分10分)设函数()f u 具有2阶连续导数,(cos )xz f e y =满足22222(4cos )x x z z z e y e x y∂∂+=+∂∂.若(0)0f =,(0)0f '=,求()f u 的表达式.【考点】多元函数求偏导、二阶常系数非齐次线性微分方程【详解】 令y e u xcos =xx x xx x x xx x xe u uf y e u f y e u f e y e z yzx z y e u f y e u f y z y e u f y z y e u f y e u f x z y e u f x z 222222222222222222])(4[sin )(cos )()cos 4(cos )(sin )(),sin ()(cos )(cos )(,cos )(+=⋅''+⋅''∴+=∂∂+∂∂⋅'-⋅''=∂∂-⋅'=∂∂⋅'+⋅''=∂∂⋅'=∂∂∴Θ 即:u u f u f =-'')(4)(对应的齐次微分方程的特征方程为:042=-r 解得:2,221-==r r故齐次微分方程的通解为:u u e C e C u f 2221)(-+=设b au u f +=)(*,则0)(,)(**="='u f a u f ,代入微分方程解得:0,41=-=b a ,即u u f 41)(*-= 故u e C e C u f xx 41)(2221-+=-所以uu u u e C e C u f e C e C u f 2221222144)(,4122)(--+=''--='因为(0)0f =,(0)0f '=,代入解得:161,16121-==C C所以22111()16164x x f u e e u -=--19、(本题满分10分)设函数()f x ,()g x 在区间[,]a b 上连续,且()f x 单调增加,0()1g x ≤≤. 证明:(Ⅰ)(I )a x dt t g xa-≤≤⎰)(0,],[b a x ∈;(II )⎰⎰⎰≤+badtt g a abadx x g x f dx x f )()()()(【考点】定积分中值定理、不等式的证明 【详解】(I )【解法一】因为函数)(x g 在区间],[b a 上连续,且1)(0≤≤x g . 所以⎰⎰⎰≤≤xax axadt dt t g dt 1)(0即a x dt t g x a-≤≤⎰)(0【解法二】由定积分中值定理知:存在),(b a ∈ξ,使得)()()(ξg a x dt t g xa-=⎰,又因为],[b a x ∈时1)(0≤≤x g , 所以)()()(0a x g a x -≤-≤ξ 即a x dt t g xa-≤≤⎰)(0【解法三】[][]11111222222()()()0'()()0(),()0()()'()()10()1'()0()()0,()0xaxa h x g t dth a h x g x h x x a b h x h x g t dt x ah x g x g x h x h x h a x a b h x ===≥∴∴∈≥=-+=-≤≤∴≤∴=∴∈≤⎰⎰Q 单调增加当时,单调减少,又当时,(II )令()()()()()xa xa g t dt aaF x f u g u du f u du +⎰=-⎰⎰()'()()()[()]()()[()]()I (),()()[()]'()0()0()0()()()ba xxaa x axa ba g t dt a aF x f x g x f a g t dt g x f x f a g t dt g x a g t dt a x a x f x f x f a g t dt F x F x F a F b f x g x dx f x dx+⎡⎤∴=-+⋅=-+⎢⎥⎣⎦+≤+-=∴≥+∴≥∴=∴≥⎰≥⎰⎰⎰⎰⎰⎰由()知又单调增加单调增加又()即20、(本题满分11分) 设函数()1xf x x=+,[0,1]x ∈.定义数列 1()()f x f x =,21()(())f x f f x =,L ,1()(())n n f x f f x -=,L记n S 是由曲线()n y f x =,直线1x =及x 轴所围平面图形的面积,求极限lim n n nS →∞.【考点】定积分求面积、函数求极限 【详解】1213222(),()()11()(())121112()(())13112(),[0,1]111()0(1)(1)()(0)=0()0[0,1]n n n n n xf x f x f x xxxx f x f f x x x x xxx f x f f x x x x xf x x nxnx nx f x nx nx f x f f x x ==++∴===++++∴===+++=∈++-'==>++∴∴≥∈Q Q Q 由归纳法知:单调递增,,1120021111=(1)=ln(1)1111ln(1)lim lim [ln(1)]1lim ln(1)11lim 1lim 11n n n n n x x x S dx dx n nx n nx n nn nS n n n n nx xx →∞→∞→∞→∞→∞∴=--++++=-+=-+=-=-=+⎰⎰21、(本题满分11分) 已知函数(,)f x y 满足2(1)fy y∂=+∂,且2(,)(1)(2)ln f y y y y y =+--.求曲线(,)0f x y =所围图形绕直线1y =-旋转所成旋转体的体积. 【考点】偏积分、隐函数、旋转体的体积 【详解】由函数(,)f x y 满足2(1)fy y∂=+∂可知:)(2),(2x y y y x f ϕ++= 又22(,)2()(1)(2)ln f y y y y y y y y ϕ=++=+-- 所以()1(2)ln y y y ϕ=--所以x x y x x y y x y y y x f ln )2()1(ln )2(12)(2),(222--+=--++=++=ϕ 令1+=y z ,则(,)0f x y =对应的曲线方程为:x x z ln )2(2-=,定义域为]2,1[则曲线(,)0f x y =所围图形绕直线1y =-旋转,即x x z ln )2(2-=绕0=z 旋转,所成的旋转体体积πππππ)452ln 2()412(ln )212()212(ln ln )2(212221221212-=⎥⎦⎤⎢⎣⎡---=-=-==⎰⎰⎰x x x x x x x xd xdxx dx z V x22、(本题满分11分)设E A ,302111104321⎪⎪⎪⎭⎫⎝⎛----=为3阶单位矩阵.(I )求方程组0=Ax 的一个基础解系; (II )求满足E AB =的所有矩阵B . 【考点】解线性方程组 【详解】1234100()011101012030011205412301021310013141100126101021310013141A E --⎛⎫ ⎪=- ⎪⎪-⎝⎭--⎛⎫ ⎪→--- ⎪ ⎪--⎝⎭-⎛⎫ ⎪→--- ⎪ ⎪---⎝⎭M M M M M M M M M M (I ) 方程组0=Ax 的同解方程组为⎪⎪⎩⎪⎪⎨⎧===-=4443424132x x x x xx x x ,即基础解系为⎪⎪⎪⎪⎪⎭⎫⎝⎛-1321(II )⎪⎪⎪⎭⎫ ⎝⎛=001Ax 的同解方程组为:⎪⎪⎩⎪⎪⎨⎧+=-=-=+-=01312244434241x x x x x x x x ,即通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-011213211k⎪⎪⎪⎭⎫ ⎝⎛=010Ax 的同解方程组为:⎪⎪⎩⎪⎪⎨⎧+=-=-=+-=04332644434241x x x x x x x x ,即通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-043613212k⎪⎪⎪⎭⎫ ⎝⎛=100Ax 的同解方程组为:⎪⎪⎩⎪⎪⎨⎧+=+=+=--=01312144434241x x x x x x x x ,即通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-011113213k ,123123123123261212321313431k k k k k k B k k k k k k -+-+--⎛⎫⎪--+ ⎪∴= ⎪--+ ⎪⎝⎭,321,,k k k 为任意常数23、(本题满分11分)证明:n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111ΛM O M M ΛΛ与⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00200100ΛM M M ΛΛ相似. 【考点】矩阵的特征值、相似对角化 【详解】设⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦L L L L L L L111111111A ,⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦L L L L L L L L0001000200n B 因为1)(,1)(==B r A r所以A 的特征值为:n A tr n n ======-)(,0121λλλλΛB 的特征值为:n B tr n n =='='=='='-)(,0121λλλλΛ 关于A 的特征值0,因为1)()()0(==-=-A r A r A E r ,故有1-n 个线性无关的特征向量,即A 必可相似对角化于⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00O同理,关于B 的特征值0,因为1)()()0(==-=-B r B r B E r ,故有1-n 个线性无关的特征向量,即B 必可相似对角化于⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00O由相似矩阵的传递性可知,A 与B 相似.。

2014-数二真题、标准答案及解析

2014-数二真题、标准答案及解析

3
33
令 dy dx
= 1− 1+
x2 y2
=
0
,得
x
=
1
,且可知
d2 dx
y
2
=
− 2x(1+
y2 )2 − 2 y(1− (1+ y2 )3
x2 )2

当 x = 1时,可解得 y = 1, y"= −1 0 ,函数取得极大值 y = 1;
当 x = −1 时,可解得 y = 0 , y"= 2 0 ,函数取得极小值 y = 0 .
=
1. 3
6.设 u( x, y) 在平面有界闭区域 D 上连续,在 D 的内部具有二阶连续偏导数,且满足 2u 0 及 xy
2u x 2
+
2u y 2
=
0
,则(
).
(A) u( x, y) 的最大值点和最小值点必定都在区域 D 的边界上;
(B) u( x, y) 的最大值点和最小值点必定都在区域 D 的内部;

由于
f
(x)
=
xf '( ) .所以可知
f
'( )
=
1 1+
2
=
f ( x) = arctan x , 2
x
x
=
x − arctan x , (arctan x)2
2
lim
x→0
x2
=
lim
x→0
x − arx tan x x(arctan x)2
= lim x→0
x − (x −
1 x3 ) + o( x3 ) 3 x3
【详解】

2014年数学二真题及答案解析

2014年数学二真题及答案解析

2014年全国硕士研究生入学统一考试数学二试题一、选择题:1:8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 当0x +→时,若ln (12)x +α,1(1cos )x -α均是比x 高阶的无穷小,则α的取值范围是( )(A) (2,)+∞(B) (1,2) (C) 1(,1)2(D) 1(0,)2(2) 下列曲线中有渐近线的是( )(A) sin y x x =+ (B) 2sin y x x =+ (C) 1siny x x =+(D) 21siny x x=+ (3) 设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上 ( )(A) 当()0f x '≥时,()()f x g x ≥ (B) 当()0f x '≥时,()()f x g x ≤ (C) 当()0f x ''≥时,()()f x g x ≥(D) 当()0f x ''≥时,()()f x g x ≤(4) 曲线22741x t y t t ⎧=+⎪⎨=++⎪⎩上对应于1t =的点处的曲率半径是 ( )(A)50(B)100(C)(D)(5) 设函数()arctan f x x =,若()()f x xf '=ξ,则22limx x→=ξ ( )(A)1(B)23(C)12(D)13(6) 设函数(,)u x y 在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满足20ux y∂≠∂∂及22220u ux y∂∂+=∂∂,则 ( )(A)(,)u x y 的最大值和最小值都在D 的边界上取得 (B) (,)u x y 的最大值和最小值都在D 的内部上取得(C) (,)u x y 的最大值在D 的内部取得,最小值在D 的边界上取得 (D) (,)u x y 的最小值在D 的内部取得,最大值在D 的边界上取得(7) 行列式0000000ab a bcd c d= ( )(A) 2()ad bc - (B) 2()ad bc -- (C) 2222a dbc -(D) 2222b c a d -(8) 设123,,ααα均为3维向量,则对任意常数,k l ,向量组1323,k l ++αααα线性无关是向量组123,,ααα线性无关的 ( )(A) 必要非充分条件 (B) 充分非必要条件(C) 充分必要条件 (D) 既非充分也非必要条件 二、填空题:9:14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. ((9)12125dx x x -∞=++⎰__________.(10) 设()f x 是周期为4的可导奇函数,且()f x '2(1),x =-[0,2]x ∈,则(7)f =__________.(11) 设(,)z z x y =是由方程2274yzex y z +++=确定的函数,则11(,)22dz =__________.(12) 曲线()r r =θ的极坐标方程是r =θ,则L 在点(,)(,)22r =ππθ处的切线的直角坐标方程是__________.(13) 一根长为1的细棒位于x 轴的区间[0,1]上,若其线密度()221x x x =-++ρ,则该细棒的质心坐标x =__________.(14) 设二次型()22123121323,,24f x x x x x ax x x x =-++的负惯性指数为1,则a 的取值范围为_______.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限12121lim.1ln 1xt x t e t dt x x →+∞⎡⎤⎛⎫--⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎛⎫+ ⎪⎝⎭⎰(16)(本题满分10分)已知函数()y y x =满足微分方程221x y y y ''+=-,且()20y =,求()y x 的极大值与极小 值.(17)(本题满分10分)设平面区域(){}22,14,0,0,D x y xy x y =≤+≤≥≥计算(sin Dx dxdy x y+⎰⎰.(18)(本题满分10分)设函数()f u 具有二阶连续导数,(e cosy)xz f =满足22222(4e cos )e x xz z z y x y∂∂+=+∂∂,若'(0)0,(0)0f f ==,求()f u 的表达式.(19)(本题满分10分)设函数(),()f x g x 的区间[a,b]上连续,且()f x 单调增加,0()1g x ≤≤.证明: (I)0(),[,]xag t dt x a x a b ≤≤-∈⎰,(II)()()d ()g()ba a g t dtb aaf x x f x x dx +⎰≤⎰⎰.(20)(本题满分11分)设函数[](x),0,11xf x x=∈+,定义函数列121()(),()(()),f x f x f x f f x ==,L 1()(()),n n f x f f x -=L ,记n S 是由曲线()n y f x =,直线1x =及x 轴所围成平面图形的面积,求极限lim n n nS →∞.(21)(本题满分11分) 已知函数(,)f x y 满足2(1)fy y∂=+∂,且2(,)(1)(2)ln ,f y y y y y =+--求曲线(,)0f x y =所围成的图形绕直线1y =-旋转所成的旋转体的体积. (22)(本题满分11分)设矩阵123401111203A --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,E 为三阶单位矩阵.(I)求方程组0Ax =的一个基础解系; (II)求满足AB E =的所有矩阵.(23)(本题满分11分)证明n 阶矩阵111111111⎛⎫⎪ ⎪ ⎪⎪⎝⎭L L M M M M L与00100200n ⎛⎫⎪⎪⎪ ⎪⎝⎭LL M M M M L 相似.2014年全国硕士研究生入学统一考试数学二试题答案一、选择题:1:8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 当0x +→时,若ln (12)x +α,1(1cos )x -α均是比x 高阶的无穷小,则α的取值范围是( )(A) (2,)+∞(B) (1,2)(C) 1(,1)2(D) 1(0,)2【答案】B【解析】由定义 1000ln (12)(2)limlim lim 20x x x x x x x x-→→→+===αααα 所以10->α,故1>α.当0x +→时,211(1cos )~2x x -ααα是比x 的高阶无穷小,所以210->α,即2<α.故选B (2) 下列曲线中有渐近线的是( )(A) sin y x x =+ (B) 2sin y x x =+ (C) 1sin y x x =+(D) 21siny x x=+ 【答案】C【解析】关于C 选项:11sinsinlimlim1lim 101x x x x x x x x →∞→∞→∞+=+=+=. 11lim[sin ]limsin 0x x x x x x →∞→∞+-==,所以1sin y x x=+存在斜渐近线y x =. 故选C(3) 设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上 ( )(A) 当()0f x '≥时,()()f x g x ≥ (B) 当()0f x '≥时,()()f x g x ≤ (C) 当()0f x ''≥时,()()f x g x ≥(D) 当()0f x ''≥时,()()f x g x ≤【答案】D【解析】令()()()(0)(1)(1)()F x g x f x f x f x f x =-=-+-,则(0)(1)0F F ==,()(0)(1)()F x f f f x ''=-+-,()()F x f x ''''=-.若()0f x ''≥,则()0F x ''≤,()F x 在[0,1]上为凸的.又(0)(1)0F F ==,所以当[0,1]x ∈时,()0F x ≥,从而()()g x f x ≥. 故选D.(4) 曲线22741x t y t t ⎧=+⎪⎨=++⎪⎩上对应于1t =的点处的曲率半径是 ( )(C)(D)【答案】C 【解析】1112'21122432212t t t t t dy t dxtd y dy t dx dx t=====+==-===-()()''33'22211,11y k R kq y ==∴==++ 故选C(5) 设函数()arctan f x x =,若()()f x xf '=ξ,则22limx x →=ξ ( )(A)1 (B)23(C)12(D)13【答案】D【解析】因为'2()1()1f x f x ==+ξξ,所以2()()x f x f x -=ξ22222200011()arctan 11limlimlim lim()arctan 33x x x x x f x x xx x x f x x x x →→→→---+====ξ故选D.(6) 设函数(,)u x y 在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满足20ux y∂≠∂∂及22220u ux y∂∂+=∂∂,则 ( )(A)(,)u x y 的最大值和最小值都在D 的边界上取得 (B) (,)u x y 的最大值和最小值都在D 的内部上取得(C) (,)u x y 的最大值在D 的内部取得,最小值在D 的边界上取得 (D) (,)u x y 的最小值在D 的内部取得,最大值在D 的边界上取得 【答案】A【解析】记22222,,,0,,u u uA B C B A C x x y y∂∂∂===≠∂∂∂∂相反数 则2=AC-B 0∆<,所以(x,y)u 在D 内无极值,则极值在边界处取得.故选A(7) 行列式0000000ab a bcd c d= ( )(A)2()ad bc - (B)2()ad bc -- (C)2222a d b c - (D)2222b c a d -【答案】B【解析】由行列式的展开定理展开第一列0000000000000000a b a b a b a b a c d c b c d d c d cd=--()()ad ad bc bc ad bc =--+- 2()ad bc =--.(8) 设123,,a a a 均为三维向量,则对任意常数,k l ,向量组13a ka +,23a la +线性无关是向量组123,,a a a 线性无关的 ( )(A)必要非充分条件(B)充分非必要条件 (C)充分必要条件(D)既非充分也非必要条件【答案】A【解析】()()13231231001k l k l ⎛⎫⎪++= ⎪ ⎪⎝⎭ααααααα.)⇐ 记()1323A k l =++αααα,()123B =ααα,1001k l ⎛⎫⎪= ⎪ ⎪⎝⎭C . 若123,,ααα线性无关,则()()()2r A r BC r C ===,故1323,k l ++αααα线性无关.)⇒ 举反例. 令30=α,则12,αα线性无关,但此时123,,ααα却线性相关.综上所述,对任意常数,k l ,向量1323,k l ++αααα线性无关是向量123,,ααα线性无关的必要非充分条件.故选A二、填空题:9:14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)12125dx x x -∞=++⎰__________.【答案】38π【解析】()111221111arctan 252214132428x dx dx x x x -∞-∞-∞+==++++⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦⎰⎰πππ(10) 设()f x 是周期为4的可导奇函数,且()f x '2(1),x =-[0,2]x ∈,则(7)f =__________.【答案】1 【解析】()()[]'210,2f x x x =-∈,且为偶函数则()()[]'212,0fx x x =--∈-,又()22f x x x c =--+且为奇函数,故=0c()[]222,0f x x x x ∴=--∈-,又()f x Q 的周期为4,()()711f f ∴=-= (11) 设(,)z z x y =是由方程2274yzex y z +++=确定的函数,则11(,)22dz =__________.【答案】1()2dx dy -+ 【解析】对2274yzex y z +++=方程两边同时对,x y 求偏导 22210(22)20yzyz z z e y x x z z e z y y y y ∂∂⎧⋅⋅++=⎪∂∂⎪⎨∂∂⎪+++=∂∂⎪⎩当11,22x y ==时,0z = 故1111(,)(,)222211,22z z x y∂∂=-=-∂∂故11(,)22111()()222dzdx dy dx dy =-+-=-+(12) 曲线lim n n nS →∞的极坐标方程是r =θ,则L 在点(,)(,)22r =ππθ处的切线的直角坐标方程是__________. 【答案】22y x =-+ππ【解析】由直角坐标和极坐标的关系 cos cos sin sin x r y r ==⎧⎨==⎩θθθθθθ,于是(),,,22r ⎛⎫=⎪⎝⎭ππθ对应于(),0,,2x y ⎛⎫= ⎪⎝⎭π 切线斜率cos sin cos sin dydy d dx dx d +==-θθθθθθθθ0,22dy dx ⎛⎫⎪⎝⎭∴=-ππ所以切线方程为()202y x -=--ππ即2=2y x -+ππ(13) 一根长为1的细棒位于x 轴的区间[0,1]上,若其线密度()221x x x =-++ρ,则该细棒的质心坐标x =__________. 【答案】1120【解析】质心横坐标()()1010x x dx x x dx=⎰⎰ρρ ()()()()31122100042112310005=2133211=2143212x x dx x x dx x x x x x x dx x x x dx x ⎛⎫-++=-++= ⎪⎝⎭⎛⎫-++=-++= ⎪⎝⎭⎰⎰⎰⎰ρρ111112=5203x ∴=(13) 设二次型()22123121323,,24f x x x x x ax x x x =-++的负惯性指数是1,则a 的取值范围_________. 【答案】[]2,2-【解析】配方法:()()()22222123133233,,24f x x x x ax a x x x x =+---+由于二次型负惯性指数为1,所以240a -≥,故22a -≤≤.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限12121lim.1ln 1xtx t e t dt x x →+∞⎡⎤⎛⎫--⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎛⎫+ ⎪⎝⎭⎰【解析】11221122d d (e 1)(e 1)lim lim 11ln(1)xxt t x x t t t t t t x x x x→+∞→+∞⎡⎤⎡⎤----⎢⎥⎢⎥⎣⎦⎣⎦=+⋅⎰⎰12lim[(e 1)]xx x x →+∞=--12000e 1e 11lim lim lim 222t t t xt t t t t t t t +++=→→→---====. (16)(本题满分10分)已知函数()y y x =满足微分方程221x y y y ''+=-,且()20y =,求()y x 的极大值与极小 值.【解析】 由221x y y y ''+=-,得22(1)1y y x '+=-………………………………………………………① 此时上面方程为变量可分离方程,解的通解为331133y y x x c +=-+ 由(2)0y =得23c =又由①可得 221()1x y x y -'=+当()0y x '=时,1x =±,且有:1,()011,()01,()0x y x x y x x y x '<-<'-<<>'><所以()y x 在1x =-处取得极小值,在1x =处取得极大值 (1)0,(1)1y y -==即:()y x 的极大值为1,极小值为0.(17)(本题满分10分)设平面区域(){}22,14,0,0,D x y x y x y =≤+≤≥≥计算(sin Dx dxdy x y+⎰⎰.【解析】D 关于y x =对称,满足轮换对称性,则:D D=12D D I dxdy ∴==⎢⎥⎣⎦⎰⎰1sin(2Ddxdy =⎰⎰π 221211sin 21()cos 4d r rdrrd r =⋅=-⎰⎰⎰πθππππ22111cos |cos 4r r rdr ⎡⎤=-⋅-⎢⎥⎣⎦⎰ππ211121sin |4r ⎡⎤=-+-⎢⎥⎣⎦ππ 34=-(18)(本题满分10分)设函数()f u 具有二阶连续导数,(e cosy)xz f =满足22222(4e cos )e x xz z z y x y∂∂+=+∂∂,若'(0)0,(0)0f f ==,求()f u 的表达式.【解析】由()cos ,x z f e y =()(cos )cos ,(cos )sin x x x x z zf e y e y f e y e y x y∂∂''=⋅=⋅-∂∂ 22(cos )cos cos (cos )cos x x x x x zf e y e y e y f e y e y x∂'''=⋅⋅+⋅∂, ()()()22(cos )sin sin (cos )cos x x x x x zf e y e y e y f e y e y y∂'''=⋅-⋅-+⋅-∂ 由 ()22222+4cos x xz z z e y e x y∂∂=+∂∂,代入得,()()22cos [4cos cos ]x x x x x f e y e f e y e y e ''⋅=+即()()cos 4cos cos x x x f e y f e y e y ''-=,令cos =,xe y t 得()()4f t f t t ''-=特征方程 240,2-==±λλ 得齐次方程通解2212t t y c e c e -=+设特解*y at b =+,代入方程得1,04a b =-=,特解*14y t =-则原方程通解为()22121=4t ty f t c e c e t -=+-由()()'00,00f f ==,得1211,1616c c ==-, 则()22111=16164u u y f u e e u -=--.(19)(本题满分10分)设函数(),()f x g x 在区间[,]a b 上连续,且()f x 单调增加,0()1g x ≤≤,证明:(I )0(),[,]xag t dt x a x a b ≤≤-∈⎰,(II )()()d ()g()ba a g t dtb aaf x x f x x dx +⎰≤⎰⎰.【解析】(I )由积分中值定理()()(),[,]xag t dt g x a a x =-∈⎰ξξ()01g x ≤≤Q ,()()()0g x a x a ∴≤-≤-ξ()()0xa g t dt x a ∴≤≤-⎰(II )直接由()01g x ≤≤,得到()()01=x xaag t dt dt x a ≤≤-⎰⎰(II )令()()()()()ua u a g t dt aaF u f x g x dx f x dx +⎰=-⎰⎰()()()()()()()()()()'uaua F u f u g u f a g t dt g u g u f u f a g t dt =-+⋅⎡⎤=-+⎢⎥⎣⎦⎰⎰由(I )知()()0uag t dt u a ≤≤-⎰()uaa a g t dt u∴≤+≤⎰又由于()f x 单增,所以()()()0u af u f ag t dt -+≥⎰()()'0F u F u ∴≥∴,单调不减,()()0F u F a ∴≥=取u b =,得()0F b ≥,即(II )成立. (20)(本题满分11分)设函数[](x),0,11xf x x=∈+,定义函数列 1211()(),()(()),,()(()),n n f x f x f x f f x f x f f x -===L L ,记n S 是由曲线()n y f x =,直线1x =及x 轴所围成平面图形的面积,求极限lim n n nS →∞.【解析】123(),(),(),,(),112131n x x x xf x f x f x f x x x x nx====++++L 11100011()11n n x x n n S f x dx dx dx nx nx+-∴===++⎰⎰⎰ 1110200111111ln(1)1dx dx nx n n nx n n =-=-++⎰⎰ 211ln(1)n n n=-+ ln(1)ln(1)1lim 1lim 1lim 1lim 1n n n x x n x nS n x x→∞→∞→∞→∞++∴=-=-=-+101=-= (21)(本题满分11分) 已知函数(,)f x y 满足2(1)fy y∂=+∂,且2(,)(1)(2)ln ,f y y y y y =+--求曲线(,)0f x y =所围成的图形绕直线1y =-旋转所成的旋转体的体积.【解析】因为2(1)fy y∂=+∂,所以2(,)2(),f x y y y x =++ϕ其中()x ϕ为待定函数. 又因为()2(,)(1)2ln ,f y y y y y =+--则()()12ln y y y =--ϕ,从而()()22(,)212ln (1)2ln f x y y y x x y x x =++--=+--.令(,)0,f x y =可得()2(1)2ln y x x +=-,当1y =-时,1x =或2x =,从而所求的体积为()()2221122112ln ln 22V y dx x xdxx xd x =+=-⎛⎫=- ⎪⎝⎭⎰⎰⎰πππ22211221ln (2)222552ln 2(2)2ln 22ln 2.444x x x x dxx x ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦⎛⎫=--=-⋅=- ⎪⎝⎭⎰πππππππ(22)(本题满分11分)设矩阵123401111203A --⎛⎫⎪=- ⎪ ⎪-⎝⎭,E 为三阶单位矩阵.(I)求方程组0Ax =的一个基础解系; (II)求满足AB E =的所有矩阵B .【解析】()123410012341000111010011101012030010431101A E ----⎛⎫⎛⎫⎪ ⎪=-→- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭ 123410010012610111010010213100131410013141---⎛⎫⎛⎫ ⎪ ⎪→-→--- ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭, (I)0Ax =的基础解系为()1,2,3,1T=-ξ (II)()()()1231,0,0,0,1,0,0,0,1TTT e e e ===1Ax e =的通解为()()111112,1,1,02,12,13,T Tx k k k k k =+--=--+-+ξ 2Ax e =的通解为()()222226,3,4,06,32,43,TTx k k k k k =+--=--+-+ξ 3Ax e =的通解为()()333331,1,1,01,12,13,TTx k k k k k =+-=--++ξ123123123123261123212134313k k k k k k B k k k k k k ----⎛⎫ ⎪-+-++⎪∴= ⎪-+-++ ⎪ ⎪⎝⎭(123,,k k k 为任意常数)(23)(本题满分11分)证明n 阶矩阵111111111⎛⎫⎪⎪ ⎪⎪⎝⎭L LM M M M L 与00100200n ⎛⎫⎪⎪⎪ ⎪⎝⎭LL M M M M L 相似. 【解析】已知()1111A ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭ML L M ,()12001B n ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭LM =,则A 的特征值为n ,0(1n -重).A 属于n λ=的特征向量为(1,1,,1)T L ;()1r A =,故0Ax =基础解系有1n -个线性无关的解向量,即A 属于0λ=有1n -个线性无关的特征向量;故A 相似于对角阵=0n ⎛⎫⎪⎪Λ ⎪ ⎪⎝⎭O . B 的特征值为n ,0(1n -重),同理B 属于0λ=有1n -个线性无关的特征向量,故B 相似于对角阵Λ.由相似关系的传递性,A 相似于B .(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。

2014年考研数学二真题试卷及答案解析

2014年考研数学二真题试卷及答案解析

2
D
x y
dxdy xy
1 2
D
sin(
x2
y )dxdy
1
2 d
2 sin( r)r d r 1
2
rd cos( r)
20
1
1
1 4
r
cos(
r)
|12
2
cos( r) d r
1
11 3 24 4
18、


z x
f ' ex
cos y ,
2z x 2
cos y
(f'' e x
22、(本题满分 11 分)
1 2 3 4 设 A 0 1 1 1 , E 为 3 阶单位矩阵.
1 2 0 3
(I)求方程组 Ax 0的一个基础解系;
(II)求满足 AB E 的所有矩阵 B .
23、(本题满分 11 分)
1 1 1 0 0 1
证明:
n
阶矩阵
1 1
1 1
1 1
()
(A) (2, ) (B) (1, 2)
(C) (1 ,1) 2
2、下列曲线中有渐近线的是( )
(D) (0, 1) 2
(A) y x sin x
(B) y x2 sin x
(C) y x sin 1 x
(D) x2 sin 1 x
3、设函数 f (x) 具有 2 阶导数, g(x) f (0)(1 x) f (1)x ,则在区间[0,1] 内( )
棒的质心坐标 x
.
14、设二次型 f (x1, x2, x3) x1 x22 2ax1x3 4x2x3 的负惯性指数为 1,则 a 的取值范围

2014年高考新课标 I 数学(理)真题试题及答案

2014年高考新课标 I 数学(理)真题试题及答案

2014年普通高等学校招生全国统一考试(新课标Ⅰ卷)数学试题卷(理工类)注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效. 3.回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效. 4.考试结束,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.已知集合A={x |2230x x --≥},B={x |-2≤x <2﹜,则A B ⋂=A .[2,1]--B .[1,2)-C .[1,1]-D .[1,2)2.32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A .3B .3C .3mD .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A .18B .38C .58D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点, 角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M .将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为M OPA7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M=A .203 B .165 C .72 D .1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .32παβ+= C .22παβ-=D .22παβ+=9.不等式组⎩⎨⎧≤-≥+42,1y x y x 的解集记为D ,有下面四个命题:1p :(,),22x y D x y ∀∈+≥-;2p :(,),22x y D x y ∃∈+≥;3p :(,),23x y D x y ∀∈+≤;4p :(,),21x y D x y ∃∈+≤-.其中的真命题是A .2p ,3pB .1p ,2pC .1p ,4pD .1p ,3p10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72 B .3 C .52D .2 11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(1,+∞)C .(,2)-∞-D .(,1)-∞-12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多 面体的三视图,则该多面体的六条棱中,最长的棱的长度为A .62B .42C .6D .4开始 结束ba M 1+← n←n+1是n ≤k输出M 否n ←1 输入a ,b,k a ←b b ←M OAx y 1 π OBx y1π OCx y1π ODxy1π第Ⅱ卷本卷包括必考题和选考题两个部分.第13题-第21题为必考题,每个考生都必须作答.第22题-第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.8()()x y x y -+的展开式中72y x 的系数为 .(用数字填写答案) 14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为 . 15.已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 . 16.已知a ,b ,c 分别为ABC ∆的三个内角A ,B ,C 的对边,a =2,且(2)(s i n s i n )(b A B c b C +-=-,则ABC ∆面积的最大值为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知数列{n a }的前n 项和为n S ,1a =1,0n a ≠,11n n n a a S λ+=-,其中λ为常数.(Ⅰ)证明:2n n a a λ+-=;(Ⅱ)是否存在λ,使得{n a }为等差数列?并说明理由.18.(本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s .(i )利用该正态分布,求(187.8212.2)P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间)2.212,8.187(的产品件数,利用(i )的结果,求EX .附:150≈12.2.若Z ~2(,)N μδ,则()P Z μδμδ-<<+=0.6826,(22)P Z μδμδ-<<+=0.9544.19.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥. (Ⅰ)证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o160CBB ∠=,AB =BC ,求二面角111A A B C --的余弦值.AA 1C 1B 1CB0.008 165 175 185 195 205 215 225 235 0.009 0.0220.024 0.033 质量指标值频率组距0.00220.(本小题满分12分)已知点(0,2)A -,椭圆E :22221(0)x y a b a b +=>>的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当OPQ ∆的面积最大时,求l 的方程.21.(本小题满分12分)设函数()xbe x ae x f x x1ln -+=,曲线()y f x =在点(1,(1)f )处的切线方程为(1)2y e x =-+. (Ⅰ)求a ,b ; (Ⅱ)证明:()1f x >.请考生从第22、23、24题中任选一题作答,如果多做,则按所做的第一个题计分.作答时请写清题号. 22.(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD 是⊙O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB =CE . (Ⅰ)证明:∠D =∠E ;(Ⅱ)设AD 不是⊙O 的直径,AD 的中点为M ,且MB =MC ,证明:△ADE 为等边三角形.23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C :22149x y +=,直线l :⎩⎨⎧-=+=ty t x 22,2(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值.24.(本小题满分10分)选修4-5:不等式选讲 若0,0a b >>,且11ab a b+=. (Ⅰ)求33b a +的最小值;(Ⅱ)是否存在a ,b ,使得632=+b a ?并说明理由.AB EC DMO2014年普通高等学校招生全国统一考试(课标卷Ⅰ卷)数学(理科)参考答案一、选择题1.A 解析:{}{}223013A x x x x x x =--≥=≤-≥或,又{}22B x x =-≤<,AB =[]2,1--,故选A .2.D 解析:()()()()()()3222111211211i i i i i i i i i ⋅===---++++--,故选D . 3.C 解析:()f x 是奇函数,()g x 是偶函数,则()()f x g x 是奇函数,排除A .()f x 是奇函数,()f x 是偶函数,()g x 是偶函数,则()()f x g x 是偶函数,排除B . ()f x 是奇函数,()g x 是偶函数,则()()f x g x 是奇函数,C 正确.()f x 是奇函数,()g x 是偶函数,()()f x g x 是奇函数,则()()f x g x 是偶函数,排除D .4.A 解析:双曲线的焦点到渐近线的距离为虚半轴长b ,故距离为3,选A .5.D 解析:周六没有同学的方法数为1,周日没有同学的方法数为1,所以周六、周日都有同学参加公益活动的概率为4422728P -==,故选D . 6.C 解析:由已知1,sin ,cos OP PM x OM x ===.又()1122f x OP OM MP ⋅=, 所以()1sin cos sin 22f x x x x ==,故选C . 7.D 解析:当1n =时,1331,2,222M a b =+===;当2n =时,28382,,3323M a b =+===;当3n =时,3315815,,28838M a b =+===;当4n =时,结束,故158M =,选D . 8.C 解析:由1sin tan cos βαβ+=得sin 1sin ,sin cos cos cos sin ,cos cos αβαβααβαβ+=∴=+ 即()sin cos αβα-=,所以()sin sin 2παβα⎛⎫-=-⎪⎝⎭. 由已知0,,0,,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭所以,02222ππππαβα-<-<<-<, sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦上单调递增,所以,222ππαβααβ-=--=,故选C .9.B 解析:令()()()()222x y m x y n x y m n x m n y +=++-=++-,所以1,22,m n m n +=⎧⎨-=⎩解得4,31,3m n ⎧=⎪⎪⎨⎪=-⎪⎩所以()()4122033x y x y x y +=+--≥,因而可以判断12,p p 为真,故选B .10.B 解析:由已知2,2,P F x x =-=又4FP FQ =,则()442Q x -=-,1Q x ∴=. 过Q 作QD 垂直于l ,垂足为D ,所以3QF QD ==,故选B .11.C 解析:'()3(2)f x x ax =-.当0a =时,2()13f x x =-,不合题意; 当0a >时,()f x 在(,0)-∞上是增函数,且(0)1f =,不合题意;当0a <时,()f x 在2(,)a -∞上是减函数,2(,0)a上是增函数,(0,)+∞是减函数,且(0)1f =,故只需2()0f a>,24a >,2a <-.选C .12.B 解析:几何体为如图所示的一个三棱锥P ABC -,底面ABC 为等腰三角形,,4,AB BC AC ==顶点B 到AC 的距离为4,面PAC ABC ⊥面,且三角形PAC 为以A 为直角的等腰直角三角形,所以棱PB 最长,长度为6,故选B .ACPB二、填空题13.20- 解析:888()()()()x y x y x x y y x y -+=+-+,故展开式中72y x 的系数为128882820C C -=-=-.14.A 解析:乙没去过C 城市,甲没去过B 城市,但去过的城市比乙多,所以甲去过A ,C ,三人都去过同一个城市,一定是A ,所以填A . 15.2π 解析:1()2AO AB AC =+,O 为BC 中点,即BC 为直径,所以AB 与AC 的夹角为2π.16.3 解析:222(2)(sin sin )()sin (2)()()b A B c b C b a b c b c a b c bc +-=-⇒+-=-⇒-=-,所以2222221cos 223b c a b c a bc A A bc π+-+-=⇒==⇒=. 又2244b c bc bc +-=⇒≤.所以13sin 324S bc A bc ==≤. 三、解答题17.解:(Ⅰ)由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1, 两式相减得a n +1(a n +2-a n )=λa n +1.因为a n +1≠0,所以a n +2-a n =λ. (Ⅱ)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1.由(Ⅰ)知,a 3=λ+1. 若{a n }为等差数列,则2a 2=a 1+a 3,解得λ=4,故a n +2-a n =4. 由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3; {a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.18.解:(Ⅰ)0.021700.091800.221900.332000.242100.082200.02230200x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=,()()()()()()()222222220.021702000.091802000.221902000.332002000.242102000.082202000.022********.s =⨯-+⨯-+⨯-+⨯-++⨯-+⨯-+⨯-=(Ⅱ)(i )由(Ⅰ)知,2δ=2s =150,所以15012.2δ=≈,(187.8212.2)(20012.220012.2)0.6826P Z P Z <<=-<<+=.(ii )100件产品中质量指标值位于区间(187.8,212.2)的产品件数X 服从二项分布()100,0.6826B ,所以1000.682668.26EX =⨯=.19.解:(Ⅰ)连结1BC ,交1B C 于点O ,连结AO . 侧面11BB C C 为菱形,∴11BC B C ⊥. 又1AB B C ⊥,1ABBC B =,11.B C ABC ∴⊥面1AO ABC ⊂面,1AO B C ∴⊥,又O 为1B C 中点,所以1AC AB =.(Ⅱ)1AC AB ⊥,且O 是B 1C 中点,所以AO =CO .又因为AB =BC ,所以BOA ∆BOC ≅∆,故OA OB ⊥,从而OA ,OB ,OB 1两两垂直. 以O 为坐标原点,OB 的方向为x 轴正方向,|OB |为单位长, 建立如图所示空间直角坐标系O xyz -.因为o 160CBB ∠=,所以1CBB ∆为等边三角形,又AB =BC , 则()13330,0,,1,0,0,0,,0,0,,0333A B B C ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 1330,,33AB ⎛⎫∴=- ⎪ ⎪⎝⎭,1131,0,3A B AB ⎛⎫==- ⎪ ⎪⎝⎭,1131,,03B C BC ⎛⎫==-- ⎪ ⎪⎝⎭.设(),,n x y z =为平面11AA B 的一个法向量,则()111330,0,331,3,30,30,3y z n AB n n A B x z ⎧-=⎪⎧⋅=⎪⎪=⎨⎨⋅=⎪⎪⎩-=⎪⎩即所以可取.设(),,m a b c =为平面111A B C 的一个法向量,则()11110,1,3,30.m B C m m A B ⎧⋅=⎪=-⎨⋅=⎪⎩同理可取. 则1cos ,7n m n m n m⋅<>==,所以二面角111A ABC --的余弦值为17. 20.解:(Ⅰ)由已知得223,2,2143,223,3c a x a E y c c⎧=⎪=⎧⎪⎪∴+=⎨⎨=⎪⎩⎪=⎪⎩解得椭圆的方程.(Ⅱ)当l x ⊥轴时不合题意,故设l :2y kx =-,()()1122,,,.P x y Q x y将2y kx =-代入2214x y +=得()224116120k x kx +-+=, 当()()222164411264480k k k ∆=--⨯+⨯=->,即234k >时, 21,22824341k k x k ±-=+,从而2121||PQ k x x =+-222414341k k k +-=+. AA 1C 1B 1CBOyx z又点O 到直线l 的距离221d k =+,所以OPQ ∆的面积()221443241k S k PQ d k -==+. 设()2430k t t -=>,()244712,424t S k t k t t t ⎛⎫==≤==± ⎪ ⎪+⎝⎭+当且仅当即时取到, 所以,当OPQ ∆的面积最大时,l 的方程为722y x =-或722y x =--. 21.解:(Ⅰ)函数()f x 的定义域为(0,+∞),f ′(x )=a e x ln x +a x e x -b x 2e x -1+b xe x -1. 由题意可得f (1)=2,f ′(1)=e ,故a =1,b =2.(Ⅱ)由(Ⅰ)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e. 设函数g (x )=x ln x ,则g ′(x )=1+ln x ,所以当x ∈⎝⎛⎭⎫0,1e 时,g ′(x )<0;当x ∈⎝⎛⎭⎫1e ,+∞时,g ′(x )>0. 故g (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增. 从而g (x )在(0,+∞)上的最小值为g ⎝⎛⎭⎫1e =-1e. 设函数h (x )=x e -x -2e,则h ′(x )=e -x (1-x ), 所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减.从而h (x )在(0,+∞)上的最大值为h (1)=-1e. 综上,当x >0时,()()g x h x >,即()1f x >.22.解:(Ⅰ)由题设知A ,B ,C ,D 四点共圆,所以D CBE ∠=∠,由已知得CBE E ∠=∠,故.D E ∠=∠(Ⅱ)设BC 的中点为N ,连接MN ,则由MB =MC 知MN BC ⊥,故O 在直线MN 上.又AD 不是⊙O 的直径,M 为AD 的中点,故OM AD ⊥,即.MN AD ⊥所以//AD BC ,故.A CBE ∠=∠又CBE E ∠=∠,故.A E ∠=∠由(Ⅰ)知,D E ∠=∠,所以ADE ∆为等边三角形. A B EC D M O N23.解:(Ⅰ)曲线C 的参数方程为2cos ,3sin .x y θθ=⎧⎨=⎩直线l 的普通方程为260x y +-=; (Ⅱ)令点P 坐标为()2cos ,3sin θθ,点P 到直线l 的距离为d . ()55sin 64cos 3sin 64tan 535d θφθθφ+-+-⎛⎫=== ⎪⎝⎭,||2sin 30d PA d ==︒, 所以()max max max 225||225PA d d ===;()min min min 25||225PA d d ===. 24.解析:(Ⅰ)由112ab a b ab=+≥得2ab ≥,且当2a b ==时等号成立. 故3333242a b a b +≥≥,且当2a b ==时等号成立.所以33a b +的最小值为42.(Ⅱ)由(Ⅰ)知,23264 3.a b ab +≥≥ 由于436>,从而不存在a ,b ,使得236a b +=.。

2014年山东省高考数学试卷真题及答案(理科)

2014年山东省高考数学试卷真题及答案(理科)

2014年山东省高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)2=()A.5﹣4i B.5+4i C.3﹣4i D.3+4i2.(5分)设集合A={x||x﹣1|<2},B={y|y=2x,x∈[0,2]},则A∩B=()A.[0,2]B.(1,3) C.[1,3) D.(1,4)3.(5分)函数f(x)=的定义域为()A.(0,)B.(2,+∞)C.(0,)∪(2,+∞)D.(0,]∪[2,+∞)4.(5分)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根5.(5分)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.>B.ln(x2+1)>ln(y2+1)C.sinx>siny D.x3>y36.(5分)直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为()A.2 B.4 C.2 D.47.(5分)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.188.(5分)已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是()A.(0,)B.(,1)C.(1,2) D.(2,+∞)9.(5分)已知x,y满足约束条件,当目标函数z=ax+by(a>0,b >0)在该约束条件下取到最小值2时,a2+b2的最小值为()A.5 B.4 C.D.210.(5分)已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为﹣=1,C1与C2的离心率之积为,则C2的渐近线方程为()A.x±y=0 B.x±y=0 C.x±2y=0 D.2x±y=0二、填空题(共5小题,每小题5分,满分25分)11.(5分)执行如图程序框图,若输入的x的值为1,则输出的n的值为.12.(5分)若△ABC中,已知•=tanA,当A=时,△ABC的面积为.13.(5分)三棱锥P﹣ABC中,D,E分别为PB,PC的中点,记三棱锥D﹣ABE 的体积为V1,P﹣ABC的体积为V2,则=.14.(5分)若(ax2+)6的展开式中x3项的系数为20,则a2+b2的最小值为.15.(5分)已知函数y=f(x)(x∈R),对函数y=g(x)(x∈R),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈R),y=h(x)满足:对任意x∈R,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)=关于f(x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是.三、解答题(共6小题,满分75分)16.(12分)已知向量=(m,cos2x),=(sin2x,n),函数f(x)=•,且y=f(x)的图象过点(,)和点(,﹣2).(Ⅰ)求m,n的值;(Ⅱ)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)图象上的最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.17.(12分)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.(Ⅰ)求证:C1M∥平面A1ADD1;(Ⅱ)若CD1垂直于平面ABCD且CD1=,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.18.(12分)乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D,某次测试要求队员接到落点在甲上的来球后向乙回球,规定:回球一次,落点在C上记3分,在D上记1分,其它情况记0分.对落点在A上的来球,小明回球的落点在C上的概率为,在D上的概率为;对落点在B上的来球,小明回球的落点在C上的概率为,在D上的概率为.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响,求:(Ⅰ)小明两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望.19.(12分)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(﹣1)n﹣1,求数列{b n}的前n项和T n.20.(13分)设函数f(x)=﹣k(+lnx)(k为常数,e=2.71828…是自然对数的底数).(Ⅰ)当k≤0时,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.21.(14分)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有丨FA丨=丨FD丨.当点A的横坐标为3时,△ADF为正三角形.(Ⅰ)求C的方程;(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,(ⅰ)证明直线AE过定点,并求出定点坐标;(ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.2014年山东省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2014•山东)已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)2=()A.5﹣4i B.5+4i C.3﹣4i D.3+4i【分析】由条件利用共轭复数的定义求得a、b的值,即可得到(a+bi)2的值.【解答】解:∵a﹣i与2+bi互为共轭复数,则a=2、b=1,∴(a+bi)2=(2+i)2=3+4i,故选:D.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,虚数单位i的幂运算性质,属于基础题.2.(5分)(2014•山东)设集合A={x||x﹣1|<2},B={y|y=2x,x∈[0,2]},则A∩B=()A.[0,2]B.(1,3) C.[1,3) D.(1,4)【分析】求出集合A,B的元素,利用集合的基本运算即可得到结论.【解答】解:A={x丨丨x﹣1丨<2}={x丨﹣1<x<3},B={y丨y=2x,x∈[0,2]}={y丨1≤y≤4},则A∩B={x丨1≤y<3},故选:C【点评】本题主要考查集合的基本运算,利用条件求出集合A,B是解决本题的关键.3.(5分)(2014•山东)函数f(x)=的定义域为()A.(0,)B.(2,+∞)C.(0,)∪(2,+∞)D.(0,]∪[2,+∞)【分析】根据函数出来的条件,建立不等式即可求出函数的定义域.【解答】解:要使函数有意义,则,即log2x>1或log2x<﹣1,解得x>2或0<x<,即函数的定义域为(0,)∪(2,+∞),故选:C【点评】本题主要考查函数定义域的求法,根据对数函数的性质是解决本题的关键,比较基础.4.(5分)(2014•山东)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根【分析】直接利用命题的否定写出假设即可.【解答】解:反证法证明问题时,反设实际是命题的否定,∴用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是:方程x3+ax+b=0没有实根.故选:A.【点评】本题考查反证法证明问题的步骤,基本知识的考查.5.(5分)(2014•山东)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.>B.ln(x2+1)>ln(y2+1)C.sinx>siny D.x3>y3【分析】本题主要考查不等式的大小比较,利用函数的单调性的性质是解决本题的关键.【解答】解:∵实数x,y满足a x<a y(0<a<1),∴x>y,A.若x=1,y=﹣1时,满足x>y,但==,故>不成立.B.若x=1,y=﹣1时,满足x>y,但ln(x2+1)=ln(y2+1)=ln2,故ln(x2+1)>ln(y2+1)不成立.C.当x=π,y=0时,满足x>y,此时sinx=sinπ=0,siny=sin0=0,有sinx>siny,但sinx>siny不成立.D.∵函数y=x3为增函数,故当x>y时,x3>y3,恒成立,故选:D.【点评】本题主要考查函数值的大小比较,利用不等式的性质以及函数的单调性是解决本题的关键.6.(5分)(2014•山东)直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为()A.2 B.4 C.2 D.4【分析】先根据题意画出区域,然后依据图形得到积分上限为2,积分下限为0的积分,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.【解答】解:先根据题意画出图形,得到积分上限为2,积分下限为0,曲线y=x3与直线y=4x在第一象限所围成的图形的面积是∫(4x﹣x3)dx,而∫(4x﹣x3)dx=(2x2﹣x4)|=8﹣4=4,∴曲边梯形的面积是4,故选:D.【点评】考查学生会求出原函数的能力,以及会利用定积分求图形面积的能力,同时考查了数形结合的思想,属于基础题.7.(5分)(2014•山东)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.18【分析】由频率=以及直方图可得分布在区间第一组与第二组共有20人的频率,即可求出第三组中有疗效的人数得到答案;【解答】解:由直方图可得分布在区间第一组与第二组共有20人,分布在区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人,第三组的频率为0.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人.故选:C.【点评】本题考查古典概型的求解和频率分布的结合,列举对事件是解决问题的关键,属中档题.8.(5分)(2014•山东)已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是()A.(0,)B.(,1)C.(1,2) D.(2,+∞)【分析】画出函数f(x)、g(x)的图象,由题意可得函数f(x)的图象(蓝线)和函数g(x)的图象(红线)有两个交点,数形结合求得k的范围.【解答】解:由题意可得函数f(x)的图象(蓝线)和函数g(x)的图象(红线)有两个交点,如图所示:K OA=,数形结合可得<k<1,故选:B.【点评】本题主要考查函数的零点与方程的根的关系,体现了转化、数形结合的数学思想,属于基础题.9.(5分)(2014•山东)已知x,y满足约束条件,当目标函数z=ax+by (a>0,b>0)在该约束条件下取到最小值2时,a2+b2的最小值为()A.5 B.4 C.D.2【分析】由约束条件正常可行域,然后求出使目标函数取得最小值的点的坐标,代入目标函数得到2a+b﹣2=0.a2+b2的几何意义为坐标原点到直线2a+b﹣2=0的距离的平方,然后由点到直线的距离公式得答案.【解答】解:由约束条件作可行域如图,联立,解得:A(2,1).化目标函数为直线方程得:(b>0).由图可知,当直线过A点时,直线在y轴上的截距最小,z最小.∴2a+b=2.即2a+b﹣2=0.则a2+b2的最小值为.故选:B.【点评】本题考查简单的线性规划,考查数形结合的解题思想方法,考查了数学转化思想方法,训练了点到直线距离公式的应用,是中档题.10.(5分)(2014•山东)已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为﹣=1,C1与C2的离心率之积为,则C2的渐近线方程为()A.x±y=0 B.x±y=0 C.x±2y=0 D.2x±y=0【分析】求出椭圆与双曲线的离心率,然后推出ab关系,即可求解双曲线的渐近线方程.【解答】解:a>b>0,椭圆C1的方程为+=1,C1的离心率为:,双曲线C2的方程为﹣=1,C2的离心率为:,∵C1与C2的离心率之积为,∴,∴=,=,C2的渐近线方程为:y=,即x±y=0.故选:A.【点评】本题考查椭圆与双曲线的基本性质,离心率以及渐近线方程的求法,基本知识的考查.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2014•山东)执行如图程序框图,若输入的x的值为1,则输出的n 的值为3.【分析】计算循环中不等式的值,当不等式的值大于0时,不满足判断框的条件,退出循环,输出结果即可.【解答】解:循环前输入的x的值为1,第1次循环,x2﹣4x+3=0≤0,满足判断框条件,x=2,n=1,x2﹣4x+3=﹣1≤0,满足判断框条件,x=3,n=2,x2﹣4x+3=0≤0满足判断框条件,x=4,n=3,x2﹣4x+3=3>0,不满足判断框条件,输出n:3.故答案为:3.【点评】本题考查循环结构的应用,注意循环的结果的计算,考查计算能力.12.(5分)(2014•山东)若△ABC中,已知•=tanA,当A=时,△ABC的面积为.【分析】由条件利用两个向量的数量积的定义,求得AB•AC=,再根据△ABC 的面积为AB•AC•sinA,计算求得结果.【解答】解:△ABC中,∵•=AB•AC•cosA=tanA,∴当A=时,有AB•AC•=,解得AB•AC=,△ABC的面积为AB•AC•sinA=××=,故答案为:.【点评】本题主要考查两个向量的数量积的定义,三角形的面积公式,属于基础题.13.(5分)(2014•山东)三棱锥P﹣ABC中,D,E分别为PB,PC的中点,记三棱锥D﹣ABE的体积为V1,P﹣ABC的体积为V2,则=.【分析】画出图形,通过底面面积的比求解棱锥的体积的比.【解答】解:如图,三棱锥P﹣ABC中,D,E分别为PB,PC的中点,三棱锥D﹣ABE的体积为V1,P﹣ABC的体积为V2,∴A到底面PBC的距离不变,底面BDE底面积是PBC面积的=,∴==.故答案为:.【点评】本题考查三棱锥的体积,着重考查了棱锥的底面面积与体积的关系,属于基础题.14.(5分)(2014•山东)若(ax2+)6的展开式中x3项的系数为20,则a2+b2的最小值为2.【分析】利用二项式定理的展开式的通项公式,通过x幂指数为3,求出ab关系式,然后利用基本不等式求解表达式的最小值.【解答】解:(ax2+)6的展开式中x3项的系数为20,==,所以T r+1令12﹣3r=3,∴r=3,,∴ab=1,a2+b2≥2ab=2,当且仅当a=b=1时取等号.a2+b2的最小值为:2.故答案为:2.【点评】本题考查二项式定理的应用,基本不等式的应用,基本知识的考查.15.(5分)(2014•山东)已知函数y=f(x)(x∈R),对函数y=g(x)(x∈R),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈R),y=h(x)满足:对任意x∈R,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)=关于f(x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是(2,+∞).【分析】根据对称函数的定义,将不等式恒成立转化为直线和圆的位置关系,即可得到结论.【解答】解:根据“对称函数”的定义可知,,即h(x)=6x+2b﹣,若h(x)>g(x)恒成立,则等价为6x+2b﹣>,即3x+b>恒成立,设y1=3x+b,y2=,作出两个函数对应的图象如图,当直线和上半圆相切时,圆心到直线的距离d=,即|b|=2,∴b=2或﹣2,(舍去),即要使h(x)>g(x)恒成立,则b>2,即实数b的取值范围是(2,+∞),故答案为:(2,+∞)【点评】本题主要考查对称函数的定义的理解,以及不等式恒成立的证明,利用直线和圆的位置关系是解决本题的关键.三、解答题(共6小题,满分75分)16.(12分)(2014•山东)已知向量=(m,cos2x),=(sin2x,n),函数f(x)=•,且y=f(x)的图象过点(,)和点(,﹣2).(Ⅰ)求m,n的值;(Ⅱ)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)图象上的最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.【分析】(Ⅰ)由题意可得函数f(x)=msin2x+ncos2x,再由y=f(x)的图象过点(,)和点(,﹣2),解方程组求得m、n的值.(Ⅱ)由(Ⅰ)可得f(x)=2sin(2x+),根据函数y=Asin(ωx+φ)的图象变换规律求得g(x)=2sin(2x+2φ+)的图象,再由函数g(x)的一个最高点在y轴上,求得φ=,可得g(x)=2cos2x.令2kπ﹣π≤2x≤2kπ,k∈Z,求得x 的范围,可得g(x)的增区间.【解答】解:(Ⅰ)由题意可得函数f(x)=•=msin2x+ncos2x,再由y=f(x)的图象过点(,)和点(,﹣2),可得.解得m=,n=1.(Ⅱ)由(Ⅰ)可得f(x)=sin2x+cos2x=2(sin2x+cos2x)=2sin(2x+).将y=f(x)的图象向左平移φ(0<φ<π)个单位后,得到函数g(x)=2sin[2(x+φ)+]=2sin(2x+2φ+)的图象,显然函数g(x)最高点的纵坐标为2.y=g(x)图象上各最高点到点(0,3)的距离的最小值为1,故函数g(x)的一个最高点在y轴上,∴2φ+=2kπ+,k∈Z,结合0<φ<π,可得φ=,故g(x)=2sin(2x+)=2cos2x.令2kπ﹣π≤2x≤2kπ,k∈Z,求得kπ﹣≤x≤kπ,故y=g(x)的单调递增区间是[kπ﹣,kπ],k∈Z.【点评】本题主要考查两个向量的数量积公式,三角恒等变换,函数y=Asin(ωx+φ)的图象变换规律,余弦函数的单调性,体现了转化的数学思想,属于中档题.17.(12分)(2014•山东)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.(Ⅰ)求证:C1M∥平面A1ADD1;(Ⅱ)若CD1垂直于平面ABCD且CD1=,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.【分析】(Ⅰ)连接AD1,易证AMC1D1为平行四边形,利用线面平行的判定定理即可证得C1M∥平面A1ADD1;(Ⅱ)作CP⊥AB于P,以C为原点,CD为x轴,CP为y轴,CD1为z轴建立空间坐标系,易求C1(﹣1,0,),D1,(0,0,),M(,,0),=(1,1,0),=(,,﹣),设平面C1D1M的法向量=(x1,y1,z1),可求得=(0,2,1),而平面ABCD的法向量=(1,0,0),从而可求得平面C1D1M和平面ABCD所成的角(锐角)的余弦值.【解答】解:(Ⅰ)连接AD1,∵ABCD﹣A1B1C1D1为四棱柱,∴CD C1D1,又M为AB的中点,∴AM=1.∴CD∥AM,CD=AM,∴AM C1D1,∴AMC1D1为平行四边形,∴AD1∥MC1,又MC1⊄平面A1ADD1,AD1⊂平面A1ADD1,∴C1M∥平面A1ADD1;(Ⅱ)解法一:∵AB∥A1B1,A1B1∥C1D1,∴面D1C1M与ABC1D1共面,作CN⊥AB,连接D1N,则∠D1NC即为所求二面角,在ABCD中,DC=1,AB=2,∠DAB=60°,∴CN=,在Rt△D1CN中,CD1=,CN=,∴D1N=∴cos∠D1CN===解法二:作CP⊥AB于P,以C为原点,CD为x轴,CP为y轴,CD1为z轴建立空间坐标系则C1(﹣1,0,),D1,(0,0,),M(,,0),∴=(1,0,0),=(,,﹣),设平面C1D1M的法向量=(x1,y1,z1),则,∴=(0,2,1).显然平面ABCD的法向量=(0,0,1),cos<,>|===,显然二面角为锐角,∴平面C1D1M和平面ABCD所成的角(锐角)的余弦值为.【点评】本题考查用空间向量求平面间的夹角,主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,空间向量的坐标运算,推理论证能力和运算求解能力.18.(12分)(2014•山东)乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D,某次测试要求队员接到落点在甲上的来球后向乙回球,规定:回球一次,落点在C上记3分,在D 上记1分,其它情况记0分.对落点在A上的来球,小明回球的落点在C上的概率为,在D上的概率为;对落点在B上的来球,小明回球的落点在C上的概率为,在D上的概率为.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响,求:(Ⅰ)小明两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望.【分析】(Ⅰ)分别求出回球前落点在A上和B上时,回球落点在乙上的概率,进而根据分类分布原理,可得小明两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和ξ的取值有0,1,2,3,4,6六种情况,求出随机变量ξ的分布列,代入数学期望公式可得其数学期望Eξ.【解答】解:(Ⅰ)小明回球前落点在A上,回球落点在乙上的概率为+=,回球前落点在B上,回球落点在乙上的概率为+=,故小明两次回球的落点中恰有一次的落点在乙上的概率P=×(1﹣)+(1﹣)×=+=.(Ⅱ)ξ的可能取值为0,1,2,3,4,6其中P(ξ=0)=(1﹣)×(1﹣)=;P(ξ=1)=×(1﹣)+(1﹣)×=;P(ξ=2)=×=;P(ξ=3)=×(1﹣)+(1﹣)×=;P(ξ=4)=×+×=;P(ξ=6)=×=;故ξ的分布列为:ξ012346P故ξ的数学期望为E(ξ)=0×+1×+2×+3×+4×+6×=.【点评】本题考查离散型随机变量的分布列,求离散型随机变量的分布列和期望是近年来理科高考必出的一个问题,题目做起来不难,运算量也不大,只要注意解题格式就问题不大.19.(12分)(2014•山东)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(﹣1)n﹣1,求数列{b n}的前n项和T n.【分析】(Ⅰ)利用等差数列与等比数列的通项公式及其前n项和公式即可得出;(Ⅱ)由(Ⅰ)可得b n=.对n分类讨论“裂项求和”即可得出.【解答】解:(Ⅰ)∵等差数列{a n}的公差为2,前n项和为S n,∴S n==n2﹣n+na1,∵S1,S2,S4成等比数列,∴,∴,化为,解得a1=1.∴a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.(Ⅱ)由(Ⅰ)可得b n=(﹣1)n﹣1==.∴T n=﹣++…+.当n为偶数时,T n=﹣++…+﹣=1﹣=.当n为奇数时,T n=﹣++…﹣+=1+=.∴Tn=.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式等基础知识与基本技能方法,考查了推理能力、计算能力、“裂项求和”、分类讨论思想方法,属于难题.20.(13分)(2014•山东)设函数f(x)=﹣k(+lnx)(k为常数,e=2.71828…是自然对数的底数).(Ⅰ)当k≤0时,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.【分析】(Ⅰ)求出导函数,根据导函数的正负性,求出函数的单调区间;(Ⅱ)函数f(x)在(0,2)内存在两个极值点,等价于它的导函数f′(x)在(0,2)内有两个不同的零点.【解答】解:(Ⅰ)f(x)的定义域为(0,+∞),∴f′(x)=﹣k(﹣)=(x>0),当k≤0时,kx≤0,∴e x﹣kx>0,令f′(x)=0,则x=2,∴当0<x<2时,f′(x)<0,f(x)单调递减;当x>2时,f′(x)>0,f(x)单调递增,∴f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).(Ⅱ)由(Ⅰ)知,k≤0时,函数f(x)在(0,2)内单调递减,故f(x)在(0,2)内不存在极值点;当k>0时,设函数g(x)=e x﹣kx,x∈(0,+∞).∵g′(x)=e x﹣k=e x﹣e lnk,当0<k≤1时,当x∈(0,2)时,g′(x)=e x﹣k>0,y=g(x)单调递增,故f(x)在(0,2)内不存在两个极值点;当k>1时,得x∈(0,lnk)时,g′(x)<0,函数y=g(x)单调递减,x∈(lnk,+∞)时,g′(x)>0,函数y=g(x)单调递增,∴函数y=g(x)的最小值为g(lnk)=k(1﹣lnk)函数f(x)在(0,2)内存在两个极值点当且仅当解得:e综上所述,函数f(x)在(0,2)内存在两个极值点时,k的取值范围为(e,)【点评】本题考查了导数在求函数的单调区间,和极值,运用了等价转化思想.是一道导数的综合应用题.属于中档题.21.(14分)(2014•山东)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有丨FA丨=丨FD丨.当点A的横坐标为3时,△ADF为正三角形.(Ⅰ)求C的方程;(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,(ⅰ)证明直线AE过定点,并求出定点坐标;(ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.【分析】(1)根据抛物线的焦半径公式,结合等边三角形的性质,求出的p值;(2)(ⅰ)设出点A的坐标,求出直线AB的方程,利用直线l1∥l,且l1和C有且只有一个公共点E,求出点E的坐标,写出直线AE的方程,将方程化为点斜式,可求出定点;(ⅱ)利用弦长公式求出弦AB的长度,再求点E到直线AB的距离,得到关于面积的函数关系式,再利用基本不等式求最小值.【解答】解:(1)当点A的横坐标为3时,过点A作AG⊥x轴于G,A(3,),F(,0),,∴.∵△ADF为正三角形,∴.又∵,∴,∴p=2.∴C的方程为y2=4x.当D在焦点F的左侧时,.又|FD|=2|FG|=2(﹣3)=p﹣6,∵△ADF为正三角形,∴3+=p﹣6,解得p=18,∴C的方程为y2=36x.此时点D在x轴负半轴,不成立,舍.∴C的方程为y2=4x.(2)(ⅰ)设A(x1,y1),|FD|=|AF|=x1+1,∴D(x1+2,0),∴k AD=﹣.由直线l1∥l可设直线l1方程为,联立方程,消去x得①由l1和C有且只有一个公共点得△=64+32y1m=0,∴y1m=﹣2,这时方程①的解为,代入得x=m2,∴E(m2,2m).点A的坐标可化为,直线AE方程为y﹣2m=(x﹣m2),即,∴,∴,∴,∴直线AE过定点(1,0);(ⅱ)直线AB的方程为,即.联立方程,消去x得,∴,∴=,由(ⅰ)点E的坐标为,点E到直线AB的距离为:=,∴△ABE的面积=,当且仅当y1=±2时等号成立,∴△ABE的面积最小值为16.【点评】本题考查了抛物线的定义的应用、标准方程求法,切线方程的求法,定点问题与最值问题.。

2014考研数学二真题及参考答案

2014考研数学二真题及参考答案

2014考研数学二真题及参考答案一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1) 当0x +→时,若ln (12)x +α,1(1cos )x -α均是比x 高阶的无穷小,α的取值范围是( )(A) (2,)+∞(B) (1,2)(C) 1(,1)2(D) 1(0,)2(2) 下列曲线中有渐近线的是( )(A) sin y x x =+ (B) 2sin y x x =+ (C) 1siny x x =+(D) 21siny x x=+ (3) 设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上 ( )(A) 当()0f x '≥时,()()f x g x ≥(B) 当()0f x '≥时,()()f x g x ≤(C) 当()0f x ''≥时,()()f x g x ≥(D) 当()0f x ''≥时,()()f x g x ≤(4) 曲线22741x t y t t ⎧=+⎪⎨=++⎪⎩上对应于1t =的点处的曲率半径是 ( )(A)50(B)100(C)(D)(5) 设函数()arctan f x x =,若()()f x xf '=ξ,则22limx x →=ξ( ) (A)1(B)23(C)12(D)13(6) 设函数(,)u x y 在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满足20ux y∂≠∂∂及22220u ux y∂∂+=∂∂,则( )(A)(,)u x y 的最大值和最小值都在D 的边界上取得 (B) (,)u x y 的最大值和最小值都在D 的内部上取得(C) (,)u x y 的最大值在D 的内部取得,最小值在D 的边界上取得 (D) (,)u x y 的最小值在D 的内部取得,最大值在D 的边界上取得(7) 行列式0000000ab a bc d c d= ( )(A) 2()ad bc - (B) 2()ad bc -- (C) 2222a d b c -(D) 2222b c a d -(8) 设123,,ααα均为3维向量,则对任意常数,k l ,向量组1323,k l ++αααα线性无关是向量组 123,,ααα线性无关的( )(A) 必要非充分条件 (B) 充分非必要条件(C) 充分必要条件 (D) 既非充分也非必要条件 二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. ((9)12125dx x x -∞=++⎰__________.(10) 设()f x 是周期为4的可导奇函数,且()f x '2(1),x =-[0,2]x ∈,则(7)f =__________.(11) 设(,)z z x y =是由方程2274yzex y z +++=确定的函数,则11(,)22dz=__________.(12) 曲线()r r =θ的极坐标方程是r =θ,则L 在点(,)(,)22r =ππθ处的切线的直角坐标方程是__________.(13) 一根长为1的细棒位于x 轴的区间[0,1]上,若其线密度()221x x x =-++ρ,则该细棒的质心坐标x =__________.(14) 设二次型()22123121323,,24f x x x x x ax x x x =-++的负惯性指数为1,则a 的取值范围为_______.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限12121lim.1ln 1xt x t e t dt x x →+∞⎡⎤⎛⎫--⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎛⎫+ ⎪⎝⎭⎰(16)(本题满分10分)已知函数()y y x =满足微分方程221x y y y ''+=-,且()20y =,求()y x 的极大值与极小值.(17)(本题满分10分)设平面区域(){}22,14,0,0,D x y xy x y =≤+≤≥≥计算(sin Dx dxdy x y+⎰⎰.(18)(本题满分10分)设函数()f u 具有二阶连续导数,(e cosy)xz f =满足22222(4e cos )e x x z z z y x y∂∂+=+∂∂,若'(0)0,(0)0f f ==,求()f u 的表达式. (19)(本题满分10分)设函数(),()f x g x 的区间[a,b]上连续,且()f x 单调增加,0()1g x ≤≤.证明:(I)0(),[,]xag t dt x a x a b ≤≤-∈⎰,(II)()()d ()g()ba a g t dtb aaf x x f x x dx +⎰≤⎰⎰.(20)(本题满分11分)设函数[](x),0,11xf x x=∈+,定义函数列121()(),()(()),f x f x f x f f x ==,1()(()),n n f x f f x -=,记n S 是由曲线()n y f x =,直线1x =及x 轴所围成平面图形的面积,求极限lim n n nS →∞. (21)(本题满分11分) 已知函数(,)f x y 满足2(1)fy y∂=+∂,且 2(,)(1)(2)ln ,f y y y y y =+--求曲线(,)0f x y =所围成的图形绕直线1y =-旋转所成的旋转体的体积. (22)(本题满分11分)设矩阵123401111203A --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,E 为三阶单位矩阵.(I)求方程组0Ax =的一个基础解系; (II)求满足AB E =的所有矩阵.(23)(本题满分11分)证明n 阶矩阵111111111⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭与00100200n ⎛⎫⎪ ⎪⎪ ⎪⎝⎭相似. 参考答案一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1) 当0x +→时,若ln (12)x +α,1(1cos )x -α均是比x 高阶的无穷小,则α的取值范围是( )(A) (2,)+∞(B) (1,2)(C) 1(,1)2(D) 1(0,)2【答案】B【解析】由定义 1000ln (12)(2)limlim lim 20x x x x x x x x-→→→+===αααα 所以10->α,故1>α.当0x +→时,211(1cos )~2x x -ααα是比x 的高阶无穷小,所以210->α,即2<α.故选B(2) 下列曲线中有渐近线的是( )(A) sin y x x =+ (B) 2sin y x x =+ (C) 1sin y x x =+(D) 21siny x x=+ 【答案】C【解析】关于C 选项:11sinsinlimlim1lim 101x x x x x x x x →∞→∞→∞+=+=+=. 11lim[sin ]limsin 0x x x x x x →∞→∞+-==,所以1sin y x x =+存在斜渐近线y x =.故选C(3) 设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上 ( )(A) 当()0f x '≥时,()()f x g x ≥(B) 当()0f x '≥时,()()f x g x ≤(C) 当()0f x ''≥时,()()f x g x ≥(D) 当()0f x ''≥时,()()f x g x ≤【答案】D【解析】令()()()(0)(1)(1)()F x g x f x f x f x f x =-=-+-,则(0)(1)0F F ==,()(0)(1)()F x f f f x ''=-+-,()()F x f x ''''=-.若()0f x ''≥,则()0F x ''≤,()F x 在[0,1]上为凸的.又(0)(1)0F F ==,所以当[0,1]x ∈时,()0F x ≥,从而()()g x f x ≥.故选D.(4) 曲线22741x t y t t ⎧=+⎪⎨=++⎪⎩上对应于1t =的点处的曲率半径是 ( )(C)(D)【答案】C 【解析】1112'21122432212t t t t t dy t dxtd y dy t dx dx t=====+==-===-()()''33'22211,11y k R kq y ==∴==++ 故选C(5) 设函数()arctan f x x =,若()()f x xf '=ξ,则22limx x→=ξ( )(A)1(B)23(C)12(D)13【答案】D 【解析】因为'2()1()1f x f x ==+ξξ,所以2()()x f x f x -=ξ 22222200011()arctan 11limlimlim lim ()arctan 33x x x x x f x x xx x x f x x x x →→→→---+====ξ故选D.(6) 设函数(,)u x y 在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满足20u x y ∂≠∂∂及22220u ux y∂∂+=∂∂,则( )(A)(,)u x y 的最大值和最小值都在D 的边界上取得 (B) (,)u x y 的最大值和最小值都在D 的内部上取得(C) (,)u x y 的最大值在D 的内部取得,最小值在D 的边界上取得 (D) (,)u x y 的最小值在D 的内部取得,最大值在D 的边界上取得 【答案】A【解析】记22222,,,0,,u u uA B C B A C x x y y∂∂∂===≠∂∂∂∂相反数 则2=AC-B 0∆<,所以(x,y)u 在D 内无极值,则极值在边界处取得.故选A(7)行列式0000000ab a bc d c d= ( )(A)2()ad bc - (B)2()ad bc -- (C)2222a dbc -(D)2222b c a d -【答案】B【解析】由行列式的展开定理展开第一列000000000000a b a b a b a b a cd c b c d dcdc d=--()()ad ad bc bc ad bc =--+- 2()ad bc =--.(8) 设123,,a a a 均为三维向量,则对任意常数,k l ,向量组13a ka +,23a la +线性无关是向量组123,,a a a 线性无关的( )(A)必要非充分条件 (B)充分非必要条件 (C)充分必要条件(D)既非充分也非必要条件【答案】A 【解析】()()13231231001k l k l ⎛⎫⎪++= ⎪ ⎪⎝⎭ααααααα.)⇐ 记()1323A k l =++αααα,()123B =ααα,1001k l ⎛⎫⎪= ⎪ ⎪⎝⎭C . 若123,,ααα线性无关,则()()()2r A r BC r C ===,故1323,k l ++αααα线性无关.)⇒ 举反例. 令30=α,则12,αα线性无关,但此时123,,ααα却线性相关.综上所述,对任意常数,k l ,向量1323,k l ++αααα线性无关是向量123,,ααα线性无关的必要非充分条件.故选A二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)12125dx x x -∞=++⎰__________.【答案】38π 【解析】()111221111arctan 252214132428x dx dx x x x -∞-∞-∞+==++++⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦⎰⎰πππ(10) 设()f x 是周期为4的可导奇函数,且()f x '2(1),x =-[0,2]x ∈,则(7)f =__________. 【答案】1 【解析】()()[]'210,2f x x x =-∈,且为偶函数则()()[]'212,0fx x x =--∈-,又()22f x x x c =--+且为奇函数,故=0c()[]222,0f x x x x ∴=--∈-,又()f x 的周期为4,()()711f f ∴=-=(11) 设(,)z z x y =是由方程2274yzex y z +++=确定的函数,则11(,)22dz=__________. 【答案】1()2dx dy -+ 【解析】对2274yzex y z +++=方程两边同时对,x y 求偏导22210(22)20yzyz z z e y x x z z e z y y y y ∂∂⎧⋅⋅++=⎪∂∂⎪⎨∂∂⎪+++=∂∂⎪⎩当11,22x y ==时,0z = 故1111(,)(,)222211,22z z x y∂∂=-=-∂∂故11(,)22111()()222dzdx dy dx dy =-+-=-+(12) 曲线lim n n nS →∞的极坐标方程是r =θ,则L 在点(,)(,)22r =ππθ处的切线的直角坐标方程是__________. 【答案】22y x =-+ππ【解析】由直角坐标和极坐标的关系 cos cos sin sin x r y r ==⎧⎨==⎩θθθθθθ,于是(),,,22r ⎛⎫=⎪⎝⎭ππθ对应于(),0,,2x y ⎛⎫= ⎪⎝⎭π 切线斜率cos sin cos sin dydy d dx dx d +==-θθθθθθθθ0,22dy dx ⎛⎫⎪⎝⎭∴=-ππ所以切线方程为()202y x -=--ππ即2=2y x -+ππ(13) 一根长为1的细棒位于x 轴的区间[0,1]上,若其线密度()221x x x =-++ρ,则该细棒的质心坐标x =__________.【答案】1120【解析】质心横坐标()()1010x x dx x x dx=⎰⎰ρρ()()()()31122100042112310005=2133211=2143212x x dx x x dx x x x x x x dx x x x dx x ⎛⎫-++=-++= ⎪⎝⎭⎛⎫-++=-++= ⎪⎝⎭⎰⎰⎰⎰ρρ111112=5203x ∴=(13) 设二次型()22123121323,,24f x x x x x ax x x x =-++的负惯性指数是1,则a 的取值范围_________. 【答案】[]2,2-【解析】配方法:()()()22222123133233,,24f x x x x ax a x x x x =+---+由于二次型负惯性指数为1,所以240a -≥,故22a -≤≤.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限12121lim.1ln 1xtx t e t dt x x →+∞⎡⎤⎛⎫--⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎛⎫+ ⎪⎝⎭⎰【解析】11221122d d (e 1)(e 1)lim lim 11ln(1)xx t t x x t t t t t t x x x x→+∞→+∞⎡⎤⎡⎤----⎢⎥⎢⎥⎣⎦⎣⎦=+⋅⎰⎰12lim[(e 1)]xx x x →+∞=--12000e 1e 11lim lim lim 222t t t xt t t t t t t t +++=→→→---====.(16)(本题满分10分)已知函数()y y x =满足微分方程221x y y y ''+=-,且()20y =,求()y x 的极大值与极小值.【解析】 由221x y y y ''+=-,得22(1)1y y x '+=-………………………………………………………① 此时上面方程为变量可分离方程,解的通解为331133y y x x c +=-+ 由(2)0y =得23c =又由①可得 221()1x y x y -'=+当()0y x '=时,1x =±,且有:1,()011,()01,()0x y x x y x x y x '<-<'-<<>'>< 所以()y x 在1x =-处取得极小值,在1x =处取得极大值 (1)0,(1)1y y -==即:()y x 的极大值为1,极小值为0.(17)(本题满分10分)设平面区域(){}22,14,0,0,D x y xy x y =≤+≤≥≥计算(sin Dx dxdy x y+⎰⎰.【解析】D 关于y x =对称,满足轮换对称性,则:D D=12D D I dxdy∴==⎢⎥⎣⎦⎰⎰1sin(2Ddxdy =⎰⎰221211sin 21()cos 4d r rdrrd r =⋅=-⎰⎰⎰πθππππ22111cos |cos 4r r rdr ⎡⎤=-⋅-⎢⎥⎣⎦⎰ππ211121sin |4r ⎡⎤=-+-⎢⎥⎣⎦ππ 34=-(18)(本题满分10分)设函数()f u 具有二阶连续导数,(e cosy)xz f =满足22222(4e cos )e x x z z z y x y∂∂+=+∂∂,若'(0)0,(0)0f f ==,求()f u 的表达式. 【解析】由()cos ,x z f e y =()(cos )cos ,(cos )sin x x x x z zf e y e y f e y e y x y∂∂''=⋅=⋅-∂∂ 22(cos )cos cos (cos )cos x x x x xz f e y e y e y f e y e y x∂'''=⋅⋅+⋅∂, ()()()22(cos )sin sin (cos )cos x x x x xz f e y e y e y f e y e y y∂'''=⋅-⋅-+⋅-∂ 由 ()22222+4cos x xz z z e y e x y∂∂=+∂∂,代入得,()()22cos [4cos cos ]x x x x x f e y e f e y e y e ''⋅=+即()()cos 4cos cos x x x f e y f e y e y ''-=,令cos =,xe y t 得()()4f t f t t ''-=特征方程 240,2-==±λλ 得齐次方程通解2212t t y c e c e -=+设特解*y at b =+,代入方程得1,04a b =-=,特解*14y t =- 则原方程通解为()22121=4t ty f t c e c e t -=+-由()()'00,00f f ==,得1211,1616c c ==-, 则()22111=16164u u y f u e e u -=--.(19)(本题满分10分)设函数(),()f x g x 在区间[,]a b 上连续,且()f x 单调增加,0()1g x ≤≤,证明:(I )0(),[,]xa g t dt x a x ab ≤≤-∈⎰, (II )()()d ()g()ba a g t dtb aaf x x f x x dx +⎰≤⎰⎰. 【解析】(I )由积分中值定理()()(),[,]xag t dt g x a a x =-∈⎰ξξ()01g x ≤≤,()()()0g x a x a ∴≤-≤-ξ()()0xa g t dt x a ∴≤≤-⎰(II )直接由()01g x ≤≤,得到()()01=x xaag t dt dt x a ≤≤-⎰⎰(II )令()()()()()ua u a g t dt aaF u f x g x dx f x dx +⎰=-⎰⎰()()()()()()()()()()'uaua F u f u g u f a g t dt g u g u f u f a g t dt =-+⋅⎡⎤=-+⎢⎥⎣⎦⎰⎰由(I )知()()0u ag t dt u a ≤≤-⎰ ()uaa a g t dt u ∴≤+≤⎰又由于()f x 单增,所以()()()0u af u f ag t dt -+≥⎰()()'0F u F u ∴≥∴,单调不减,()()0F u F a ∴≥=取u b =,得()0F b ≥,即(II )成立. (20)(本题满分11分)设函数[](x),0,11xf x x=∈+,定义函数列 1211()(),()(()),,()(()),n n f x f x f x f f x f x f f x -===,记n S 是由曲线()n y f x =,直线1x =及x 轴所围成平面图形的面积,求极限lim n n nS →∞.【解析】123(),(),(),,(),112131n x x x x f x f x f x f x x x x nx====++++ 11100011()11n n x x n n S f x dx dx dx nx nx+-∴===++⎰⎰⎰ 1110200111111ln(1)1dx dx nx n n nx n n =-=-++⎰⎰ 211ln(1)n n n=-+ ln(1)ln(1)1lim 1lim 1lim 1lim 1n n n x x n x nS n x x→∞→∞→∞→∞++∴=-=-=-+101=-= (21)(本题满分11分) 已知函数(,)f x y 满足2(1)fy y∂=+∂,且2(,)(1)(2)ln ,f y y y y y =+--求曲线(,)0f x y =所围成的图形绕直线1y =-旋转所成的旋转体的体积.【解析】因为2(1)fy y∂=+∂,所以2(,)2(),f x y y y x =++ϕ其中()x ϕ为待定函数.又因为()2(,)(1)2ln ,f y y y y y =+--则()()12ln y y y =--ϕ,从而()()22(,)212ln (1)2ln f x y y y x x y x x =++--=+--.令(,)0,f x y =可得()2(1)2ln y x x +=-,当1y =-时,1x =或2x =,从而所求的体积为()()2221122112ln ln 22V y dx x xdx x xd x =+=-⎛⎫=- ⎪⎝⎭⎰⎰⎰πππ22211221ln (2)222552ln 2(2)2ln 22ln 2.444x x x x dxx x ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦⎛⎫=--=-⋅=- ⎪⎝⎭⎰πππππππ(22)(本题满分11分)设矩阵123401111203A --⎛⎫⎪=- ⎪ ⎪-⎝⎭,E 为三阶单位矩阵.(I)求方程组0Ax =的一个基础解系; (II)求满足AB E =的所有矩阵B .【解析】()123410012341000111010011101012030010431101A E ----⎛⎫⎛⎫⎪ ⎪=-→- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭123410010012610111010010213100131410013141---⎛⎫⎛⎫ ⎪ ⎪→-→--- ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭, (I)0Ax =的基础解系为()1,2,3,1T=-ξ (II)()()()1231,0,0,0,1,0,0,0,1TTTe e e ===1Ax e =的通解为()()111112,1,1,02,12,13,T Tx k k k k k =+--=--+-+ξ2Ax e =的通解为()()222226,3,4,06,32,43,T Tx k k k k k =+--=--+-+ξ3Ax e =的通解为()()333331,1,1,01,12,13,TTx k k k k k =+-=--++ξ123123123123261123212134313k k k k k k B k k k k k k ----⎛⎫ ⎪-+-++⎪∴= ⎪-+-++ ⎪ ⎪⎝⎭(123,,k k k 为任意常数)(23)(本题满分11分)证明n 阶矩阵111111111⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭与00100200n ⎛⎫⎪ ⎪⎪ ⎪⎝⎭相似. 【解析】已知()1111A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,()12001B n ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭=,则A 的特征值为n ,0(1n -重).A 属于n λ=的特征向量为(1,1,,1)T ;()1r A =,故0Ax =基础解系有1n -个线性无关的解向量,即A 属于0λ=有1n -个线性无关的特征向量;故A 相似于对角阵0=0n ⎛⎫ ⎪⎪Λ ⎪ ⎪⎝⎭. B 的特征值为n ,0(1n -重),同理B 属于0λ=有1n -个线性无关的特征向量,故B 相似于对角阵Λ.由相似关系的传递性,A 相似于B .。

2014年江西卷高考理科数学真题及答案

2014年江西卷高考理科数学真题及答案
【答案】B
【解析】俯视图为在底面上的投影,易知选:B
6.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,泽宇性别有关联的可能性最大的变量是()
A.成绩B.视力C.智商D.阅读量
【答案】D
【解析】根据独立性检验相关分析知,阅读量与性别相关数据较大,选D
2014年普通高等学校招生全国统一考试
(江西卷)
数学(理科)
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 是 的共轭复数.若 ,( ( 为虚数单位),则 ()
A. B. C. D.
【答案】D
【解析】
所以选D。
2.函数 的定义域为()
A. B. C. D.
【答案】C
【解析】A(0,0,0),E(4,3,12), (8,6,0), ( ,7,4), (11, ,9), , , ,
……
二.选做题:请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题评阅计分,本题共5分.在每小题给出的四个选项中,只有一项是符合题目要求的.
11(1).(不等式选做题)对任意 , 的最小值为()
【答案】C
【解析】
所以选C.
3.已知函数 , ,若 ,则 ()
A.1 B.2 C. 3 D. -1
【答案】A
【解析】
所以选A。
4.在 中,内角A,B,C所对应的边分别为 ,若 则 的面积()
A.3 B. C. D.
【答案】C
【解析】
所以选C。
5.一几何体的直观图如右图,下列给出的四个俯视图中正确的是()
已知函数 .

2014年高考真题(北京卷)数学(理科) 答案解析版

2014年高考真题(北京卷)数学(理科) 答案解析版

2014年普通高等学校招生全国统一考试(北京卷)数 学(理科)第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(2014北京,理1)已知集合A={x|x 2-2x=0},B={0,1,2},则A ∩B=( ).A .{0}B .{0,1}C .{0,2}D .{0,1,2}【答案】C【解析】解x 2-2x=0,得x=0,x=2,故A={0,2},所以A ∩B={0,2},故选C .2.(2014北京,理2)下列函数中,在区间(0,+∞)上为增函数的是( ).A .y=√x +1B .y=(x-1)2C .y=2-xD .y=log 0.5(x+1)【答案】A【解析】A 项,y=√x +1为(-1,+∞)上的增函数,故在(0,+∞)上递增;B 项,y=(x-1)2在(-∞,1)上递减,在(1,+∞)上递增;C 项,y=2-x =(12)x 为R 上的减函数;D 项,y=log 0.5(x+1)为(-1,+∞)上的减函数.故选A .3.(2014北京,理3)曲线{x =-1+cosθ,y =2+sinθ(θ为参数)的对称中心( ). A .在直线y=2x 上 B .在直线y=-2x 上 C .在直线y=x-1上 D .在直线y=x+1上【答案】B【解析】由已知得{cosθ=x +1,sinθ=y -2, 消参得(x+1)2+(y-2)2=1.所以其对称中心为(-1,2).显然该点在直线y=-2x 上.故选B .4.(2014北京,理4)当m=7,n=3时,执行如图所示的程序框图,输出的S 值为( ).A .7B .42C .210D .840【答案】C【解析】开始:m=7,n=3.计算:k=7,S=1.第一次循环,此时m-n+1=7-3+1=5,显然k<5不成立,所以S=1×7=7,k=7-1=6.第二次循环,6<5不成立,所以S=7×6=42,k=6-1=5.第三次循环,5<5不成立,所以S=42×5=210,k=5-1=4.显然4<5成立,输出S 的值,即输出210,故选C .5.(2014北京,理5)设{a n }是公比为q 的等比数列,则“q>1”是“{a n }为递增数列”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】D【解析】等比数列{a n }为递增数列的充要条件为{a 1>0,q >1或{a 1<0,0<q <1.故“q>1”是“{a n }为递增数列”的既不充分也不必要条件.故选D .6.(2014北京,理6)若x ,y 满足{x +y -2≥0,kx -y +2≥0,y ≥0,且z=y-x 的最小值为-4,则k 的值为( ).A .2B .-2C .12D .-12【答案】D【解析】如图,作出{x +y -2≥0,y ≥0所表示的平面区域,作出目标函数取得最小值-4时对应的直线y-x=-4,即x-y-4=0.显然z 的几何意义为目标函数对应直线x-y+z=0在x 轴上的截距的相反数,故该直线与x 轴的交点(4,0)必为可行域的顶点,又kx-y+2=0恒过点(0,2),故k=2-00-4=-12.故选D .7.(2014北京,理7)在空间直角坐标系Oxyz 中,已知A (2,0,0),B (2,2,0),C (0,2,0),D (1,1,√2).若S 1,S 2,S 3分别是三棱锥D-ABC 在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( ).A .S 1=S 2=S 3B .S 2=S 1且S 2≠S 3C .S 3=S 1且S 3≠S 2D .S 3=S 2且S 3≠S 1【答案】D【解析】三棱锥的各顶点在xOy 坐标平面上的正投影分别为A 1(2,0,0),B 1(2,2,0),C 1(0,2,0),D 1(1,1,0).显然D 1点为A 1C 1的中点,如图(1),正投影为Rt △A 1B 1C 1,其面积S 1=12×2×2=2.三棱锥的各顶点在yOz 坐标平面上的正投影分别为A 2(0,0,0),B 2(0,2,0),C 2(0,2,0),D 2(0,1,√2).显然B 2,C 2重合,如图(2),正投影为△A 2B 2D 2,其面积S 2=12×2×√2=√2.三棱锥的各顶点在zOx 坐标平面上的正投影分别为A 3(2,0,0),B 3(2,0,0),C 3(0,0,0),D 3(1,0,√2),由图(3)可知,正投影为△A 3D 3C 3,其面积S 3=12×2×√2=√2.综上,S 2=S 3,S 3≠S 1.故选D .图(1) 图(2) 图(3)8.(2014北京,理8)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( ).A .2人B .3人C .4人D .5人【答案】B【解析】用A,B,C 分别表示优秀、及格和不及格.显然,语文成绩得A 的学生最多只有一人,语文成绩得B 的也最多只有1人,得C 的也最多只有1人,所以这组学生的成绩为(AC),(BB),(CA)满足条件,故学生最多为3人.。

2014年考研数学二真题与解析

2014年考研数学二真题与解析

2012年全国硕士研究生入学统一考试数学二试题
一、选择题:1-8小题,每小题4分,共32分.下列每题给出的四
个选项中,只有一个选项符合题目要求的,请将所选项前的字
母填在答题纸指定位置上.
(1)曲线的渐近线条数
()
(A) 0
(B) 1(Cຫໍສະໝຸດ 2(D)3(2) 设函数,其中为正整数,则
()
(A)
(B)

三、解答题
15.(本题满分10分) 求极限.
16.(本题满分10分) 已知函数满足微分方程,且,求的极大值和极小值.
17.(本题满分10分) 设平面区域.计算 18.(本题满分10分) 设函数具有二阶连续导数,满足.若,求的表达式. 19.(本题满分10分) 设函数在区间上连续,且单调增加,,证明:
()
(A)
(B) 2
(C) -2
(D)
-
(7) 设, , , ,其中为任意常数,则下列向量组线性相关的为
()
(A)
(B)
(C)
(D)
(8) 设为3阶矩阵,为3阶可逆矩阵,且.若,则
()
(A)
(B)
(C)
(D)
二、填空题:9-14小题,每小题4分,共24分.请将答案写在答
题纸指定位置上.
(9) 设是由方程所确定的隐函数,则
2014年考研数学二真题与解析
一、选择题 1—8小题.每小题4分,共32分.
1.当时,若,均是比高阶的无穷小,则的可能取值范围是( ) (A) (B) (C) (D)
2.下列曲线有渐近线的是 (A) (B)(C) (D)
3.设函数具有二阶导数,,则在上( )
(A)当时, (B)当时,

2014年高考山东卷文科数学真题及参考答案

2014年高考山东卷文科数学真题及参考答案

2014年高考山东卷文科数学真题及参考答案一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,选择符合题目要求的选项。

(1)已知i R b a ,,∈是虚数单位,若i a +bi -=2,则=+2)(bi a (A )i 43- (B )i 43+ (C )i 34- (D )i 34+【解析】由i a +bi -=2得,12-==b a ,,=+2)(bi a i i i i 4344)2(22-=+-=- 故答案选A(2)设集合},41{,}02{2≤≤=<-=x x B x x x A 则=B A(A )(0,2] (B ) (1,2) (C ) [1,2) (D )(1,4)【解析】[]4,1)20(==B A ,,,数轴上表示出来得到=B A [1,2) 故答案为C (3)函数1log 1)(2-=x x f 的定义域为(A ))20(, (B )]2,0((C )),2(+∞(D ))2[∞+,【解析】01log 2>-x 故2>x 。

选D(4)用反证法证明命题“设,,R b a ∈则方程02=++b ax x 至少有一个实根”时要做的假设是(A )方程02=++b ax x 没有实根 (B )方程02=++b ax x 至多有一个实根 (C )方程02=++b ax x 至多有两个实根 (D )方程02=++b ax x 恰好有两个实根 【解析】答案选A ,解析略。

(5)已知实数y x ,满足)10(<<<a a a yx ,则下列关系式恒成龙的是 (A )33y x >(B )y x sin sin > (C ))1ln()1ln(22+>+y x(D )111122+>+y x 【解析】由)10(<<<a a a yx 得,y x >,但是不可以确定2x 与2y 的大小关系,故C 、D排除,而x y sin =本身是一个周期函数,故B 也不对,33y x >正确。

2014年南开大学数学专业(701数学分析+801高等代数)考研真题解析 资料经验

2014年南开大学数学专业(701数学分析+801高等代数)考研真题解析 资料经验

2014年南开大学数学专业(701数学分析+801高等代数)考研真题解析资料经验本资料由天津考研网签约的南开大学数学专业高分研究生团队倾力所作,该团队考生在考研中取得了优异成绩并在复试中更胜一筹,该资料包含考研经验、考研试题解题思路分析、复试流程经验介绍以及针对官方指定参考书的重难要点并根据南开大学本科授课重点整理等,从漫漫初试长路到紧张复试亮剑为各位研友提供全程考研指导攻关。

该资料适合于考取南开大学数学学院、组合中心、陈省身数学研究所数学专业的考生复习使用,也即初试考数学分析及高等代数课程的考生使用。

第一部分核心原创资料:本资料格式为A4纸打印版,总量达到了100余页页共计40000余字,清晰易复习,已与编写者签订资料保真转让协议,各位研友可放心使用参考!本套资料是对南开大学数学专业考研所考科目的特点和复习方法以及根据出题特点所进行的重点知识总结,针对性和实用性都很强。

特别提示:本站尽力保证资料的有用性,但由于个人复习态度进度不同,故请酌情参考本资料!南开大学数学专业课指定书目有两本,但是光看这两本教材是远远不够的,有一些补充内容是您必须知道但学校没有公布的。

如何在短短几个月的时间高效率的复习专业课变得至关重要!这不仅能让您抓住考试的重点,还能够为公共课的复习腾出更多的时间。

本资料为您提供了以下信息,让您的复习事半功倍:1、以更全面的视角介绍介绍南开大学数学专业三个院所的专业情况,教学条件,师资情况,报考注意事项(根据切身体验和多方了解来提供重要信息,以区别于网上的官方介绍,特别指出研究生院网站上的导师信息并不完全准确,同时有些老师只是挂名并不招生还有一些老师已经退休了,每位老师的招生情况也会有变动)。

2、除了指定书目外,您还必需准备的补充资料,以及资料的使用方法!这些补充的内容往往会成为解题的关键。

3、根据南开本科课堂笔记和授课侧重点,非常详细的为大家讲解每个章节的重点,将知识分为了解、理解+运用、重要考点三个等级。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年全国硕士研究生入学统一考试数学二试题一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 当0x +→时,若ln (12)x +α,1(1cos )x -α均是比x 高阶的无穷小,则α的取值范围是( )(A) (2,)+∞(B) (1,2)(C) 1(,1)2(D) 1(0,)2(2) 下列曲线中有渐近线的是 ( )(A) sin y x x =+ (B) 2sin y x x =+ (C) 1siny x x =+(D) 21siny x x=+ (3) 设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上 ( )(A) 当()0f x '≥时,()()f x g x ≥ (B) 当()0f x '≥时,()()f x g x ≤ (C) 当()0f x ''≥时,()()f x g x ≥(D) 当()0f x ''≥时,()()f x g x ≤(4) 曲线22741x t y t t ⎧=+⎪⎨=++⎪⎩上对应于1t =的点处的曲率半径是 ( )(A)50(B)100(C)(D)(5) 设函数()arctan f x x =,若()()f x xf '=ξ,则22limx x→=ξ ( )(A)1(B)23(C)12(D)13(6) 设函数(,)u x y 在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满足20ux y ∂≠∂∂及22220u ux y∂∂+=∂∂,则 ( ) (A)(,)u x y 的最大值和最小值都在D 的边界上取得 (B) (,)u x y 的最大值和最小值都在D 的内部上取得(C) (,)u x y 的最大值在D 的内部取得,最小值在D 的边界上取得 (D) (,)u x y 的最小值在D 的内部取得,最大值在D 的边界上取得(7) 行列式0000000ab a bcd c d= ( )(A) 2()ad bc - (B) 2()ad bc -- (C) 2222a dbc -(D) 2222b c a d -(8) 设123,,ααα均为3维向量,则对任意常数,k l ,向量组1323,k l ++αααα线性无关是向量组123,,ααα线性无关的 ( )(A) 必要非充分条件 (B) 充分非必要条件(C) 充分必要条件 (D) 既非充分也非必要条件 二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. ((9)12125dx x x -∞=++⎰__________.(10) 设()f x 是周期为4的可导奇函数,且()f x '2(1),x =-[0,2]x ∈,则(7)f =__________. (11) 设(,)z z x y =是由方程2274yzex y z +++=确定的函数,则11(,)22dz =__________.(12) 曲线()r r =θ的极坐标方程是r =θ,则L 在点(,)(,)22r =ππθ处的切线的直角坐标方程是__________.(13) 一根长为1的细棒位于x 轴的区间[0,1]上,若其线密度()221x x x =-++ρ,则该细棒的质心坐标x =__________.(14) 设二次型()22123121323,,24f x x x x x ax x x x =-++的负惯性指数为1,则a 的取值范围为_______.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限12121lim.1ln 1xt x t e t dt x x →+∞⎡⎤⎛⎫--⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎛⎫+ ⎪⎝⎭⎰(16)(本题满分10分)已知函数()y y x =满足微分方程221x y y y ''+=-,且()20y =,求()y x 的极大值与极小 值.(17)(本题满分10分)设平面区域(){}22,14,0,0,D x y x y x y =≤+≤≥≥计算(sin Dx dxdy x y+⎰⎰.(18)(本题满分10分)设函数()f u 具有二阶连续导数,(e cosy)xz f =满足22222(4e cos )e x xz z z y x y ∂∂+=+∂∂,若'(0)0,(0)0f f ==,求()f u 的表达式.(19)(本题满分10分)设函数(),()f x g x 的区间[a,b]上连续,且()f x 单调增加,0()1g x ≤≤.证明: (I)0(),[,]xag t dt x a x a b ≤≤-∈⎰,(II)()()d ()g()ba a g t dtb aaf x x f x x dx +⎰≤⎰⎰.(20)(本题满分11分)设函数[](x),0,11xf x x=∈+,定义函数列121()(),()(()),f x f x f x f f x ==,1()(()),n n f x f f x -=,记n S 是由曲线()n y f x =,直线1x =及x 轴所围成平面图形的面积,求极限lim n n nS →∞.(21)(本题满分11分) 已知函数(,)f x y 满足2(1)fy y∂=+∂,且2(,)(1)(2)ln ,f y y y y y =+--求曲线(,)0f x y =所围成的图形绕直线1y =-旋转所成的旋转体的体积.(22)(本题满分11分)设矩阵123401111203A --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,E 为三阶单位矩阵.(I)求方程组0Ax =的一个基础解系; (II)求满足AB E =的所有矩阵.(23)(本题满分11分)证明n 阶矩阵111111111⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭与00100200n ⎛⎫⎪ ⎪⎪ ⎪⎝⎭相似.2014年全国硕士研究生入学统一考试数学二试题答案一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 当0x +→时,若ln (12)x +α,1(1cos )x -α均是比x 高阶的无穷小,则α的取值范围是( )(A) (2,)+∞(B) (1,2)(C) 1(,1)2(D) 1(0,)2【答案】B【解析】由定义 1000ln (12)(2)limlim lim 20x x x x x x x x-→→→+===αααα 所以10->α,故1>α.当0x +→时,211(1cos )~2xx -ααα是比x 的高阶无穷小,所以210->α,即2<α.故选B(2) 下列曲线中有渐近线的是 ( )(A) sin y x x =+ (B) 2sin y x x =+ (C) 1sin y x x =+(D) 21siny x x=+ 【答案】C【解析】关于C 选项:11sinsinlimlim1lim 101x x x x x x x x →∞→∞→∞+=+=+=. 11lim[sin ]limsin 0x x x x x x →∞→∞+-==,所以1sin y x x=+存在斜渐近线y x =. 故选C(3) 设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上 ( )(A) 当()0f x '≥时,()()f x g x ≥ (B) 当()0f x '≥时,()()f x g x ≤ (C) 当()0f x ''≥时,()()f x g x ≥(D) 当()0f x ''≥时,()()f x g x ≤【答案】D【解析】令()()()(0)(1)(1)()F x g x f x f x f x f x =-=-+-,则(0)(1)0F F ==,()(0)(1)()F x f f f x ''=-+-,()()F x f x ''''=-.若()0f x ''≥,则()0F x ''≤,()F x 在[0,1]上为凸的.又(0)(1)0F F ==,所以当[0,1]x ∈时,()0F x ≥,从而()()g x f x ≥. 故选D.(4) 曲线22741x t y t t ⎧=+⎪⎨=++⎪⎩上对应于1t =的点处的曲率半径是 ( )(C)(D)【答案】C1112'21122432212t t t t t dy t dxtd y dy tdx dx t=====+==-===-()()''33'22211,11y k R kq y ==∴==++ 故选C(5) 设函数()arctan f x x =,若()()f x xf '=ξ,则22limx x →=ξ ( )(A)1 (B)23(C)12(D)13【答案】D【解析】因为'2()1()1f x f x ==+ξξ,所以2()()x f x f x -=ξ 22222200011()arctan 11limlimlim lim ()arctan 33x x x x x f x x xx x x f x x x x →→→→---+====ξ故选D.(6) 设函数(,)u x y 在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满足20ux y ∂≠∂∂及22220u ux y∂∂+=∂∂,则 ( ) (A)(,)u x y 的最大值和最小值都在D 的边界上取得 (B) (,)u x y 的最大值和最小值都在D 的内部上取得(C) (,)u x y 的最大值在D 的内部取得,最小值在D 的边界上取得 (D) (,)u x y 的最小值在D 的内部取得,最大值在D 的边界上取得【解析】记22222,,,0,,u u uA B C B A C x x y y∂∂∂===≠∂∂∂∂相反数 则2=AC-B 0∆<,所以(x,y)u 在D 内无极值,则极值在边界处取得.故选A(7) 行列式0000000ab a bcd c d= ( )(A)2()ad bc - (B)2()ad bc -- (C)2222a d b c - (D)2222b c a d -【答案】B【解析】由行列式的展开定理展开第一列000000000000a b a b a b a b a cd c b c d dcdc d=--()()ad ad bc bc ad bc =--+- 2()ad bc =--.(8) 设123,,a a a 均为三维向量,则对任意常数,k l ,向量组13a ka +,23a la +线性无关是向量组123,,a a a 线性无关的 ( )(A)必要非充分条件 (B)充分非必要条件 (C)充分必要条件(D)既非充分也非必要条件【答案】A 【解析】()()13231231001k l k l ⎛⎫⎪++= ⎪ ⎪⎝⎭ααααααα.)⇐ 记()1323A k l =++αααα,()123B =ααα,1001k l ⎛⎫⎪= ⎪ ⎪⎝⎭C . 若123,,ααα线性无关,则()()()2r A r BC r C ===,故1323,k l ++αααα线性无关.)⇒ 举反例. 令30=α,则12,αα线性无关,但此时123,,ααα却线性相关.综上所述,对任意常数,k l ,向量1323,k l ++αααα线性无关是向量123,,ααα线性无关的必要非充分条件.故选A二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)12125dx x x -∞=++⎰__________.【答案】38π【解析】()111221111arctan 252214132428x dx dx x x x -∞-∞-∞+==++++⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦⎰⎰πππ(10) 设()f x 是周期为4的可导奇函数,且()f x '2(1),x =-[0,2]x ∈,则(7)f =__________. 【答案】1 【解析】()()[]'210,2f x x x =-∈,且为偶函数则()()[]'212,0fx x x =--∈-,又()22f x x x c =--+且为奇函数,故=0c()[]222,0f x x x x ∴=--∈-,又()f x 的周期为4,()()711f f ∴=-=(11) 设(,)z z x y =是由方程2274yzex y z +++=确定的函数,则11(,)22dz =__________.【答案】1()2dx dy -+ 【解析】对2274yzex y z +++=方程两边同时对,x y 求偏导22210(22)20yzyz z z e y x x z z e z y y y y ∂∂⎧⋅⋅++=⎪∂∂⎪⎨∂∂⎪+++=∂∂⎪⎩当11,22x y ==时,0z = 故1111(,)(,)222211,22z z x y∂∂=-=-∂∂故11(,)22111()()222dzdx dy dx dy =-+-=-+(12) 曲线lim n n nS →∞的极坐标方程是r =θ,则L 在点(,)(,)22r =ππθ处的切线的直角坐标方程是__________. 【答案】22y x =-+ππ【解析】由直角坐标和极坐标的关系 cos cos sin sin x r y r ==⎧⎨==⎩θθθθθθ,于是(),,,22r ⎛⎫=⎪⎝⎭ππθ对应于(),0,,2x y ⎛⎫= ⎪⎝⎭π 切线斜率cos sin cos sin dydy d dx dx d +==-θθθθθθθθ0,22dy dx ⎛⎫⎪⎝⎭∴=-ππ所以切线方程为()202y x -=--ππ即2=2y x -+ππ(13) 一根长为1的细棒位于x 轴的区间[0,1]上,若其线密度()221x x x =-++ρ,则该细棒的质心坐标x =__________. 【答案】1120【解析】质心横坐标()()1010x x dx x x dx=⎰⎰ρρ ()()()()31122100042112310005=2133211=2143212x x dx x x dx x x x x x x dx x x x dx x ⎛⎫-++=-++= ⎪⎝⎭⎛⎫-++=-++= ⎪⎝⎭⎰⎰⎰⎰ρρ111112=5203x ∴=(13) 设二次型()22123121323,,24f x x x x x ax x x x =-++的负惯性指数是1,则a 的取值范围_________. 【答案】[]2,2-【解析】配方法:()()()22222123133233,,24f x x x x ax a x x x x =+---+由于二次型负惯性指数为1,所以240a -≥,故22a -≤≤.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限12121lim.1ln 1xt x t e t dt x x →+∞⎡⎤⎛⎫--⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎛⎫+ ⎪⎝⎭⎰【解析】11221122d d (e 1)(e 1)limlim 11ln(1)xx t t x x t t t t t t x x x x→+∞→+∞⎡⎤⎡⎤----⎢⎥⎢⎥⎣⎦⎣⎦=+⋅⎰⎰12lim[(e 1)]xx x x →+∞=--12000e 1e 11lim lim lim 222t t t xt t t t t t t t +++=→→→---====. (16)(本题满分10分)已知函数()y y x =满足微分方程221x y y y ''+=-,且()20y =,求()y x 的极大值与极小值.【解析】 由221x y y y ''+=-,得22(1)1y y x '+=-………………………………………………………① 此时上面方程为变量可分离方程,解的通解为331133y y x x c +=-+ 由(2)0y =得23c =又由①可得 221()1x y x y -'=+当()0y x '=时,1x =±,且有:1,()011,()01,()0x y x x y x x y x '<-<'-<<>'><所以()y x 在1x =-处取得极小值,在1x =处取得极大值 (1)0,(1)1y y -==即:()y x 的极大值为1,极小值为0. (17)(本题满分10分)设平面区域(){}22,14,0,0,D x y x y x y =≤+≤≥≥计算(sin Dx dxdy x y+⎰⎰.【解析】D 关于y x =对称,满足轮换对称性,则:D D=⎰⎰12D D I dxdy ∴==⎢⎥⎣⎦⎰⎰1sin(2Ddxdy =⎰⎰π221211sin 21()cos 4d r rdrrd r =⋅=-⎰⎰⎰πθππππ22111cos |cos 4r r rdr ⎡⎤=-⋅-⎢⎥⎣⎦⎰ππ211121sin |4r ⎡⎤=-+-⎢⎥⎣⎦ππ 34=-(18)(本题满分10分)设函数()f u 具有二阶连续导数,(e cosy)xz f =满足22222(4e cos )e x xz z z y x y∂∂+=+∂∂,若'(0)0,(0)0f f ==,求()f u 的表达式.【解析】由()cos ,x z f e y =()(cos )cos ,(cos )sin x x x x z zf e y e y f e y e y x y∂∂''=⋅=⋅-∂∂ 22(cos )cos cos (cos )cos x x x x x zf e y e y e y f e y e y x∂'''=⋅⋅+⋅∂, ()()()22(cos )sin sin (cos )cos x x x x x zf e y e y e y f e y e y y∂'''=⋅-⋅-+⋅-∂ 由 ()22222+4cos x xz z z e y e x y ∂∂=+∂∂,代入得, ()()22cos [4cos cos ]x x x x x f e y e f e y e y e ''⋅=+即()()cos 4cos cos x x x f e y f e y e y ''-=,令cos =,xe y t 得()()4f t f t t ''-=特征方程 240,2-==±λλ 得齐次方程通解2212t t y c e c e -=+设特解*y at b =+,代入方程得1,04a b =-=,特解*14y t =- 则原方程通解为()22121=4t ty f t c e c e t -=+-由()()'00,00f f ==,得1211,1616c c ==-, 则()22111=16164u u y f u e e u -=--.(19)(本题满分10分)设函数(),()f x g x 在区间[,]a b 上连续,且()f x 单调增加,0()1g x ≤≤,证明:(I )0(),[,]xag t dt x a x a b ≤≤-∈⎰,(II )()()d ()g()ba a g t dtb aaf x x f x x dx +⎰≤⎰⎰.【解析】(I )由积分中值定理()()(),[,]xag t dt g x a a x =-∈⎰ξξ()01g x ≤≤,()()()0g x a x a ∴≤-≤-ξ()()0xa g t dt x a ∴≤≤-⎰(II )直接由()01g x ≤≤,得到()()01=x xaag t dt dt x a ≤≤-⎰⎰(II )令()()()()()ua u a g t dt aaF u f x g x dx f x dx +⎰=-⎰⎰()()()()()()()()()()'uaua F u f u g u f a g t dt g u g u f u f a g t dt =-+⋅⎡⎤=-+⎢⎥⎣⎦⎰⎰由(I )知()()0uag t dt u a ≤≤-⎰()uaa a g t dt u ∴≤+≤⎰又由于()f x 单增,所以()()()0u af u f ag t dt -+≥⎰()()'0F u F u ∴≥∴,单调不减,()()0F u F a ∴≥=取u b =,得()0F b ≥,即(II )成立.(20)(本题满分11分)设函数[](x),0,11xf x x=∈+,定义函数列 1211()(),()(()),,()(()),n n f x f x f x f f x f x f f x -===,记n S 是由曲线()n y f x =,直线1x =及x 轴所围成平面图形的面积,求极限lim n n nS →∞. 【解析】123(),(),(),,(),112131n x x x xf x f x f x f x x x x nx====++++ 11100011()11n n x x n n S f x dx dx dx nx nx+-∴===++⎰⎰⎰ 1110200111111ln(1)1dx dx nx n n nx n n =-=-++⎰⎰ 211ln(1)n n n=-+ ln(1)ln(1)1lim 1lim 1lim 1lim 1n n n x x n x nS n x x→∞→∞→∞→∞++∴=-=-=-+101=-= (21)(本题满分11分) 已知函数(,)f x y 满足2(1)fy y∂=+∂,且2(,)(1)(2)ln ,f y y y y y =+--求曲线(,)0f x y =所围成的图形绕直线1y =-旋转所成的旋转体的体积.【解析】因为2(1)fy y∂=+∂,所以2(,)2(),f x y y y x =++ϕ其中()x ϕ为待定函数. 又因为()2(,)(1)2ln ,f y y y y y =+--则()()12ln y y y =--ϕ,从而()()22(,)212ln (1)2ln f x y y y x x y x x =++--=+--.令(,)0,f x y =可得()2(1)2ln y x x +=-,当1y =-时,1x =或2x =,从而所求的体积为()()2221122112ln ln 22V y dx x xdxx xd x =+=-⎛⎫=- ⎪⎝⎭⎰⎰⎰πππ22211221ln (2)222552ln 2(2)2ln 22ln 2.444x x x x dxx x ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦⎛⎫=--=-⋅=- ⎪⎝⎭⎰πππππππ(22)(本题满分11分)设矩阵123401111203A --⎛⎫⎪=- ⎪ ⎪-⎝⎭,E 为三阶单位矩阵.(I)求方程组0Ax =的一个基础解系; (II)求满足AB E =的所有矩阵B .【解析】()123410012341000111010011101012030010431101A E ----⎛⎫⎛⎫⎪ ⎪=-→- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭ 123410010012610111010010213100131410013141---⎛⎫⎛⎫ ⎪ ⎪→-→--- ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭,(I)0Ax =的基础解系为()1,2,3,1T=-ξ (II)()()()1231,0,0,0,1,0,0,0,1TTT e e e ===1Ax e =的通解为()()111112,1,1,02,12,13,T Tx k k k k k =+--=--+-+ξ 2Ax e =的通解为()()222226,3,4,06,32,43,TTx k k k k k =+--=--+-+ξ 3Ax e =的通解为()()333331,1,1,01,12,13,TTx k k k k k =+-=--++ξ123123123123261123212134313k k k k k k B k k k k k k ----⎛⎫ ⎪-+-++⎪∴= ⎪-+-++ ⎪ ⎪⎝⎭(123,,k k k 为任意常数)(23)(本题满分11分)证明n 阶矩阵111111111⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭与00100200n ⎛⎫⎪ ⎪⎪ ⎪⎝⎭相似.【解析】已知()1111A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,()12001B n ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭=,则A 的特征值为n ,0(1n -重).A 属于n λ=的特征向量为(1,1,,1)T ;()1r A =,故0Ax =基础解系有1n -个线性无关的解向量,即A 属于0λ=有1n -个线性无关的特征向量;故A 相似于对角阵=0n ⎛⎫⎪⎪Λ ⎪ ⎪⎝⎭. B 的特征值为n ,0(1n -重),同理B 属于0λ=有1n -个线性无关的特征向量,故B 相似于对角阵Λ.由相似关系的传递性,A 相似于B .。

相关文档
最新文档