流体动力学基础 _流体力学

合集下载

热工流体动力学基础

热工流体动力学基础
精品课件
【例】 如图所示,水泵汲入 管的外径为114mm,壁厚为4mm, 压出管的外径为88.5mm,壁厚 为4mm。在汲入管中水的流速 为1.5m/s。求在压出管中水的
流速。
【解】 已知,汲入管的内经D1=114-2×4=106mm,w1=1.5m/s,
D2=88.5-2×4=80.5mm,设在汲入管与压出管之间没有渗漏,
z1pg1 w 2g 12 z2pg2 w 2g22
伯努力方程
不可压缩的理想液体在等温流动过程中, 在管道的任一截面上,流体的静压能、 位能及动能之和是不变的。 三者之间可以相互转化
精品课件
(2)实际情况下的伯努力方程 实际流体有粘性,流动过程中有能量损失,能量方程:
z 1g p 1 1 21 2 z 2g p 2 1 2 2 2h L
输入机械能 H e15 (0 10)5 1 2 01 0 .24 (2 7.3 025 3.1 62 7 )50 11.9 7(P 1 7)3 a
精品课件
2.压头间的转换 (1)几何压头和静压头之间的转变
1-1和2-2的伯努力方程:
hg1hs1hg2hs2
因为 hg2(在下)>hg1(在上)
则 hs2<hs1
【解】 1000℃时烟气的密度为: 0(pp0)(T T1 0)
1.399994102 2730.27(k4g/m3) 1013225731000
1000℃时烟气的粘度为:
02T7C 3C2T7332
1.587105(1227 7311377)331 (2277 )32 334.9105(Pas)
精品课件
吸风管内风速
w 1 3 V F 6 1 3 0 4 V 6 0 d 1 2 0 30 4 6 3 9 .1 0 2 0 4 .3 0 2 0 3 .1 0 6 ( m 7 /s ) w 2 3 V F 6 2 3 0 4 V 6 0 d 2 2 0 30 4 6 3 9 .1 0 0 2 4 .4 0 2 0 2 .3 0 0 ( m 5 /s )

4工程流体力学 第四章流体动力学基础

4工程流体力学 第四章流体动力学基础
因为 F 沿 y 轴正向,所以 Fy 取正值
Fy F V•n dS = -V0 dS
= =
=
ρ vV n dS ρ vV n dS ρ vV n dS ρ vV n dS
CS
S0
S1
S2
v = -V0 sin
0
0
§4-2 对控制体的流体力学积分方程(续18)
由于V1,V2在y方向上无分量,
忽略粘性摩擦力,控制体所受表面力包括两
端面及流管侧表面所受的压力,沿流线方向总压
力为:
FSl
pS p δpS δS

p
δp 2
δS
Sδ p 1 δpδS 2
流管侧表面所受压力在流 线方向分量,平均压强
§4-2 对控制体的流体力学积分方程(续27z)
控制体所受质量力只有重力,沿流线方向分
Q2
Q0 2
1 cosθ
注意:同一个问题,控制体可以有不同的取法,
合理恰当的选取控制体可以简化解题过程。
§4-2 对控制体的流体力学积分方程(续23)
微元控制体的连续 方程和动量方程
从流场中取一段长度为l 的流管元,因
为流管侧面由流线组成,因此无流体穿过;流 体只能从流管一端流入,从另一端流出。
CS
定义在系统上 的变量N对时 间的变化率
定义在固定控制 体上的变量N对 时间的变化率
N变量流出控制 体的净流率
——雷诺输运定理的数学表达式,它提供了对
于系统的物质导数和定义在控制体上的物理量
变化之间的联系。
§4-2 对控制体的流体力学积分方程 一、连续方程
在流场内取一系统其体积为 ,则系统内
的流体质量为:
根据物质导数的定义,有:

流体动力学基础

流体动力学基础

流体动力学基础流体动力学是研究流体的运动规律和性质的科学,它是流体力学的分支之一,广泛应用于航空、航天、水力、能源等领域。

本文将介绍流体动力学的基础概念、基本方程以及常用方法。

一、流体动力学的基本概念1. 流体力学与流体静力学的区别流体力学研究流体在运动中的行为,包括流体的流动速度、压力、密度等参数的分布规律;而流体静力学则研究流体在静止状态下的平衡规律,主要关注流体的静压力和浮力等性质。

2. 流体的本构关系流体的本构关系描述了流体的应力与变形速率之间的关系。

常见的本构关系有牛顿黏性流体、非牛顿流体以及理想流体等。

3. 流体的运动描述流体的运动可以通过流体速度场来描述,流体速度场是空间中的矢量函数,它描述了流体的速度分布。

流体速度场的描述可以使用欧拉描述方法或者拉格朗日描述方法。

二、流体动力学的基本方程1. 连续性方程连续性方程描述了质量守恒的原理,即单位时间内通过某一截面的质量是恒定的。

对于稳定流动的不可压缩流体来说,连续性方程可表示为流体密度与速度之积在空间中的量级是恒定的。

2. 动量方程动量方程是描述质点运动定律的基本方程,对流体来说,动量方程体现了运动流体的动力学行为。

对于稳定流动的不可压缩流体来说,动量方程可表示为流体的密度乘以速度与压力梯度的叠加等于外力的结果。

3. 能量方程能量方程描述了热力学系统的能量守恒原则,对于流体来说,能量方程考虑了流体的流动对能量转移的影响,以及热源、做功所导致的能量变化。

三、流体动力学的常用方法1. 数值模拟方法数值模拟是流体动力学研究的重要工具,通过在计算机上建立流体动力学方程的数值解,可以模拟复杂流动现象,如湍流、多相流等。

2. 实验方法实验方法是流体动力学研究的另一重要手段,通过搭建实验平台,测量流体的压力、速度等参数,从而验证理论和数值模拟结果的准确性。

3. 理论分析方法理论分析方法是流体动力学研究中的基础,通过建立假设和推导数学表达式,可以得到流体动力学问题的解析解,为实验和数值模拟提供参考。

流体力学基础知识

流体力学基础知识

第一章,绪论1、质量力:质量力是作用在流体的每一个质点上的力。

其单位是牛顿,N。

单位质量力:没在流体中M点附近取质量为d m的微团,其体积为d v,作用于该微团的质量力为dF,则称极限lim(dv→M)dF/dm=f,为作用于M点的单位质量的质量力,简称单位质量力。

其单位是N/kg。

2、表面力:表面力是作用在所考虑的或大或小得流体系统(或称分离体)表面上的力。

3、容重:密度ρ和重力加速度g的乘积ρg称容重,用符号γ表示。

4、动力黏度μ:它表示单位速度梯度作用下的切应力,反映了黏滞性的动力性质。

其单位为N/(㎡·s),以符号Pa·s表示。

运动黏度ν:是单位速度梯度作用下的切应力对单位体积质量作用产生的阻力加速度。

国际单位制单位㎡/s。

动力黏度μ与运动黏度ν的关系:μ=ν·ρ。

5、表面张力:由于分子间的吸引力,在液体的自由表面上能够承受的极其微小的张力称为表面张力。

毛细管现象:由于表面张力的作用,如果把两端开口的玻璃细管竖立在液体中,液体就会在细管中上升或下降h高度的现象称为毛细管现象。

6、流体的三个力学模型:①“连续介质”模型;②无黏性流体模型;③不可压缩流体模型。

(P12,还需看看书,了解什么是以上三种模型!)。

第二章、流体静力学1、流体静压强的两个特性:①其方向必然是沿着作用面的内法线方向;②其大小只与位置有关,与方向无关。

2、a流体静压强的基本方程式:①P=Po+rh,式中P指液体内某点的压强,Pa(N/㎡);Po指液面气体压强,Pa(N/㎡);r指液体的容重,N/m³;h指某点在液面下的深度,m;②Z+P/r=C(常数),式中Z指某点位置相对于基准面的高度,称位置水头;P/r指某点在压强作用下沿测压管所能上升的高度,称压强水头。

两水头中的压强P必须采用相对压强表示。

b流体静压强的分布规律的适用条件:只适用于静止、同种、连续液体。

3、静止均质流体的水平面是等压面;静止非均质流体(各种密度不完全相同的流体——非均质流体)的水平面是等压面,等密度和等温面。

工程流体力学--第三章--流体动力学基础ppt课件

工程流体力学--第三章--流体动力学基础ppt课件
当地加速度和迁移加速度的理解,现举例说明这两个加速
度的物理意义。如图3-1所示,不可压缩流体流过一个中 间有收缩形的变截面管道,截面2比截面1小,则截面2的 速度就要比截面1的速度大。所以当流体质点从1点流到2 点时,由于截面的收缩引起速度的增加,从而产生了迁移
加速度,如果在某一段时间内流进管道的流体输入量有变
第三章 流体动力学基础
§1–1 描述流体运动的两种方法
§1–2 流体运动的一些基本概念
§1–3 流体运动的连续性方程
§1–4 理想流体的运动微分方程
§1–5 理想流体微元流束的伯努力方程
§1–6 伯努利(Bernoulli)方程的应用
§1–7 定常流动的动量方程和动量矩方程
§1–8 液体的空化和空蚀现象
拉格朗日方法又称随体法,是从分析流场中个别流体 质点着手来研究整个流体运动的。这种研究方法,最基本
2021/4/19
3
的参数是流体质点的位移,在某一时刻,任一流体质点的
位置可表示为:
X=x (a,b,c,t)
y=y (a,b,c,t)
z=z (a,b,c,t)
(3-1)
式中a、b、c为初始时刻任意流体质点的坐标,即不同的a、 b、c代表不同的流体质点。对于某个确定的流体质点,a、 b、c为常数,而t为变量,则得到流体质点的运动规律。 对于某个确定的时刻,t为常数,而a、b、c为变量,得到 某一时刻不同流体质点的位置分布。通常称a、b、c为拉
(3-2) (3-3)
az w t t22 zaz(a,b,c,t)
2021/4/19
5
式(3-6)是流体质点的运动轨迹方程,将上式对时间 求导就可得流体质点沿运动轨迹的三个速度分量
u dx dt

流体力学 第三章 流体动力学

流体力学 第三章 流体动力学
按周界性质: ①总流四周全部被固体边界限制——有压流。如 自来水管、矿井排水管、液压管道。 ②总流周界一部分为固体限制,一部分与气体接 触——无压流。如河流、明渠。 ③总流四周不与固体接触——射流。如孔口、管 嘴出流。
7 流量、断面平均流速 a.流量:单位时间通过某一过流断面的流体量。流
量可以用体积流量Qv(m3/s)、质量流量Qm(kg/s) 表示。显然,对于均质不可压缩流体有
元流体积流量 总流的体积流量
Qm Qv
dQv vdA
Qv
dQ vdA vA
b.断面平均流速:总流过流断面上各点的流速v一般
不相等,为了便于计算,设过流断面上各点的速度
都相等,大小均为断面平均流速v。以v计算所得的
流量与实际流量相同。
vAQv
vdA
A
8 均匀流与非均匀流
流管——在流场中任意取不与流线重合的封 闭曲线,过曲线上各点作流线,所构成的管 状表面
流束——流管内的流体
5.过流断面——在流束上作出与流线正交的横断面
1
例:
注意:只有均匀流的过流断面才是平面
2
1
Hale Waihona Puke 1处过流断面2处过流断
2

6.元流与总流 元流——过流断面无限小的流束 总流——过流断面为有限大小的流束,它由无数元流构成
线上各点速度矢量与曲线相切
v1
v2
性质:一般情况下不相交、不折转
流线微分方程: 流线上任一点的切线方向 (dr)与该点速度矢量 (v)一致
i jk drv dx dy dz0
dx dy dz vx vy vz
vx vy vz
——流线微分方程
(2)迹线——质点运动的轨迹 迹线微分方程:对任一质点

工程流体力学课件3流体动力学基础

工程流体力学课件3流体动力学基础

恒质





恒能
恒 定
量 守

恒动


程连
续 方
程恒 定

程能 量 方
流 三

程动



• v1 A1 = v2 A2
说明流量不变时,过流断面越小, 流速越大 —— 水射器原理
Φ
D
小头
大头
消防水枪喷嘴
收缩段 亚音速
喉部 音速
扩散段 超音速
拉瓦尔喷管
由拉瓦尔喷管可获得超音速气流,其原理广泛应用 于超音速燃气轮机中的叶栅,冲压式喷气发动机,火箭 喷管及超音速风洞等处。
3)在恒定流情况下,当判别第II段管中是缓变 流还是急变流时,与该段管长有无关系?
区分均匀流及非均匀流与过流断面上流速 分布是否均匀有无关系?是否存在“非恒定 均匀流”与“恒定急变流”?
当水箱水面恒定时: a)为恒定均匀流;b)为恒定非均匀流。 当水箱水面不恒定时: a)为非恒定均匀流;b)为非恒定非均匀流。
uz F3(x, y, z,t)
x,y,z,t —欧拉变量

dux
ux t
dt
ux x
dx
ux y
dy
ux z
dz
a
x
a y
az
dux
dt du y
dt duz
dt
dF1
dt dF2
dt dF3
dt
ux t
ux
ux x
uy
ux y
uz
ux z
u y t
ux
u y x
uy
u y y
重、难点

工程流体力学课件3流体动力学基础

工程流体力学课件3流体动力学基础
总结词
边界层理论是研究流体在固体表面附近流动的理论, 其特征包括流体的粘性和湍流状态。
详细描述
边界层理论主要关注流体与固体表面之间的相互作用 ,特别是流体的粘性和湍流状态对流动的影响。在边 界层内,流体的速度和压力变化梯度较大,湍流状态 较为明显。
边界层分离现象和转捩过程
总结词
边界层分离现象是指流体在经过曲面或突然扩大区域 时,流速减小,压力增加,导致流体离开壁面并形成 回流的现象。转捩过程则是从层流到湍流的过渡过程 。
有旋流动
需要求解偏微分方程组,如纳维-斯托克斯 方程(Navier-Stokes equations),该方 程组较为复杂,需要采用数值方法进行求解

05 流体动力学中的湍流流动
湍流流动的定义和特征
湍流流动的定义
湍流是一种高度复杂的流动状态,其中流体的速度、压 力和其它属性随时间和空间变化。
湍流流动的特征
质量守恒定律在流体中的应用
质量守恒定律
物质的质量不会凭空产生也不会消失,只会从一种形式转化为另一种形式。在流体中,质量守恒定律表现为流体 微元的质量变化率等于进入和离开微元的净质量流量。
质量守恒方程
根据质量守恒定律,流体微元的质量变化率可以表示为流入和流出微元的净质量流量。这个方程是流体动力学基 本方程之一,用于描述流体的运动特性。
流体流动的描述方法
描述流体流动的方法包括拉格朗日法和欧拉法。
拉格朗日法是以流体质点作为描述对象,追踪各个质点的运动轨迹,研究其速度、加速度等参数随时 间的变化。欧拉法是以空间点作为描述对象,研究空间点上流速、压强等参数随时间和空间的变化。
03 流体动力学基本方程的推 导
牛顿第二定律在流体中的应用
能源

《流体力学》第三章一元流体动力学基础

《流体力学》第三章一元流体动力学基础

02
能源领域
风力发电机的设计和优化需要考虑风力湍流对风能转换效率的影响;核
能和火力发电厂的冷却塔设计也需要考虑湍流流动的传热和传质特性。
03
环境工程领域
大气污染物的扩散和传输、城市空气质量等环境问题与湍流流动密切相
关,需要利用湍流模型和方法进行模拟和分析。
06
一元流体动力学的实验研 究方法
实验设备与测量技术
一元流体动力学
研究一元流体运动规律和特性的学科。
研究内容
包括流体运动的基本方程、流体的物理性质、流动状态和流动特 性等。
02
一元流体动力学基本概念
流体静力学基础
静止流体
流体处于静止状态,没有相对运动,只有由于重力引起的势能变 化。
平衡状态
流体内部各部分之间没有相对运动,且作用于流体的外力平衡。
流体静压力
总结词
求解无旋流动的方法主要包括拉普拉斯方程和泊松方程。
详细描述
拉普拉斯方程是描述无旋流动的偏微分方程,它可以通过求 解偏微分方程得到流场的速度分布。泊松方程是另一种求解 无旋流动的方法,它通过求解泊松方程得到流场的速度分布 。
无旋流动的应用实例
总结词
无旋流动在许多工程领域中都有应用,如航 空航天、气象学、环境工程等。
能量方程
• 总结词:能量方程是一元流体动力学的基本方程之一,用于描述流体能量的传递和转化规律。
• 详细描述:能量方程基于热力学第一定律,表示流体能量的变化率等于流入流体的净热流量和外力对流体所做的功。在直角坐标系下,能量方程可以表示为:$\frac{\partial}{\partial t}(\rho E) + \frac{\partial}{\partial x_j}(\rho u_j E + p u_j) = \frac{\partial}{\partial x_j}(k \frac{\partial T}{\partial x_j}) + \frac{\partial}{\partial xj}(\tau{ij} u_i)$,其中$E$为流体 的总能,$T$为温度,$k$为热导率。

液压流体力学第五章流体动力学基础

液压流体力学第五章流体动力学基础
液压流体力学
南京工程学院
夏庆章
20150720
第五章 流体动力学基础
• • • • • • 流体动力学概述 5.1理想流体的运动微分方程式 5.3理想流体的伯努利方程式 5.4实际流体总流的伯努利方程式 5.7伯努利方程的应用 5.8动量、动量矩定理及其应用
流体动力学概述
流体动力学是研究流体在外力作用下的运
动规律即研究流体动力学物理量和运动学 物理量之间的关系的科学。 流体动力学主要研究内容就是要建立流体 运动的动量平衡定律、动量矩平衡定律和 能量守恒定律(热力学第一定律)。
5.1 理想流体的运动微分方程式
1、选取控制体:在所研究的运动流体中,任取一 微小平行六面体,如图5-1所示。六面体边长分别 为dx、dy、dz,平均密度为 ,顶点A 处的压强 为 p。 2、受力分析 质量力:fxdxdydz , fydxdydz , fzdxdydz 表面力:设A点压强为p时,则与其相邻的ABCD 、 ADEH、ABGH三个面上的压强均为p,而与这三个 面相对应的EFGH、 BCFG、 CDEF 面上的压强可 由泰勒级数展开略去二阶以上无穷小量而得到,分 p p p p dz p dx p dy 别为 z x y
p V p V z1 1 1 z 2 2 2 h w g 2 g g 2 g
2 2
式(5-1)的几何解释如图5-1所示,实际总水头线沿微元流 束下降,而静水头线则随流束的形状上升或下降。
图5-1 伯努利方程的几何解释
二、黏性流体总流的伯努利方程 流体的实际流动都是由无数微元流束所组成的有效截面为 有限值的总流流动,例如流体在管道中和渠道中的流动等。 微元流束的有效截面是微量,因而在同一截面上流体质点 的位置高度 z 、压强 p 和流速 V 都可认为是相同的。而 总流的同一有效截面上,流体质点的位置高度 z 、压强 p 和流速 V 是不同的。总流是由无数微元流束所组成的。 因此,由黏性流体微元流束的伯努利方程来推导总流的伯 努利方程,对总流有效截面进行积分时,将遇到一定的困 难,这就需要对实际流动作某些必要的限制。为了便于积 分,首先考虑在什么条件下总流有效截面上各点的 p z 常数?这只有在有效截面附近处有缓变流动时 g 才能符合这个要求。

流体动力学基础工程流体力学

流体动力学基础工程流体力学
31
固定的控制体
对固定的CV,积分形式的连续性方程可化为
CS
ρ(
vn
)dA
CV
t
dV
运动的控制体
将控制体随物体一起运动时,连续性方程形式不变,只
要将速度改成相对速度vr
t
dV
CV
CS (vr n)dA 0
32
连续方程的简化
★1、对于均质不可压流体: ρ=const
dV 0
t CV
t
,所以由于密度 的变
化单位时间内微元六面体内增加的质量为dxdydz t。
微元控制体内流体质量增长率: dxdydz t
48
(3)根据质量守恒定律
流体运动的连续方程式为:
dxdydz uxdydz dx uydxdz dy uzdxdy dz 0
令β=1,由系统的质量不变可得连续性方程
D Dt
CV
dV
t
CV
ρdV
CS
ρ
vndA
0
30
D Dt
CV
dV
t
CV
ρdV
CS
ρ
vn
dA
0
系统质量变化率 控制体内质量变化率 流出控制体的质量流率
上式表明:通过控制面净流出的质量流量等于控 制体内流体质量随时间的减少率。
在推导上式的时候,未作任何假设,因此只要满 足连续性假设,上式总是成立的
CV
B V n dA
CS
D* (t )
CV B n
质量体
控制体 任一物理量 控制体表面外法向单位向量
18
雷诺输运定理
将拉格朗日法求系统内物理 量的时间变化率转换为按欧 拉法去计算的公式

流体力学讲义 第三章 流体动力学基础

流体力学讲义 第三章 流体动力学基础

第三章流体动力学基础本章是流体动力学的基础。

主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。

此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。

第一节流体流动的基本概念1.流线(1)流线的定义流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。

图3-1为流线谱中显示的流线形状。

(2)流线的作法:在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。

流线是欧拉法分析流动的重要概念。

图3-1 图3-2(3)流线的性质(图3-3)a.同一时刻的不同流线,不能相交。

图3-3因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。

b.流线不能是折线,而是一条光滑的曲线。

因为流体是连续介质,各运动要素是空间的连续函数。

c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。

因为对不可压缩流体,元流的流速与其过水断面面积成反比。

(4)流线的方程(图3-4)根据流线的定义,可以求得流线的微分方程:图3-4设d s为流线上A处的一微元弧长:u为流体质点在A点的流速:因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。

所以即展开后得到:——流线方程(3-1)(或用它们余弦相等推得)2.迹线(1)迹线的定义迹线(path line)某一质点在某一时段内的运动轨迹线。

图3-5中烟火的轨迹为迹线。

(2)迹线的微分方程(3-2)式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。

流体力学3-动力学

流体力学3-动力学

二、流体动力学基本概念
1. 流束:指在流体中沿流动方向分离出一块基本元面积dA、长为 L的一束流体。 元流(微细流):指断面无穷小的流束。 总流:指无数微细流的总和。
微元流束
图 3-2 总流和微元流束
3. 流速
质点流速(点速):指过流断面上各质点的速度,以“u”表示,m/s 断面平均流速(流速): 指过流断面上各质点的速度的平均值,以“W” 表示,m/s 4.流量:指单位时间内通过某一断面积流体的量。 ① 体积流量(Q):指单位时间内通过某一断面积流体的体积。m3/s ② 质量流量(m):指单位时间内通过某一断面积流体的质量。Kg/s ③ 重量流量(G):指单位时间内通过某一断面积流体的重量。 三者之间关系: m = ρQ G = mg = ρQg 体积流量Q与流速W之间关系: Q = WA (A—流体通过的某一断面面积)
Q1 = Q2
W1 A1 = W2 A2
Q1 = Q2 + Q3
分流时:
W1 A1 = W2 A2 + W3 A3
Q1 + Q2 = Q3
合流时:
W1 A1 + W2 A2 = W3 A3
§3-4 流体流动伯努利方程
伯努利方程从功能原理出发,描述流体在外力作用下是按照什 么规律来运动的,从而求出流速的绝对值等。
ρw12
2
= ( ρ − ρ a ) gZ 2 + P2 +
2 ρ w2
2
+ ∆ P1− 2
对于1,3 断面的伯努利方程如下:
不同条件下临界流速Wk不同;但是临界雷诺数Rek都是相同的, 其值约为2000,
Re ≤ 2000 层流 2000 < Re < 4000 过渡态 Re ≥ 4000 紊流

流体力学讲义 第三章 流体动力学基础.

流体力学讲义 第三章 流体动力学基础.

第三章流体动力学基础本章是流体动力学的基础。

主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。

此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。

第一节流体流动的基本概念1.流线(1)流线的定义流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。

图3-1为流线谱中显示的流线形状。

(2)流线的作法:在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。

流线是欧拉法分析流动的重要概念。

图3-1 图3-2(3)流线的性质(图3-3)a.同一时刻的不同流线,不能相交。

图3-3因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。

b.流线不能是折线,而是一条光滑的曲线。

因为流体是连续介质,各运动要素是空间的连续函数。

c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。

因为对不可压缩流体,元流的流速与其过水断面面积成反比。

(4)流线的方程(图3-4)根据流线的定义,可以求得流线的微分方程:图3-4设d s为流线上A处的一微元弧长:u为流体质点在A点的流速:因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。

所以即展开后得到:——流线方程(3-1)(或用它们余弦相等推得)2.迹线(1)迹线的定义迹线(path line)某一质点在某一时段内的运动轨迹线。

图3-5中烟火的轨迹为迹线。

(2)迹线的微分方程(3-2)式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。

流体力学 第3章流体动力学基础

流体力学 第3章流体动力学基础

第3章 流体动力学基础教学提示:流体力学是研究流体机械运动的一门学科,与理论力学中分析刚体运动的情况相似。

如研究的范围只限于流体运动的方式和状态,则属于流体运动学的范围。

如研究的范围除了流体运动的方式和状态以外,还联系到流体发生运动的条件,则属于流体动力学的范围。

前者研究流体运动的方式和速度、加速度、位移等随空间与时间的变化,后者研究引起运动的原因和流体作用力、力矩、动量和能量的方法。

如前所述,流体力学的研究方法是基于连续介质体系的,重点研究由流体质点所组成的连续介质体系运动所产生的宏观效果,而不讨论流体分子的运动。

与处于相对平衡状态下的情况不同,处于相对运动状态下的实际流体,粘滞性将发生作用。

由于流体具有易流动性和粘滞性的影响,因此流体力学的研究方法与固体力学有明显的区别。

教学要求:流体运动的形式虽然多种多样的,但从普遍规律来讲,都要服从质量守恒定律、动能定律和动量定律这些基本原理。

在本章中,我们将阐述研究流体流动的一些基本方法,讨论流体运动学方面的一些基本概念,应用质量守恒定律、牛顿第二运动定律、动量定理和动量矩定理等推导出理想流体动力学中的几个重要的基本方程:连续性方程、欧拉方程、伯努利方程、动量方程、动量矩方程等,并举例说明它们的应用。

3.1 流体运动的描述方法要研究流体运动的规律,就要建立描述流体运动的方法。

在流体力学中,表达流体的运动形态和方式有两种不同的基本方法:拉格朗日法和欧拉法。

3.1.1 拉格朗日法拉格朗日法是瑞士科学家欧拉首先提出的,法国科学家J. L.拉格朗日作了独立的、完整的表述和具体运用。

该方法着眼于流体内部各质点的运动情况,描述流体的运动形态。

按照这个方法,在连续的流体运动中,任意流体质点的空间位置,将是质点的起始坐标),,(c b a (即当时间t 等于起始值0t 时的坐标)以及时间t 的单值连续函数。

若以r 代表任意选择的质点在任意时间t 的矢径,则: ),,,(t c b a r r = (3-1) 式中,r 在x 、y 、z 轴上的投影为x 、y 、z ;a 、b 、c 称为拉格朗日变量。

流体力学-第四章 流体动力学基础

流体力学-第四章 流体动力学基础

Dt t CV
CS
单位质量流体的能量 e (u V 2 gz) 流体系统的总能量
2
DE ed eV ndS
Dt t CV
CS
E ed
初始时刻系统与控制体重合
Q WSYS Q WCV
ed eV ndS Q W
t CV
CS
§4.2 对控制体的流体力学积分方程
§4.1 系统和控制体,雷诺输运定理
雷诺输运定理:
举例:动量定理运用于流体系统
F Dk Dt
F 是外界作用系统的合力,K 是系统的动量,
k Vd
由于系统不断改变位置、形状大小,组成系统的流体质点的密度和速度随
时间也是变化的,所以系统的动量也是变化的,求其对时间的变化率,即
求该流体系统体积分的物质导数。
取 N M 单位体积的质量
DM 0 Dt
d V ndS 0
t CV
CS
d V ndS 0
t CV
CS
积分形式的连续性方程
§4.2 对控制体的流体力学积分方程
非定常流动情况下:
d V ndS 0
t CV
CS
即单位时间内控制体内流体质量的增加或减少等于同时间内通过控制面流入 或流出的净流体质量。如果控制体内的流体质量不变,则必然同一时间内流 入与流出控制体的流体质量相等。
左端第一项——是控制体内流体动量随时间变化而产生的力,它反映流体运动的非定常性
左端第二项——是单位时间内流体流入和流出控制体的动量之差,它表示流入动量与流出动量
不等所产生的力。
§4.2 对控制体的流体力学积分方程
定常流动条件:
F
FB FS
VV ndS
CS
VV ndS

流体动力学基础

流体动力学基础

(2-64)
②.偏心环状缝隙流 当两圆柱不同心,而偏心时,设偏心距为e, 两圆柱同心时的缝隙为δ,如图2-31。
则偏心环缝的流量为(详见P45页推导):
d 3 p d q (1 1.5 2 ) 12l 2
式中,ε=e/δ为偏心比。 所以,当v=0时,是压差流;
q C g A0 2p /
式中,Cg为流量系数,它是实际流量qr与理想流量qt之比 值。即:
Cg=qr / qt =Cc•Cυ
Cc为孔口收缩系数(Cc=A2/A0)。
不同的孔口有不同的Cg值。 1)薄壁孔(孔口的长径比): 图2-25a,此时,可定无沿程损失,只有
进口处的局部损失,
弯曲、管道截面积变化、液压元件等)而产生的 阻力损失,称为局部压力损失,其计算公式为:
p m
2
2
式中,ξ为局部损失系数(查表2-5、2-6、2-7 可得,P35~36),υ为液体过流断面上平均速度, ρ为液体密度。
(4)管道系统总压力损失Δp总和:
Δp总=∑Δpl+∑Δpm =∑λ(L/d)(ρυ2/2)+∑ξ(ρυ2/2) (举例,例2-7,P37~38) (习题3:练习2-5、2-6、2-7、2-8)
压差流的流量计算公式为(详细推导见42-43页):
q1
b 3 p 1 2l
(2-57)
②.剪切流(图2-28) 缝隙两端无压差,设上平板以速度 沿正向运动,下平板不动。缝隙中 流体在上平板带动下层层移动,称 这种流动为剪切流。 剪切流的流量计算公式为(详细推 导见43页):
当δ/d<<1时,可将环状缝隙展开成平面计算, 流量的计算为(此时,b=πd,由式(2-57)得):
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

u
dy
将牛顿内摩擦定律推广到一般空间流动,得出
yz zy zx xz xy yx


u z y

u y z u z x u x y

u x z u y x


(4—6)

3.粘性流体运动微分方程
g
2g
p g
表示理想流体的恒定流动,沿同一元流(沿同一流线)各断式 (4—23)则面的总水头相等.理想流体的水头线是水平线
图4—2水头线
3.几何意义
各项的几何意义是不同的几何高度:z是位臵高度, 测压管 高度。总结如下:
p
式中o点的压强水头,由另—根测压管量测, 于是测速管和测压管中液面的高度差,就是A 点的流速水头,该点的流速:
第二个角标表示应力的方向,则法向应力
p xx p yy p zz 进—步研究证明,任一点任意三个正交面上的法向应力之和 都不变,即
pxx p yy pzz p p p
据此,在粘性流体中,把某点三个正文面上的法向应力的平 均值定义为该点的动压强以p表示:
1 p pxx p yy pzz 3
1)。设六面体的中心点o‘,速度压强p,分析该微
小六面体x方向的受力和运动情况。
1.表面力:理想流体内不存在切应力.只有压强x方
向受压面(abcd面和a‘b’c‘d’面)形心点
图4—1连续性微分方程
的压强为:
pM p
1 p 2 x
dx
pN p
1 p 2 x
dx
受压面上的压力为: PM p M dydz
PN p N dydz
质量力: FBx Xdxdydz
由牛顿第二定律
[( p
1 p 2 x
F
1 p 2 x
x
m
du x dt
得:
dx ) -( p
du x ) ] dydz + Xdxdydz dx dxdydz dt
化简得: X
1 Y 1 Z
p1
——理想流体运动微分方程沿流线的积分称为伯努利积分,
由于元流的过流断面积无限小,所以沿流线的伯努利方 程就 是元流的伯努利方程。推导该方程引入的限定条件, 就是理想流体元流伯努利方程的应用条件,归纳起来有:理 想流体;恒定流动;质量力中只有重力;沿元流(流线);不 可压缩流体。
1.物理意义式
式子中的前两项 分别是单位重量流体具有的比位能压能或比势能;单位重 量流体具有的动能。 2
[例4—1] 理想流体速度场为 ux ay, uy bx, uz 0, a, b 为常数。试求:(1)流动是否可能实现;(2)流线方程;(3)等 压面方程(质量力忽略不计) ux uy uz [解] (1)由连续性微分方程 0
x y z
满足连续性条件,流动是可能实现的。 (2)由流线方程 dx dy 得:
采用类似于推导理想流体运动微分方程式(4—1)的方 法,取微小平行 六面体,根据牛顿第二定律建立以应力 (包 括切应力 ) 表示的运动微分方程式,并以式 (4—5) 、式 (4—6) 代人整理,使得到粘性液体运动微分方程:
u y u x u x u z 2 1 p X x u x t u x x u y y u z z u y u y u y u y 1 p 2 Y y u y t u x x u y y u z z 1 p u z u z u z u z 2 Z z u z t u x x u y y u z z
用矢量表示为
f p u
1 2 u t
u u

(4—8)
式中:
2
2 x 2

2 y 2

2 z 2
——拉普拉斯算子。
——粘性流体运动微分方程,又称为纳维— 斯托克斯方程(简写为N—S方程)。
N—S方程表示作用在单位质量流体上的质量力、表面力(压力 和粘性力) 的相平衡。由N—S方程式和连续性微分方程式组成的 基本方程组,原则上可以求解速度场和压强场p,可以说粘性流体的 运动分析,归结为对N—S方程的研究。
当阀门关闭时,根据压强计的读数, 应用流体静力学基本方程
pa p a 0.6 p a V22 H 0 0 g g 2g
pa gH pa 2 .8 pa ,
求出H值:
H 2.8 pa 2.8 98060 28m H2 O g 9806
图4—5

1

p x
dx
p y
dy
duy
p z
dz dp d
1

p px, y, z
p


③.恒定流流线与迹线重合:dx=uxdt,dy=uydt,dz=uzdt 则
2 2 2 u u u dux duz x y z dx dy dz d dt dt dt 2
dx dy ay bx
ux

uy
bxdx aydy
积分得流线方程 bx ay c a,b同号,流线是双曲线a,b异号,流线是圆。 (3)由欧拉运动微分方程式,不计质量力:
2 2
1 1
p x
p y
u x uy abx y u y ux aby x
1 p x p y p z

du x dt du y dt du z dt
(4—1)
用矢量表示为:
将加速度项展成欧拉法表达式 : u x u x u x u x 1 p X x t u x x u y y u z z u y u y u y u y 1 p Y y t u x x u y y u z z u z u z u z u z 1 p Z z t u x x u y y u z z
第二节 元流的伯努利方程
一、理想流体运动微分方程的伯努利积分 理想流体运动微分方程式是非线性偏微分方程组,只有 特 定 条 件 下 的 积 分 , 其 中 最 为 著 名 的 是 伯 努 利 (Daniel Bernoull,1700~1782,瑞士科学家)积分。
u y u x u z 1 p X x u x x u y y u z z u y u y u y 1 p Y y u x x u y y u z z u z u z u z 1 p Z z u x x u y y u z z
第四章 流体动力学基础
第一节 第二节 第三节 第四节 第五节 流体的运动微分方程 元流的伯努利方程 总流的伯努利方程 总流的动量方程 理想流体的无旋流动
第一节 流体的运动微分方程
一、理想流体运动微分方程
在运动的理想流体中,取微小平行六面体(质点),
正交的三个边长dx,dy,dz,分别平行于x,y,z坐标轴(图4—
(4—10)
由理想流体运动微分方程式
du x 1 p X x dt du y 1 p Y y dt du z 1 p Z z dt
各式分别乘以沿流线的坐标增量dx,dy,dz,然后相加得:
( Xdx Ydy Zdz)
1 f p u t
(4—2)
u u


(4—3)
上式即理想流体运动微分方程式,又称欧拉运动 微分方程式。该式是牛顿第二定律的表达式,因此是 控制理想流体运动的基本方程式。 1755年欧拉在所著的《流体运动的基本原理》中 建立了欧拉运动微分方程式,及上一节所述的连续性 微分方程式。对于理想流体的运动,含 ux, uy, uz 有和 p四个未知量,由式(3—30)和式(3—36)组成的基本方 程组,满足未知量和方程式数目一致,流动可以求解。 因此说,欧拉运动微分方程和连续性微分方程奠定了 理想流体动力学的理论基础。
1 p p ( dx dy) ab( xdx ydy) x y 1 dp ab( xdx ydy)
将方程组化为全微分形式:
积分,得
x2 y2 p ab c' 2
令p=常数 即得等压面方程
x y c
2 2
等压面是以坐标原点为中心的圆。
duy dux duz dx dy dz dt dt dt
1 p x

dx dy dz
p y
p z


1.引人限定条件: ①.作用在流体上的质量力只有重力:X=Y=0,Z=-g;
( Xdx Ydy Zdz) gdz
②.不可压缩,恒定流: C ,
p' p u 2g 2 gh0 (4—27) g
根据上述原理,将测速管和测风管组合 成测量点流速的仪器,图4—4所示,与迎流 孔(测速孔)相通的是测速管,与侧面顺流孔 (测压孔或环形窄缝)相通的是测压管。考 虑到粘性流体从迎流孔至顺流孔存在粘性效 应,以及皮托管队员流场的干扰等影响,引 用修正系数C:
相加带入后得:
( Xdx Ydy Zdz)
duy dux duz dx dy dz dt dt dt
1 p x

dx dy dz
p y
p z

gz
p g

u2 2
C
z
p
u2 2g
C
2 u12 p2 u 2 z1 z2 2g 2g
u C 2g p' p C 2 gh0 g
图4—4 毕托管构造
录像
相关文档
最新文档