华中农业大学----植物生理学-----光合作用ppt课件
合集下载
《光合作用》PPT课件
![《光合作用》PPT课件](https://img.taocdn.com/s3/m/09633b780a4c2e3f5727a5e9856a561252d3219a.png)
A.营养组织
B.机械组织
C.保护组织
D.分生组织
5.“枯木逢春”的意思是枯干的树到了春天,又恢复了活力,“枯树”仍能生长的原因是
它具有( A )
A.分生组织
B.输导组织
C.营养组织
D.保护组织
C 6 . 下 列 各 项 中 不 属 于 人 体 组 织 的 是 (
)
A.上皮组织
B.肌肉组织
C.分生组织
上皮组织
分布:覆盖在身体内外和管腔表面 功能:保护、 排泄、分泌、 吸收
皮肤
小肠上皮
血液 功能:营养、 支持、保护、连接
骨骼上的肌肉
心脏壁上的肌肉
胃壁上的肌肉
肌肉组织
组成:由肌细胞构成 功能:能收缩和舒张
神经组织 组成:主要由神经细胞构成 功能:能够接受刺激,产生并传导兴奋
动物的几种主要组织及其分布与功能
动物组织 上皮组织
特点、分布
细胞排列紧密,细胞间质少 皮肤,口腔,胃,肠等处
保护作用 分泌作用
功能
结缔组织 肌肉组织 神经组织
分布广,细胞间隙大,细胞 间质多 骨组织,血液,脂肪组织, 肌腱
平滑肌——胃,肠等管壁 骨骼肌——附着在骨骼上 心肌——心脏特有
由神经细胞构成 大脑,脊髓等
细胞分化形成组织
-.
?
细胞分裂: 细胞一分为二,成为两个相似的 新细胞。
在生物体生长发育过程中,其中 大多数细胞发生了变化,形成了 多种多样的细胞。
细胞的分化: 在细胞分裂和生长的基础上, 进一步形成不同形态和结构的细 胞群的过程。
分裂——细胞数目增多 生长——细胞体积增大 分化——细胞种类增多
D.神经组织
THANKS
B.机械组织
C.保护组织
D.分生组织
5.“枯木逢春”的意思是枯干的树到了春天,又恢复了活力,“枯树”仍能生长的原因是
它具有( A )
A.分生组织
B.输导组织
C.营养组织
D.保护组织
C 6 . 下 列 各 项 中 不 属 于 人 体 组 织 的 是 (
)
A.上皮组织
B.肌肉组织
C.分生组织
上皮组织
分布:覆盖在身体内外和管腔表面 功能:保护、 排泄、分泌、 吸收
皮肤
小肠上皮
血液 功能:营养、 支持、保护、连接
骨骼上的肌肉
心脏壁上的肌肉
胃壁上的肌肉
肌肉组织
组成:由肌细胞构成 功能:能收缩和舒张
神经组织 组成:主要由神经细胞构成 功能:能够接受刺激,产生并传导兴奋
动物的几种主要组织及其分布与功能
动物组织 上皮组织
特点、分布
细胞排列紧密,细胞间质少 皮肤,口腔,胃,肠等处
保护作用 分泌作用
功能
结缔组织 肌肉组织 神经组织
分布广,细胞间隙大,细胞 间质多 骨组织,血液,脂肪组织, 肌腱
平滑肌——胃,肠等管壁 骨骼肌——附着在骨骼上 心肌——心脏特有
由神经细胞构成 大脑,脊髓等
细胞分化形成组织
-.
?
细胞分裂: 细胞一分为二,成为两个相似的 新细胞。
在生物体生长发育过程中,其中 大多数细胞发生了变化,形成了 多种多样的细胞。
细胞的分化: 在细胞分裂和生长的基础上, 进一步形成不同形态和结构的细 胞群的过程。
分裂——细胞数目增多 生长——细胞体积增大 分化——细胞种类增多
D.神经组织
THANKS
植物光合作用ppt课件
![植物光合作用ppt课件](https://img.taocdn.com/s3/m/4431cd8f8ad63186bceb19e8b8f67c1cfbd6ee6e.png)
光合作用的重要性
总结词
光合作用对植物生长、发育和生态系统功能至关重要,它为植物提供能量和养 分,坚持生态平衡。
详细描写
光合作用是植物获取能量和养分的主要方式,它为植物的生长和发育提供所需 的能量和有机物质。此外,光合作用还对坚持生态平衡和生物多样性具有重要 作用。
光合作用的发现及研究历程
总结词
光合作用的发现和研究历程揭示了人们对自然界认识的不断深入和发展,为现代农业和生态学研究奠定了基础。
光合作用进程中产生的能量和有 机物,可以帮助作物抵抗逆境, 如干旱、高温、盐碱等。通过提 高光合作用效率,可以增强作物
的抗逆能力。
在环境保护中的应用
1 2
空气净化
通过种植具有高光合作用效率的植物,可以吸取 空气中的二氧化碳,释放氧气,有助于改进空气 质量。
水土保持
植物通过光合作用固定土壤中Байду номын сангаас养分,同时植物 的根系可以防止土壤流失,有助于保持水土。
详细描写
光合作用的发现和研究历程可以追溯到18世纪,经过多个世纪的探索和研究,人们对光合作用的机制和原理有了 更深入的了解。这一历程不仅推动了植物生理学和生态学的发展,也为现代农业和生态学研究提供了重要的理论 基础和实践指导。
02
光合作用的进程
光反应阶段
光能吸取与转换
植物通过叶绿体中的色素吸取太阳光能,并将其转换为活跃的化 学能。
对自然界的物质循环和能量流动的意义
光合作用参与自然界的碳循环,将大气中的二氧化碳转化为有机物,对 坚持地球气候稳定具有重要作用。
光合作用将太阳能转化为化学能,为全部生态系统提供能量,驱动自然 界的能量流动。
光合作用对坚持自然界的生态平衡和生物多样性具有重要意义,是生态 系统稳定和健康的关键。
光合作用ppt免费课件
![光合作用ppt免费课件](https://img.taocdn.com/s3/m/e20250d3dc88d0d233d4b14e852458fb760b3861.png)
详细描述
光合作用的能量转换是植物吸收光能后,将这个能量转化为化学能,存储在葡萄糖中。这个过程是地球上最重要 的能量转换过程之一,它为整个生物圈提供了基础能量来源。
光合作用中的物质转换
总结词
光合作用中的物质转换是指植物在光合作用过程中,将二氧化碳和水等无机物质转化为葡萄糖和氧气 的有机物质的过程。
详细描述
温度对光合作用的影响主要体 现在酶的活性上。在一定的温 度范围内,光合作用速率随温 度的升高而加快;但当温度过 高时,光合作用速率会降低。
水是光合作用的原料之一,水 分不足会导致光合作用速率下 降。同时,植物通过蒸腾作用 散失水分,这也会对光合作用 产生影响。
提高光合作用效率的方法
优化光照条件
保持适宜的水分供应
详细描述
光合作用是地球上最重要的化学反应 之一,它利用光能将无机的二氧化碳 和水转换成有机物质,并释放氧气, 为生物圈提供食物和氧气。
光合作用的重要性
总结词
光合作用为生物圈提供食物、氧气和能量,维持生态平衡和生物多样性。
详细描述
光合作用是地球上所有生物的食物来源,它产生的有机物质是生物体生存和繁 衍的基础。同时,光合作用释放的氧气也是生物呼吸所需的重要气体,对维持 生态平衡和生物多样性具有重要意义。
在光合作用中,植物通过一系列的生化反应,将吸收的二氧化碳和水等无机物质转化为葡萄糖和氧气 等有机物质。这个过程需要叶绿体中的叶绿素作为催化剂,并需要光能提供能量。
04
光合作用的效率与影响因素
光合作用的效率
光合作用是植物、藻类和 某些细菌利用光能将二氧 化碳和水转化为葡萄糖, 并释放氧气的过程。
光合作用的效率取决于多 种因素,包括光照强度、 光质、温度、水分、二氧 化碳浓度等。
光合作用的能量转换是植物吸收光能后,将这个能量转化为化学能,存储在葡萄糖中。这个过程是地球上最重要 的能量转换过程之一,它为整个生物圈提供了基础能量来源。
光合作用中的物质转换
总结词
光合作用中的物质转换是指植物在光合作用过程中,将二氧化碳和水等无机物质转化为葡萄糖和氧气 的有机物质的过程。
详细描述
温度对光合作用的影响主要体 现在酶的活性上。在一定的温 度范围内,光合作用速率随温 度的升高而加快;但当温度过 高时,光合作用速率会降低。
水是光合作用的原料之一,水 分不足会导致光合作用速率下 降。同时,植物通过蒸腾作用 散失水分,这也会对光合作用 产生影响。
提高光合作用效率的方法
优化光照条件
保持适宜的水分供应
详细描述
光合作用是地球上最重要的化学反应 之一,它利用光能将无机的二氧化碳 和水转换成有机物质,并释放氧气, 为生物圈提供食物和氧气。
光合作用的重要性
总结词
光合作用为生物圈提供食物、氧气和能量,维持生态平衡和生物多样性。
详细描述
光合作用是地球上所有生物的食物来源,它产生的有机物质是生物体生存和繁 衍的基础。同时,光合作用释放的氧气也是生物呼吸所需的重要气体,对维持 生态平衡和生物多样性具有重要意义。
在光合作用中,植物通过一系列的生化反应,将吸收的二氧化碳和水等无机物质转化为葡萄糖和氧气 等有机物质。这个过程需要叶绿体中的叶绿素作为催化剂,并需要光能提供能量。
04
光合作用的效率与影响因素
光合作用的效率
光合作用是植物、藻类和 某些细菌利用光能将二氧 化碳和水转化为葡萄糖, 并释放氧气的过程。
光合作用的效率取决于多 种因素,包括光照强度、 光质、温度、水分、二氧 化碳浓度等。
华中农业大学----植物生理学-----光合作用ppt课件
![华中农业大学----植物生理学-----光合作用ppt课件](https://img.taocdn.com/s3/m/a5b33b516f1aff00bfd51e2e.png)
影响叶绿素形成的条件: 1、光照 光是叶绿体发育和叶绿素合 成必不可少的条件 2、温度 最适温度20-30oC 3、矿质元素 氮、镁、铁、铜、锰、锌
.
4、水分 缺水影响叶绿素的合成,并促进叶 绿素的分解 5、氧气 强光下,氧参与叶绿素的光氧化, 缺氧会阻碍叶绿素的合成
.
叶片中光合色素的分布
.
正常叶子的叶绿素与类胡萝卜素的比 值约为3:1,叶绿素a与叶绿素b的比值 约为3:1,叶黄素与胡萝卜素约为2:1。
叶色:绿色
黄色(类胡萝卜素较稳定)
红色(低温--- 较多糖分---可 溶性糖形成花青素)
.
秋季的北京香山: 光线充足,秋季干旱 少雨,昼夜温差较大
影响植物体内糖分变化的因素: 1、较强的光照有利于有利于树叶中糖分的积累 2、秋季低温,新叶把储藏的淀粉粒转化为糖,提高自身
抵御寒冷的能力 3、较大的昼夜温差有利于植物体内糖分的积累 4、干旱时,为了减少水分蒸发,会将体内的营养物质转
E/KJ.mol-1 297 289 259 222 209 197 172
(二)光合色素的吸收光谱——物质 对不同波长光的吸收情况
.
chlb B-胡萝卜素
叶黄素
藻红蛋白 藻蓝蛋白
chla
.
Chla在蓝紫光区吸收带偏向短 波光,吸收带较窄,吸收峰较低
Chla在红光区吸收带偏向长 波光,吸收带较宽,吸收峰较高
光合作用中释放的oo证明氧气来源于水光解水光解三光合作用的重要性1把无机物转变为有机物2将光能转变成化学能3维持大气o人口急增人口急增食物不足食物不足资源匮乏资源匮乏环境恶化环境恶化依赖依赖光合生产光合生产人类面临人类面临四大问题四大问题一叶绿体的结构气孔叶肉叶绿体类囊体腔基粒类囊体基质类囊体atp合成e光系统光系统双层膜控制代谢物质进出的屏障类囊体基质基粒类囊体膜称光合膜含有光合色素将光能转变为化学能基质光合产物淀粉形成和贮藏的场所二光合色素的结构与性质光合色素在叶绿体中的分布光合色素都包埋在类囊体膜中以非共价键与蛋白质结合在一起形成色素蛋白以吸收和传递光能
.
4、水分 缺水影响叶绿素的合成,并促进叶 绿素的分解 5、氧气 强光下,氧参与叶绿素的光氧化, 缺氧会阻碍叶绿素的合成
.
叶片中光合色素的分布
.
正常叶子的叶绿素与类胡萝卜素的比 值约为3:1,叶绿素a与叶绿素b的比值 约为3:1,叶黄素与胡萝卜素约为2:1。
叶色:绿色
黄色(类胡萝卜素较稳定)
红色(低温--- 较多糖分---可 溶性糖形成花青素)
.
秋季的北京香山: 光线充足,秋季干旱 少雨,昼夜温差较大
影响植物体内糖分变化的因素: 1、较强的光照有利于有利于树叶中糖分的积累 2、秋季低温,新叶把储藏的淀粉粒转化为糖,提高自身
抵御寒冷的能力 3、较大的昼夜温差有利于植物体内糖分的积累 4、干旱时,为了减少水分蒸发,会将体内的营养物质转
E/KJ.mol-1 297 289 259 222 209 197 172
(二)光合色素的吸收光谱——物质 对不同波长光的吸收情况
.
chlb B-胡萝卜素
叶黄素
藻红蛋白 藻蓝蛋白
chla
.
Chla在蓝紫光区吸收带偏向短 波光,吸收带较窄,吸收峰较低
Chla在红光区吸收带偏向长 波光,吸收带较宽,吸收峰较高
光合作用中释放的oo证明氧气来源于水光解水光解三光合作用的重要性1把无机物转变为有机物2将光能转变成化学能3维持大气o人口急增人口急增食物不足食物不足资源匮乏资源匮乏环境恶化环境恶化依赖依赖光合生产光合生产人类面临人类面临四大问题四大问题一叶绿体的结构气孔叶肉叶绿体类囊体腔基粒类囊体基质类囊体atp合成e光系统光系统双层膜控制代谢物质进出的屏障类囊体基质基粒类囊体膜称光合膜含有光合色素将光能转变为化学能基质光合产物淀粉形成和贮藏的场所二光合色素的结构与性质光合色素在叶绿体中的分布光合色素都包埋在类囊体膜中以非共价键与蛋白质结合在一起形成色素蛋白以吸收和传递光能
《植物生理学》第四章 光合作用ppt课件
![《植物生理学》第四章 光合作用ppt课件](https://img.taocdn.com/s3/m/1c78f22bf90f76c660371a80.png)
成一条长的代谢传递带,使代谢顺利进行。
二、类囊体膜上的蛋白复合体
1.蛋白复合体的概念和种类 蛋白复合体:由多种亚基、多种成分组成的复合体。 主要有四类:光系统Ⅰ(PSI)
光系统Ⅱ(PSⅡ) Cytb6/f复合体 ATP酶复合体(ATPase)。
15
2.蛋白复合体在类囊体膜上的分布特点
➢ PSⅡ主要存在于基 粒片层的堆叠区, ➢ PSⅠ与ATPase存 在于基质片层与基粒 片层的非堆叠区, ➢ Cytb6/f复合体分布 较均匀。
它的主要功能是控制物质的进出,维持光 合作用的微环境。
外膜(outer membrane) 非选择性膜, 分子量小于10000的物质如蔗糖、核酸、 无机盐等能自由通过。
内膜(inner membrane) 选择透性膜,CO2、 O2、H2O可自由通过;Pi、磷酸丙糖、双 羧酸、甘氨酸等需经膜上的运转器才能通 过;蔗糖、C5`C7糖的二磷酸酯、NADP+、 PPi等物质则不能通过。
第四章 植物的光合作用
1
碳素营养方式的不同分为两大类:
自养植物 (antophyte)
异养植物 (heterophyte)
自养生物把二氧化碳转变成有机物的过程叫 碳素同化作用(carbon assimilation)。
细菌光 合作用
绿色植物 光合作用
化能合 成作用
三种碳素同化方式的异同点:
过程
碳素来源 能量来源 供H体
示意基质类囊体与基粒类囊体
光合色素存在于类囊体膜上,类囊体是光能吸收 与转换的场所,所以,类囊体膜也称光合膜 (photosynthetic membrane)。 高等植物的类囊体垛叠成基粒,其意义有二:
1、膜的垛叠意味着捕获光能机构的高度密集,
二、类囊体膜上的蛋白复合体
1.蛋白复合体的概念和种类 蛋白复合体:由多种亚基、多种成分组成的复合体。 主要有四类:光系统Ⅰ(PSI)
光系统Ⅱ(PSⅡ) Cytb6/f复合体 ATP酶复合体(ATPase)。
15
2.蛋白复合体在类囊体膜上的分布特点
➢ PSⅡ主要存在于基 粒片层的堆叠区, ➢ PSⅠ与ATPase存 在于基质片层与基粒 片层的非堆叠区, ➢ Cytb6/f复合体分布 较均匀。
它的主要功能是控制物质的进出,维持光 合作用的微环境。
外膜(outer membrane) 非选择性膜, 分子量小于10000的物质如蔗糖、核酸、 无机盐等能自由通过。
内膜(inner membrane) 选择透性膜,CO2、 O2、H2O可自由通过;Pi、磷酸丙糖、双 羧酸、甘氨酸等需经膜上的运转器才能通 过;蔗糖、C5`C7糖的二磷酸酯、NADP+、 PPi等物质则不能通过。
第四章 植物的光合作用
1
碳素营养方式的不同分为两大类:
自养植物 (antophyte)
异养植物 (heterophyte)
自养生物把二氧化碳转变成有机物的过程叫 碳素同化作用(carbon assimilation)。
细菌光 合作用
绿色植物 光合作用
化能合 成作用
三种碳素同化方式的异同点:
过程
碳素来源 能量来源 供H体
示意基质类囊体与基粒类囊体
光合色素存在于类囊体膜上,类囊体是光能吸收 与转换的场所,所以,类囊体膜也称光合膜 (photosynthetic membrane)。 高等植物的类囊体垛叠成基粒,其意义有二:
1、膜的垛叠意味着捕获光能机构的高度密集,
植物生理学-第四章ppt课件
![植物生理学-第四章ppt课件](https://img.taocdn.com/s3/m/9fb848fe580216fc700afdfb.png)
光合势: 是反映作物光合功能的潜势,即指单位土地面积上, 作物全生育期或某一阶段生育期内有多少平方米叶 面积在进行干物质生产,
第二节 叶绿体与光合色素
一、叶 绿 体
二、光合色素
1 分类
叶绿素类 (chlorophyll)
类胡萝卜素类 (carotenoid)
叶绿素类a
(蓝绿色)
叶绿素类b
(黄绿色)
磷 光
~ 31千卡
叶绿素分子受光激发时电子能量水平图解
叶绿素的生物合成
合成前体: ð- 氨基酮戊酸
合成途径:
合成条件:
光照 温度 矿质元素
光合作用的机理
原初反应
光
反 应 电子传递和
光合磷酸化
光能的吸收、传递与转换
(光能转换成电能)
基粒片层上
(电能 活跃的化学能)
暗 反 碳素同化 应
(活跃的化学能
H2O的光解和O2的释放,但不能形 成NADPH。(NADP+不足)
光合磷酸化机理
化学渗透学说(P. Mitchell 1961)
第四节 二氧化碳的固定与还原
• C3 途径(还原的戊糖途径、卡尔文循环
The Calvin cycle):C3植物
• C4 途径(C4 pathway)(四碳双羧酸途径):
电子传递和光合磷酸化(photophosphorylation) (电能转换成活跃的化学能)
两个光系统
光合链(“Z”链)
光系统 I : 光系统 II :
证明:“红降”现象 双光增益效应(爱默生效应Emerson effect)
光合电子传递链(“Z”链)
光合磷酸化
在光下叶绿体把光合电子传递与磷
photophosphorylation 酸化作用相偶联,使ADP与Pi形
第二节 叶绿体与光合色素
一、叶 绿 体
二、光合色素
1 分类
叶绿素类 (chlorophyll)
类胡萝卜素类 (carotenoid)
叶绿素类a
(蓝绿色)
叶绿素类b
(黄绿色)
磷 光
~ 31千卡
叶绿素分子受光激发时电子能量水平图解
叶绿素的生物合成
合成前体: ð- 氨基酮戊酸
合成途径:
合成条件:
光照 温度 矿质元素
光合作用的机理
原初反应
光
反 应 电子传递和
光合磷酸化
光能的吸收、传递与转换
(光能转换成电能)
基粒片层上
(电能 活跃的化学能)
暗 反 碳素同化 应
(活跃的化学能
H2O的光解和O2的释放,但不能形 成NADPH。(NADP+不足)
光合磷酸化机理
化学渗透学说(P. Mitchell 1961)
第四节 二氧化碳的固定与还原
• C3 途径(还原的戊糖途径、卡尔文循环
The Calvin cycle):C3植物
• C4 途径(C4 pathway)(四碳双羧酸途径):
电子传递和光合磷酸化(photophosphorylation) (电能转换成活跃的化学能)
两个光系统
光合链(“Z”链)
光系统 I : 光系统 II :
证明:“红降”现象 双光增益效应(爱默生效应Emerson effect)
光合电子传递链(“Z”链)
光合磷酸化
在光下叶绿体把光合电子传递与磷
photophosphorylation 酸化作用相偶联,使ADP与Pi形
《光合作用》课件ppt
![《光合作用》课件ppt](https://img.taocdn.com/s3/m/e333a2531fb91a37f111f18583d049649b660ee1.png)
温度对光合作用过程中各种反应的影响
温度对光合作用过程中的各个反应均有影响。例如,暗反应更容易受到温度变化的影响,而光反应相对较稳定 。
二氧化碳浓度对光合作用的影响
二氧化碳浓度与光合作用速
率呈正相关
在一定范围内,随着二氧化碳浓度的增加,光合作用 速率也逐渐增加。当二氧化碳浓度过高时,光合作用 速率也会受到抑制。
二氧化碳浓度对光合作用过
程中各种反应的影响
二氧化碳浓度对暗反应的影响更大。如果二氧化碳浓 度过低,会导致暗反应受阻,从而影响整个光合作用 过程。
05
光合作用的应用
提高农作物产量
要点一
品种选育
要点二
优化种植结构
通过选育光合作用效率高的作物品种 ,提高农作物的产量和品质。
根据当地的气候条件和土壤特点,合 理安排农作物的种植比例和密度,以 提高整体的光合作用效率。
在医学和生物技术中的应用
治疗疾病
光合作用过程中产生的氧气可以用于治疗一些疾病,如肺炎等。
促进伤口愈合
光合作用产生的营养物质可以促进伤口愈合。
在生物技术中的应用
光合作用可以用于基因工程等领域的研究,为生物技术的开发提供新的思路和方法。
06
学习光合作用的建议和展望
学习光合作用的重要性
生物进化
光合作用是地球上生物生存和进化的基础,通过光合作 用,植物可以制造有机物质,并释放氧气,为其他生物 提供生存的必需条件。
地球上的碳元素主要以二氧化碳的形式存在,植物通过 光合作用固定了大量的碳元素,减少了大气中的二氧化 碳浓度,减缓了全球变暖的趋势。
光合作用固定的碳元素,一部分用于植物自身的生长发 育,一部分储存在生物圈中,形成了地球上庞大的碳库 ,对地球的生态平衡具有重要意义。
温度对光合作用过程中的各个反应均有影响。例如,暗反应更容易受到温度变化的影响,而光反应相对较稳定 。
二氧化碳浓度对光合作用的影响
二氧化碳浓度与光合作用速
率呈正相关
在一定范围内,随着二氧化碳浓度的增加,光合作用 速率也逐渐增加。当二氧化碳浓度过高时,光合作用 速率也会受到抑制。
二氧化碳浓度对光合作用过
程中各种反应的影响
二氧化碳浓度对暗反应的影响更大。如果二氧化碳浓 度过低,会导致暗反应受阻,从而影响整个光合作用 过程。
05
光合作用的应用
提高农作物产量
要点一
品种选育
要点二
优化种植结构
通过选育光合作用效率高的作物品种 ,提高农作物的产量和品质。
根据当地的气候条件和土壤特点,合 理安排农作物的种植比例和密度,以 提高整体的光合作用效率。
在医学和生物技术中的应用
治疗疾病
光合作用过程中产生的氧气可以用于治疗一些疾病,如肺炎等。
促进伤口愈合
光合作用产生的营养物质可以促进伤口愈合。
在生物技术中的应用
光合作用可以用于基因工程等领域的研究,为生物技术的开发提供新的思路和方法。
06
学习光合作用的建议和展望
学习光合作用的重要性
生物进化
光合作用是地球上生物生存和进化的基础,通过光合作 用,植物可以制造有机物质,并释放氧气,为其他生物 提供生存的必需条件。
地球上的碳元素主要以二氧化碳的形式存在,植物通过 光合作用固定了大量的碳元素,减少了大气中的二氧化 碳浓度,减缓了全球变暖的趋势。
光合作用固定的碳元素,一部分用于植物自身的生长发 育,一部分储存在生物圈中,形成了地球上庞大的碳库 ,对地球的生态平衡具有重要意义。
植物生理学 光合作用ppt课件
![植物生理学 光合作用ppt课件](https://img.taocdn.com/s3/m/7606deba312b3169a551a4b3.png)
ppt精选版
45
三、光合磷酸化
概念:叶绿体在光下把无机磷和ADP转化成ATP。 光合作用中磷酸化与电子传递是偶联的,偶联因子又称ATP酶,位于光合 膜上
ppt精选版
46
米切尔(P.Mitchell)提 出的化学渗透学说
在光合电子传递过程中,H2O光解产生质子,及通过PQ穿梭把质 子由间质转移到类囊体腔,这样形成了类囊体膜内外的质子梯度
❖ 双光增益效应或爱默生效应(Emerson effect)在远红光 照射下,如补充红光,则量子产额大增。比两种波长的光单 独照射的总和还要多。
红降和双光增益效应证明:光合作用存在两个光系统;并且可 以独立或者接力完成光反应过程。
ppt精选版
38
❖ 光系统I(photosystemI,简称PSI):在类囊体膜的外侧, PSI的作用中心色素分子是P700。是长波光反应,其主要特 征是NADP的还原。电子供体质体兰素PC,电子受体X。
❖ (二)巨大的能量转换站
日光能转化为化学能(ATP),1970年,全世界的 能耗,只占光和储能的1/10,光和储能相当于24万个三门峡 水电站的能量。
❖ (三)维持大气中氧气和CO2的平衡,保护环境。
没有光合作用,地球内3000年就会缺氧。
❖ (四) 作物产量构成的主要因素。
ppt精选版
3
第二节 叶绿体及叶绿体色素 chloroplast
叶绿素是双羧酸的酯,一个羧基被甲醇所酯化,另一个羧基被叶 绿醇所酯化。
不溶于水,溶于有机溶剂,容易被光分解
卟啉环中的镁可被H+或Cu2+所置换,铜代反应
天线色素:大多数叶绿素a和全部叶绿素b分子和类胡萝卜素具有 收集光能和传递光能的作用。
植物生理学--光合作用 ppt课件
![植物生理学--光合作用 ppt课件](https://img.taocdn.com/s3/m/fe2aeb586529647d272852f6.png)
淀粉
6CO2+11H2O+18ATP+12NADPH+12H+
PP磷T课酸件 己糖+18ADP+17Pi+115 2NADP+
卡尔文循环的调节
C3途径中的酶 RuBP羧化酶 NADP-GAP脱氢酶
FBP酯酶
SBP酯酶
Ru5P激酶
都属于光调节酶
这些酶在光下活化,以满足光合;而在暗中钝 化,减少底物消耗,使C3循环得以自动调节。
RuBP羧化酶的活性与叶绿体间质中的pH值和 Mg2+含量有密切关系。
PPT课件
16
(二)C4 途径
M.D.Hatch和C.R.Slack(1966)研究证实,在一
光合效率高的植物中,其光合固定CO2 后的第一 个稳定性产物是C4 -二羧酸,由此发现了另一条 CO2 的同化途径——C4 途径,也称C4 -二羧酸途 径或Hatch-Slack循环。
第四章 光合作用
第3节 光合作用机理
二、电子传递与光合磷酸化
(一)光合电子传递 Z 形光合链
①两个光系统串联,最终电子供体是H2O,最终 电子受体是NADP+。
②两个光系统间有一系列的电子载体。 ③传递过程偶联着磷酸化作用,形成ATP。
④各电子载体是以氧化还原电位高低成Z形串联
排列,两处是“上坡”其余“下坡”。
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
(二)光合磷酸化
( 1 )非环式光合 磷酸化
( 2 )环式光合磷 酸化
PPT课件
机理
P.Mitchell (1961)提出了 化学渗透学说
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
照光后 黑暗
叶绿素荧光
红色(极微弱)
叶绿素磷光
.
荧光现象:叶绿素溶液在透射光下呈 绿色,而在反射光下呈红色的现象。
➢离体色素溶液为什ቤተ መጻሕፍቲ ባይዱ易发荧光? ➢这是因为溶液中缺少能量受体或电 子受体的缘故。
➢色素发射荧光的能量与用于光合作 用的能量是相互竞争的,这就是叶绿 素荧光常常被认作光合作用无效指标 的依据。
E---每摩尔光子的能量(KJ) L---阿佛加德罗常数 6.02×1023 h---普朗克常数 6.6262 ×10-34J.s c---光速 2.9979×108m . S-1 λ---波长 nm
.
不同波长的光子所持的能量
光 紫外 紫 蓝 绿 黄 橙 红
λ/nm 小于400 400~425 425~490 490~560 560~580 580~640 640~740
※ 第三章 光合作用
(4+6)
.
假设光合作用是一个物 质生产过程,那么: 1)原料、产品是什么? 2)工厂、车间是什么? 3)工人有哪些? 4)生产流程是怎样? 5)制约因素有哪些?
.
第一节 光合作用概述 第二节 光合色素 第三节 光合作用的机制 ※ 第四节 同化物的运输与分配 ※ 第五节 影响光合作用的因素 第六节 光合作用与农业生产 ※
对提取的叶绿体色素浓溶液照 光,在与入射光垂直的方向上 可观察到呈暗红色的荧光
.
Chl + hν
chl*
基态 光子能量 激发态
.
激发态能量转变的方式:
1.放热
2.发射荧光与磷光 激发态叶绿素分子回至基态时,以光子形式释放 能量。
3.色素分子间的能量传递
4.光化学反应 激发态色素分子把激发的电子传递给受体分子。
E/KJ.mol-1 297 289 259 222 209 197 172
(二)光合色素的吸收光谱——物质 对不同波长光的吸收情况
.
chlb B-胡萝卜素
叶黄素
藻红蛋白 藻蓝蛋白
chla
.
Chla在蓝紫光区吸收带偏向短 波光,吸收带较窄,吸收峰较低
Chla在红光区吸收带偏向长 波光,吸收带较宽,吸收峰较高
.
教学目标
1. 掌握叶绿体结构及光合色素种类和性质; 2. 初步弄清光合作用机理(重点和难点); 3. 了解光呼吸的基本过程和主要生理功能; 4. 掌握同化物运输与分配的规律; 5. 了解光合作用的影响因素; 6. 掌握光合作用与农业生产的关系.
.
第一节 光合作用概述
一、光合作用的概念
碳素同化作用(carbon assimilation):自养生物吸收CO2转变 为有机物的过程。
生物的碳素同化作用包括:细菌光合 作用、绿色植物光合作用、化能合成作用。
光合作用(photosynthesis):绿色植 物吸收光能,同化CO2和H2O,制造有机 物并释放O2的过程。
.
光合作用概图
.
二、光合作用的早期研究
◆1771年英国化学家J.Priestley发现植物 可净化空气,他实际上发现了植物放氧; ◆1779年荷兰人Jan Ingenhousz发现植物只 有在光下才净化空气,证明光的参与; ◆1782年瑞士科学家J.Sennebier发现CO2可 以促进植物在光下产生"纯净"空气;
量来自光能。
.
CO2 + H2O
光
(CH2O) + O2
叶绿体
用叶绿体代替绿色植物,说明叶绿 体是进行光合作用的基本单位与场所。
◆1941年Ruben等用H2O*证明氧气来源于 水光解
光
CO2 + 2H2O※
(CH2O) + O2※ + H2O
叶绿体
光合作用中释放的O2来自H2O。
.
三、光合作用的重要性 1、把无机物转变为有机物 2、将光能转变成化学能 3、维持大气O2和CO2的相对平衡
.
叶绿素a:蓝绿色
C32H30ON4Mg
COOCH3 COOC20H39
叶绿素b:黄绿色
C32H28O2N4Mg
COOCH3 COOC20H39
.
※
Mg偏向带正电荷,N
偏向带负电荷,亲水
“头部”
醋酸铜处理可以保
存绿色植物标本。
亲脂性“尾巴”
叶绿素的功能:大多数 chla和全部 chlb具有收集和传递光能的作用,少数 chla分子能将光能转化为电能。
.
2、类胡萝卜素
胡萝卜素:橙黄色 不饱和碳氢化合物:C40H56 叶黄素:黄色 胡萝卜素衍生的醇类:C40H56O2
类胡萝卜素的功能:收集光能,防 护光照伤害叶绿素
.
3、藻胆素
藻红蛋白
藻胆蛋白
吸收和传递光能
藻蓝蛋白
.
三、光合色素的光学性质
(一)辐射能量 光既是电磁波又是运动着的离子流。
光子携带的能量与光的波长成反比: E=Lhν=Lhc/λ
.
人类面临 四大问题
人口急增 食物不足 资源匮乏 环境恶化
依赖 光合生产
.
第二节 光合色素
一、叶绿体的结构叶绿体的形态与分布
叶绿体 叶肉
气孔
基粒
.
类囊体
类囊体
.
类囊体腔
ATP合成E 光系统Ⅰ
光系统Ⅱ
基粒类囊体
.
基质类囊体
.
双层膜(控制代谢物质进出的屏障)
类囊体(基质~、基粒~,) 垛迭
基粒 类囊体膜称光合膜,含有光合色素,将光 能转变为化学能 基质(光合产物淀粉形成和贮藏的场所)
.
◆1864年J.Sachs观察到光照下叶绿体中的 淀粉粒增大,证明光合中有有机物产生;
◆ 19世纪末至20世纪30年代末:
光
6CO2 + 6H2O
C6H12O6 + 6O2
绿色植物
光合作用本质上是一个氧化还原反应,
H2O是电子供体(还原剂),被氧化到O2 的水平;CO2是电子受体(氧化剂),被 还原到糖的水平,氧化还原反应所需的能
.
二、光合色素的结构与性质
光合色素在叶绿体中的分布 光合色素都包埋在类囊体膜中,以 非共价键与蛋白质结合在一起形成色素 蛋白,以吸收和传递光能。
.
叶绿体中光合色素的分布
亲水头部 亲脂尾部
.
光合色素主要有三类:叶绿素、类 胡萝卜素、藻胆素
1、叶绿素(chlorophyll,chl) 主要有Chla和Chlb,不溶于水,易溶 于乙醇、丙酮等有机溶剂。
叶绿素在红光区(640~660nm)和蓝紫光区 ( 430~450nm)有最强吸收。
叶绿素对橙光、黄光吸收较少,其中尤以对绿 光的吸收最少,所以叶绿素的溶液呈绿色。
.
类胡萝卜素的最大吸收峰在蓝紫光区。
.
(三)荧光现象和磷光现象 光与叶绿体的相互作用
.
叶绿素的光激发
.
叶绿素溶液
透射光 反射光
绿色 红色