大连理工大学矩阵与数值分析部分课后习题#(精选.)

合集下载

第1章--1(矩阵与数值分析)

第1章--1(矩阵与数值分析)

,而
a1010.2718, kn3 n4 ,所以它是
e2.7182 8的1具8 有2 4位有效字的近似值。
如果取近似值 b 2 .7 1 8 2 1 0 1 0 .2 7 1 8 2 ,因
eb0.000091103 2
b 也只是 e 的具有4位有效数字的近似值。 同样我们可以分析出 a1010.271作8为 x0.02718 28
以求解20阶线性方程组为例,如果用Cramer法则求解, 在算法中的乘、除运算次数将大于
21!(约9.7×1020次)
使用每秒一亿次的串行计算机计算,完成运算耗时约30万年!
Cramer算法是“实际计算不了”的。为此,人们研究出著 名的Gauss消去法,它的计算过程已作根本改进,使得上述 例子的乘、除运算仅为3060次,这在任何一台电子计算机上 都能很快完成。
特别地,当 n时2,
f(x 1 ,x 2 ) f(a 1 ,a 2 ) x f1 A x 1 a 1 x f2 A x 2 a 2
现将上述估计式应用到四则运算.
(1)加法
fx1,x2x1x2
x1 x2 (a1 a2 ) x1 a1 x2 a2
两个近似数相加,其运算结果的 精度不比原始数据的任何一个精度高。
的绝对误差界和相对误差界。
解:ea0.000 28 ,因1此8 其绝2对误差界为:
e a 0.0003
相对误差界为: ea 0.00030.00011103705.0002。
a 2.718
此例计算中不难发现,绝对误差界和相对误差界并不唯一。 我们要注意它们的作用。
“四舍五入” 时误差界的取法
当准确值 位x数比较多时,常常按四舍五入的原则取
b0
,则有 x1 baab bb

大连理工大学《矩阵与数值分析》学习指导与课后参考答案第三章、逐次逼近法

大连理工大学《矩阵与数值分析》学习指导与课后参考答案第三章、逐次逼近法

第三章 逐次逼近法1.1内容提要1、一元迭代法x n+1=φ(x n )收敛条件为:1)映内性x ∈[a,b],φ(x) ∈[a,b] 2)压缩性∣φ(x) -φ(y)∣≤L ∣x-y ∣其中L <1,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。

由微分中值定理,如果∣φ’∣≤L <1,显然它一定满足压缩性条件。

2、多元迭代法x n+1=φ(x n )收敛条件为:1)映内性x n ∈Ω,φ(x n ) ∈Ω 2)压缩性ρ(▽φ)<1,其中▽φ为x n 处的梯度矩阵,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。

3、当φ(x )= Bx+f 时,收敛条件为,ρ(B )<1,此时x n+1= Bx n +f ,在不断的迭代中,就可以得到线性方程组的解。

4、线性方程组的迭代解法,先作矩阵变换 U L D A --= Jacobi 迭代公式的矩阵形式 f Bx b D x U L D x n n n +=++=--+111)(Gauss-Seidel 迭代公式的矩阵形式 f Bx b L D Ux L D x n n n +=-+-=--+111)()( 超松弛迭代法公式的矩阵形式f Bx b L D x U D L D x k k k +=-++--=--+ωωωωω111)(])1[()(三种迭代方法当1)(<B ρ时都收敛。

5、线性方程组的迭代解法,如果A 严格对角占优,则Jacob 法和Gauss-Seidel 法都收敛。

6、线性方程组的迭代解法,如果A 不可约对角占优,则Gauss-Seidel 法收敛。

7、Newton 迭代法,单根为二阶收敛 2211'''21lim)(2)(lim---∞→+∞→--=-==--k k k k k k k k x x x x f f c x x ξξαα8、Newton 法迭代时,遇到重根,迭代变成线性收敛,如果知道重数m , )()('1k k k k x f x f m x x -=+仍为二阶收敛 9、弦割法)()())((111--+---=k k k k k k k x f x f x x x f x x 的收敛阶为1.618,分半法的收敛速度为(b-a )/2n-110、Aitken 加速公式11211112)(),(),(+----+-+--+---+---===k k k k k k k k k k k x x x x x x x x x x x ϕϕ1.2 典型例题分析1、证明如果A 严格对角占优,则Jacob 法和Gauss-Seidel 法都收敛。

大连理工大学-矩阵与数值分析第一章上

大连理工大学-矩阵与数值分析第一章上

–对C的类型系统改进和扩充(更安全)
–支持面向对象
C++保持与C兼容(快速普及) C++不是纯粹的面向对象的语言

33
1.2 程序的编译过程
34
1.3 C++的词法记号
关键字 各种常量 操作符 标识符 分隔符

35
1.4 C++程序的结构
#include <iostream.h> int main() { cout<<”this is the start of something wonderful!”; cout<<endl; cout<<”And now we can say even more!”; return 0; }
Sub1
Sub2
….
Subn
各子流程实现----函数化 Func1 Func2 …. Funcn
根据系统的流程组建软件,通过函数的调用实现
17
面向对象思想
问题域 (Domain) 以问题域中的事物为中心思考问题 Object1 Object2
….
Objectn
对象归类----抽象化 Class1 Class2 …. Classn
返回类型
{ 函数体; }
50
函数名(形式参数1, 形式参数2,。。。,形式参数
3.2 参数的传递
值调用
#include <iostream.h> double Volume(double radius,double height); int main() { double v; v=Volume(3.0,3.0); cout<<"Volume="<<v<<endl; return 0; } double Volume(double radius,double height) { double result=3.14 * radius * radius * height; return result; }

矩阵与数值分析部分习题解答

矩阵与数值分析部分习题解答

其具有6位有效数字。 故
*

y y* zz , 于是, y
*
1 4 1 1 k n 26 10 y y 10 10 2 2 2
y y* y z
* *
z z* z
*


0.5 104 0.5 106 59.9833 4.09407
可见,用公式 f ( x) ln x
k
k 2 k A A ( I A ) 5.证明ρ(A)<1时,

1 注意,绝对收敛的函数幂级数 f t t 1 t , t 1,则 证明(1): k 0 1 t k 1 k s t f t t f t kt kt 令 2 1 t 1 t 2 k 1 k 0
3 。 节点为: x1 h , x2 2h , x3 3h 4 8 8
相应的方程组为:
2 1 h 2 0 1 h 2 0 u1 h u2 1 2 2 u 3


2 先令 y x x 1 ,由于开方用六位函数表,则 y 的误差为已
知, 故应看成 z g ( y) ln( y) , 由 y的误差限
* ln( y ) ln( y )。 误差限
y y * 求g(y)的
解:当x=30时,求 y 30 302 1 , 用六位开方表得
xi a ih,
h 称为步长。
i 0,1,
,N, h
ba N
于是我们得区间 I=[a, b]的一个网格剖分。 xi称为网格节点,
h
a x0 x1

大连理工大学 矩阵与数值分析 第4章-4.2非线性方程的迭代解法

大连理工大学 矩阵与数值分析 第4章-4.2非线性方程的迭代解法

敛呢?不管非线性方程 f (x) = 0 的形式如何,总可以构造
ϕ(x) = x − k(x)
x
(k(x) ≠ 0)
(4-25)
作为方程(4-17)求解的迭代函数。 因为
ϕ′(x) = 1− k′(x) f (x) − k(x) f ′(x)
可知 | ϕ ′(x) | 在根 α 附近越小时 ,其局部收敛速度越快,
则迭代法 xk+1 = ϕ (xk ) 是 p 阶收敛。
练习1 取迭代函数
ϕ (x) = x + a(x2 −5)
要使迭代法收敛到 x* = 5, 则a应取何值?
且其收敛阶是多少?
解: ϕ′( x) = 1+ 2a x , 令
( ) ϕ′ 5 = 1+ 2a 5 < 1, 即有
−1 < 1+ 2a
x = x − f (x) = ϕ(x)
f ′(x)
(4-24)
建立的迭代格式至少是平方收敛。
证 根据定理4.6, 只需证明 ϕ′(α ) = 0 。 因为
ϕ′(α
)
=
⎡ ⎢
x


f f
(x) ′( x)
⎤ ⎥ ⎦
' x=α
=
⎡ ⎢1 ⎣

(
f
′(
x))2 − ( f ′(
f (x) x))2
f
′′( x)
x1 = 2× 0 −1 = −1 , x2 = 2(−1)3 −1 = −3 , x3 = 2(−3)3 −1 = −55 , L
显然, 当 k → ∞时, xk → −∞ ,故迭代法发散。 上述例子表明,迭代法的收敛与发散,依赖于迭代

大连理工大学矩阵与数值分析上机作业

大连理工大学矩阵与数值分析上机作业
s=s+abs(x(i));
end
case2%2-范数
fori=1:n
s=s+x(i)^2;
end
s=sqrt(s);
caseinf%无穷-范数
s=max(abs(x));
end
计算向量x,y的范数
Test1.m
clearall;
clc;
n1=10;n2=100;n3=1000;
x1=1./[1:n1]';x2=1./[1:n2]';x3=1./[1:n3]';
xlabel('x');ylabel('p(x)');
运行结果:
x=2的邻域:
x =
1.6000 1.8000 2.0000 2.2000 2.4000
相应多项式p值:
p =
1.0e-003 *
-0.2621 -0.0005 0 0.0005 0.2621
p(x)在 [1.95,20.5]上的图像
程序:
[L,U]=LUDe.(A);%LU分解
xLU=U\(L\b)
disp('利用PLU分解方程组的解:');
[P,L,U] =PLUDe.(A);%PLU分解
xPLU=U\(L\(P\b))
%求解A的逆矩阵
disp('A的准确逆矩阵:');
InvA=inv(A)
InvAL=zeros(n);%利用LU分解求A的逆矩阵
0 0 0.5000 -0.2500 -0.1250 -0.0625 -0.0625
0 0 0 0.5000 -0.2500 -0.1250 -0.1250
0 0 0 0 0.5000 -0.2500 -0.2500

董波老师,大连理工大学,矩阵数值分析课件,第二章

董波老师,大连理工大学,矩阵数值分析课件,第二章
作业:
P85 3、6、8、9、12、15、17、 19、20(2)
第2章 矩阵变换和计算
2.1 矩阵的三角分解及其应用 2.2 特殊矩阵的特征系统 2.3 矩阵的Jordan分解 2.4 矩阵的奇异值分解
2.1 矩阵的三角分解及其应用
2.1.1 Gauss消去法与矩阵的LU分解 2.1.2 Gauss列主元消去法与带列主元的LU分解 2.1.3 对称矩阵的Cholesky分解 2.1.4 三对角矩阵的三角分解
(0) 2 (0) 3 (0) 4
第一步,消去 r
( 0) 2
、r
(0) 3
和r
( 0) 4
中的 x1 , 即用
4 (0) 8 (0) ( 0) 6 (0) ( 0) r r 1 r1 r3 和 r1 r4( 0) 得 2 、 2 2 2
四位数学家之一”(阿基米德、牛顿、高斯和欧拉)。
高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学 领域。人们评价到:若把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人 肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是 高斯。
从方程组角度考虑Gauss消去法
2 0 0 0
1 1 0 1 1 1 3 5 5 4 6 8
1 0 1 1 2 2 2 4


L2 L1 A
2 1 0 1 0 0 0 0
L3 L2 L1 A
1 1 1 1 1
1) ai(2 第i行 第2行 (1) , i 3,, n a22 a11 a12 a13 a1n b1 (1) (1) 0 a a 22 23 (1) (1) a2 n b2 0 ( 2) 0 a 33 (1) (1) ann bn ( 2) 0 0 a n3

大连理工大学数值分析历年真题与答案(研究生期末卷)

大连理工大学数值分析历年真题与答案(研究生期末卷)


. ,
A 2=
4 2 (3)设 A 2 4 , 则 A 1= 谱半径 ( A) =
,
A =
,
A F=
, .
, 2-条件数 cond 2 ( A) =
, 奇异值为
线
(4)设 A C 44 ,特征值 1 2 2, 3 4 3 ,特征值 2 是半单的,而特征值 3 是 亏损的,则 A 的 Jordan 标准型 J
x 3 ( x [1,1]) 的二次最佳平方逼近多项式, 构造 Gauss 型求积公式 f ( x )dx A0 f ( x0 ) A1 f ( x1 ) , 并验证
1
1
其代数精度.
A-3


理 工
计算方法 数学系

学 2006 年试题
试卷: A 考试形式: 闭卷 试卷共 8 页
A-5
1 3 四、 (4 分)求 Householder 变换矩阵将向量 x 2 化为向量 y 0 . 2 0
五、 (12 分)写出解线性方程组的 Jacobi 法,G-S 法和超松弛(SOR)法的矩阵表示形式, 并根据迭代法 x ( k 1) Bx ( k ) f 对任意 x ( 0) 和 f 均收敛的充要条件为 ( B) 1 , 证明若线性方 程组 Ax b 中的 A 为严格对角占优矩阵, 则超松弛(SOR)法当松弛因子 (0,1] 时收敛.
师:张宏伟
一、填空(每一空 2 分,共 42 分) 1.为了减少运算次数,应将表达式.

16 x 5 17 x 4 18 x 3 14 x 2 13 x 1 x 4 16 x 2 8 x 1

大连理工_2012矩阵与数值分析大作业

大连理工_2012矩阵与数值分析大作业

矩阵与数值分析学生:学号:任课老师:金光日教学班号:(2)班院系:电子信息与电气工程学部《矩阵与数值分析》课程数值实验题目1.给定n 阶方程组A x b =,其中6186186186A ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭,7151514b ⎛⎫ ⎪⎪ ⎪= ⎪ ⎪⎪⎝⎭则方程组有解(1,1,,1)T x = 。

对10n =和84n =,分别用Gauss 消去法和列主元消去法解方程组,并比较计算结果。

1答: 程序1. Gauss 消元法function x=DelGauss(A,b) % Gauss 消去法 [n,m]=size(A); det=1; %存储行列式值 x=zeros(n,1); for k=1:n-1 for i=k+1:n if A(k,k)==0 return endm=A(i,k)/A(k,k); for j=k+1:nA(i,j)=A(i,j)-m*A(k,j); endb(i)=b(i)-m*b(k); enddet=det*A(k,k); %计算行列式enddet=det*A(n,n);for k=n:-1:1 %回代求解for j=k+1:nb(k)=b(k)-A(k,j)*x(j);endx(k)=b(k)/A(k,k);end2. 列主元Gauss消去法:function x=detGauss(A,b)% Gauss列主元消去法[n,m]=size(A);nb=length(b);det=1; %存储行列式值x=zeros(n,1);for k=1:n-1amax=0; %选主元for i=k:nif abs(A(i,k))>amaxamax=abs(A(i,k));r=i;endendif amax<1e-10return;endif r>k %交换两行for j=k:nz=A(k,j);A(k,j)=A(r,j);A(r,j)=z;endz=b(k);b(k)=b(r);b(r)=z;det=-det;endfor i=k+1:n %进行消元m=A(i,k)/A(k,k);for j=k+1:nA(i,j)=A(i,j)-m*A(k,j);endb(i)=b(i)-m*b(k);enddet=det*A(k,k);enddet=det*A(n,n);for k=n:-1:1 %回代求解for j=k+1:nb(k)=b(k)-A(k,j)*x(j);endx(k)=b(k)/A(k,k);end矩阵A和b的构造clc;clear;n=10;%n=84;A=eye(n)*6+diag(ones(1,n-1)*8,-1)+diag(ones(1,n-1),1); b=[7,15*ones(1,n-2),14]';计算结果:(1)n=10时Gauss消元法>>x=DelGauss(A,b)x =1.00001.00001.00001.00001.00001.00001.00001.00001.00001.0000列主元Gauss消去法>>x=detGauss(A,b)x =1111111111(2) n=84时Gauss消元法>>x=DelGauss(A,b) x =1.0e+008 *0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0001 0.0002 -0.0003 0.0007 -0.0013 0.0026 -0.0052 0.0105 -0.0209 0.0419 -0.0836 0.16650.6501-1.25822.3487-4.02635.3684列主元Gauss消去法>>x=detGauss(A,b) x =1.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00001.0000 1.0000 1.00001.00001.0000 1.0000结果分析由上述实验结果可知,对于n=10采用Gauss 消去法和Gauss 列主元消去法得到的实验结果是相同的,而对于n=84,Gauss 消去法所得到的结果是错误的,Gauss 列主元消去法得到的结果是正确的。

大连理工大学 矩阵与数值分析 第2节线性多步法20160306

大连理工大学 矩阵与数值分析 第2节线性多步法20160306
i = n, n −1, L, n − k
插值节点的不同取法就导致不同的多步法。
(1)Adams外插法(显式多步法)
取k+1个节点tn-k,…,tn-1,tn及函数值f(tn-i,u(tn-i)) i=k,…,1,0
构造区间[tn,tn+1]上逼近f(t,u(t))的k次Lagrange插值多项式Ln,k(t)
其中
k +1
∑ ( ) u = u + n+1
n h bk +1i f tn−i+1, un−i+1
i=0
=∫ ∏ bk+1i
0 k+1 τ + j dt
−1
j=0 j≠i
j−i
且 t = tn+1 +τ h , τ ∈[−1, 0]。
注: t − tn− j+1 = tn+1 +τ h − tn + ( j −1) h = (τ + j ) h
第1章 常微分方程初值问题数值解法
§2 线性多步法
§2 线性多步法
前节所讨论的方法如Euler方法、改进Euler方法都称为单步法 (单步长法)。 因为它们只利用前一个点的信息来计算下一个点,
即,只用初始点u0计算u1; 一般说来,只用un来计算un+1。
线性单步法一般说来,精度是较低的。 为提高精度,我们考虑
3)内插法是隐式格式(稳定性好),外插法是 显式格式。
2.2 待定系数法(基于Taylor展开式的求解公式) 用数值积分法只能构造一类特殊的多步法,其系数 一般只满足:
ak=1,ak-m=-1 al=0,当l≠k-m, k。
本节我们将基于Taylor展开式来构造出更一般的求 解公式。

数值分析课后习题部分参考答案.

数值分析课后习题部分参考答案.

数值分析课后习题部分参考答案Chapter 1(P10)5. 求2的近似值*x ,使其相对误差不超过%1.0。

解: 4.12=。

设*x 有n 位有效数字,则n x e -⨯⨯≤10105.0|)(|*。

从而,1105.0|)(|1*nr x e -⨯≤。

故,若%1.0105.01≤⨯-n,则满足要求。

解之得,4≥n 。

414.1*=x 。

(P10)7. 正方形的边长约cm 100,问测量边长时误差应多大,才能保证面积的误差不超过12cm 。

解:设边长为a ,则cm a 100≈。

设测量边长时的绝对误差为e ,由误差在数值计算的传播,这时得到的面积的绝对误差有如下估计:e ⨯⨯≈1002。

按测量要求,1|1002|≤⨯⨯e 解得,2105.0||-⨯≤e 。

Chapter 2(P47)5. 用三角分解法求下列矩阵的逆矩阵:⎪⎪⎪⎭⎫ ⎝⎛--=011012111A 。

解:设()γβα=-1A。

分别求如下线性方程组:⎪⎪⎪⎭⎫ ⎝⎛=001αA ,⎪⎪⎪⎭⎫ ⎝⎛=010βA ,⎪⎪⎪⎭⎫ ⎝⎛=100γA 。

先求A 的LU 分解(利用分解的紧凑格式),⎪⎪⎪⎭⎫ ⎝⎛-----3)0(2)1(1)1(2)0(1)1(2)2(1)1(1)1(1)1(。

即,⎪⎪⎪⎭⎫ ⎝⎛=121012001L ,⎪⎪⎪⎭⎫⎝⎛---=300210111U 。

经直接三角分解法的回代程,分别求解方程组,⎪⎪⎪⎭⎫ ⎝⎛=001Ly 和y U =α,得,⎪⎪⎪⎭⎫ ⎝⎛-=100α;⎪⎪⎪⎭⎫ ⎝⎛=010Ly 和y U =β,得,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=323131β;⎪⎪⎪⎭⎫ ⎝⎛=100Ly 和y U =γ,得,;⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=313231γ。

所以,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=-3132132310313101A。

(P47)6. 分别用平方根法和改进平方根法求解方程组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----816211515311401505231214321x x x x 解:平方根法:先求系数矩阵A 的Cholesky 分解(利用分解的紧凑格式),⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----1)15(2)1(1)5(3)3(3)14(2)0(1)1(1)5(2)2(1)1(,即,⎪⎪⎪⎪⎪⎭⎫⎝⎛--=121332100120001L ,其中,TL L A ⨯=。

大连理工大学 矩阵与数值分析 第5章5.2.4Hermite与分段低次2017(春)

大连理工大学 矩阵与数值分析 第5章5.2.4Hermite与分段低次2017(春)

=
sin
⎛ ⎜⎝
π
2
⎞ ⎟⎠
=
1
,
f
′ ⎛⎜⎝
π
2
⎞ ⎟⎠
=
cos
⎛ ⎜⎝
π
2
⎞ ⎟⎠
=
0
,
H3 (x) =
f
⎛ ⎜⎝
π
4
⎞ ⎟⎠
⎛ ⎜ ⎜1 ⎜

2
x
π
−π
4
−π
⎝ 42
⎞ ⎟ ⎟ ⎟

⎛ ⎜ ⎜ ⎜
x
π
−π
2
−π
⎠⎝4 2
⎞2 ⎟ ⎟ ⎟ ⎠
+
f

⎛ ⎜⎝
π
4
⎞ ⎟⎠
⎛ ⎜⎝
x

π
4
⎞ ⎟⎠
⎛ ⎜ ⋅⎜ ⎜
二点三次Hermite插值多项
设已知函数 f(x) 在 2 个互异点 x1, x2 处的函数值和导数值:
f ( x1 ) , f ′( x1 ) ; f ( x2 ) , f ′( x2 ) ;
构造一个三次多项式 H3 ( x) = ax3 + bx2 + cx + d
使其满足插值条件
H3 ( x1 ) = f ( x1 ) , H3′ ( x1 ) = f ′( x1 ) ;
答案是否定的。原因在于插值节点增多导致插值多项式 的次数增高,而高次多项式的振荡次数增多有可能使插值多 项式在非节点处的误差变得很大。
例如,对于函数
f
(x
)
=
1
5 +x
2
在[-5,5]上构造等距节
xk

大连理工大学矩阵与数值分析上机作业13388

大连理工大学矩阵与数值分析上机作业13388

大连理工大学矩阵与数值分析上机作业课程名称:矩阵与数值分析研究生姓名:交作业日时间:2016 年12 月20日1.1程序:Clear all;n=input('请输入向量的长度n:')for i=1:n;v(i)=1/i;endY1=norm(v,1)Y2=norm(v,2)Y3=norm(v,inf)1.2结果n=10 Y1 =2.9290Y2 =1.2449Y3 =1n=100 Y1 =5.1874Y2 =1.2787Y3 =1n=1000 Y1 =7.4855Y2 =1.2822Y3 =1N=10000 Y1 =9.7876Y2 =1.2825Y3 =11.3 分析一范数逐渐递增,随着n的增加,范数的增加速度减小;二范数随着n的增加,逐渐趋于定值,无群范数都是1.2.1程序clear all;x(1)=-10^-15;dx=10^-18;L=2*10^3;for i=1:Ly1(i)=log(1+x(i))/x(i); d=1+x(i);if d == 1y2(i)=1;elsey2(i)=log(d)/(d-1);endx(i+1)=x(i)+dx;endx=x(1:length(x)-1);plot(x,y1,'r');hold onplot(x,y2);2.2 结果2.3 分析红色的曲线代表未考虑题中算法时的情况,如果考虑题中的算法则数值大小始终为1,这主要是由于大数加小数的原因。

第3题3.1 程序clear all;A=[1 -18 144 -672 2016 -4032 5376 -4608 2304 -512];x=1.95:0.005:2.05;for i=1:length(x);y1(i)=f(A,x(i));y2(i)=(x(i)-2)^9;endfigure(3);plot(x,y1);hold on;plot(x,y2,'r');F.m文件function y=f(A,x) y=A(1);for i=2:length(A); y=x*y+A(i); end;3.2 结果第4题4.1 程序clear all;n=input('请输入向量的长度n:')A=2*eye(n)-tril(ones(n,n),0);for i=1:nA(i,n)=1;endn=length(A);U=A;e=eye(n);for i=1:n-1[max_data,max_index]=max(abs(U(i:n,i))); e0=eye(n);max_index=max_index+i-1;U=e0*U;e1=eye(n);for j=i+1:ne1(j,i)=-U(j,i)/U(i,i);endU=e1*U;P{i}=e0;%把变换矩阵存到P中L{i}=e1;e=e1*e0*e;endfor k=1:n-2Ldot{k}=L{k};for i=k+1:n-1Ldot{k}=P{i}*Ldot{k}*P{i};endendLdot{n-1}=L{n-1};LL=eye(n);PP=eye(n);for i=1:n-1PP=P{i}*PP;LL=Ldot{i}*LL;endb=ones(n,2);b=e*b; %解方程x=zeros(n,1);x(n)=b(n)/U(n,n);for i=n-1:-1:1x(i)=(b(i)-U(i,:)*x)/U(i,i);endX=U^-1*e^-1*eye(n);%计算逆矩阵AN=X';result2{n-4,1}=AN;result1{n-4,1}=x;fprintf('%d:\n',n)fprintf('%d ',AN);4.2 结果n=51.0625 -0.875 -0.75 -0.5 -0.06250.0625 1.125 -0.75 -0.5 -0.06250.0625 0.125 1.25 -0.5 -0.06250.0625 0.125 0.25 1.5 -0.0625-0.0625 -0.125 -0.25 -0.5 0.0625n=101.0625 -0.875 -0.75 -0.5 -0.0625 1.0625 -0.875 -0.75 -0.5 -0.0625 0.0625 1.125 -0.75 -0.5 -0.0625 0.0625 1.125 -0.75 -0.5 -0.0625 0.0625 0.125 1.25 -0.5 -0.0625 0.0625 0.125 1.25 -0.5 -0.0625 0.0625 0.125 0.25 1.5 -0.0625 0.0625 0.125 0.25 1.5 -0.0625 -0.0625 -0.125 -0.25 -0.5 0.0625 -0.0625 -0.125 -0.25 -0.5 0.0625 1.0625 -0.875 -0.75 -0.5 -0.0625 1.0625 -0.875 -0.75 -0.5 -0.0625 0.0625 1.125 -0.75 -0.5 -0.0625 0.0625 1.125 -0.75 -0.5 -0.0625 0.0625 0.125 1.25 -0.5 -0.0625 0.0625 0.125 1.25 -0.5 -0.0625 0.0625 0.125 0.25 1.5 -0.0625 0.0625 0.125 0.25 1.5 -0.0625 -0.0625 -0.125 -0.25 -0.5 0.0625 -0.0625 -0.125 -0.25 -0.5 0.0625同样的方法可以算出n=20,n=30时的结果,这里就不罗列了。

大连理工大学《矩阵与数值分析》2007年真题答案

大连理工大学《矩阵与数值分析》2007年真题答案

大连理工大学应用数学系数学与应用数学专业2005级试A 卷答案课 程 名 称: 计算方法 授课院 (系): 应 用 数 学 系 考 试 日 期:2007年11 月 日 试卷共 6 页一、填空(每一空2分,共42分)1.为了减少运算次数,应将表达式.543242161718141311681x x x x x x x x -+---++- 改写为()()()()()()()1816011314181716-+++---+-x x x x x x x x x ;2.给定3个求积节点:00=x ,5.01=x 和12=x ,则用复化梯形公式计算积分dx e x ⎰-102求得的近似值为()15.02141--++e e , 用Simpson 公式求得的近似值为()15.04161--++e e 。

1.设函数()1,0,1)(3-∈S x s ,若当1-<x 时,满足0)(=x s ,则其可表示为()()33323111)(+++-+++=x c x c x c x s 。

4.已知12)2(,6)1(,0)0(===f f f ,则=]1,0[f 6 ,=]2,1,0[f 0 ,逼近)(x f 的Newton 插值多项式为x 6。

5.用于求()01=--=x e x f x 的根0=x 的具有平方收敛的Newton 迭代公式为:1121---⨯-=+k k x k x k k e x e x x 。

6.已知⎪⎪⎪⎭⎫ ⎝⎛=000101000-A ,则A 的Jordan 标准型是⎪⎪⎪⎭⎫ ⎝⎛000100000或⎪⎪⎪⎭⎫ ⎝⎛000000010;装订线7.设A 是n 阶正规矩阵,则=2A ()A ρ;8.求解一阶常微分方程初值问题t u t t u +-=')1()(2,00)(u t u =的向后(隐式)Euler 法的显式化的格式为:()211111+++-++=n n n n t h ht u u 。

大连理工大学矩阵与数值分析上机作业13388

大连理工大学矩阵与数值分析上机作业13388

共享知识分享快乐大连理工大学矩阵与数值分析上机作业课程名称:矩阵与数值分析研究生姓名:12 交作业日时间:日20 月年2016卑微如蝼蚁、坚强似大象.共享知识分享快乐第1题1.1程序:Clear ;all n=input('请输入向量的长度n:') for i=1:n;v(i)=1/i;endY1=norm(v,1)Y2=norm(v,2)Y3=norm(v,inf)1.2结果n=10 Y1 =2.9290Y2 =1.2449Y3 =1n=100 Y1 =5.1874Y2 =1.2787Y3 =1n=1000 Y1 =7.4855Y2 =1.2822Y3 =1N=10000 Y1 =9.7876Y2 =1.2825Y3 =11.3 分析一范数逐渐递增,随着n的增加,范数的增加速度减小;二范数随着n的增加,逐渐趋于定值,无群范数都是1.卑微如蝼蚁、坚强似大象.共享知识分享快乐第2题2.1程序;clear all x(1)=-10^-15;dx=10^-18;L=2*10^3; i=1:L fory1(i)=log(1+x(i))/x(i); d=1+x(i); d == 1ify2(i)=1;elsey2(i)=log(d)/(d-1);endx(i+1)=x(i)+dx;end x=x(1:length(x)-1););'r'plot(x,y1,on holdplot(x,y2);卑微如蝼蚁、坚强似大象.共享知识分享快乐2.2 结果2.3 分析红色的曲线代表未考虑题中算法时的情况,如果考虑题中的算法则数值大小始终为1,这主要是由于大数加小数的原因。

第3题3.1 程序;clear all A=[1 -18 144 -672 2016 -4032 5376 -4608 2304 -512];x=1.95:0.005:2.05; i=1:length(x);for y1(i)=f(A,x(i)); y2(i)=(x(i)-2)^9;end figure(3);plot(x,y1);;on hold卑微如蝼蚁、坚强似大象.共享知识分享快乐);'r'plot(x,y2,F.m文件y=f(A,x)function y=A(1); i=2:length(A);for y=x*y+A(i);;end3.2 结果第4题卑微如蝼蚁、坚强似大象.共享知识分享快乐4.1 程序;clear all n=input('请输入向量的长度n:')A=2*eye(n)-tril(ones(n,n),0); i=1:n for A(i,n)=1;end n=length(A);U=A; e=eye(n);for i=1:n-1[max_data,max_index]=max(abs(U(i:n,i))); e0=eye(n);max_index=max_index+i-1; U=e0*U; e1=eye(n); j=i+1:n fore1(j,i)=-U(j,i)/U(i,i);endU=e1*U;中把变换矩阵存到P P{i}=e0;% L{i}=e1; e=e1*e0*e;endk=1:n-2for Ldot{k}=L{k}; i=k+1:n-1forLdot{k}=P{i}*Ldot{k}*P{i};endend Ldot{n-1}=L{n-1};LL=eye(n);PP=eye(n); i=1:n-1for PP=P{i}*PP;LL=Ldot{i}*LL;endb=ones(n,2);解方程 %b=e*b;x=zeros(n,1);x(n)=b(n)/U(n,n); i=n-1:-1:1for卑微如蝼蚁、坚强似大象.共享知识分享快乐x(i)=(b(i)-U(i,:)*x)/U(i,i);end计算逆矩阵%X=U^-1*e^-1*eye(n);AN=X'; result2{n-4,1}=AN;result1{n-4,1}=x;,n)'%d:\n'fprintf(fprintf('%d ',AN);4.2 结果n=51.0625 -0.875 -0.75 -0.5 -0.0625-0.0625 0.0625 -0.75 1.125 -0.5-0.0625 0.125 0.0625 1.25 -0.5-0.0625 0.1250.25 0.06251.50.0625-0.5-0.25-0.0625 -0.125n=101.0625 -0.875 -0.75 -0.5 -0.0625 1.0625 -0.875 -0.75 -0.5 -0.0625 -0.0625 1.125 0.0625 -0.75 -0.5 -0.5 0.0625 1.125 -0.75 -0.0625 -0.0625 0.0625 0.125 1.25 1.25 -0.0625 -0.5 0.0625 0.125 -0.5-0.0625 0.250.250.0625 0.1251.5 1.5 -0.0625 0.1250.06250.0625 -0.0625 -0.125 -0.25 0.0625 -0.5 -0.0625 -0.125 -0.25 -0.5 -0.0625 -0.75 1.0625 -0.5 -0.0625 -0.875 -0.5 -0.75 1.0625 -0.875 -0.0625 -0.5 0.0625 1.125 -0.5 0.0625 1.125 -0.75 -0.0625 -0.75 1.25 0.125 0.0625 -0.0625 -0.0625 -0.5 -0.5 0.0625 0.125 1.250.25-0.0625 -0.0625 1.50.1250.0625 0.0625 0.250.1251.5-0.0625 -0.125 -0.25 0.0625-0.5 0.0625 -0.0625 -0.125 -0.25-0.5同样的方法可以算出n=20,n=30时的结果,这里就不罗列了。

大连理工大学程名松矩阵与数值分析计算方法-第3章

大连理工大学程名松矩阵与数值分析计算方法-第3章

1 (1 − ρ ( A ) ) > 0 一定存在 2 一种相容的矩阵范数 ⋅ ,使得 A ≤ ρ ( A) + ε 。
充分性 根据定理2.8,对于 ε =
又根据相容矩阵范数的性质, 再注意到上述关系式有 1 ρ ( A ) + ε = (1 + ρ ( A ) ) < 1 2 那么
A k ≤ A ≤ ( ρ ( A) + ε ) ≤ q k < 1
k→∞
k→∞
1⎞ lim ⎛ 1 + ⎟ k →∞ ⎜ ⎝ k⎠
k
lim sin k k →∞ k lim
lim
k →∞
k →∞
e− k
k
k
⎞ ⎛e 0 ⎞ ⎟ ⎜1 0 ⎟= A ⎟ =⎜ ⎟ ⎟ ⎜1 1 ⎟ ⎠ ⎠ ⎝
由矩阵序列极限的定义可以看出,矩阵序列收敛的性质和数 列收敛性质相似。 由定义可见,C m × n 中的矩阵序列的收敛相当于mn个数列同时 收敛。 因此可以用初等分析的方法来研究它。
∞ ∞
并且 则
lim Ak = A , k →∞
lim Bk = B
k →∞
lim A k B k = AB
k →∞
证 由
Ak Bk − AB = Ak Bk − Ak B + Ak B − AB
≤ B ⋅ Ak − A + Ak ⋅ Bk − B
由定理1和推论可知,结论成立。
性质3
n n lim Ak = A 并且 设 {Ak }k=1∈C × 中的矩阵序列,

⎛ 0.1 0.7⎞ 。 由于 A ∞ = 0.9 < 1 ,故 计算 ∑ A ,其中 A = ⎜ ⎟ k =0 ⎝ 0.3 0.6⎠ ∞ k ρ ( A ) < 1,从而 ∑ A 收敛,且有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档