1.3.1 第1课时 有理数的加法法则
人教版七年级数学上册《1.3.1有理数的加法》同步练习(1)含答案
1.3 有理数的加减法1.3.1 有理数的加法第1课时 有理数的加法法则01 基础题知识点1 有理数的加法法则知识提要:有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加; (2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数. 在每题后面的横线上填写和的符号或结果:(1)(-3)+(-5)=-(3+5)=-8;(2)(-16)+6=-(16-6)=-10.1.下列各式的结果,符号为正的是(C )A .(-3)+(-2)B .(-2)+0C .(-5)+6D .(-5)+52.(北海中考)计算(-2)+(-3)的结果是(A )A .-5B .-1C .1D .53.计算:(-12)+5=(B )A .7B .-7C .17D .-174.(玉林中考)下面的数与-2的和为0的是(A )A .2B .-2C .12D .-125.如果两个数的和是正数,那么(D )A .这两个数都是正数B .一个为正,一个为零C .这两个数一正一负,且正数的绝对值较大D .必属上面三种情况之一知识点2 有理数加法的应用6.(北流期中)比零下3 ℃多6 ℃的温度是(D )A .-9 ℃B .9 ℃C .-3 ℃D .3 ℃7.一个物体在数轴上做左右运动,规定向右为正,按下列方式运动,列出算式表示其运动后的结果:(1)先向左运动2个单位长度,再向右运动7个单位长度.列式:-2+7;(2)先向左运动5个单位长度,再向左运动7个单位长度.列式:-5+(-7).8.某人某天收入265元,支出200元,则该天节余65元.9.一艘潜艇所在高度为-80米,一条鲨鱼在潜艇上方30米处,则鲨鱼所在高度为-50米.10.已知飞机的飞行高度为10 000 m ,上升3 000 m 后,又上升了-5 000 m ,此时飞机的高度是8__000m . 02 中档题11.(安顺中考)计算-|-3|+1结果正确的是(C )A .2B .3C .-2D .412.有理数a 、b 在数轴上对应的位置如图所示,则a +b 的值(A )A .大于0B .小于0C .小于aD .大于b13.下列结论不正确的是(D )A .若a>0,b>0,则a +b>0B .若a<0,b<0,则a +b<0C .若a>0,b<0,且|a|>|b|,则a +b>0D .若a <0,b>0,且|a|>|b|,则a +b>014.若x 是-3的相反数,|y|=5,则x +y 的值为(D )A .2B .8C .-8或2D .8或-215.已知A 地的海拔高度为-53米,而B 地比A 地高30米,则B 地的海拔高度为-23米.16.已知两个数556和-823,这两个数的相反数的和是256. 17.计算:(1)120+(-120); (2)0+(-12); 解:原式=0. 解:原式=-12.(3)-9+(-11); (4)15+(-7);解:原式=-20. 解:原式=8.(5)-7+5; (6)-2.5+(-3.5);解:原式=-2. 解:原式=-6.(7)315+(-225); (8)-3.75+(-214). 解:原式=45. 解:原式=-6.03 综合题18.已知|m|=2,|n|=3,求m +n 的值.解:因为|m|=2,所以m =±2.因为|n|=3,所以n =±3.当m =2,n =3时,m +n =2+3=5;当m =2,n =-3时,m +n =2+(-3)=-1; 当m =-2,n =3时,m +n =(-2)+3=1;当m =-2,n =-3时,m +n =(-2)+(-3)=-5. 故m +n 的值为±1或±5.。
1.3.1有理数的加法(1)课件2021-2022学年人教版七年级数学上册
知识拓展
1. 有理数加法法则: (1)同号两数相加,取相同的符号,并把 绝对值 相加; (2)绝对值不相等的 异号 两数相加,取绝对值 较大 的加数 的符号,并用较大的绝对值 减去 较小的绝对值;互为相反数的两 个数相加得 0 ; (3)一个数同 0 相加,仍得这个数. 2. 两数相加时,首先确定 和 的符号,再确定 绝对值 的大 小,最后将绝对值相加或相减.
新知探究2 如果物体先向左运动3 m,再向右运动5 m,那么两次运动的最后结
果怎样?如何用算式表示?
算式:(-3)+5=2
新知探究2 如果物体先向右运动3 m,再向左运动5 m,那么两次运动的最后结
果怎样?如何用算式表示?
算式:3+(-5)=-2
课堂小结
符号相反的两个数相加,结果的符号与绝对值较大的加数的符 号相同,并用较大的绝对值减去较小的绝对值
(3)(-0.9)+1.5 (5)(-15)+(-32);
如果,红队进4个球,失2个球; (2)7+(-5)=2(元)
( ) 32
1
=1.5-0.9
6
=0.6
体验收获
今天我们学习了哪些知识? 1.有理数的加法法则是什么? 2.进行有理数的加法运算时需要注意哪几个步骤?
达标测试
1.用算式表示下面的结果: (1)温度由-4 ºC上升7ºC; (2)收入7元,又支出5元.
过关练习2
1.判断对错,并说明理由. (1)(-4)+6=-2( ) (2) 2+(-5)=3( ) (3)(-6)+4=-2( )
答案:×;×;√
2. 填空. 5+(-2)=_____, (-7)+2=______. 答案:3;-5
新知探究3
1.3.1有理数的加法(1)PPT课件
+5
+3
西
东
-1 0 1 2 3 4 5 6 7 8
+8
用算式 表示是
(+5)+(+3)=+8
.
11
情形 22、向西走5米,再向西走3米,两
次一共向东走了多少米 ?
-3
-5
西
东
-8 -7 -6 -5 -4 -3 -2 -1 0 1
-8
用算式
表示是
(-5)+(-3)= .
-
8
12
情形2 - 3
-5
3 6
1
2
.
2 、 3 .4 ( 4 .3 )
2、解: 原式 (4.33.4) 0.9
28
3 、 (3)(2)
4 、 ( 15)0.62
43
8
3、解:原式 ( 3 2)
43
17 12
4、 解 : 原式(15 0.625) 8
(1.6250.625)
1 .
29
-
+
+ -
-
.
15-5 17+6 18-8 8+6 10-5
小明在一条东西向的跑道上,先走了 5米,又走了3米,能否确定他现在位于 原来位置的哪个方向,与原来位置相距 多少米?
因为小明最后的位置与行走方向有关!
规定:向东为正,向西为负
思考:有哪几种不同的情况?写出
数学式子,并计算出结果.
.
10
情形1
1、 向东走5米,再向东走3米,
两次一共向东走了多少米 ?
(3)在爬行过程中,如果爬行1厘米奖励一粒 芝麻,则蚂蚁一共得到多少粒芝麻? 54粒
.
32
1.3.1 有理数的加法(第1课时)(教学课件)-2023-2024学年七年级数学上册同步备课系列
【详解】(1)解:26+(-32)+(-15)+34+(-38)+(-20)=45(吨) 答:经过3天,仓库里的面粉减少了. (2)280-(-45)=325(吨) 答:3天前仓库里有面粉325吨. (3)(26+32+15+34+38+20)×6 =165×6 =990(元) 答:这3天要付990元的装卸费.
【详解】解:(-10)-(+4)+(-7)-(-3)=-10-4-7+3, 故选B.
【点睛】本题考查化简多重符号,解题的关键是掌握化简方法,即:一 个数前面有偶数个负号,结果为正.一个数前面有奇数个负号,结果为 负.0前面无论有几个负号,结果都为0.
知识点三 有理数加法的实际应用
典例精析
【例3】手机支付给生活带来便捷,如图是王老师某日微信账单的收支 明细(正数表示收入,负数表示支出,单位:元),王老师当天微信 收支的最终结果是( ) A.收入25元 B.支出17元 C.支出1元 D.支出9元
【详解】解:由题意,得: -17+25+(-9)=-1; ∴王老师当天微信收支的最终结果是支 出1元; 故选C.
练一练
1.如图,小明在某运动APP中,设定了每天的步数目标为8000步.该 APP用目标线上方或下方的柱状图表示每天超过或少于目标数的步数, 如14日,小明少于目标数的步数为500步,则从13日到16日这四天中小 明一共走的步数为( ) A.27200 B.32000 C.35800 D.36800
课堂总结
有理数的加法法则:
确定类型
定符号
绝对值
同号
相同符号
学科网
异号(绝对值 取绝对值较大
1.3.1 第1课时 有理数的加法法则
第一章 有理数
1.3 1.3.1 第1课时 有理数的加法法则
学习指南
知识管理
归类探究
当堂测评
分层作业
课件目录
首页
末页
第1课时 有理数的加法法则
学习指南
教学目标 理解有理数加法的意义,初步掌握有理数的加法法则,并能准确地进行 有理数的加法运算. 情景问题引入 (多媒体展示)回答下列问题:
课件目录
首页
末页
第1课时 有理数的加法法则
9.规定一种新的运算:a⊗b=1a+1b,那么(-2)⊗(-3)= -56 . 10.已知|a|=8,|b|=2. (1)当 a,b 同号时,求 a+b 的值; (2)当 a,b 异号时,求 a+b 的值.
课件目录
首页
末页
第1课时 有理数的加法法则
解:(1)因为|a|=8,|b|=2,且 a,b 同号, 所以 a=8,b=2 或 a=-8,b=-2, 所以 a+b=10 或 a+b=-10. (2)因为|a|=8,|b|=2,且 a,b 异号, 所以 a=8,b=-2 或 a=-8,b=2, 所以 a+b=6 或 a+b=-6.
合适吗?请说明理由.
课件目录
首页
末页
第1课时 有理数的加法法则
解:(1)8+1=9,所以东京时间为上午 9:00. (2)不合适.15-13=2,也就是说纽约时间正好是凌晨 2:00,正在睡觉, 所以不合适.
课件目录
首页
末页
第1课时 有理数的加法法则
分层作业
点击进入word链接
课件目录
首页
末页
第1课时 有理数的加法法则
课件目录
首页
末页
有理数的加法(第1课时)课件
归纳:绝对值不相等的异号两数相加,取绝对值较大的加数的符 号,并用较大的绝对值减去较小的绝对值.
新知讲解
例1: 计算:(2)( ─ 4.7)+3.9
解:(2)( ─ 4.7)+3.9
(一判:异号两数相加)
= ─(
)
(二定:取绝对值较大的的符号)
= ─( | ─ 4.7 | ─ | 3.9 | ) = ─ 0.8
(三相减:用较大的绝对值减去 较大的绝对值)
练一练
1. 计算: (1). ( ─ 17)+ 13 (2). 0.5+(─ 1.7)
解:
(1). ( ─ 17)+13 = ─(| ─ 17 |─ | 13 | ) = ─(17─ 13) =─ 4
(2). 0.5+(─ 1.7) = ─ (| ─ 1.7 |─ | 0.5| ) = ─ (1.7─ 0.5) = ─ 1.2
(4) 0 +正数 (5) 0 +0 (6)0 +负数
(7)负数 +正数 (8)负数 +0 (9)负数 +负数 三个类型: 一.同号两数相加 (1)正数 +正数 (9)负数 +负数 二.异号两数相加 (3)正数 +负数 (7)负数 +正数 三.一个数同0相加 (2)正数 +0 (4) 0 +正数 (5) 0 +0
─17
─
32
─32
─15
17
+
2
2
15
─17
─
2
─2
新知讲解
8.大于─2.5而不大于3的整数的和为__3________. 9.a为绝对值小于2022的所有整数的和,则a的值为__0_.
【人教版 七年级数学 上册 第一章】1.3.1 第1课时《 有理数的加法法则》教学设计1
【人教版七年级数学上册第一章】1.3.1 第1课时《有理数的加法法则》教学设计1一. 教材分析人教版七年级数学上册第一章1.3.1节主要介绍了有理数的加法法则。
这部分内容是有理数运算的基础,对于学生理解和掌握有理数的概念、性质以及运算规律具有重要意义。
本节课的内容将为后续的乘法、除法、减法运算打下基础。
二. 学情分析七年级的学生已经初步掌握了有理数的概念和性质,对加法运算有一定的了解。
但学生在运算过程中,可能对符号的判断和运算顺序的掌握还不够熟练。
因此,在教学过程中,需要帮助学生巩固有理数的概念,提高运算速度和准确性。
三. 教学目标1.理解有理数的加法法则,能够熟练地进行有理数的加法运算。
2.培养学生的运算能力,提高学生解决实际问题的能力。
3.培养学生的合作交流意识,提高学生的逻辑思维能力。
四. 教学重难点1.教学重点:掌握有理数的加法法则,能熟练进行有理数的加法运算。
2.教学难点:符号的判断和运算顺序的掌握。
五. 教学方法采用情境教学法、合作学习法和激励评价法进行教学。
通过设置生活情境,激发学生的学习兴趣;学生进行小组讨论,培养学生的合作交流意识;运用激励评价,提高学生的自信心和积极性。
六. 教学准备1.准备教学课件,包括例题、练习题等。
2.准备黑板、粉笔等教学工具。
3.准备相关的生活情境案例。
七. 教学过程1.导入(5分钟)利用生活情境案例,引入本节课的主题。
例如,小红购买了3个苹果,小蓝购买了2个苹果,他们一共购买了多少个苹果?让学生思考并回答,引出有理数的加法运算。
2.呈现(10分钟)通过课件呈现有理数的加法法则,引导学生观察和思考。
讲解加法法则的内涵,让学生理解并掌握加法运算的规律。
3.操练(10分钟)让学生进行有理数的加法运算练习,教师及时给予指导和反馈。
可设置一些具有挑战性的题目,激发学生的学习兴趣。
4.巩固(10分钟)学生进行小组讨论,分享各自的解题心得。
教师引导学生总结加法运算的注意事项,巩固所学知识。
1.3.1 第1课时 有理数的加法法则
C.(-3)+0=-3
D.3+(-2)=5
有理数的加法运算 【例题】 计算:(1)(-12)+(-3);
(2)(-4.5)+(+6.3);
(3)(-99)+0;
(4)
+
2 5
+
-
2 5
;
(5)
-5
1 4
+3.5.
分析:利用有理数的加法法则进行计算,一般先确定符号,再计算
第1课时 有理数的加法法则
学前温故 新课早知
1.如果电梯上升5层记为+5,那么电梯下降2层应记为( B )
A.+2 B.-2 C.+5 D.-5
2.计算:
(1)3+2= 5
;(2)(+5)+0= 5
;
(3)1.3+2.6= 3.9
;(4)23 + 16=
5 6
.
学前温故 新课早知
1.有理数的加法法则: (1)同号两数相加,取 相同 的符号,并把 绝对值 相加. (2)绝对值不相等的异号两数相加,取绝对值较 大 的加数的符号, 并用较 大 的绝对值减去较 小 的绝对值.互为相反数的两个数相 加得 0 . (3)一个数同 0 相加,仍得 这个数 . 2.下列计算结果错误的是( D ) A.(+5)+(-6)=-1
5.
如图,数轴上A,B两点所表示的有理数的和是 -1
.
解析: (-3)+(+2)=-(3-2)=-1.
6.计算:
(1)(-3.5)+(+2.8);
(2)
人教版数学七年级上册1.3.1第1课时有理数的加法法则优秀教学案例
3.引导学生积极参与小组讨论,培养学生的团队意识和沟通能力。
4.及时对小组活动进行评价,给予肯定和鼓励,提高学生的积极性。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,总结自己的优点和不足,提高学生的自我认知能力。
2.采用多元化的评价方式,关注学生的知识掌握程度、能力培养和情感态度等方面。
本节课的内容与学生的日常生活紧密相连,使得学生在学习过程中能够感受到数学的实用性和趣味性,进一步激发学生学习数学的兴趣和积极性。通过本节课的学习,学生不仅掌握了有理数的加法法则,还培养了良好的学习习惯和团队合作能力。
二、教学目标
(一)知识与技能
1.让学生掌握有理数的加法法则,并能够运用这些法则解决实际问题。
(二)问题导向
1.提出具有挑战性的问题,引导学生独立思考,培养学生解决问题的能力。
2.引导学生通过观察、分析、归纳等方法,自主探索并解决问题。
3.在学生解决问题过程中,适时给予提示和指导,帮助学生克服困难。
4.鼓励学生相互交流、讨论,促进学生思维的碰撞,提高学生的合作能力。
(三)小组合作
1.将学生分成若干小组,鼓励学生分工合作,共同完成任务。
3.设计具有启发性的问题,引导学生主动思考,激发学生的求知欲。
4.教师以轻松愉快的方式与学生交流,营造良好的学习氛围,使学生愿意积极参与课堂活动。
(二)讲授新知
1.引导学生观察实际问题,提出问题,激发学生的思考。
2.教师通过讲解、示范等方法,引导学生理解并掌握有理数的加法法则。
3.在讲解过程中,注意运用数学语言,准确表达概念和规则,让学生清晰理解知识点。
3.鼓励学生相互评价、互相学习,培养学生的批判性思维和评价能力。
最新人教版七年级数学上册1.3.1_第1课时_有理数的加法法则1教案(精品教学设计)
1.3 有理数的加减法1.3.1 有理数的加法第1课时有理数的加法法则1.理解有理数加法的意义;2.初步掌握有理数加法法则;3.能准确地进行有理数的加法运算,并能运用其解决简单的实际问题.一、情境导入我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围.例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数.本章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球为4+(-2),黄队的净胜球为1+(-1).这里用到正数与负数的加法.二、合作探究探究点一:有理数的加法法则计算:(1)(-0.9)+(-0.87);(2)(+456)+(-312); (3)(-5.25)+514; (4)(-89)+0.解析:利用有理数加法法则,首先判断这两个数是同号两数、异号两数还是同0相加,然后根据相应法则来确定和的符号和绝对值.解:(1)(-0.9)+(-0.87)=-1.77;(2)(+456)+(-312)=113; (3)(-5.25)+514=0; (4)(-89)+0=-89.方法总结:两数相加时,应先判断两数的类型,然后根据所对应的法则来确定和的符号与绝对值.探究点二:有理数加法的应用【类型一】 有理数加法在实际生活中的应用1000股,下表为本周内每日该股票的涨跌情况:(1)(2)本周内每股最高价多少元?最低价多少元?解析:(1)用买进的价格加上周一、周二、周三的涨跌价格,然后根据有理数加法运算法则进行计算即可求解;(2)分别求出这五天的价格,然后即可得解.解:(1)67+(+4)+(+4.5)+(-1)=74.5(元),故星期三收盘时,每股74.5元;(2)周一:67+4=71元,周二:71+4.5=75.5元,周三:75.5+(-1)=74.5元,周四:74.5+(-2.5)=72元,周五:72+(-6)=66元,∴本周内每股最高价为75.5元,最低价66元.方法总结:股票每天的涨跌都是在前一天的基础上进行的,不要理解为每天都是在67元的基础上涨跌.另外熟记运算法则并根据题意准确列出算式也是解题的关键.【类型二】 和有理数性质有关的计算问题已知________.解析:因为|a|=5,所以a =-5或5,因为b 的相反数为4,所以b=-4,则a +b =-9或1.解:-9或1方法总结:本题涉及绝对值和相反数的定义,在解决绝对值问题时要注意考虑全面,避免造成漏解.三、板书设计加法法则⎩⎪⎪⎨⎪⎪⎧(1)同号两数相加,取相同的符号,并把绝对值 相加.(2)绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小 的绝对值.(3)互为相反数的两数相加得0.(4)一个数同0相加,仍得这个数.本课时利用情境教学、解决问题等方法进行教学,使学生在情境中提出问题,并寻找解决问题的途径,因此不知不觉地进入学习氛围,使学生从被动学习变为主动探究.在本节教学中,要坚持以学生为主体,教师为主导,致力联系学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中.。
1.3.1 第1课时 有理数的加法法则
+(7-6)=1
0
-18
巩固练习
2.计算:
1.计算:(1)10+(-4) (2)(+9)+7(3)(-15)+(-32) (4)(-9)+0(5)100+(-199) (6)(-0.5)+4.4(7)(-1.5)+(1.25) (8)
(1) (-3)+(- 9)
(4)(-4.7)+ 3.9
= -(3+9)= -12
=-(4.7-3.9)= -0.8
(2) 10 + (-6)
(3) +(- )
= +(10-6) = 4
(1) (-3)+(-9)
(2) 10 + (-6)
(3) +(- )
解:
(4)(-4.7)+ 3.9
想一想
如果小狗先向西行走2米,再继续向西行走1米,则小狗两次一共向哪个方向行走了多少米?
东
想一想
解:两次行走后,小狗向西走了(2+1)米.用算式表示:
(- 2)+(- 1)= -(2 + 1)(米)
你从上面两个式子中发现了什么?
比一比
同号两数相加,取相同的符号,并把绝对值相加.
相加
相减
结果是0
仍是这个数
有理数的加法法则:
一个数同0相加,仍得这个数.
有理数加法法则
(1)同号两数相加,结果取相同符号,并把绝对值相加.(2)异号两数相加,结果取绝对值较大的加数的符号,并将较大的绝对值减较小的绝对值.互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数.
1.3.1 有理数的加法 第1课时 有理数的加法法则
[解析] 盈利和亏损是一对具有相反意义的词语,解决此类问题,要先这 样处理:一般地,盈利记为正,亏损记为负.
解:盈利记为正,亏损记为负, 由题意,得(+48)+(-26)=22(元). 答:商场卖出这两件衣服共盈利22元.
然后确定用哪条法则,最后求结果.
解:(1)(-39)+(-21)=-(39+21)=-60. (2)(+15)+(-17)=-(17-15)=-2. (3)(-23)+23=0. (4)|-10|+(-4)=10+(-4)=10-4=6.
【归纳总结】两个有理数加法运算的步骤:
目标二 能利用有理数的加法法则解决实际问题
【归纳总结】用有理数的加法解决实际问题的步骤: (1)用正负数表示实际问题中的两个量; (2)求这两个量的和; (3)根据计算结果写出相应答案.
总结反思
知识点 有理数的加法法则
1.同号两数相加,取___相_同____的符号,并把_绝__对_值____相加.
2.绝对值不相等的异号两数相加,取_绝__对_值__较_大__的加数的符号,
第一章 有理数
1.3.1 有理数的加法
第一章 有理数
第1课时 有理数的加法法则
目标突破 总结反思
目标突破
目标一 会利用有理数的加法法则进行计算
例 1 教材例 1 针对训练 计算:
(1)(-39)+(-21); (2)(+15)+(-17);
(3)(-23)+23;
(4)|-10|+(-4).
[解析] 运用有理数加法法则时,一般先观察两个数的符号是同号还是异号,
解:两种解法都不正确.理由:异号两数相加,应先确定结果的符号 (即绝对值较大的数的符号),再用较大的绝对值减去较小的绝对值. 正解:(+3.2)+(-4.6)=-(4.6-3.2)=-1.4.
1 第1课时 有理数的加法法则2 精品教案(大赛一等奖作品)
1.3.1 有理数的加法第1课时有理数的加法法则教学目标:经历探索有理数的加法法则,理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.教学重点:有理数的加法法则的理解和运用.教学难点:异号两数相加.教与学互动设计:(一)合作交流,解读探究活动一我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围,例如,在本章引言中,把收入记作正数、支出记作负数,在求“结余”时,需要计算8.5+(-4.5),4+(-5.2)等.这里用到正数与负数的加法.活动二看下面的问题:问题:一个物体作左右方向的运动,我们规定向左为负,向右为正,向右运动5 m记作+5 m,向左运动5 m记作-5 m.1.如果物体先向右运动5 m,再向右运动3 m,那么两次运动后的结果是什么?两次运动后物体从起点向右运动了8 m,写成算式就是5+3=8 ①.2.如果物体先向左运动5 m,再向左运动3 m,那么两次运动后的结果是什么?两次运动后物体从起点向左运动了8 m,写出算式就是(-5)+(-3)=-8 ②.这个运算也可以用数轴表示,其中假设原点为运动起点(见课本P17图1.3-2).活动三1.如果物体先向右运动5 m,再向左运动3 m,那么两次运动后物体从起点向右运动了2 m,写成算式就是5+(-3)=2③.这个运算也可以用数轴表示,其中假设原点为运动起点,你能用数轴表示吗?2.探究:利用数轴,求以下情况时物体两次运动的结果:(1)先向右运动3m,再向左运动5m,物体从起点向运动了m;(2)先向右运动5m,再向左运动5m,物体从起点向运动了m;(3)先向左运动5m,再向右运动5m,物体从起点向运动了m.活动四你能从算式中发现有理数加法的运算法则吗?有理数加法法则:(1)同号两数相加,取相同符号,并把绝对值相加.(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数.(二)应用迁移,巩固提高【例1】计算:(1)(-4)+(-6)= ;(2)(+15)+(-17)= ;(3)(-6)+│-10│+(-4)= ;(4)(-37)+22= ;(5)-3+3= .【例2】甲地海拔高度是-28 m,乙地比甲地高32m,乙地的海拔高度是m.【例3】一个数是11,另一个数比11的相反数大2,那么这两个数的和为()A.24B.-24C.2D.-2【例4】下面结论中正确的有()①两个有理数相加,和一定大于每一个加数;②一个正数与一个负数相加得正数;③两个负数和的绝对值一定等于它们绝对值的和;④两个正数相加,和为正数;⑤两个负数相加,绝对值相减;⑥正数加负数,其和一定等于0.A.0个B.1个C.2个D.3个(三)总结反思,拓展升华有理数的加法法则:进行有理数加法运算时,首先应先判断加数类型,然后确定和的符号,最后计算和的绝对值.特别是绝对值不等的异号两数相加,和的符号与绝对值较大的加数符号相同,并把绝对值相减.(四)课堂跟踪反馈夯实基础1.填空题(1)绝对值不小于3且小于5的所有整数的和为;(2)①若a>0,b>0,则a+b 0;②若a<0,b<0,则a+b 0;③若a>0,b<0,且│a│>│b│,则a+b 0;④若a>0,b<0,且│a│<│b│,则a+b 0.提升能力2.列式计算(1)求3的相反数与-2的绝对值的和;(2)某市一天上午的气温是10℃,下午上升2℃,半夜又下降15℃,则半夜的气温是多少?3.若a<0,b>0,且a+b<0,试比较a、b、-a、-b的大小,并用“<”把它们连接起来.第八章 8.2.2消元——解二元一次方程组(一)知识点1:加减消元法两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程.这种方法叫做加减消元法,简称加减法.知识点2:列二元一次方程组解实际应用题的步骤列二元一次方程组解应用题与列一元一次方程解应用题的思路基本相似,也是审题、设元、列方程、检验、作答几个步骤.其中与列一元一次方程解应用题不同的是,列一元一次方程解应用题的时候,我们需要考虑设哪个未知量为x,运用哪个相等关系来列方程,而列二元一次方程组解应用题时,如果题目有两个未知量,两个相等关系,我们直接将未知量设为x和y,两个相等关系都用来列方程.考点1:先化简再求方程组的解【例1】解方程组解:原方程组可化为②×5-①,得26y=104,解得y=4.把y=4代入②,得x+20=28,解得x=8.所以原方程组的解为点拨∶对于比较复杂的二元一次方程组,首先将两个方程化简成ax+by=c的形式,然后再使用代入消元法或加减消元法求解.考点2:换元法解方程组【例2】解方程组解:设a=,b=,则原方程组可变形为解得∴解得点拨:仔细观察方程组,我们不难发现两个方程中均出现和,我们可将和分别看作两个未知数a,b,这个复杂的方程组就可以转化成一个简单的方程组来解决了,这种方法叫做换元法.考点3:轮对称的二元一次方程组的求解策略【例3】解方程组解:①+②,得27x+27y=81,化简得x+y=3.③①-②,得-x+y=-1.④③+④,得2y=2,解得y=1.③-④,得2x=4,解得x=2.∴原方程组的解是点拨:呈现形式的方程组称为轮对称方程组.考点4:一个二元一次方程组与一个二元一次方程同解的问题【例4】若关于x,y的方程组的解也是方程3x+2y=17的解,求m的值.解法一:①-②,得3y=-6m,即y=-2m.把y=-2m代入①,得x-4m=3m,解得x=7m.把x=7m,y=-2m代入3x+2y=17,得21m-4m=17,解得m=1.解法二:①×3-②,得2x+7y=0.根据题意可得:解这个方程组,得把代入①,得7-4=3m,解得m=1.点拨:解法一:把m看作已知数,用含m的代数式表示x,y,然后把x,y的值代入3x+2y=17中,得到一个关于m的一元一次方程,解这个一元一次方程即可求出m的值.解法二:由原方程组消去m,得到一个关于x,y的二元一次方程,这个二元一次方程和3x+2y=17组成一个方程组,解出x,y的值,然后代入原方程组中任意一个方程求出m的值.3.2 解一元一次方程(一)——合并同类项与移项第1课时用合并同类项的方法解一元一次方程教学目标:1.经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.2.学会合并同类项,会解“ax+bx=c”类型的一元一次方程.3.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程.教学重点:建立方程解决实际问题,会解“ax+bx=c”类型的一元一次方程.教学难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程.教学过程:一、设置情境,提出问题(出示背景资料)约公元820年,中亚细亚的数学家阿尔-花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题.出示课本P86问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍.前年这个学校购买了多少台计算机?二、探索分析,解决问题引导学生回忆:实际问题一元一次方程设问1:如何列方程?分哪些步骤?师生讨论分析:(1)设未知数:前年这个学校购买计算机x台;(2)找相等关系:前年购买量+去年购买量+今年购买量=140台.(3)列方程:x+2x+4x=140.设问2:怎样解这个方程?如何将这个方程转化为“x=a”的形式?学生观察、思考:根据分配律,可以把含x的项合并,即x+2x+4x=(1+2+4)x=7x老师板演解方程过程:略.为帮助有困难的学生理解,可以在上述过程中标上箭头和框图.设问3:在以上解方程的过程中“合并”起了什么作用?每一步的根据是什么?学生讨论回答,师生共同整理:“合并”是一种恒等变形,它使方程变得简单,更接近“x=a”的形式.三、拓广探索,比较分析学生思考回答:若设去年购买计算机x台,得方程+x+2x=140.若设今年购买计算机x台,得方程++x=140.课本P87例2.问题:①每相邻两个数之间有什么关系?②用x表示其中任意一个数,那么与x相邻的两个数怎样表示?③根据题意列方程解答.四、综合应用,巩固提高1.课本P88练习第1,2题.2.一个黑白足球的表面一共有32个皮块,其中有若干块黑色五边形和白色六边形,黑、白皮块的数目之比为3:5,问黑色皮块有多少?(学生思考、讨论出多种解法,师生共同讲评.)3.有一列数按一定规律排成-1,2,-4,8,-16,32,……,其中某三个相邻数的和是-960.求这三个数.五、课时小结1.你今天学习的解方程有哪些步骤,每一步的依据是什么?2.今天讨论的问题中的相等关系有何共同特点?学生思考后回答、整理:解方程的步骤及依据分别是:合并和系数化为1;总量=各部分量的和.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章有理数
1.3 有理数的加减法
1.3.1 有理数的加法
第1课时有理数的加法法则
学习目标:1、探索有理数加法法则,理解有理数的加法法则;
2、能运用有理数加法法则,正确进行有理数加法运算;
3、经历探索有理数加法法则的过程,体验数学来源于实践并为实践服务的思想,同时培养学生探究性学习的能力.
学习难点:师生共同合作探索有理数加法法则的过程及和的符号的确定.
课堂活动:
一、有理数加法的探索
1.汽车在公路上行驶,规定向东为正,向西为负,据下列情况,分别列算式,并回答:汽车两次运动后方向怎样?离出发点多远?
(1)向东行驶5千米后,又向东行驶2千米,
(2)向西行驶5千米后,又向西行驶2千米,
(3)向东行驶5千米后,又向西行驶2千米,
(4)向西行驶5千米后,又向东行驶2千米,
(5)向东行驶5千米后,又向西行驶5千米,
(6)向西行驶5千米后,静止不动,
2. 足球队甲、乙两队比赛,主场甲队4:1胜乙队,赢了3球,客场甲队1:
3负乙队,
输了2球,甲队两场比赛累计净胜球1个,你能把这个结果用算式表示出来吗?
议一议:比赛中胜负难料,两场比赛的结果还可能哪些情况呢?动动手填表:
你还能举出一些应用有理数加法的实际例子吗?请同学们积极思考.
二、有理数加法的归纳
探索:两个有理数相加,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗?
说一说:两个有理数相加有多少种不同的情形?
议一议:在各种情形下,如何进行有理数的加法运算?
归纳:有理数加法法则:
①同号两数相加,取相同的符号,并把绝对值相加.
②异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.
③一个数与0相加,仍得这个数.
三、实践应用
问题1.计算
(1)(+8)+(+5) (2)(-8)+(-5) (3)(+8)+(-5)
(4)(-8)+(+5) (5)(-8)+(+8) (6)(+8)+0;
+”(单位:万元)
问题2.
(1)该公司前两年盈利了多少万元?(2)该公司三年共盈利多少万元?
问题3.判断(1)两个有理数相加,和一定比加数大. ()
(2)绝对值相等的两个数的和为0.( )
(3)若两个有理数的和为负数,则这两个数中至少有一个是负数.( ) 四、课堂反馈:
1.一个正数与一个负数的和是( ) A 、正数 B 、负数 C 、零 D 、以上三种情况都有可能
2.两个有理数的和( ) A 、一定大于其中的一个加数 B 、一定小于其中的一个加数 C 、大小由两个加数符号决定 D 、大小由两个加数的符号及绝对值而决定
3.计算 (1)(+10)+(-4) (2)(-15)+(-32) (3)(-9)+ 0
(4)43+(-34) (5)(-10.5)+(+1.3) (6)(-2
1)+3
1 知识巩固 一、选择题
1.若两数的和为负数,则这两个数一定( )
A .两数同负
B .两数一正一负
C .两数中一个为0
D .以
上情况都有可能
2.两个有理数相加,若它们的和小于每一个加数,则这两个数( ) A.都是正数 B.都是负数 C.互为相反数 D.符号不同
3.如果两个有理数的和是正数,那么这两个数( )
A.都是正数
B.都是负数
C.都是非负数
D.至少有一个正数
4.使等式x x +=+66成立的有理数x 是 ( )
A.任意一个整数
B.任意一个非负数
C.任意一个非正数
D.任意一个有理数
5.对于任意的两个有理数,下列结论中成立的是 ( )
A.若,0=+b a 则b a -=
B.若,0>+b a 则0,0>>b a
C.若,0<+b a 则0<<b a
D.若,0<+b a 则0<a 6.下列说法正确的是 ( )
A.两数之和大于每一个加数
B.两数之和一定大于两数绝对值的和
C.两数之和一定小于两数绝对值的和
D.两数之和一定不大于两数绝对值的和 二、判断
1.若某数比-5大3,则这个数的绝对值为3.( )
2.若a>0,b<0,则a+b>0.( )
3.若a+b<0,则a ,b 两数可能有一个正数.( )
4.若x+y=0,则︱x ︱=︱y ︱.( )
5.有理数中所有的奇数之和大于0.( ) 三、填空
1.(+5)+(+7)=_______; (-3)+(-8)=________; (+3)+(-8)=________; (-3)+(-15)=________; 0+(-5)=________; (-7)+(+7)=________.
2.一个数为-5,另一个数比它的相反数大4,这两数的和为________. 3.(-5)+______=-8; ______+(+4)=-9. _______+(+2)=+11;
______+(+2)=-11;
5. 如果,5,2-=-=b a 则=+b a ,=+b a 四、计算
(1)(+21)+(-31) (2)(-3.125)+(+318) (3)(-13)+(+12
)
(4)(-313)+0.3 (5)(-22 914)+0 (6)│-7│+│-9
7
15
│
五、土星表面夜间的平均气温为-150℃,白天的平均气温比夜间高27℃,那么白天的平均气温是多少?
六、一位同学在一条由东向西的跑道上,先向东走了20米,又向西走了30米,能否确定他现在位于原来的哪个方向,与原来位置相距多少米?
七、潜水员原来在水下15米处,后来上浮了8米,又下潜了20米,这时他在什么位置?要求用加法解答。
八、 已知.5,2==b a
(1)求b a + (2)若又有b a >,求b a +.。