小学五年级奥数 数的整除的综合运用(一)

合集下载

小学五年级奥数题整除性质及应用

小学五年级奥数题整除性质及应用

小学五年级奥数题——整除性质及应用整除有几个性质。

其中一个性质是:“如果数b能整除数a,数c能整除数a,且b和c互质,那么b和c的积也能整除a。

”如,2能整除12,3能整除12,且2和3互质,则2×3=6也能整除12。

整除的这一性质,应用较为广泛。

请看:例1.只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_____。

(安徽省1997年小学数学竞赛题)解:逆向思考:因为225=25×9,且25和9互质,所以,只要修改后的数能分别被25和9整除,这个数就能被225整除。

我们来分别考察能被25和9整除的情形。

由能被25整除的数的特征(末两位数能被25整除)知,修改后的六位数的末两位数可能是25,或75。

再据能被9整除的数的特征(各位上的数字之和能被9整除)检验,得9+7+0+4+5=25,25+2=27,25+7=32。

故知,修改后的六位数是970425。

例2.在3□2□的方框里填入合适的数字,使组成的四位数是能被15整除的数中最大的一个,这个数是多少?(山东省1997年小学生数学竞赛初赛试题)解:因为15=3×5,且3和5互质。

所以,只需分别考察能被3和5整除的情形。

由能被5整除的数的特征知,组成的四位数的个位上是5或0。

再据能被3整除的数的特征试算,若个位上是5,则有3+2+5=10。

可推知,百位上最大可填入8。

即组成的四位数是3825;若个位上是0,则有3+2+0=5。

可推知,百位上最大可填入7。

即组成的四位数是3720。

故知,这个数是3825。

例3.一位采购员买了72只桶,在记账本上记下这笔账。

由于他不小心,火星落在账本上把这笔账的总数烧掉了两个数字。

账本是这样写的:72只桶,共用去□67.9□元(□为被烧掉的数字),请你帮忙把这笔账补上。

应是____元。

(德阳市第十届小学生数学邀请赛试题)。

解:72只桶共用去a67.9b元,把它改写成a679b分后,应能被72整除。

小学 级数的整除 奥数真题

小学 级数的整除 奥数真题

99的倍数为n奇数时
8.试证明 n位原序数与n位反序数
的差一定是
9的倍数为偶n 数时
(如:12365 为原序数,那么它对应的反序数为 56321 ,它们的差 43956 是 99 的倍数.)
9.如图,把 1~9 这 9 个数字放在一个圆圈上。请在某两个数字之间剪开,分别按顺时针和 逆时针次序形成两个九位数(比如在 7 和 8 之间剪开,就形成了 826543197 和 791345628 这两个九位数).如果要求剪开后所得到的两个九位数的差能被 396 整除,那么可以从 哪两个数字之间剪开?
位数除以 667 的结果是

16.(2009 年学而思五升六竞赛班选拔考试第 20 题)把数字 1 到 9 各使用一次,组成一个被
555667 整除的 9 位数,这个 9 位数是

17.如果一个五位数,它的各位数字乘积恰好是它的各位数字和的 25 倍.那么,这个五位 数的前两位的最大值是_________。
10 00 1 222 2 13 579 1 4 9 16 25 1 5 14 30 55 2 7 21 51 106
再考虑因数 2,其累积过程如下图。 由于 5 多于 2,则 c 方格内所填的自 01 34 8 1 2 5 9 17 0 2 7 16 33 2 4 11 27 60 0 4 15 42 102
5. 右图的方格表中已经填入了 9 个数,其余 20 个方格内的数都等于它左侧方格中的数乘以 它上面方格中的数。比如 a=5×10=50,b=5×12=60。那么 c 方格内所填的自然数的末尾有 ___个连续的 0。
10 12 14 16
5a b 10
15
20
25
c
【分析】由于考虑的是 c 末尾有多少个连续的 0,则只需考虑有多个 5,有多少个 2 即可。 先考虑因数 5,其累积如下图:

小学奥数 数的整除之四大判断法综合运用(一)

小学奥数 数的整除之四大判断法综合运用(一)

5-2-1.数的整除之四大判断法综合运用(一)教学目标1.了解整除的性质;2.运用整除的性质解题;3.整除性质的综合运用.知识点拨一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。

【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b |a,且d|c,那么bd|ac;例题精讲模块一、2、5系列【例 1】975935972⨯⨯⨯□,要使这个连乘积的最后4个数字都是0,那么在方框内最小应填什么数?【考点】整除之2、5系列【难度】2星【题型】填空【例 2】从50到100的这51个自然数的乘积的末尾有多少个连续的0?【考点】整除之2、5系列【难度】4星【题型】解答【例 3】把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末十三位恰好都是零,那么最后出现的自然数最小应该是多少?【考点】整除之2、5系列【难度】4星【题型】解答【例 4】11个连续两位数的乘积能被343整除,且乘积的末4位都是0,那么这11个数的平均数是多少?【考点】整除之2、5系列【难度】4星【题型】解答【例 5】201202203300⨯⨯⨯⨯的结果除以10,所得到的商再除以10……重复这样的操作,在第____次除以10时,首次出现余数.【考点】整除之2、5系列【难度】5星【题型】填空【关键词】学而思杯,5年级,第7题【例 6】用1~9这九个数字组成三个三位数(每个数字都要用),每个数都是4的倍数。

小学五年级奥数数的整除问题知识点及练习题

小学五年级奥数数的整除问题知识点及练习题

【导语】奥数是奥林匹克数学竞赛的简称。

1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第xx届国际数学奥林匹克竞赛。

以下是整理的《⼩学五年级奥数数的整除问题知识点及练习题》相关资料,希望帮助到您。

1.⼩学五年级奥数数的整除问题知识点 ⼀、基本概念和符号: 1、整除:如果⼀个整数a,除以⼀个⾃然数b,得到⼀个整数商c,⽽且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

2、常⽤符号:整除符号“|”,不能整除符号“”;因为符号“∵”,所以的符号“∴”; ⼆、整除判断⽅法:1、能被2、5整除:末位上的数字能被2、5整除。

2、能被4、25整除:末两位的数字所组成的数能被4、25整除。

3、能被8、125整除:末三位的数字所组成的数能被8、125整除。

4、能被3、9整除:各个数位上数字的和能被3、9整除。

5、能被7整除: ①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。

②逐次去掉最后⼀位数字并减去末位数字的2倍后能被7整除。

6、能被11整除: ①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

②奇数位上的数字和与偶数位数的数字和的差能被11整除。

③逐次去掉最后⼀位数字并减去末位数字后能被11整除。

7、能被13整除: ①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

②逐次去掉最后⼀位数字并减去末位数字的9倍后能被13整除。

三、整除的性质: 1、如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

2、如果a能被b整除,c是整数,那么a乘以c也能被b整除。

3、如果a能被b整除,b⼜能被c整除,那么a也能被c整除。

4、如果a能被b、c整除,那么a也能被b和c的最⼩公倍数整除。

2.⼩学五年级奥数数的整除问题练习题 1.有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从⼩到⼤排列起来,第五个数的末位数字是多少? 2.如果六位数1992□□能被105整除,那么它的最后两位数是多少? 3.从左向右编号的1991名同学排成⼀⾏,从左向右1⾄11报数,报数为11的同学原地不动,其余同学出列,然后留下的同学再报数,第三次报数后,最后留下的同学中,从左边数第⼀个⼈的最初编号是多少? 4.173□是四位数字,⽼师在这个□中先后添⼊3个数字,所得到的3个四位数,依次可被9、11、6整除,⽼师添⼊的3个数字的和是多少? 5.在1992后⾯补上三个数字,组成⼀个七位数,使他们能被2、3、5、11整除,这个七位数最⼩值是多少?3.⼩学五年级奥数数的整除问题练习题 1.能同时被2、5、7整除的五位数的多少? 2.下⾯⼀个19983位数33…3(991个3)□44…4(991个4)中间漏写了⼀个数字(⽅框),已知,这个多位数被7整除,那么,中间⽅框内的数字是多少? 3.有这样的两位数,它的两个数字之和能被4整除,⽽且⽐这个两位数⼤1的数,它的两个数字之和也能被4组成,所以这样的两位数的和是多少? 4.⼀个⼩于200的⾃然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个⾃然数是多少? 5.任取⼀个四位数乘3456,⽤A表⽰其积的个位数字之和,⽤B表⽰A的个位数字之和,C表⽰B是个位数字之和,那么C是多少?4.⼩学五年级奥数数的整除问题练习题 试问,能否将由1⾄100这100个⾃然数排列在圆周上,使得在任何5个相连的数中,都⾄少有两个数可被3整除?如果回答:“可以”,则只要举出⼀种排法;如果回答:“不能”,则需给出说明。

小学五年级数学奥数数的整除(附练习及详解)

小学五年级数学奥数数的整除(附练习及详解)

一、基本概念和知识1.整除例如:15÷3=5,63÷7=9一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)7是63的约数。

2.数的整除性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。

例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。

性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。

性质3:如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。

即:如果b|a,c|a,且(b,c)=1,那么bc|a。

例如:如果2|28,7|28,且(2,7)=1,那么(2×7)|28。

性质4:如果c能整除b,b能整除a,那么c能整除a。

即:如果c|b,b|a,那么c|a。

例如:如果3|9,9|27,那么3|27。

3.数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.②能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

③能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

④能被5整除的数的特征:个位是0或5。

⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是0或11的倍数。

⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。

练习及详解例题1. 四位数“3AA1”是9的倍数,那么A=_____。

(小五奥数)解析:已知四位数3AA1正好是9的倍数,则其各位数字之和3+A+A+1一定是9的倍数,可能是9的1倍或2倍,可用试验法试之。

练习(1)在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____。

小学五年级奥数 数的整除的综合运用(一)

小学五年级奥数 数的整除的综合运用(一)
4. ቤተ መጻሕፍቲ ባይዱ个方法: (1) 逐一满足法; (2) 因数分析法; (3) 试除法。
板块一:三类数字整除特征 【课前小练习】(★) 下面6个自然数:152、660、414、4375、9064、24125中: (1) 哪些能被2整除? 哪些能被4整除? 哪些能被8整除? (2) 哪些能被5整除? 哪些能被25整除? 哪些能被125整除? (3) 哪些能被3整除? 哪些能被9整除?
数的整除的综合运用(一)
本讲主线 1. 三类数字整除特征 2. 三种判断整除方法
1. 尾数系:2,5;4,25;8,125 (1)末一位:2、5 (2)末两位:4、25 (3)末三位:8、125
2. 和系:3,9 (1) 看数字之和是否为3或9的倍数 (2) 划数法:弃3、弃9
3. 差系:7,11,13 (1) 把这个数的末三位与末三位之前的数作差(大减小),看这个差是否为7, 11,13的倍数 (2) 11:从右边开始,奇数位数字之和与偶数位数字之和的差值,能否被11整 除。
【家长评价】 __________________________________________________________________ ______________________________________________________________。
2
【例3】(★★★★) 小新一共买了28支价格相同的钢笔给大家作为奖品,共付人民币 9□.2□元。已知在□处数字相同。请问,每支钢笔多少元? 1
【例4】(★★★★) (1) 如果六位数1992□□能被105整除,那么它的末两位数是多少?
【超常大挑战】(★★★★) 在所有的五位数中,各位数字之和等于43且能够被11整除的数有哪些?

数的整除问题奥数题及答案

数的整除问题奥数题及答案

数的整除问题奥数题及答案1 试问,能否将由1⾄100这100个⾃然数排列在圆周上,使得在任何5个相连的数中,都⾄少有两个数可被3整除?如果回答:“可以”,则只要举出⼀种排法;如果回答:“不能”,则需给出说明. 考点:数的整除特征. 分析:根据题意,可采⽤假设的⽅法进⾏分析,100个⾃然数任意的5个数相连,可以分成20个组,使得在任何5个相连的数中,都⾄少有两个数可被3整除,那么会有40个数是3的倍数,事实上在1⾄100的⾃然数中只有33个是3倍数,所以不能. 解答:假设能够按照题⽬要求在圆周上排列所述的100个数, 按所排列顺序将它们每5个分为⼀组,可得20组, 其中每两组都没有共同的数,于是,在每⼀组的5个数中都⾄少有两个数是3的倍数. ⼩学五年级数的整除问题奥数题及答案:从⽽⼀共会有不少于40个数是3的倍数.但事实上在1⾄100的这100个⾃然数中只有33个数是3的倍数, 导致⽭盾,所以不能. 答:不能.数的整除问题奥数题及答案2 数的整除性规律 【能被2或5整除的数的特征】⼀个数的末位能被2或5整除,这个数就能被2或5整除 【能被3或9整除的数的特征】⼀个数,当且仅当它的各个数位上的数字之和能被3和9整除时,这个数便能被3或9整除。

例如,1248621各位上的数字之和是1+2+4+8+6+2+1=24 3|24,则3|1248621。

⼜如,372681各位上的数字之和是3+7+2+6+8+1=27 9|27,则9|372681。

【能被4或25整除的数的特征】⼀个数,当且仅当它的末两位数能被4或25整除时,这个数便能被4或25整除。

例如, 173824的末两位数为24,4|24,则4|173824。

43586775的末两位数为75,25|75,则25|43586775。

【能被8或125整除的数的特征】⼀个数,当且仅当它的末三位数字为0,或者末三位数能被8或125整除时,这个数便能被8或125整除。

人教版五年级奥数精讲精练(一)数的整除

人教版五年级奥数精讲精练(一)数的整除

人教版五年级奥数精讲精练(一)数的整除姓名:________ 班级:________ 成绩:________小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!一、填空题1 . 在能被7整除的两位数中,最小的一个两位数是.2 . 一个数,如果用(2)(3)5去除,正好都能被整除,这个数最小是(),如果这个数是两位数,它最大是()。

3 . 有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.4 . 在200至300之间,有三个连续的自然数,其中,最小的能被3整除,中间的能被7整除,最大的能被13整除,那么这样的三个连续自然数是______.5 . 两个数的和是363,用较大的数除以较小的数,得商16余6,则这两个数中较大的数是_____.6 . 已知六位数19□88□能被35整除,空格中的数字依次是_______.7 . 在947后面添上三个不同的数字,组成一个被2、3、5同时整除的最小的六位数,这个数是_________。

8 . 与的和被11除,商等于______与______的和。

二、解答题9 . 某班同学在班主任老师带领下去种树,学生恰好平均分成三组,如果老师与学生每人种树一样多,共种了1073棵,那么平均每人种了棵树?10 . 试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.11 . 在568后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数尽可能小。

12 . 今天是星期日,再过23天是星期几?参考答案一、填空题1、2、3、4、5、6、7、8、二、解答题1、2、3、4、。

五年级奥数专题-数的整除

五年级奥数专题-数的整除

五年级奥数专题-数的整除如果整除a 除以不为零数b,所得的商为整数而余数为0,我们就说a 能被b 整除,或叫b 能整除a.如果a 能被b 整除,那么,b 叫做a 的约数,a 叫做b 的倍数.数的整除的特征:(1) 能被2整除的数的特征:如果一个整数的个位数字是2、4、6、8、0,那么这个整数一定能被2整除.(2) 能被3(或9)整除的数的特征:如果一个整数的各个数字之和能被3(或9)整除,那么这个整数一定能被3(或9)整除.(3) 能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么这个数就一定能被4(或25)整除.(4) 能被5整除的数的特征:如果一个整数的个位数字是0或5,那么这个整数一定能被5整除.(5) 能被6整除的数的特征:如果一个整数能被2整除,又能被3整除,那么这个数就一定能被6整除.(6) 能被7(或11或13)整除的数的特征:一个整数分成两个数,末三位为一个数,其余各位为另一个数,如果这两个数之差是0或是7(或11或13)的倍数,这个数就能被7(或11或13)整除.(7) 能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么这个数就一定能被8(或125)整除.(8) 能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除.一、例题与方法指导例1. 一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.思路导航:一个数如果是88的倍数,这个数必然既是8的倍数,又是11的倍数.根据8的倍数,它的末三位数肯定也是8的倍数,从而可知这个六位数个位上的数是0或8.而11的倍数奇偶位上数字和的差应是0或11的倍数,从已知的四个数看,这个六位数奇偶位上数字的和是相等的,要使奇偶位上数字和差为0,两个方框内填入的数字是相同的,因此这个六位数有两种可能或又 23056088=2620238568÷88=2711所以,本题的答案是2620或2711.例2. 123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.思路导航:因为36=9⨯4,所以这个十一位数既能被9整除,又能被4整除.因为1+2+…+9=45,由能被9整除的数的特征,(可知□+□之和是0(0+0)、9(1+8,8+1,2+7,7+2,3+6,6+3,4+5,5+4)和18(9+9).再由能被4整除的数的特征:这个数的末尾两位数是4的倍数,可知□□是00,04,…,36,…,72,…96.这样,这个十一位数个位上有0,2,6三种可能性.所以,这个数的个位上的数最小是0.例3. 下面一个1983位数33…3□…4中间漏写了一个数字(方框),已 991个 991个知这个多位数被7整除,那么中间方框内的数字是_____.思路导航:33...3□44 (4)991个个=33...3⨯10993+3□4⨯10990+44 (4)990个 990个因为111111能被7整除,所以33…3和44…4都能被7整除,所以只要990个 990个3□4能被7整除,原数即可被7整除.故得中间方框内的数字是6.例4. 有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.思路导航:三个连续的两位数其和必是3的倍数,已知其和是11的倍数,而3与11互质,所以和是33的倍数,能被33整除的两位数只有3个,它们是33、66、99.所以有当和为33时,三个数是10,11,12;当和为66时,三个数是21,22,23;当和为99时,三个数是32,33,34.所以,答案为 10,11,12或21,22,23或32,33,34.[注]“三个连续自然数的和必能被3整除”可证明如下:设三个连续自然数为n,n+1,n+2,则n+(n+1)+(n+2)=3n+3=3(n+1)所以,)2+nn+n能被3整除.(+)1(+二、巩固训练1.有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.2.一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是_____.3.任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.4.有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.1. 118符合条件的两位数的两个数字之和能被4整除,而且比这个两位数大1的数,如果十位数不变,则个位增加1,其和便不能整除4,因此个位数一定是9,这种两位数有:39、79.所以,所求的和是39+79=118.2. 195因为这个数可以分解为两个两位数的积,而且15⨯15=225>200,所以其中至少有1个因数小于15,而且这些因数均需是奇数,但11不可能符合条件,因为对于小于200的自然数凡11的倍数,具有隔位数字之和相等的特点,个位百位若是奇数,十位必是偶数.所以只需检查13的倍数中小于200的三位数13⨯13=169不合要求,13⨯15=195适合要求.所以,答案应是195.3. 9根据题意,两个四位数相乘其积的位数是七位数或八位数两种可能.因为3456=384⨯9,所以任何一个四位数乘3456,其积一定能被9整除,根据能被9整除的数的特征,可知其积的各位数字之和A也能被9整除,所以A有以下八种可能取值:9,18,27,36,45,54,63,72.从而A的各位数字之和B总是9,B的各位数字之和C也总是9.4. 9∵0+1+4+7+9=21能被3整除,∴从中去掉0或9选出的两组四个数字组成的四位数能被3整除.即有0,1,4,7或1,4,7,9两种选择组成四位数,由小到大排列为:1047,1074,1407,1470,1479,1497….所以第五个数的末位数字是9.三、拓展提升1. 找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?2.只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?3. 500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?4. 试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.答案1. 如果最小的数是1,则和1一起能符合“和被差整除”这一要求的数只有2和3两数,因此最小的数必须大于或等于2.我们先考察2、3、4、5这四个数,仍不符合要求,因为5+2=7,不能被5-2=3整除.再往下就是2、3、4、6,经试算,这四个数符合要求.所以,本题的答案是(3+4)=7.2. 因为225=25 9,要使修改后的数能被25整除,就要既能被25整除,又能被9整除,被25整除不成问题,末两位数75不必修改,只要看前三个数字即可,根据某数的各位数字之和是9的倍数,则这个数能被9整除的特征,因为2+1+4+7+5=19,19=18+1,19=27-8,所以不难排出以下四种改法:把1改为0;把4改为3;把1改为9;把2改为1.3. 若将这500名士兵从右到左依次编号,则第一次报数时,编号能被5整除的士兵报1;第二次报数时,编号能被6整除的士兵报6,所以既报1又报6的士兵的编号既能被5整除又能被6整除,即能被30整除,在1至500这500个自然数中能被30整除的数共有16个,所以既报1又报6的士兵共有16名.4. 不能.假设能够按照题目要求在圆周上排列所述的100个数,我们来按所排列顺序将它们每5个分为一组,可得20组,其中每两组都没有共同的数,于是,在每一组的5个数中都至少有两个数是3 的倍数.从而一共有不少于40个数是3 的倍数.但事实上,在1至100的自然数中有33个数是3的倍数,导致矛盾.。

【小学数学】小学五年级奥数:数的整除知识点汇总+例题解析

【小学数学】小学五年级奥数:数的整除知识点汇总+例题解析

数的整除数的整除问题;内容丰富;思维技巧性强。

它是小学数学中的重要课题;也是小学数学竞赛命题的内容之一。

一、基本概念和知识1.整除——约数和倍数例如:15÷3=5;63÷7=9一般地;如a、b、c为整数;b≠0;且a÷b=c;即整数a除以整除b(b不等于0);除得的商c正好是整数而没有余数(或者说余数是0);我们就说;a能被b整除(或者说b能整除a)。

记作b|a.否则;称为a不能被b整除;(或b不能整除a);记作ba。

如果整数a能被整数b整除;a就叫做b的倍数;b就叫做a的约数。

例如:在上面算式中;15是3的倍数;3是15的约数;63是7的倍数;7是63的约数。

2.数的整除性质性质1:如果a、b都能被c整除;那么它们的和与差也能被c整除。

即:如果c|a;c|b;那么c|(a±b)。

例如:如果2|10;2|6;那么2|(10+6);并且2|(10—6)。

性质2:如果b与c的积能整除a;那么b与c都能整除a.即:如果bc|a;那么b|a;c|a。

性质3:如果b、c都能整除a;且b和c互质;那么b与c的积能整除a。

即:如果b|a;c|a;且(b;c)=1;那么bc|a。

例如:如果2|28;7|28;且(2;7)=1,那么(2×7)|28。

性质4:如果c能整除b;b能整除a;那么c能整除a。

即:如果c|b;b|a;那么c|a。

例如:如果3|9;9|27;那么3|27。

3.数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面;个位数字是偶数(包括0)的整数;必能被2整除;另一方面;能被2整除的数;其个位数字只能是偶数(包括0).下面“特征”含义相似。

②能被5整除的数的特征:个位是0或5。

③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

五年级奥数—数的整除性(一)

五年级奥数—数的整除性(一)

数的整除性(一)数的整除性质主要有:(1)如果甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。

(2)如果两个数都能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除。

(3)如果一个数能分别被几个两两互质的自然数整除,那么这个数能被这几个两两互质的自然数的乘积整除。

(4)如果一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。

(5)几个数相乘,如果其中一个因数能被某数整除,那么乘积也能被这个数整除。

(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。

(3)若一个整数的数字和能被3整除,则这个整数能被3整除。

(4)若一个整数的末位是0或5,则这个数能被5整除。

(5)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。

(7)若一个整数的数字和能被9整除,则这个整数能被9整除。

(8)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!(9)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。

如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

(10)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

小学五年奥数-数的整除

小学五年奥数-数的整除

数的整除【知能大展台】1.整除的概念对于整数a和不为零的整数b,如果数a除以数b的商是整数且没有余数,我们就说a能被b整除,b能整除a,记作b|a;a叫做b的倍数,b叫做a 的约数。

2.数的整除性质①如果数a能被数c整除,数b也能被数c 整除,那么它们的和(a+b)或差(a-b)也能被c整除c|a,c|b,则c|a±b。

②几个整数相乘,如果其中有一个因数能被某一个数整除,则这几个数的积也能被这个数整除。

③数a能被数b整除,数a也能被数c整除,如果b,c互质,那么数a能被b与c的积整除。

3.数的整除特征①一个整数的末一位数能被2或5整除,那么这个数就能被2或5整除②一个整数的末两位数能被4或25整除,那么这个数就能被4或25整除③一个整数的末三位数能被8或125整除,那么这个是就能被8或125整除④一个整数的各数位上数字的和能被3或9整除,那么这个数就能被3或9整除⑤一个整数的奇数位(指个位,百位,万位……)上的数字之和与偶数位(指十位,千位,十万位……)上的数字之和的差能被11整除,那么这个数就能被11整除⑥一个整数的末三位数与末三位数以前的数字组成的数的差能被7,11或13整除,那么这个数就能被7,11或13整除【试金石】例1.小马虎在一张纸上写了一个无重复数字的五位数;3□6□5,其中十位数字和千位数字看不清楚了,但是已知这个数是75的倍数,那么满足上述条件的五位数中,最大的一个是多少?【分析】因为五位数3□6□5能被75整除,而75=3×25,3与25互质。

所以3□6□5能同时被3和25整除。

3□6□5能被25整除,由于末尾是5,所以十位数字只能是2或7,即末两位数只能是25或75。

当末两位数是25时,3□625呢功能被3整除,起各位数字之和必须能被3整除,则千位数字只能是2,5,8,而这些五位数中最大的一个是38625,且无重复数字。

同理当末两数是75时,能被3整除的最大五位数是39675,且无重复数字。

五年级奥数-数的整除

五年级奥数-数的整除

数的整除如果整除a除以不为零数b,所得的商为整数而余数为0,我们就说a能被b整除,或叫b能整除a。

如果a能被b整除,那么,b叫做a的约数,a叫做b的倍数。

数的整除的特征:(1)能被2整除的数的特征:如果一个整数的个位数字是2、4、6、8、0,那么这个整数一定能被2整除。

(2)能被3(或9)整除的数的特征:如果一个整数的各个数字之和能被3(或9)整除,那么这个整数一定能被3(或9)整除。

(3)能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么这个数就一定能被4(或25)整除。

(4)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么这个整数一定能被5整除。

(5)能被6整除的数的特征:如果一个整数能被2整除,又能被3整除,那么这个数就一定能被6整除。

(6)能被7(或11或13)整除的数的特征:一个整数分成两个数,末三位为一个数,其余各位为另一个数,如果这两个数之差是0或是7(或11或13)的倍数,这个数就能被7(或11或13)整除。

(7)能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么这个数就一定能被8(或125)整除。

(8)能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除。

一、例题与方法指导例1. 一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.思路导航:一个数如果是88的倍数,这个数必然既是8的倍数,又是11的倍数.根据8的倍数,它的末三位数肯定也是8的倍数,从而可知这个六位数个位上的数是0或8.而11的倍数奇偶位上数字和的差应是0或11的倍数,从已知的四个数看,这个六位数奇偶位上数字的和是相等的,要使奇偶位上数字和差为0,两个方框内填入的数字是相同的,因此这个六位数有两种可能或又 23056088=2620238568÷88=2711所以,本题的答案是2620或2711.例2. 123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.思路导航:因为36=9⨯4,所以这个十一位数既能被9整除,又能被4整除.因为1+2+…+9=45,由能被9整除的数的特征,(可知□+□之和是0(0+0)、9(1+8,8+1,2+7,7+2,3+6,6+3,4+5,5+4)和18(9+9).再由能被4整除的数的特征:这个数的末尾两位数是4的倍数,可知□□是00,04,…,36,…,72,…96.这样,这个十一位数个位上有0,2,6三种可能性.所以,这个数的个位上的数最小是0.例3. 下面一个1983位数33…3□…4中间漏写了一个数字(方框),已 991个 991个知这个多位数被7整除,那么中间方框内的数字是_____.思路导航:33...3□44 (4)991个个=33...3⨯10993+3□4⨯10990+44 (4)990个 990个因为111111能被7整除,所以33…3和44…4都能被7整除,所以只要个个3□4能被7整除,原数即可被7整除.故得中间方框内的数字是6.例4. 有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.思路导航:三个连续的两位数其和必是3的倍数,已知其和是11的倍数,而3与11互质,所以和是33的倍数,能被33整除的两位数只有3个,它们是33、66、99.所以有当和为33时,三个数是10,11,12;当和为66时,三个数是21,22,23;当和为99时,三个数是32,33,34.所以,答案为 10,11,12或21,22,23或32,33,34。

四升五年级奥数暑期班-(第8讲)数的整除的综合运用(一)

四升五年级奥数暑期班-(第8讲)数的整除的综合运用(一)

数的整除的综合运用(一)
★★
在方框中填上两个数字,可以相同也可以不同,使4□32□是9的倍数。

⑴请随便填出一种,并检查自己填的是否正确;
⑵一共有多少种满足条件的填法?
★★(第2届华杯赛初赛第14题)
用1、9、8、8这四个数字能排成几个被11除余8的四位数?
★★★
在小于5000的自然数中,能被11整除,并且数字和为13的数,共有____个。

★★★★
下图的方格表中已经填入了9个数,其余20个方格内的数都等于它左侧方格中的数乘以它上面方格中的数。

比如a=5×10=50,b=50×12=600。

那么c方格内所填的自然数的末尾有____个连续的0。

(2008年数学解题能力展示初赛试题)★★★★★
已知九位数2007□12□2既是9的倍数,又是11的倍数;那么,这个九位数是多少?。

小学五年级奥数--数的整除特征(1)

小学五年级奥数--数的整除特征(1)

9□.2□元=9□2□分
• 解:∵28=4×7,根据整除的性质③,

可知4︱9□2□ 且7︱9□2□
• ∴ 根据4的整除特征可知□可以填0、4、8 ,

∵ 7 9020, 7 9424;7 ∣9828。

∴ □处应当填 8 。
• 9828÷28= 351(分)= 3.51(元)
• 答:每支钢笔的价格是 3.51 元。
小学五年级奥数--数 的整除特征(1)
(一)整除——约数、倍数
• 像15÷3=5,63÷7=9这样, • 一般的,如果a、b、c为整数,b≠0,且
a÷b=c,即整数a除以整数b所得的商正好 等于c且没有余数,我们就说a能被b整除 (或者说b能整除a),记作:b︱a, • 否则,称a不能被b整除(或b不能整除a), 记作:b a
数的整除性质1
• 性质1:

如果a、b都能被c整除,那么他们的
和或差也能被c整除。
• 即:如果c︱a , c︱b 那么 c︱(a±b )
• 你能再举出一个例子吗?
数的整除性质2
• 2、我们再来看一组例子: • ① 15能整除45,3×5=15,3和5都能整除
45吗? • ② 3×7=21,21能整除84,3和7都能整除
整除,所以33333333468375能被125整除。
• ③1234567891011121314能不能被3和9整除。
• 回忆:能被3(或9)整除的数的特征:
• 各个数位数字的和能被3(或9)整除。
• 解:1+2+3+4+5+6+7+8+9+1+0+1 +1+1+2+1+3+1+4=60

因为 3 60 9 60
• 所以这个数∣ 能被3整除而不能被9整除。

五年级奥数整除与分类计数综合学生版

五年级奥数整除与分类计数综合学生版

5-2-3.整除与分类计数综合知识框架1.五年级奥数整除与分类计数综合学生版2.运用整除的性质解计数问题;3.整除性质的综合运用求计数.知识点拨一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a, c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a, c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b 与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c ,那么bd|ac;例题精讲模块一、利用整除的性质分类枚举【例 1】在方框中填上两个数字,可以相同也可以不同,使4□32□是9的倍数. ⑴请随便填出一种,并检查自己填的是否正确;⑵一共有多少种满足条件的填法?【例 2】用1,9,8,8这四个数字能排成几个被11除余8的四位数?【例 3】在1至2008这2008个自然数中,恰好是3、5、7中两个数的倍数的数共有多少个?【例 4】有些数既能表示成3个连续自然数的和,又能表示成4个连续自然数的和;还能表示成5个连续自然数的和.请你找出700至1000之间,所有满足上述要求的数,并简述理由.模块二、利用整式拆分进行分类枚举【例 5】在小于5000的自然数中,能被11整除,并且数字和为13的数,共有多少个.【例 6】在1、2、3、4……2007这2007个数中有多少个自然数a能使2008+a能被2007-a 整除。

小学五年级数学思维训练(奥数)《数的整除(一)》

小学五年级数学思维训练(奥数)《数的整除(一)》
随堂练习: 1.判断86492、25146能否被7整除。
2.判断59306、626667能否被13整除。
数的整除(一)
复习: 能被2、3、5整除的数各有什
么特征?
例1 研究能被4或25整除的数的特征。 有四组数如下:
(1)424 316 9840 628 880 (2)7354 126 766 894 9343 (3)925 575 850 1000 8075 (4)835 355 360 1005 495
能被8或125整除的数的特征: 一个数的末三位数能被8或125整除,这个 数就一定能被8或125整除。
随堂练习: 1、 判断312、142、280能否被4整除。
2、 判断375、260、165能否被25整除。
例3 研究能被9整除的数的特征。 我们可以通过对2646这个数的分析,
来研究能被9整除的数的特征。
2646=2×1000+6×100+4×10+6 =2×(999+1)+6×(99+1)+4×(9+1)+6 =2×999+2+6×99+6+4×9+4+6 =2×111×9+6×11×9+4×9+2+6+4+6 =(2×111+6×11+4)×9+(2+6+4+6)
9的倍数
9的倍数
能被9整除的数的特征是: 一个数的各位上的数字之449能否被9整除。
例4 研究能被7、11、13整除的数的特征。 可以通过对458315的分析,找出能被7、11、 13整除的数的特征。
458315=458×1000+315 =458×1000+458-458+135 =458×1001-(458-315)

小学五年级奥数题数的整除问题

小学五年级奥数题数的整除问题

小学五年级奥数题数的整除问题做奥数题有助于我们能力的提升,不仅在数学方面,其他方面也是专门有关心的,要紧是让我们多动脑摸索。

下面是查字典数学网为大伙儿分享的五年级奥数题数的整除问题,期望对大伙儿有关心!奥数题数的整除问题从左向右编号为1至1991号的1991名同学排成一行,从左向右1至1 1报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是()号。

分析:第一次报数留下的同学,最初编号差不多上11的倍数;这些留下的连续报数,那么再留下的学生最初编号确实是11×11=121的倍数,依次类推即可得出最后留下的学生的最初编号.解:第一次报数后留下的同学最初编号差不多上11倍数;第二次报数后留下的同学最初编号差不多上121的倍数;第三次报数后留下的同学最初编号差不多上1331的倍数;因此最后留下的只有一位同学,他的最初编号是1331;事实上,任何一门学科都离不开死记硬背,关键是经历有技巧,“死记”之后会“活用”。

不记住那些基础知识,如何会向高层次进军?专门是语文学科涉猎的范畴专门广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时刻让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。

如此,就会在有限的时刻、空间里给学生的脑海里注入无限的内容。

日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。

答:从左边数第一个人的最初编号是1331号.家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,小孩一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

我把幼儿在园里的阅读活动及阅读情形及时传递给家长,要求小孩回家向家长朗诵儿歌,表演故事。

我和家长共同配合,一道训练,幼儿的阅读能力提高专门快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本讲主线数的整除的综合运用(一) 2. 和系:3,9
(1) 看数字之和是否为3或9的
倍数
(2) 划数法:弃3、弃9
3. 差系:7,11,13
1. 三类数字整除特征
.
1. 尾数系:2,5;4,25;8,125
(1)末一位:2、5
(2)末两位:4、25
(3)末三位:8、125
11,13的倍数
(2) 11:从右边开始,奇数位数字之和与偶数位数字之和的差值,能否被11

除。

4. 三个方法:
(1) 逐一满足法;
(2) 因数分析法;
(3) 试除法。

板块一:三类数字整除特征板块二:三种判断整除的方法
【课前小练习】(★)
下面6个自然数:152、660、414、4375、9064、24125中:
(1) 哪些能被2整除? 哪些能被4整除? 哪些能被8整除?
(2) 哪些能被5整除? 哪些能被25整除? 哪些能被125整除?
(3) 哪些能被3整除? 哪些能被9整除? 【例2】(★★★)
在下面的每个三位数的□里填入一个数字,使它符合所提要求。

(1)28,32能被2整除,又能被3整除;
(2)15,22能被3整除,又能被5整除;
(3) ,同时能被2、3、5整除;
504
【例1】(★★)
下面五个自然数:128114、94146、64152、6139、491678,哪些能被7
整除? 哪些能被11整除? 哪些能被13整除? 【例3】(★★★★)
小新一共买了28支价格相同的钢笔给大家作为奖品,共付人民

9□.2□元。

已知在□处数字相同。

请问,每支钢笔多少元?
1
【例4】(★★★★)
(1) 如果六位数1992□□能被105整除,那么它的末两位数是多
少?
(2) 如果六位数2003□□能被99整除,那么它的末两位数是多少?【超常大挑战】(★★★★)
在所有的五位数中,各位数字之和等于43且能够被11整除的数有哪些?
【例5】(★★★)
(1) 八位数20092009能否被11整
除? (2) 20092009200909能否被
11整除?
3个
(3) 20092009200909可以被11整除,n的最小值是多少?
n个2009
知识大总结
1. 三类数字特征
(1) 尾数系: (2、5) (4、25) (8、125)
(2) 和系:3、9
(3) 差系:7、11、13
2. 三种整除方法
(1) 逐一满足法
(2) 因数分析法
(3) 试除法【今日讲题】
例2,例3,例5
【讲题心得】
__________________________________________________________________ ___________________。

【家长评价】
__________________________________________________________________ ______________________________________________________________。

2。

相关文档
最新文档