分子间作用力和氢键

合集下载

一化学键分子间作用力氢键的比较

一化学键分子间作用力氢键的比较

一化学键分子间作用力氢键的比较化学键、分子间作用力和氢键是化学中常见的不同类型的相互作用力。

它们在分子之间产生不同程度的相互作用,并且对物质的性质和行为产生不同的影响。

首先,化学键是不同原子之间的原子核间互相吸引的结果,是由共价键、离子键和金属键等不同类型的键组成。

化学键的形成需要原子之间的电子重新排列以使得各个原子达到稳定的电子构型。

这种电子排列可以通过元素之间的电子共享、电子转移或者电子扩散的方式来实现。

化学键的强度取决于键的类型和原子之间的电负性差异。

通常来说,离子键的强度最大,共价键次之,金属键则较为弱。

分子间作用力是分子之间的非共价相互作用力。

分子间作用力较化学键弱,力程短,主要体现在物质的液体和固体状态中。

分子间作用力分为范德华力、静电吸引力和氢键等。

范德华力是非极性分子间的引力作用,主要由浓度偶极矩产生。

而静电吸引力是极性分子之间的互相吸引作用。

在分子中含有电荷不均匀分布的原子时,会产生局部正负电荷区,进而引发有偶极矩。

这些偶极矩可以相互作用,产生静电吸引力。

相较于化学键,分子间作用力是非常弱的力。

氢键是分子间作用力的一种特殊形式,通常发生在含有氢原子的电负性较高的原子(如氮、氧和氟)与电负性较低的原子(如氮、氧和碳)之间。

氢键形成时,氢原子与更电负的原子的部分正电荷相互作用,形成一个虚拟的氢原子。

这种相互作用力是静电吸引的一种特例,是由于电负性差异导致的分子间较强的极性相互作用力。

相比于其他分子间作用力,氢键的强度较大,能够影响物质的物理化学性质,如沸点、气相结构、溶解度和凝聚态等。

总结来说,化学键是原子之间的强有力的相互作用,通过共价键、离子键和金属键等形式存在于化合物中。

而分子间作用力是相对弱的非共价作用力,包括范德华力和静电吸引力。

氢键则是分子间作用力中的一种特殊形式,发生在含有氢原子的分子与电负性较高的原子之间。

这些相互作用力的不同特性和强度决定了物质在不同条件下的性质和行为。

分子间作用力和氢键

分子间作用力和氢键

在大多数分子中,色散力是主要的,只有 在强极性分子中,取向力才占主导地位。
氢键( hydrogen bond ) 氢键
氢键是一个极性键中的氢原子与另一个 氢键 电负性大的原子(最常见的是F、O、N)之 间所形成的一种特殊的作用力。
A
H
B
形成氢键的条件: 形成氢键的条件: ① 有一个与电负性很大的原子A形成共价键的 氢原子; ② 有另一个电负性很大并且有孤对电子的原子 B。
H2O的结构与性质: 的结构与性质: 的结构与性质
非常规型氢键 (i) X—H……π氢键:在一个 氢键: 氢键 在一个X—H……π氢 氢 键中,π键或离域 键体系作为质子(H+) 键中, 键或离域π键体系作为质子( 键或离域 键体系作为质子 的接受体。由苯基等芳香环的离域π键形成 的接受体。由苯基等芳香环的离域 键形成 氢键, 的X—H……π氢键,又称为芳香氢键 氢键 (aromatic hydrogen bonds)。 )。
初赛基本要求
范德华力。氢键(形成氢键的条件、 范德华力。氢键(形成氢键的条件、氢 键的键能、 键的键能、氢键与分子结构及物理性质 关系。其他分子间作用力的一般概念。 关系。其他分子间作用力的一般概念。
分子间的力( 范德华力) 分子间的力 范德华力) 1、取向力(orientation force) 、取向力( 存在于已取向的极性 分子间的静电引力,称为 取向力(或定向力)。 取向力 取向力与分子偶极矩的 + 平方成正比,与热力学温度 C-F - −141℃ ℃
H3N-BH3 - −104℃ ℃
(2003全国)咖啡因对中枢神经有兴奋作用,其 全国)咖啡因对中枢神经有兴奋作用, 全国 结构式如下。常温下, 结构式如下。常温下,咖啡因在水中的溶解度 为2g/100g H2O,加适量水杨酸钠 , [C6H4(OH)(COONa)],由于形成氢键而增大咖 , 啡因的溶解度。 啡因的溶解度。请在附图上添加水杨酸钠与咖 啡因形成的氢键。 啡因形成的氢键。

高考化学复习考点分子间作用力和氢键

高考化学复习考点分子间作用力和氢键

考点49 分子间作用力和氢键聚焦与凝萃1.掌握分子间作用力的本质及分子间作用力与化学键的区别;2.掌握影响分子间作用力的因素,了解分子间作用力对物质性质的影响;3.了解氢键及氢键对物质性质的影响。

解读与打通常规考点1.化学键分类化学键⎩⎪⎨⎪⎧离子键共价键⎩⎪⎨⎪⎧极性(共价)键:X —Y 非极性(共价)键:X —X 2.化学反应的本质反应物分子内化学键的断裂和生成物分子内化学键的形成。

3.分子间作用力(1)定义:把分子聚集在一起的作用力,又称范德华力。

(2)特点①分子间作用力比化学键弱得多;②影响物质的物理性质,如熔点、沸点、溶解度,而化学键影响物质的化学性质和物理性质;③存在于由共价键形成的多数共价化合物和绝大多数非金属单质及稀有气体之间,如CH 4、O 2、Ne 等。

(3)规律一般来说,对于组成和结构相似的物质,相对分子质量越大,分子间作用力越大,物质的熔、沸点越高。

例如:熔、沸点:HCl<HBr<HI ,I 2>Br 2>Cl 2>F 2,Rn >Xe >Kr >Ar >Ne >He 。

4.氢键(1)定义:分子间存在的一种比分子间作用力稍强的相互作用。

(2)形成条件:除H 外,形成氢键的原子通常是O 、F 、N 。

(3)存在:氢键存在广泛,如蛋白质分子、醇、羧酸分子、H 2O 、NH 3、HF 等分子之间。

分子间氢键会使物质的熔点和沸点升高。

特别提醒:(1)氢键不是化学键,是介于分子间作用力和化学键之间的一种作用力。

(2)氢键、分子间作用力的大小主要影响物质的物理性质,如熔点、沸点等。

隐性考点氢键对物质性质的影响(1)对物质熔沸点的影响①某些氢化物分子存在氢键,如H 2O 、NH 3,HF 等,会使同族氢化物沸点反常,如H 2O>H 2Te>H 2Se>H 2S 。

②当氢键存在于分子内时,它对物质性质的影响与分子间氢键对物质性质产生的影响是不同的。

分子间作用力包括静电氢键离子偶极

分子间作用力包括静电氢键离子偶极

分子间作用力包括静电氢键离子偶极分子间作用力是指分子之间的相互作用力,它是影响分子间相互吸引和排斥的力量。

分子间作用力的存在使得物质在固态、液态和气态之间转化,从而对物质的性质产生巨大影响。

在分子间作用力中,最常见的包括静电力、氢键和离子偶极作用力。

静电力是由于分子中正、负电荷之间的相互吸引和排斥而产生的。

当两个分子相互靠近时,正电荷与负电荷之间会产生静电作用,从而使两个分子被吸引在一起。

这种力可以使分子有组合形成固体的趋势。

氢键是分子间作用力中最重要的类型之一、氢键是通过氢原子与电负性较高的原子(如氮、氧和氟)之间的相互作用力形成的。

在氢键中,氢原子处于两个电负性原子的中心位置,并与它们形成强烈的吸引力。

氢键在许多化学和生物学过程中起到了重要的作用,例如DNA的双螺旋结构中的氢键能够保持DNA链的稳定性。

离子偶极力是由离子和偶极子之间的相互吸引或排斥产生的一种作用力。

离子是带正或负电荷的原子或分子,而偶极子是由于分子中电子云的不对称分布而产生正负电荷分开的分子。

当离子和偶极子之间靠近时,会形成吸引力或排斥力。

离子偶极作用力在溶液中起着重要的作用,因为它们可以影响到溶质在溶剂中的溶解度和分配均衡。

除了静电力、氢键和离子偶极作用力外,还存在其他类型的分子间作用力。

范德华力是由于分子中电子云的瞬时极化而产生的作用力,它是分子间的瞬时吸引力。

双极-双极作用力是由于两个偶极子之间的相互吸引或排斥而产生的作用力。

这些力在分子间的吸引和排斥中起着重要的作用。

在化学反应中,分子间作用力是关键的。

它们可以影响反应的速率、平衡和选择性。

很多化学反应都涉及到分子间的相互吸引和排斥。

例如,在溶液中,溶质分子与溶剂分子之间的相互作用力可以影响到溶质的溶解度和扩散速率。

总之,分子间作用力是影响分子间相互吸引和排斥的力量。

其中最常见的包括静电力、氢键和离子偶极作用力。

这些力影响着物质的性质和化学反应过程。

通过进一步研究分子间作用力,我们可以更好地了解物质的性质和相互作用方式。

分子间作用力和氢键课件

分子间作用力和氢键课件

离子间极化越强,核间距缩短 离子间极化越强,物质熔点、沸 点就越低 离子间极化越强,物质颜色越深
化学键与物质结构
晶体
内部的原子、分子、离子等质点有规则排列的一 类固体物质统称为晶体
离子晶体
原子晶体 晶 体
一般而言:三种晶体在熔点、沸点、硬度上有: 原子晶体 > 离子晶体 > 分子晶体
能够形成氢键的物质是很广泛的,如水、醇、 羧酸、无机酸、氨、胺、等。在生物过程中具有意义 的蛋白质、脂肪、糖等基本物质都含有氢键。
➢分子间氢键的形成可使物质的熔点和沸点显著 升高。
化合物
HF
沸点(℃) -19.9
HCl -85.0
HBr -66.7
HI -35.4
02:29
化学键与物质结构
➢ 氢键的形成对物质的溶解度有一定的影响。 在极性溶剂中,如果溶质分子和溶剂分子之
一个分子的HX与另一个分子中的Y(Y和X可以是 相同的元素)相结合而成的氢键叫做分子间氢键。
同一分子内部的X-H与Y相结合而成的氢键,叫做 分子内氢键。
02:29
化学键与物质结构
氢键的特点:
➢氢键具有方向性和饱和性。
方向性:
在形成分子间氢键时.X—H与Y在同 一直线上,这样成键可使X与Y的距离最远, 两原子电子云之间的斥力最小.所形成的 氢键最强,体系更稳定。
分子变形性越 大,色散力越

色散力发生在各种分子之间,并且是范德华力的主要形式。
02:29
化学键与物质结构
分子间力具有以下特性:
(1)它是存在于分子间的一种电性作用力。 (2)作用能的大小只有几个千卡/摩尔,比化学键 能(约为30-150千卡/摩尔)小一二个数量级。 (3)作用力的范围很小。三种分子间力都与分子间 距离的七次方成反比,即当分子稍为远离时,分 子间力迅速减弱。 (4)一般没有方向性和饱和性。 (5)在三种作用力中,色散力是主要的,诱导力通 常很小,只有少数极性较大(如水、氨)的分子之 间,取向力才占一定的比例或占优势。

分子间作用力包括静电、氢键、离子偶极

分子间作用力包括静电、氢键、离子偶极

分子间作用力包括静电、氢键、离子偶极分子间作用力是指由分子之间的相互作用而产生的力,包括静电力、氢键和离子偶极相互作用。

其中,静电力是由不同带电分子间的相互作用引起的,这种力的大小与它们之间的带电量成正比。

氢键是指一个氢原子与一个带有较强电负性的原子之间的化学键,氢原子与另一个分子中的带有较强电负性的原子形成氢键。

离子偶极相互作用是由于两个带正负电的分子中的离子之间的相互吸引作用而产生的,这种相互作用与两个分子中离子的电荷量有关。

这些分子间作用力对分子间的相互作用和分子结构的稳定性都有着重要的影响。

分子间作用力包括静电、氢键、离子偶极

分子间作用力包括静电、氢键、离子偶极

分子间作用力包括静电、氢键、离子偶极
分子间作用力是指分子之间的相互作用力,它们是维持分子结构和化学反应的基础。

分子间作用力包括静电、氢键、离子偶极等多种类型,下面我们将分别介绍它们的特点和作用。

静电作用力是指由于电荷之间的相互作用而产生的力。

当两个分子中的电荷不平衡时,它们之间就会产生静电作用力。

例如,当两个分子中一个带正电荷,一个带负电荷时,它们之间就会产生吸引力。

静电作用力在分子间的相互作用中起着重要的作用,它可以影响分子的构象和化学反应。

氢键是一种特殊的分子间作用力,它是由于氢原子与氮、氧、氟等元素形成的强电负性差而产生的。

氢键的作用力比静电作用力弱,但是它在生物分子的结构和功能中起着重要的作用。

例如,DNA分子中的氢键可以保持DNA的双螺旋结构,从而维持DNA的稳定性。

离子偶极是指分子中存在正负电荷分布不均的情况。

当分子中的正负电荷分布不均时,就会形成离子偶极。

离子偶极的作用力比静电作用力弱,但是它在分子间的相互作用中也起着重要的作用。

例如,当两个分子中一个带正电荷,一个带负电荷时,它们之间就会产生离子偶极作用力。

分子间作用力是维持分子结构和化学反应的基础,它们包括静电、氢键、离子偶极等多种类型。

这些作用力在分子间的相互作用中起
着重要的作用,它们可以影响分子的构象和化学反应,从而影响生物分子的结构和功能。

因此,研究分子间作用力对于理解生物分子的结构和功能具有重要的意义。

分子间作用力和氢键1

分子间作用力和氢键1
分子极性小的(如聚乙烯、聚异丁烯等)分
子间力小,硬度不大,含有极性基因的有机玻 璃等物,分子间力较大,硬度较大。
氢键
一、氢键是怎样形成的? 氢键是由电负性较大的原子Y(通常是N,O,F) 以其孤对电子吸引强极性键H-X(X通常是 N,O,F)中的H原子形成的。 氢键通式: X—H……Y
形成氢键必须具备的条件:
分子的变形性与分子的结构、分子的大小 有关。分子结构相似,变形性主要取决于 分子的大小,分子越大,其变形性就越大。
对于极性分子,其自身就存在着偶极,成为 固有偶极或永久偶极。气态的极性分子在空间 无规律的运动着,在外加电场的作用下,分子 的正极偏向电场的负极,分子的负极偏向电场 的正极。,所有的极性分子都依电场的方向而 取向,该过程叫做分子的定向极化。同时在外 加电场的作用下,分子也会发生变形,产生诱 导偶极,所以,极性分子在外加电场中的偶极 是固有偶极与诱导偶极之和,分子的极性也进 一步加强。
氨合物、无机酸和某些有机化合物如 有机羧酸、醇、胺等分子间。特别是 在DNA分子中,碱基对通过氢键将两 条多肽链连接组成双螺旋结构,并在 DNA的复制过程中起着很重要的作用。
(2)分子内存在氢键的物质,其熔、 沸点常比没有氢键的同系列物质要降 低。
如有分子内氢键的邻硝基酚熔点 (45℃)比有分子间氢键的间位硝基 苯酚(以熔点定96℃)和对位硝基苯 酚的熔点(114℃)都低。
OH O
HC
CH
OHO
(2)除了分子间可以行形成氢键 外,分子内也可以形成氢键。 如 HNO3
再例如: 邻位硝基苯酚中的羟基O— H也可与硝基的氧原子生成氢键。
二、氢键的健长
从对氢键键长不同出发,对氢键产生两种 不同的理解:
①“X—H……Y”把整个结构叫氢键。这 样键长指X与Y间距离,如“F—H…F”键长 为255Pm。

高中化学:分子间作用力和氢键知识点

高中化学:分子间作用力和氢键知识点

高中化学:分子间作用力和氢键知识点[知识详解]一.分子间作用力1.定义:分子间存在着将分子聚集在一起的作用力,称分子间作用力。

分子间作用力也叫范德华力.2.实质:一种电性的吸引力.3.影响因素:分子间作用力随着分子极性.相对分子质量的增大而增大.分子间作用力的大小对物质的熔点.沸点和溶解度都有影响.一般来说.对于组成和结构相似的物质来说,相对分子质量越大,分子间作用力越强,物质的熔沸点也越高.4.只存在于由共价键形成的多数化合物,绝大多数非金属单质分子和分子之间. 化学键是分子中原子和原子之间的一种强烈的作用力,它是决定物质化学性质的主要因素。

但对处于一定聚集状态的物质而言,单凭化学键,还不足以说明它的整体性质,分子和分子之间还存在较弱的作用力。

物质熔化或汽化要克服分子间的作用力,气体凝结成液体和固体也是靠这种作用力。

除此以外,分子间的作用力还是影响物质的汽化热、熔化热、溶解黏度等物理性质的主要因素。

分子间的作用力包括分子间作用力(俗称范德华力)和氢键(一种特殊的分子间作用力)。

分子间作用力约为十几至几十千焦,比化学键小得多。

分子间作用力包括三个部分:取向力、诱导力和色散力。

其中色散力随分子间的距离增大而急剧减小一般说来,组成和结构相似的物质,分子量越大,分子间距越大,分子间作用力减小,物质熔化或汽化所克服的分子间作用力减小,所以物质的溶沸点升高温度止200 150 100, 50 0 -50 -100 -150 -200熔温度尺200 150叫0 -50 -100 -150 -200熔叫相对分子质■筑卤化碳的熔.沸点与相对分子质量的关系化学键与分子间作用力比较化学键分子间作用力概念 相邻的原子间强烈的相互作用 物质分子间存在的微弱的相互作用能量 较大很弱性质影响主要影响物质的化学性质主要影响物质的物理性质.氢键一特殊的分子间作用力1.概念:氢键是指与非金属性很强的元素(主要指N 、O 、F )相结合的氢原子与另一个分子中非金属性极强的原子间所产生的引力而形成的.必须是含氢 化合物,否则就谈不上氢键。

分子间作用力的四种形成方式

分子间作用力的四种形成方式

分子间作用力的四种形成方式分子间作用力是分子之间相互作用的力量,它是物质存在和物质性质产生的基础。

分子间作用力的形成方式有四种,分别是范德华力、氢键、离子键和共价键。

一、范德华力范德华力是分子间最常见的一种作用力,它是由于分子内部电子的运动导致的。

分子中的电子在空间中的运动会引起电荷分布的不均匀,从而形成一种瞬时的偶极矩。

这种偶极矩会与附近的分子偶极矩相互作用,产生吸引力,即范德华力。

范德华力的大小与分子的极性有关,极性越大,范德华力越强。

二、氢键氢键是指分子中氢原子与氧、氮、氟等高电负性原子之间的相互作用。

氢键的形成需要具备三个条件:①氢原子与较电负的原子之间的键能较强,如氢原子与氮原子之间的键能;②氢原子与较电负的原子之间的距离适当,一般在1.5-2.5埃之间;③氢键的形成需要在分子中存在较为稳定的空间构型。

氢键的强度介于共价键和离子键之间,它对物质的性质起到重要的影响。

三、离子键离子键是指由正离子和负离子之间的静电作用力形成的化学键。

在离子键中,正离子和负离子之间相互吸引,形成离子晶体的结构。

离子键的强度较大,使离子晶体具有高熔点、高硬度和良好的导电性等性质。

离子键的形成需要具备两个条件:①正离子和负离子之间的电荷差异较大;②正离子和负离子之间的距离较近。

四、共价键共价键是指由两个非金属原子共享电子而形成的化学键。

在共价键中,原子之间通过电子的共享而相互吸引。

共价键的强度较大,使得共价化合物具有较高的熔点和沸点。

共价键的形成需要满足两个条件:①原子之间的电负性差异较小;②原子之间的距离适当。

共价键的形成可以是单一共价键、双键或者三键,共价键的类型决定了化合物的性质。

分子间作用力的四种形成方式分别是范德华力、氢键、离子键和共价键。

这些作用力对物质的结构和性质具有重要的影响,深入了解分子间作用力的形成方式有助于我们更好地理解物质的性质和相互作用。

10--分子间作用力和氢键

10--分子间作用力和氢键

必修2第一章第三节化学键第三课时【学习目的】1、掌握分子间作用力含义与氢键的判断2、强化离子键和共价键的知识【学习重点】分子间作用力、氢键的应用【学习难点】氢键的判断【新知学习】一、化学键:1、定义:使离子或原子相结合的作用力称为化学键。

2、分类:、、3、离子键和共价键的比较:4、化学反应的实质:旧键的和新键的。

二、分子间作用力①概念:分子之间存在着一种把分子叫做分子间作用力,又称。

②强弱:分子间作用力比化学键,它主要影响物质的、等物理性质,化学键属分子内作用力,主要影响物质的化学性质。

③规律:一般来说,对于组成和结构相似的物质,越大,分子间作用力,物质的熔点、沸点也越。

④存在:分子间作用力只存在于由分子组成的共价化合物、共价单质和稀有气体的分子之间。

在离子化合物、金属单质、金刚石、晶体硅、二氧化硅等物质中只有化学键,没有分子间作用力。

三、氢键①概念:像、、这样分子之间存在着一种比的相互作用,使它们只能在较高的温度下才能汽化,这种相互作用叫做氢键。

②对物质性质的影响:分子间形成的氢键会使物质的熔点和沸点,这是因为固体熔化或液体汽化时必须破坏分子间的氢键,消耗更多的能量。

【注意】分子间作用力和氢键由于作用力较弱,都不属于化学键!四、知识整理1、离子键:使阴、阳离子结合成化合物的静电作用叫做离子键由离子键结合在一起的化合物叫离子化合物【离子键的存在范围】(1)、活泼金属与活泼非金属形成的化合物;(2)、活泼金属阳离子(或NH4+)与酸根离子之间;(3)、活泼金属阳离子与OH—之间;2、电子式:在元素符号周围用小黑点或小叉表示最外层电子数的式子叫电子式掌握NaCl/MgO/K2O/CaCl2/Na2O2/NH4Cl/NaOH 电子式的写法3、共价键:原子之间通过共用电子对所形成的相互作用,叫做共价键掌握NH3,CH4,CO2,N2,O2,HClO,H2O2电子式的写法4、极性键与非极性键同种非金属元素原子之间形成非极性共价键(非极性键,可存在于非金属单质和化合物中)不同种非金属元素原子之间形成极性共价键(极性键,只存在与化合物中)(1)、含有离子键的化合物一定是离子化合物(2)、含有共价键的化合物不一定是共价化合物注意离子化合物的形成过程与共价化合物的形成过程写法的不同。

第四讲分子间作用力和氢键

第四讲分子间作用力和氢键

键的极性与分子的极性 共价键有非极性键与极性键之分。由共价键构 建的分子有非极性分子与极性分子之分。 度量分子极性大小的物理量叫做偶极矩(m)。偶 极矩是偶极子的电量q和偶极子两极的距离l的乘积 (m=qXl)。
q+
l
q_
偶极子与偶极矩(m=qXl)
偶极矩m=0的共价键叫做非极性共价键;偶极矩 m≠0的共价键叫做极性共价键。偶极矩m=0的分子叫做 非极性分子;偶极矩m≠0的分子叫做极性分子。
在细胞内合成蛋白质过程中, 先是在细胞核中以DNA为模板,
通过“氢键”的“牵引”合成
RNA,然后由RNA在细胞质中 又通过“氢键”的“牵引”由 氨基酸合成蛋白质的一级结 构——多肽链。
蛋白质变性与分子内氢键
蛋白质变性与分子内氢键分不开。煮熟的鸡蛋孵不出 小鸡,这是蛋白质变性而失去生物活性的结果。蛋白质凭
范德华力和氢键是两类最常见的分子间力 化学键能: H–H 436 kJ/mol F–F 155 kJ/mol
O=O 708 kJ/mol
NN 945 kJ/mol >200kJ/mol 分子间作用力 <10 kJ/mol 氢键 10 –30 kJ/mol
Cl–Cl
243 kJ/mol
300 ~500pm
_ _ O O + O m=0 D
H
H C +
N _
m= D
色散力 相对于电子,分子中原子的位置相对固定,而分子 中的电子却围绕整个分子快速运动着。
于是,分子的正电荷重心 与负电荷重心时时刻刻不重合, 非极性分子 产生瞬时偶极。分子相互靠拢 _ _ 时,它们的瞬时偶极矩之间会 + + 产生电性引力,这就是色散力。 产生瞬时 色散力不仅是所有分子都有的 偶极 最普遍存在的范德华力,而且 _ + _ + 经常是范德华力的主要构成。

分子间力及氢键

分子间力及氢键

(5)分类: 分子间氢键: 分子内氢键: (6)存在
NaHCO3固体中的氢键 邻硝基苯酚 邻羟基苯甲醛 固体(HF)n中的氢键
氢键存在广泛,如蛋白质分子、H2O、NH3、HF、DNA、醇、 羧酸分子及结晶水合物等分子之间。 (7)氢键对物质性质的影响:①溶质分子和溶剂分子间形成氢键, 溶解度骤增。如氨气极易溶于水;②分子间氢键的存在,使物 质的熔沸点升高。③有些有机物分子可形成分子内氢键,则此 时的氢键不能使物质的熔沸点升高。 例:NH3、H2O、HF中由于存在氢键,使得它们的沸点比同族 其他元素氢化物的沸点反常地高。
分子间作用力
概念 物质分子之间普遍存在的一种相 互作用力,又称范德华力
氢键
由已经与电负性很强的原子形成 共价键的氢原子与另一个分子中 电负性很强的原子之间的作用力
共价键
原子间通过共用电子对所形成 的相互作用
分类 特征 作用 微粒 强度 比较 影响 强度 的因 ①随着分子极性和相对分子质量 的增大而增大②组成和结构相似 的物质,相对分子质量越大,分 无方向性、无饱和性 分子或原子(稀有气体)
I2 > Br2 > Cl2 > F2。
2.氢键 (1)定义:氢键是一种既可以存在于分子之间又可以存在于分子 内部的作用力。它比化学键 弱 ,比范德华力 稍强 。当氢 原子与电负性大的原子X以共价键结合时,H原子能够跟另一个 电负性大的原子Y之间形成氢键。 (2)形成条件 ①化合物中有氢原子,即氢原子处在X—H„Y其间。 ②氢只有跟电负性很大且其原子半径较小的元素化合后,才有 较强的氢键,像这样的元素有N、O、F等。 (3)氢键基本上还是属于静电作用,它既有 方向 性,又有 饱和 性。 (4)通常用X—H„Y表示氢键,其中X—H表示氢原子和X原子 以共价键相结合。氢键的键能是指X—H„Y分解为X—H和Y所 需要的能量。

分子间作用力和氢键

分子间作用力和氢键
【A】液态水汽化破坏了分子间作用力;气态水分解破坏了共价键
【2】液态水汽化后化学性质是否发生了变化?
【A】没有
液态水汽化所需的能量大还是气态水分解所需的能量大? 液态水100摄氏度就可以汽化,而气态水在2000摄氏度时才会分解,因此气态水分解所需要的能量大,也就是说,分子间作用力的能量要远远小于化学键的能量
【Q】干冰汽化是物理变化还是化学变化?
【A】物理变化
【Q】干冰的化学性质有没有发生变化?
【A】没有
D. H │ H—N…H—O │ │ H H
【其他特点】
【1】分子间作用力比化学键弱得多,分子间作用力的能量远远小于化学键的能量
【2】由分子构成的物质,其熔点,沸点,溶解度等物理性质主要由分子间作用力大小决定
C. H │ H—N…O—H │ │ H H
D. H │ H—N…H—O │ │ H H
D
氨气溶于水时,大部分NH3 与H2O以氢键(用…)表示结合成NH3 ·H2O分子。根据氨水的性质可推知NH3 ·H2O的结构式为( )
B. H │ N—H …H—O │ │ H H
A.H │ N—H …O—H │ │ H H
C. H │ H—N…O—H │ │ H H
课堂练习
下列事实与氢键有关的是 ( ) A.水加热到很高的温度都难以分解 B.水结成冰体积膨胀,密度变小 C.CH4、SiH4、GeH4 、 SnH4的熔点随相对分子质量的增大而升高 D.HF、HCl、HBr、HI的热稳定性依次减弱
B
课堂练习
固体冰中不存在的作用力是 ( ) A.离子键 B.极性键 C. 氢键 D. 范德华力
干冰气化过程中有没有破坏其中的化学键?
那为什么干冰气化过程仍要吸收能量呢?

8.分子间的作用力和氢键

8.分子间的作用力和氢键

C
O
H
邻羟基苯甲酸
• 为什么冰的密度比液态水小? • 解释水结冰时体积膨胀、密度减小的原因。
水分子三态与氢键的关系
水分子间形成的氢键
在固态水(冰)中,水分子大范围地以氢键互相 联结,形成相当疏松的晶体,从而在结构中有许 多空隙,造成体积膨胀,密度减小,因此冰能浮 在水面上。
(4) 氢键对物质物理性质的影响
1. 请解释物质的下列性质: (1)NH3极易溶于水。 (2)氟化氢的熔点比氯化氢的高。 2. 邻羟基苯甲酸和对羟基苯甲酸是同分 异构体,但邻羟基苯甲酸熔沸点比对羟基 苯甲酸熔点的低,解释之。 H
O
O
C
O
H
HO
• 对羟基苯甲酸能形 成分子间氢键
OH
HO
• 邻羟基苯甲酸能形 成分子内氢键
H
O
O
对羟基苯甲酸
一些氢化物的沸点
请预测下列物质的熔沸点高低: (1)HF、HCl、HBr、HI (2)H2O、 H2S 、H2Se、 H2Te (3)NH3、PH3、AsH3、SbH3 (4)CH4、SiH4、GeH4、SnH4
事实是否是这样的吗?
H2O
一 些 氢 化 物 的 沸 点
HF H2Se AsH3 HBr GeH4
分子间的作用力和氢 键
非极性键和极性键
例如:
O2结构式:O=O 氧和氧原子之间的双键是非极性键 H2O结构式: H-O-H O-H键是极性键 由Na+和过氧根离子构成,含有离子键 过氧根离子中氧和氧原子有共用电子,含有一个非极性键
极性分子和非极性分子
• 如果分子中正电荷中心和负电荷中心重合, 就叫非极性分子 • 如果分子中正电荷中心和负电荷中心不能 相互重合,就叫极性分子, • 以非极性键组合的双原子分子,一定是非 极性分子。 • 以极性键结合的分子,情况有二

化学 分子间作用力与氢键

化学 分子间作用力与氢键
各元素电负性比较:
F > O > N > Cl > S
因此形成的氢键长度依次增大,键能减小。
下列化合物中沸点最低和最高的是哪个? A. HF B. H2O C. NH3 D. CH4
CH4 NH3 HF H2O
-161.5℃ -33.5℃ 19.54℃ 100℃
各元素电负性比较: F>O>N>C 氢键键能依次减小
分子量相同的CO和N2沸点不同的主要原因?
两者分子量相同,且两者都是双原子分子。但是CO是极性 分子,N2是非极性分子。CO中同时存在色散力、诱导力和 取向力,N2中只存在色散力,因此CO总的分子间作用力比 N2大,即CO的沸点(-191.5℃)>N2的沸点(-195.6℃) NH3与H2O可互溶、I2易溶于CCl4、CCl4不溶于H2O的原因? NH3与H2O均为极性分子,他们之间存在着三种作用力。
分子间作用力与氢键STA源自T分子间作用力的本质和特点是什么?
本质:分子间的电磁相互作用,即静电 力。分为取向力、诱导力和色散力。这 种作用力由荷兰物理学家范德华首先发 现,故又称范德华力。
取向力:极性分子和极性分子之间固有偶极的取向及 其静电引力。 诱导力:极性分子固有偶极和非极性分子诱导偶极间 的静电引力。 *极性分子之间相互取向后也会使对方变形极化而产生 诱导偶极,因此极性分子之间也会存在诱导力。 色散力:分子间由于瞬间偶极而产生的作用力。
I2和CCl4均为非极性分子,他们之间存在着色散力,色散力 大小与相对分子质量成正比,而两种物质相对分子质量都 比较大(254和154),色散力比较大。
CCl4与H2O,CCl4分子之间存在着较大的色散力(相对分子 质量154),而CCl4(154)和H2O(18)之间的色散力较小, 因此CCl4不溶于H2O

分子间作用力范德华力与氢键

分子间作用力范德华力与氢键

分子间作用力范德华力与氢键范德华力是由于非极性分子中的电子云不均匀分布所产生的。

虽然分子是中性的,但在任何时刻都可能存在由于电子运动而导致的电子云的不均匀分布。

这种不均匀分布导致了瞬时偶极矩的产生,进而产生相互作用力。

范德华力一般都比较弱,但当大量分子紧密排列在一起时,它们的总和可以产生很大的影响,例如固体的结构和性质。

氢键是一种相对较强的分子间作用力,它只存在于包含氢原子和带有电负性较高的原子(如氧、氮、氟等)的分子之间。

氢键的形成需要两个条件:一是氢原子与电负性较高的原子之间的电子不对称分布,形成部分正电荷;二是电负性较高的原子与另一个分子中的电子云形成相互作用。

这种相互作用力很强,可以影响分子的结构和性质。

范德华力和氢键在化学和生物学中扮演着重要的角色。

在化学反应中,它们可以影响反应速率和平衡常数。

在分子团聚和相互吸引方面,它们可以影响物质的物理性质。

在生物分子的结构和功能中,它们可以影响分子的折叠和稳定性,并在生物大分子的相互作用和识别中起到关键作用。

在生物体内,范德华力和氢键对蛋白质的折叠和稳定性起到了至关重要的作用。

蛋白质是生物体内功能最为复杂和多样的大分子,其折叠结构决定了其功能。

范德华力和氢键可以通过长程作用和局域作用相互协同,使蛋白质在折叠过程中形成稳定的三维结构。

此外,范德华力和氢键还可以参与蛋白质与其他分子(如酶底物或配体)的结合,从而影响蛋白质的功能。

在药物设计和分子识别中,范德华力和氢键也被广泛应用。

药物分子与靶蛋白之间的相互作用通常涉及范德华力和/或氢键。

通过理解和优化范德华力和氢键的作用,可以设计更有效的药物分子和分子识别工具。

总之,范德华力和氢键是分子间作用力中重要的组成部分。

它们在化学、生物学和药物设计等领域都扮演着重要的角色。

理解和掌握这些作用力的特性和原理,对于理解分子结构、物性和功能具有重要意义。

分子间的作用力是范德华力和氢键

分子间的作用力是范德华力和氢键

分子间的作用力是范德华力和氢键
分子间的作用力是化学中非常重要的概念,其中范德华力和氢键是两种常见的分子间作用力。

首先,让我们来谈谈范德华力。

范德华力是一种由分子间的瞬时诱导极化引起的吸引力,它是由于分子内部电子的运动而产生的瞬时偶极矩而产生的。

这种作用力是所有分子之间都存在的,即使是非极性分子也会受到范德华力的影响。

范德华力的大小取决于分子的极化能力和分子间的距离,通常随着分子间距离的增加而迅速减小。

其次,让我们来谈谈氢键。

氢键是一种比范德华力更强的分子间作用力,它通常发生在含有氢原子的极性分子中。

氢键是由于一个带有部分正电荷的氢原子与一个带有部分负电荷的氧、氮或氟原子之间的相互作用而产生的。

这种作用力在生物学和化学中起着至关重要的作用,例如在蛋白质的空间结构和DNA的双螺旋结构中起着关键作用。

总的来说,范德华力和氢键都是分子间作用力的重要代表,它们对物质的性质和行为产生着深远的影响。

通过研究和理解这些分
子间作用力,我们可以更好地理解物质的性质和化学反应,为材料科学、药物设计等领域的发展提供重要的理论基础。

分子间作用力 氢键

分子间作用力 氢键

② 氢键只存在于固态、液态物质中,气态时无氢键。
4. 解释特殊现象 ①氢键的存在使得物质的熔点和沸点相对较高。 ②水结成冰时,为什么体积会膨胀。
③根据元素周期律,卤素氢化物的水溶液均应为强 酸性,但HF表现为弱酸的性质,这是由于HF分子之 间氢键的存在。
④氨气极易溶于水
H │ H—N…H—O │ │ H H
分子间作用力与氢键
一、分子间作用力 1.定义:把分子聚集在一起的作用力,也称范德华力 2.大小: 范德华力<<化学键 3.影响因素:组成和结构相似的物质,相对分子质量 越大,分子间作用力越大,物质的熔沸点越高 4.注意:分子内含有共价键的分子(如Cl2、CO2、 H2SO4等)或稀有气体(如He、Ne等)单原子分子之 间均存在分子间作用力。 5.解释现象:物态变化吸放热问题 相似相溶
二、氢键 1.定义:分子中与氢原子形成共价键的非金属原子, 如果该非金属原子(如F、O或N)吸引电子的能力很
强,其原子半径又很小,则使氢原予几乎成为“裸
露”的质子,带部分正电荷。这样的分子之间,氢
核与带部分负电荷的非金属原子相互吸引而产生的
比分子间作用力稍强的作用力,称之为氢键。
2. 大小:分子间作用力<氢键<化学键 3. 注意事项: ① 氢键的本质还是分子间的静电吸引作用。也可以把
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。





H
H
H
H
C. H │
H—N……O——HH ││
D. H │
H—N……H——OO ││
HH
H
H
17
干冰气化现象是物理变化还是化学变化? 干冰气化过程中有没有破坏其中的化学键? 那为什么干冰气化过程仍要吸收能量呢?
3
分子间作用力
许多事实证明,分子间存在着将分子聚集在一起的作用力, 这种作用力称为分子间作用力,也叫做范德华力
广泛存在于分子之间,
不存在与离子之间与 金属单质之间
只有分子之间足够靠
近时,才有分子间作 用力,如固体和液体
A.干冰 B.NaCl
C.NaOH
D.I2
E.H2SO4
14
课堂练习
下列事实与氢键有关的是 ( B ) A.水加热到很高的温度都难以分解 B.水结成冰体积膨胀,密度变小 C.CH4、SiH4、GeH4 、 SnH4的熔点随相 对分子质量的增大而升高 D.HF、HCl、HBr、HI的热稳定性依次减弱
15
课堂练习
固体冰中不存在的作用力是 ( A)
A.离子键
B.极性键
C. 氢键
D. 范德华力
16
氨气溶于水时,大部分NH3 与H2O以氢键
(用…)表示结合成NH3 ··H2O分子。根据氨水
的性质可推知NH3 ··H2O的结构式为( D )
A.H
B. H


N—H ……O——HH
N—H ……H——OO
12
化学键,分子间作用力,氢键的比 较
相互作用 化学键 分子间作用力
存在范围 相邻原子 (离子)之间
分子之间
作用力大



影响范围 物质的物理性 物质的物 质和化学性质 理性质
氢键
某些氢化物分子之 间(NH3,H2O,HF) 比化学键弱,比 分子间作用力强
物质的物 理性质
13
课堂练习
离子键、共价键、金属键、分子间作用力都 是微粒间的作用力。下列物质中,只存在一 种作用力的是 ( B )
5
水的汽化与分解
已知,液态水在100℃时就汽化为气态水,气态水在2000℃ 时才分解为氢气和样子,根据上述信息,请思考下列问题? 【4】液态水汽化所需的能量大还是气态水分解所需的能量 大? 【A】液态水100摄氏度就可以汽化,而气态水在2000摄氏 度时才会分解,因此气态水分解所需要的能量大,也就是说, 分子间作用力的能量要远远小于化学键的能量
9
氢键
【概念】像NH3,H2O,HF这样的分子之间存在着一种比 分子间作用力稍强的相互作用,这种作用使他们只能在较 高的温度下才能汽化,这种相互作用叫做氢键 【区别】氢键不是化学键,氢键比化学键弱,但是比分子 间作用力强 【影响】分子间形成氢键以后,熔沸点会升高,同时也影 响物质的溶解度。如NH3极易溶于水,主要是氨分子与水 分子之间会形成氢键 【注意】氢键只存在于液体和固体中
【5】分子间作用力是否影响物质的化学性质? 【A】不影响,只影响物理性质
分子间作用力影响哪些物理性质?
6
熔沸点与分子间作用力大小的关系
请仔细观察下面的图表,你能得出什么信息?
物质
F2
相对分子量 38
Cl2 Br2
I2
71 160 254
熔点(℃) -219.6 -101 -7.2 113.5
沸点(℃) -188.1 -34.6 58.78 184.4
分子间作用力有什么特点呢?
4
水的汽化与分解
已知,液态水在100℃时就汽化为气态水,气态水在2000℃ 时才分解为氢气和氧气,根据上述信息,请思考下列问题? 【1】液态水汽化是化学变化还是物理变化?气态水分解 是物理变化还是化学变化? 【A】液态水汽化是物理变化;气态水分解是化学变化 【2】液态水汽化后化学性质是否发生了变化? 【A】没有 【3】液态水汽化破坏了什么作用力?气态水分解又破坏 了什么作用力? 【A】液态水汽化破坏了分子间作用力;气态水分解破坏 了共价键
分子间作用力
1
你知道吗?
水的三气态
放?热
干冰升华、硫晶体熔化、液氯汽化都要吸收能量。物质
从固态转变为液态或气态,从液态转变为气态,为什么 要吸收能量?在降低温度、增加压强时,C12、CO2等气 体能够从气态凝结成液态或固态。这些现象给我们什么 启示?
2
你还知道吗?
分子间作用 力变化趋势 分子间作用力逐渐变大
熔沸点变化 趋势
熔沸点逐渐升高
一般的,对于相同类型的分子,相对分子质量越大,分子 间作用力也越大,熔沸点越高
7
练一练
【Q】请比较下列4种物质的熔沸点高低? CF4,CCl4,CBr4,CI4 【A】CF4<CCl4<CBr4<CI4
8
奇怪的图像
请观察下面的图表,你发现了什么有趣的事情? 为什么水,氟化氢,氨气的沸点 出现了反常?
10
氢键还可以解释某些现象,如水结冰时体积的膨胀,以及 HF为什么是弱酸 根据元素周期律,卤素氢化物的水溶液均应为强酸性,但 HF表现为弱酸的性质,这是由于HF分子之间氢键的存在。
11
在水蒸气中水以单个H2O分子形式存在;在液态水中,经 常是几个水分子通过氢键结合起来,形成(H2O)n;在固态 水(冰)中,水分子大范围地以氢键互相联结,形成相 当疏松的晶体,从而在结构中有许多空隙,造成体积膨 胀,密度减少,因此冰能浮在水面上。
相关文档
最新文档