《材料力学 》
《材料力学》——期末考试答案
《材料力学》——期末考试答案一、单选题1.水平冲击的动荷系数与( )和原构件的静变形大小有关。
A.初速度B.末速度C.加速度D.平均速度正确答案:A2.等效长度因子是等效长度与( )的比值。
A.等效长度B.原长C.实际长度D.直线长度正确答案:B3.在冲击应力和变形实用计算的能量法中,因为不计被冲物的重量,所以计算结果与实际相比( )。
A.冲击应力偏大,冲击变形偏小B.冲击应力偏小,冲击变形偏大C.冲击应力和冲击变形均偏大D.冲击应力和冲击变形均偏小正确答案:C4.在下列关于内力与应力的讨论中,说法( )是正确的。
A.内力是应力的代数和B.内力是应力的矢量和C.应力是内力的平均值D.应力是内力的分布集度正确答案:D5.应力状态分类以下不正确的是()A.单向应力状态B.二向应力状态C.三向应力状态D.四向应力状态正确答案:D6.不会引起静定结构产生内力的因素是( )。
A.集中力B.集中力偶C.分布力D.温度变化正确答案:D7.分析内力时,为了便于分析,一般将弹簧的螺旋角视为多少度?()A.30°B.0°C.60°D.90°正确答案:B8.什么是相应位移?()A.载荷作用点沿载荷作用方向的位移B.载荷作用点沿载荷作用反方向的位移C.载荷作用点沿载荷作用垂直方向的位移D.载荷作用点沿载荷作用倾斜方向的位移正确答案:A9.单位长度扭转角与( )无关。
A.杆的长度B.扭矩C.材料性质D.截面几何性质正确答案:A10.在冬天,当水管内的水结冰时,因体积膨胀,水管处于二向拉伸应力状态,故容易破坏,而冰块这时( )应力状态,则不容易破坏。
A.处于三向压缩B.处于二向压缩C.处于单向压缩D.处于极复杂的压缩正确答案:A11.构件抵抗破坏的能力叫做?()A.精度B.强度C.刚度D.刚性正确答案:B12.在单元体上,可以认为( )。
A.每个面上的应力是均匀分布的,—对平行面上的应力相等B.每个面上的应力是均匀分布的,—对平行面上的应力不等C.每个面上的应力是非均匀分布的,—对平行面上的应力相等D.每个面上的应力是非均匀分布的,—对平行面上的应力不等正确答案:A13.在下面关于梁、挠度和转角的讨论中,结论( )是正确的。
《材料力学》课程教案1
《材料力学》课程教案1(一)轴向拉伸或压缩时的变形教学安排 ● 新课引入工程当中的构件要满足强度、刚度和稳定性的要求。
之前学习了轴向拉伸或压缩时杆的内力,应力,也就是强度问题。
今天转而讨论刚度问题。
工程当中构件因不满足刚度要求而失效的例子比比皆是,所谓刚度就是构件抵抗变形的能力,即一根杆件在设计好了之后,在正常的使用情况下,不能发生太大的弹性变形。
要想限制变形,首先应计算出变形。
如何计算?● 新课讲授一、纵向变形 (一)实验:杆件在受轴向拉伸时,在产生纵向变形的同时也产生横向变形。
纵向尺寸有所增大,横向尺寸有所减少。
思考:如图所示,杆件的纵向变形(axial deformation )的大小? 实验结论:F l ∝∆、l l ∝∆、A l 1∝∆AlF l ⋅∝∆⇒ 需引入比例常数,方可写成等式。
比例常数? (二)推导:杆件原长为l ,受轴向拉力F 之后,杆件长度由l 变成l 1,杆件纵向的绝对变形l l l -=∆1。
为了消除杆件长度对变形的影响,引入应变的概念ε。
当变形是均匀变形时,应变等于平均应变等于单位长度上的变形量,因此l l∆=ε。
学过的有关于ε的知识,即拉伸压缩的胡克定律(Hook’s law ):当应力不超过材料的比例极限时,应力与应变成正比,写成表达式即:εσ⋅=E )(p σσ<,σ(stress),ε(strain)。
杆件横截面上的应力:AF A F N ==σ 将应力和应变两式代入胡克定律中,得到:l lE AF ∆⋅=结论:纵向变形l ∆的表达式:EAFll =∆ )(p σσ< ——胡克定律(重点)含义:①E ——弹性模量,反映材料软硬的程度。
单位MPa 。
②在应力不超过比例极限时,杆件的伸长量l ∆与拉力F 成正比,与杆件的原长l 成正比,与弹性模量E 和横截面积A 成反比。
EA ——抗拉刚度,EA 越大,变形越小。
③两个胡克定律,一个是描述应力和应变的关系,一个是表示力和变形的关系,但本质上都是一样的。
刘鸿文主编(第4版) 高等教育出版社《材料力学》课件全套
受力如图:
列平衡方程:
M
Y 0 FN P
Mo(F) 0
FN
Pa M 0
M Pa
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,
即应力的概念。
F A
pm
F A
—— 平均应力
C
p lim F A0 A
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
B 解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆)
F 用截面法取节点B为研究对象
Fx 0 FN1 cos 45 FN2 0
x
Fy 0 FN1 sin 45 F 0
FN1 28.3kN
FN 2 20kN
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F 0 FN F
2、轴力:截面上的内力
F
由于外力的作用线
与杆件的轴线重合,内
力的作用线也与杆件的
轴线重合。所以称为轴
力。 F 3、轴力正负号:
拉为正、压为负
4、轴力图:轴力沿杆 件轴线的变化
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.1
A
F1
若:构件横截面尺寸不足或形状
不合理,或材料选用不当
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。
《材料力学》公式
《材料力学》公式材料力学是研究材料在外力作用下的力学性能和行为的一门学科。
它是工程力学的一个重要分支,广泛应用于工程结构、材料开发和制造等领域。
以下是《材料力学》中常用的一些公式,供参考。
1.应力(σ)和应变(ε)的关系:材料的应力与应变之间存在一定的线性关系,可表示为σ=Eε,其中E为弹性模量。
2.应力的计算:材料在外力作用下受到的内力为应力,可计算为σ=F/A,其中F为作用力,A为受力面积。
3.应变的计算:材料受到外力作用后的形变称为应变,可计算为ε=(ΔL/L),其中ΔL为变形长度,L为初始长度。
4.弹性模量(E):材料在弹性阶段的应力和应变之间的比值称为弹性模量,可表示为E=σ/ε。
5.屈服强度(σy):材料在受到一定应力作用后开始发生塑性变形的最大应力值,常用于评估材料的强度。
6.抗拉强度(σu):材料在拉伸过程中的最大抗拉应力值。
7.韧性(τ):材料在破坏前能吸收的能量,可表示为τ=∫σdε,即韧性为应力-应变曲线下的面积。
8.断后伸长率(Ag):材料在断裂后的伸长量与原始长度的比值,常用于评估材料的延展性。
9.拉伸应力(σ):材料在拉伸过程中受到的应力。
10.断裂韧性(Kc):材料对裂纹扩展的抵抗能力,用来评估材料的断裂性能。
11.断裂韧性(Gc):材料对裂纹扩展的抵抗能力,通常作为评估材料断裂韧性的指标。
12.蠕变:材料在长期受持续应力作用下发生的形变,其速率与应力、温度等因素有关。
13.疲劳:材料在循环应力作用下产生的破坏,通常以疲劳寿命来评估材料的耐久性。
14.断裂力学:研究材料在受到外力作用下产生裂纹并扩展的过程,分析裂纹的尖端应力场、断裂断面等。
15.刚度(k):材料在受到外力作用下的抵抗形变的能力,可表示为k=F/δ,其中F为作用力,δ为形变量。
以上是《材料力学》中的一些常用公式,通过对材料的力学性能和行为的研究,可以更好地理解和应用材料,为工程结构的设计和材料的选择提供科学的依据。
《材料力学》说课
坚持理论教学,并注重实验教学。注重能 力培养,并及时将学科的最新发展及教改 教研的新成果引入到教学中去。 4、所用教材:
《材料力学》韩秀清、王纪海主编 21世纪高等学校规划教材
二 3
体系结构与主要内容
二、体系结构与主要内容
1.体系结构:
基本变形 强度刚度 第一章 绪论 第二章 轴向拉伸和压缩 第三 扭转
2.主要内容: 本课程的重点是解决构件在不同情况下的强度、 刚度和稳定性问题。主要内容包括理论与实验课程。
实验课程:
低碳钢和灰铸铁的拉伸、压缩实验(2学时) 圆轴扭转实验(2学时) 材料弹性模量E和泊松比μ的测定(2学时) 纯弯曲梁正应力测定实验(2学时)
三 3
学情分析与学法指导
三、学情分析与学法指导
1、学情分析:
学生对高等数学、理论力学课程内容有 所遗忘 多数学生对理论推导公式兴趣不大 “工程实际”是学生的兴趣来源 “学有所用”是学生的潜在愿望
三、学情分析与学法指导
2、学法指导: 针对本课程的概念多、公式多、计算多的特点,结 合课程的难点,总结出相适应的指导方法。 简述本课程所用到的知识:微积分、静力学 对概念讲深讲透、公式不厌其烦的复习; 对学生分层次培养,公式会用为基础,推导 为提高。 充分结合工作或工程中的实际应用 课堂提问,勤于表扬,增强学生信心。
启发式教学 案例式教学 讨论式教学
结合相关工程实例
四、教学方法与教学手段
3、教学设计实例与效果 以材料力学的基本变形为例。为了引导学生善 于思考,课堂设计以一支粉笔的破坏为例,向学生 进行提问:你如何对粉笔进行破坏?学生的答案多 种多样。最后引出四大变形:拉伸(压缩)、剪切 、扭转、弯曲(模块一)。 课堂气氛活跃,学生兴趣浓厚,印象深刻。
《材料力学》课程思政案例
《材料力学》课程思政案例一、课程介绍《材料力学》是一门重要的工程学科,是土木工程、机械工程等专业的必修课程。
本课程主要研究各种工程材料的力学性能和变形规律,为工程设计提供理论依据。
在教学过程中,注重培养学生的工程意识和实践能力,同时结合思政元素,培养学生正确的价值观和人生观。
二、思政元素融入方式1. 爱国主义教育在讲解材料力学的发展历程时,穿插介绍我国古代土木工程中的材料力学应用,如古代桥梁的结构设计、建筑材料的力学性能研究等。
通过这些案例,激发学生的民族自豪感和自信心,培养爱国主义情怀。
2. 诚信教育在讲解材料力学实验时,强调实验数据的真实性和准确性,培养学生严谨的科学态度和诚信品质。
通过案例分析,让学生了解不诚信的行为带来的后果,引导学生树立正确的价值观和人生观。
3. 团结协作精神在讲解材料力学问题求解时,注重培养学生的团队协作精神。
通过分组讨论、合作探究等方式,让学生学会倾听他人意见、尊重他人观点、共同解决问题。
通过实践活动,让学生体会团结协作的重要性。
4.创新创业意识在讲解新材料、新技术在材料力学中的应用时,鼓励学生关注行业动态,培养创新创业意识。
通过案例分析,让学生了解创新创业的成功案例,激发学生的学习热情和创造力。
三、实施方案1. 教学内容设计:在教学内容中充分融入思政元素,注重知识传授与价值观培养的结合。
在实验、案例分析等环节中突出思政元素,加强学生的情感体验和思想教育。
2. 教学方法:采用课堂讲授、小组讨论、案例分析、实践活动等多种教学方法,增强学生的学习积极性和参与度。
通过师生互动、生生互动,引导学生思考、感悟和践行思政元素。
3. 教学评价:结合学生的课堂表现、作业完成情况、小组讨论成果和实践活动表现等方面进行评价。
注重过程性评价和结果性评价的结合,鼓励学生将思政元素内化为自己的行为准则。
四、效果反馈与改进1. 效果反馈:通过课程思政的实施,学生们的思想观念得到了提升,对工程伦理有了更深刻的认识。
《材料力学》课程教学大纲
《材料力学》课程教学大纲学分:4.5 总学时:72 理论学时:62 实验/实践学时:10一、课程性质与任务《材料力学》是车辆工程的专业基础课。
本课程共72学时,4.5学分,考试课。
《材料力学》是由基础理论课过度到设计课程的技术基础课。
它是变形固体力学的基础,又是有关专业后续课程的需要。
通过本课程的学习,使学生建立起正确的变形固体力学基本概念,掌握分析工程中强度、刚度、稳定性问题的基本方法,提高工程计算能力和实验分析能力等方面均有重要作用,它与其它课程共同完成培养高级工程技术人员的任务。
二、课程的基本要求学习本课程后,应达到下列基本要求:1.掌握构件强度、刚度、稳定性的基本概念,掌握杆件四种基本变形及组合变形的定义,能熟练判定杆件的变形种类。
2.掌握用截面法求杆件内力的基本方法,能熟练地求解任一指定截面的内力,并能绘制杆件的内力图。
3.熟悉等截面杆件横截面上应力的分析方法(基本变形):实验-假设-变形几何关系、物理、静力平衡;能熟练求解四种基本变形有关的应力计算、分布及危险点判定和强度计算。
4.掌握组合变形构件强度分析方法-叠加法,了解其原理和使用条件,熟练掌握组合变形构件的强度计算问题。
5.掌握各基本定理、定律及假设(剪应力互等定理、剪切虎克定律、广义虎克定律、强度理论等),并能熟练应用。
6.掌握并能熟练求解基本变形构件的变形、位移问题,并能进行相关的刚度计算。
7.掌握一点应力状态的表示方法,能熟练地从受力构件中取原始单元体,并能用解析法、图解法求解相关问题。
8.掌握静不定问题的基本概念,掌握用变性比较法求解一次静不定问题。
9.掌握压杆稳定的基本概念,并能熟练地进行稳定计算。
10.熟悉动载荷问题的分析方法,并能熟练求解相关问题;掌握交变应力的基本概念,会进行疲劳强度计算。
11.掌握与平面图形有关的几何量(静矩、形心、惯性矩等)的基本概念及计算,了解形心轴、主惯性轴等概念。
12.初步掌握静载下材料机械性能的测试方法、电测实验原理及测试方法。
《材料力学》课程标准
《材料力学》课程标准一、课程目标本课程旨在培养学生掌握材料力学的理论知识,能够运用所学知识解决实际工程中的材料力学问题,提高学生的创新能力和实践能力。
二、教学内容1. 基础知识:学习弹性力学的基本原理和概念,包括应力、应变、平衡、稳定等问题。
2. 材料性质:掌握金属、非金属和有机高分子等常见材料的力学性能,如强度、硬度、韧性等。
3. 结构分析:学会分析简单和复杂结构的力学性能,包括梁、轴、壳体等基本构件。
4. 实验方法:掌握各种实验方法,如拉伸、压缩、弯曲、冲击等实验方法,以及数据处理和分析方法。
三、教学方法与手段1. 理论教学:采用讲授、讨论、案例分析等多种教学方法,使学生全面理解和掌握材料力学的基本理论和方法。
2. 实验教学:通过实验操作和数据分析,培养学生的动手能力和分析解决问题的能力。
3. 多媒体教学:利用多媒体技术,增加课堂信息量,提高教学效率。
4. 实践教学:鼓励学生参加课外科技活动和社会实践,提高其实践能力和创新意识。
四、课程评估1. 平时成绩:包括出勤率、作业完成情况、课堂表现等,占总评分的30%。
2. 期中考试:检测学生对材料力学基本知识的掌握情况,占总评分的30%。
3. 实验成绩:根据实验操作和实验报告的质量,占总评分的40%。
五、教材与参考书1. 教材:《材料力学》(xx版)。
2. 参考书:《材料力学实验教程》。
此外,还可以参考相关工程材料和结构设计方面的书籍。
六、课程实施建议1. 教学时间安排:建议每周安排4-6学时,共计约60学时/学期。
可根据实际情况进行调整。
2. 教学地点:建议在教室或实验室进行授课,以便于理论与实践相结合。
3. 师资要求:本课程对教师要求较高,需要具备丰富的材料力学教学经验和工程实践经验。
教师应具备硕士及以上学历,并能够熟练运用各种教学工具和手段。
4. 学生要求:学生应具备高中物理基础和一定的数学基础,能够认真听讲、积极参与课堂讨论和实验操作。
建议学生提前预习和复习课程内容,做好笔记和作业。
《材料力学》课程简介
《材料力学》课程介绍一、课程简介《材料力学》是一门重要的工程学科,旨在研究材料在承受各种外力作用下的力学性能,以及如何通过合理的结构设计,保证材料的强度、刚度和稳定性。
本课程涵盖了材料力学的基本理论、实验方法和工程应用,是机械、土木、航空航天等工程领域的重要基础课程。
二、课程目标1. 掌握材料力学的基本概念和原理,包括应力、应变、强度、刚度、稳定性等;2. 学会应用基本力学原理分析和解决实际工程问题,包括结构设计、材料选择、工艺优化等;3. 了解现代实验技术和测试方法,如有限元分析、超声波检测等;4. 提高分析和解决问题的能力,为后续专业课程学习和实际工程应用打下基础。
三、课程内容1. 静力学部分:介绍外力、平衡方程、基本变形(拉伸、压缩、弯曲)、应力分析等;2. 材料力学部分:讲解材料的力学性能(强度、刚度、稳定性)、应力应变曲线、胡克定律、超静定问题等;3. 实验部分:学习实验设计、测试方法、数据处理和分析等,了解现代实验技术和测试方法的应用;4. 工程应用部分:结合实际工程案例,分析结构设计、材料选择、工艺优化等方面的力学问题。
四、教学方法本课程采用线上授课与线下实验相结合的方式,注重理论与实践的结合。
学生可以通过视频教程学习基本理论,通过实验操作和案例分析提高解决实际工程问题的能力。
教师会定期组织小组讨论和答疑解惑,帮助学生更好地理解和掌握课程内容。
五、学习资源1. 课程网站提供了丰富的教学资源,包括视频教程、课件、实验指导书等;2. 学生可以参考相关的工程手册和文献,了解材料力学的最新研究成果和应用进展;3. 教师会定期组织课外活动,如学术讲座、实践参观等,帮助学生拓展视野,增强学习兴趣。
六、考试与评估本课程的考试采用平时作业、实验报告、考试相结合的方式。
平时作业考察学生对基本概念和原理的掌握情况,实验报告评估学生实验操作和数据分析的能力,考试则是对学生综合运用知识解决实际工程问题的考核。
《材料力学》习题册附答案
F12312练习 1 绪论及基本概念1-1 是非题(1) 材料力学是研究构件承载能力的一门学科。
( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。
(是)(3) 构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。
( 是 ) (4) 应力是内力分布集度。
(是 )(5) 材料力学主要研究构件弹性范围内的小变形问题。
(是 ) (6) 若物体产生位移,则必定同时产生变形。
(非 ) (7) 各向同性假设认为,材料沿各个方向具有相同的变形。
(F ) (8) 均匀性假设认为,材料内部各点的力学性质是相同的。
(是)(9) 根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。
(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
(非 )1-2 填空题(1) 根据材料的主要性质对材料作如下三个基本假设:连续性假设、均匀性假设 、各向同性假设 。
(2) 工程中的强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。
(3) 保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性三个方面。
3(4) 图示构件中,杆 1 发生 拉伸 变形,杆 2 发生 压缩 变形,杆 3 发生 弯曲 变形。
(5) 认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设。
根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。
(6) 图示结构中,杆 1 发生 弯曲变形,构件 2发生 剪切 变形,杆件 3 发生 弯曲与轴向压缩组合。
变形。
(7) 解除外力后,能完全消失的变形称为 弹性变形,不能消失而残余的的那部分变形称为 塑性变形 。
(8) 根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。
1-3选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。
《材料力学》课程教学大纲
《材料力学》课程教学大纲适用于本科机械设计制造及其自动化专业学分3.5 总学时:56 理论学时:48 实验/实践学时:8一、课程的性质、任务和要求《材料力学》是工科专业基础课,必修。
本课程共56学时,3.5学分。
《材料力学》课程的主要任务是:通过该课程的学习,要求学生掌握等直杆件的强度、刚度及轴向受压杆件的稳定性的计算等;能运用强度、刚度及稳定性条件对杆件进行校核、截面设计及载荷确定等简单计算工作;初步了解材料的机械性能及材料力学实验的基本知识和操作技能;初步学会应用材料力学的理论和方法解决一些简单的工程实际问题;为学习有关的后继课程打好必要的基础。
学习本课程后,应达到下列基本要求:1.对材料力学的基本概念和基本分析方法有明确的认识;2.能熟练地画出杆件在基本变形下的内力图,进行应力和位移、强度和刚度的计算;3.掌握应力状态理论和组合变形下杆件的强度计算;4.了解压杆的稳定性概念,会计算轴向受压杆的临界力和临界应力;5.了解低碳钢和灰口铸铁的基本力学性能及其测定方法;6.掌握简单超静定问题的求解方法;7.掌握电测实验应力分析的基本原理和方法。
二、本课程与其它课程的关系、主要参考教材本课程的先修课程为:高等数学、工程图学、理论力学。
选用教材:《材料力学Ⅰ》(第5版),刘鸿文主编,高等教育出版社,2010参考书目:[1]《材料力学Ⅰ》(第5版),孙训方主编,高等教育出版社,2009[2]《材料力学Ⅰ》(第3版),单辉祖,高等教育出版社,2009[3]《材料力学》,Timoshenko(铁木辛柯)编,科学出版社,1978三、课程内容1.绪论主要内容:材料力学的任务及研究对象;变形固体的基本假设;力与内力、截面法与应力、线变形和角变形的概念;杆件变形的基本形式。
2.拉伸、压缩与剪切主要内容:轴向拉伸与压缩的概念与实例;直杆横截面上的内力、应力及斜截面上的应力计算;安全系数与许用应力的应用、拉压杆件的强度计算;轴向拉伸与压缩时杆件的纵向变形、线应变、横向变形计算;泊松比、虎克定律、弹性模量,抗拉(压)刚度、应力集中的概念;金属材料拉伸和压缩时的力学性能;简单拉(压)超静定问题、热应力和装配应力的解法;剪切和挤压的实用计算。
材料力学 pdf
材料力学 pdf材料力学是研究材料在外力作用下的力学性能和变形规律的一门学科,它在工程领域有着广泛的应用。
材料力学的研究对象包括金属材料、非金属材料、复合材料等,通过对材料的本构关系、应力应变关系以及材料的破坏机理等进行研究,可以为工程设计和材料加工提供重要的理论指导。
在材料力学的研究中,我们首先需要了解材料的力学性能。
材料的力学性能包括弹性模量、屈服强度、抗拉强度、断裂韧性等指标,这些指标可以反映材料在外力作用下的变形和破坏行为。
通过对这些性能指标的测定和分析,可以评估材料在工程中的可靠性和适用性。
其次,材料力学还涉及材料的本构关系。
材料的本构关系描述了材料的应力与应变之间的关系,是材料力学研究的核心内容之一。
不同材料具有不同的本构关系,例如金属材料常常服从线弹性本构关系,而塑料材料则具有非线性的本构关系。
通过对材料的本构关系进行研究,可以预测材料在外力作用下的变形和破坏行为,为工程设计提供重要的参考依据。
此外,材料的破坏机理也是材料力学研究的重要内容之一。
材料在外力作用下会出现不同的破坏形式,如拉伸破坏、压缩破坏、扭曲破坏等。
研究材料的破坏机理可以帮助我们理解材料的破坏过程,预测材料的寿命和稳定性,从而指导工程实践中的材料选择和设计。
总的来说,材料力学作为一门重要的工程学科,对于材料的性能评价、工程设计和材料加工具有重要的意义。
通过对材料力学的研究,可以更好地理解材料在外力作用下的力学行为,为工程实践提供科学依据,推动材料科学和工程技术的发展。
因此,我们需要深入学习和研究材料力学的理论知识,掌握材料力学的基本原理和方法,不断提高自己的专业能力,为工程实践和科学研究做出更大的贡献。
希望通过本文的介绍,能够对材料力学有一个初步的了解,激发大家对这一学科的兴趣,促进材料力学的进一步发展和应用。
刘鸿文第五版《材料力学》教材刍议
刘鸿文第五版《材料力学》教材刍议引言1.1 主题概述刘鸿文教授是国内著名的材料科学专家,他的《材料力学》教材早在第一版时就已经成为材料学领域的经典教材。
随着新知识的不断涌现和教学理念的不断更新,刘鸿文教授也陆续推出了第二版、第三版和第四版的《材料力学》教材。
如今,第五版的《材料力学》教材问世,引起了学术界和教育界的广泛关注。
本文将针对刘鸿文第五版《材料力学》教材进行全面评估和刍议。
综述刘鸿文教授的学术成就和教育理念2.1 学术成就概述刘鸿文教授是我国工程院院士,其在材料力学领域拥有极高的学术地位和影响力。
他在材料本构关系、材料力学行为以及材料的力学性能研究方面有着丰富的理论和实践经验。
他的研究成果广泛应用于工程实践中,对于推动我国材料科学技术的发展起到了积极的推动作用。
2.2 教育理念介绍刘鸿文教授一直秉承着科学求是的态度,注重理论与实践相结合,培养学生的独立思考能力和实践能力。
他在教学中倡导灌输基础知识的也注重培养学生的创新精神和实践能力。
刘鸿文第五版《材料力学》教材的主要特点3.1 概述刘鸿文第五版《材料力学》教材第五版的《材料力学》教材是在前四版的基础上进行了全面的修订和更新。
主要涉及材料的宏观力学性能、材料的微观力学性能、材料动力学性能等方面的内容。
与前几版相比,第五版在内容深度和广度上都有了明显的提升。
3.2 突出的亮点和创新点第五版《材料力学》教材在内容上更加系统完整,不仅涵盖了传统的材料力学理论,还增加了一些新知识和新理论。
教材在呈现形式上也更加丰富多样,增加了大量的案例分析和实践应用,使学生能够更好地将理论知识与实际问题相结合。
刘鸿文第五版《材料力学》教材的个人观点和理解4.1 对第五版教材的认可我认为刘鸿文教授第五版的《材料力学》教材在内容上有很大的突破和创新,对于培养学生的实践能力和创新精神有着积极的促进作用。
教材的案例分析和实践应用丰富多样,能够更好地指导学生理论知识的应用。
《材料力学》答案
一、单选题共30道试题;共60分..1. 厚壁玻璃杯倒入开水发生破裂时;裂纹起始于A. 内壁B. 外壁C. 壁厚的中间D. 整个壁厚正确答案:B 满分:2 分2.图示结构中;AB杆将发生的变形为A. 弯曲变形B. 拉压变形C. 弯曲与压缩的组合变形D. 弯曲与拉伸的组合变形正确答案:D 满分:2 分3. 关于单元体的定义;下列提法中正确的是A. 单元体的三维尺寸必须是微小的B. 单元体是平行六面体C. 单元体必须是正方体D. 单元体必须有一对横截面正确答案:A 满分:2 分4. 梁在某一段内作用有向下的分布力时;则在该段内M图是一条A. 上凸曲线;B. 下凸曲线;C. 带有拐点的曲线;D. 斜直线正确答案:A 满分:2 分5. 在相同的交变载荷作用下;构件的横向尺寸增大;其 ..A. 工作应力减小;持久极限提高B. 工作应力增大;持久极限降低;C. 工作应力增大;持久极限提高;D. 工作应力减小;持久极限降低..正确答案:D 满分:2 分6. 在以下措施中将会降低构件的持久极限A. 增加构件表面光洁度B. 增加构件表面硬度C. 加大构件的几何尺寸D. 减缓构件的应力集中正确答案:C 满分:2 分7. 材料的持久极限与试件的无关A. 材料;B. 变形形式;C. 循环特征;D. 最大应力..正确答案:D 满分:2 分8. 梁在集中力作用的截面处;它的内力图为A. Q图有突变; M图光滑连续;B. Q图有突变;M图有转折;C. M图有突变;Q图光滑连续;D. M图有突变;Q图有转折..正确答案:B 满分:2 分9.空心圆轴的外径为D;内径为d;α= d / D..其抗扭截面系数为A B CDA. AB. BC. CD. D正确答案:D 满分:2 分10. 在对称循环的交变应力作用下;构件的疲劳强度条件为公式:;若按非对称循环的构件的疲劳强度条件进行了疲劳强度条件校核;则A. 是偏于安全的;B. 是偏于不安全的;C. 是等价的;即非对称循环的构件的疲劳强度条件式也可以用来校核对称循环下的构件疲劳强度D. 不能说明问题;必须按对称循环情况重新校核正确答案:C 满分:2 分11. 关于单元体的定义;下列提法中正确的是A. 单元体的三维尺寸必须是微小的;B. 单元体是平行六面体;C. 单元体必须是正方体;D. 单元体必须有一对横截面..正确答案:A 满分:2 分12. 关于理论应力集中系数α和有效应力集中系数Kσ有以下四个结论..其中是正确的A. α与材料性质无关系;Kσ与材料性质有关系;B. α与材料性质有关系;Kσ与材料性质无关系;C. α和Kσ均与材料性质有关系;D. α和Kσ均与材料性质无关系..正确答案:A 满分:2 分13. 梁发生平面弯曲时;其横截面绕旋转A. 梁的轴线B. 截面对称轴。
《材料力学》教学大纲
《材料力学》教学大纲一、课程概述材料力学是一门研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性等力学性能的学科。
它是工科学生必修的专业基础课程之一,为后续的机械设计、结构力学、工程力学等课程提供必要的理论基础。
通过本课程的学习,学生应掌握材料力学的基本概念、基本理论和基本方法,具备对工程构件进行强度、刚度和稳定性分析的能力,为今后从事工程设计和科学研究工作打下坚实的基础。
二、课程目标1、知识目标掌握材料力学的基本概念,如内力、应力、应变、弹性模量、泊松比等。
理解拉伸、压缩、剪切、扭转和弯曲等基本变形形式下的应力和应变分布规律。
掌握材料在拉伸和压缩时的力学性能,如屈服极限、强度极限、延伸率和断面收缩率等。
熟悉梁的弯曲理论,包括弯曲内力、弯曲应力和弯曲变形的计算方法。
了解组合变形和压杆稳定的基本概念和分析方法。
2、能力目标能够对简单的工程构件进行受力分析,绘制内力图。
能够根据材料的力学性能和构件的受力情况,进行强度、刚度和稳定性的计算和校核。
具备运用材料力学知识解决工程实际问题的能力。
培养学生的逻辑思维能力和创新能力。
3、素质目标培养学生严谨的科学态度和认真负责的工作作风。
提高学生的工程意识和创新意识,培养学生的团队合作精神。
三、课程内容1、绪论材料力学的任务和研究对象。
变形固体的基本假设。
内力、截面法和应力的概念。
应变的概念和线应变、切应变的计算。
2、拉伸、压缩与剪切轴向拉伸和压缩的概念。
轴向拉伸和压缩时横截面上的内力和应力计算。
材料在拉伸和压缩时的力学性能,包括低碳钢和铸铁的拉伸试验、应力应变曲线、屈服极限、强度极限、延伸率和断面收缩率等。
轴向拉伸和压缩时的变形计算,胡克定律。
剪切和挤压的实用计算。
3、扭转扭转的概念。
圆轴扭转时横截面上的内力——扭矩和扭矩图。
圆轴扭转时横截面上的应力计算。
圆轴扭转时的变形计算,扭转角和单位长度扭转角的计算。
扭转时的强度和刚度条件。
4、弯曲内力弯曲的概念和梁的分类。
《材料力学》教学大纲
《材料力学》教学大纲(64学时)一. 课程的地位及其任务材料力学是一门由基础理论课过渡到专业课的技术基础课。
其任务是研究杆件在载荷作用下的强度、刚度和稳定性的问题,为工程有关零构件设计提供必要的基础知识和计算方法。
二.课程的基本要求(1)基本掌握将一般工程零部件或结构简化为力学简图的方法。
(2)牢固树立四种基本变形及组合变形的概念,熟练掌握直杆的受力分析。
(3)熟练掌握杆件在基本变形下的内力、应力、位移及应变的计算,并能应用强度.刚度条件进行计算。
(4)了解平面几何图形的性质,能计算简单图形的静矩、形心、惯性矩、惯性半径和圆截面的极惯性矩。
能用平行移轴公式求简单组合截面的惯性矩。
会应用型钢表。
(5)熟练掌握求解简单超静定问题的基本原理和方法,正确建立变形条件,掌握用变形比较法解轴向拉压超静定问题及简单超静定梁。
(6)掌握应力状态和强度理论,并能进行拉(压)弯、斜弯曲、弯扭组合变形下杆件的强度计算。
(7)掌握常用金属材料的力学性质及测定方法。
(8)理解剪切的概念,能进行剪切和挤压的实用计算。
(9)正确理解弹性稳定平衡的概念,确定压杆的临界载荷和临界应力,并进行压杆稳定性计算。
三.教学内容及学时分配1.绪论及基本概念(2学时)材料力学的任务及研究对象;变形固体的概念及基本假设;内力与截面法。
应力与应变的概念。
2.杆件的内力与内力图(10学时)轴向拉压杆的轴力及轴力图。
功率.转速与外力偶矩的关系。
扭转杆的扭矩及扭矩图。
梁的计算简图。
平面弯曲梁的剪力和弯矩。
弯矩方程和剪力方程。
剪力图和弯矩图。
弯矩、剪力与分布荷载集度间的关系及其应用;简易法作梁的内力图。
组合变形杆件的内力与内力图。
3.轴向拉压杆件的强度与变形计算(8学时)轴向拉压杆横截面和斜截面上的应力。
轴向拉压杆的纵向变形和横向变形计算。
拉(压)刚度。
弹性模量和泊松比。
胡克定律。
轴向拉压杆的强度条件和强度计算。
安全系数与许用应力。
简单拉压超静定问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学
一、1-5 CCACA 6-10 DDBAD
二、1-5 ABABB 6-10 ABABA 11-15 ABAAA 16-20 ABBBA
21-25 BBAAA 26-30 BABAA 31-35 BBAAB 36-40 ABAAA
一、单选题(共 10 道试题,共 20 分。
)
V
1.
在以下措施中()将会降低构件的持久极限
A.
增加构件表面光洁度;
B.
增加构件表面硬度;
C.
加大构件的几何尺寸;
D.
减缓构件的应力集中
满分:2 分
2. 如图:
A. A
C. C
D. D
满分:2 分
3.
截面上的切应力的方向()
A.
平行于截面
B.
垂直于截面
C.
可以与截面任意夹角
D.
与截面无关
满分:2 分
4. 如图1:
B. B
C. C
D. D
满分:2 分
5. 如图2:
A. A
B. B
C. C
D. D
满分:2 分
6.
在相同的交变载荷作用下,构件的横向尺寸增大,其()。
A.
工作应力减小,持久极限提高;
B.
工作应力增大,持久极限降低;
C.
工作应力增大,持久极限提高;
D.
工作应力减小,持久极限降低。
满分:2 分
7.
脆性材料的破坏应力是()
A.
比例极限
B.
弹性极限
C.
屈服极限
D.
强度极限
满分:2 分
8.
圆截面杆受扭转作用,横截面任意一点(除圆心)的切应力方向()
A.
平行于该点与圆心连线
B.
垂直于该点与圆心连线
C.
不平行于该点与圆心连线
D.
不垂直于该点与圆心连线满分:2 分
9. 如图3:
A. A
B. B
C. C
D. D
满分:2 分
10.
材料的持久极限与试件的()无关
A.
材料
B.
变形形式
C.
循环特征
D.
最大应力
满分:2 分
二、判断题(共 40 道试题,共 80 分。
)
V
1.
广义位移是指广义力引起的位移。
A.
错误
B.
正确
满分:2 分
2.
同种材料制成的压杆,其柔度愈大愈容易失稳。
A.
错误
B.
正确
满分:2 分
3.
两根材料、杆件长度、截面面积和约束条件都相同的压杆,则其临界力也必定相同。
A. 错误
B. 正确
满分:2 分
4.
圆杆两面弯曲时,各截面的合弯矩矢量不一定在同一平面内。
A.
错误
B.
正确
满分:2 分
5.
不能通过实验来建立复杂应力状态下的强度条件。
A.
错误
B.
正确
满分:2 分
6.
压杆失稳的主要原因是由于外界干扰力的影响。
A.
错误
B.
正确
满分:2 分
7.
当受力构件内最大工作应力低于构件的持久极限时,通常构件就不会发生疲劳破坏的现象。
A.
错误
B.
正确
满分:2 分
8.
材料的破坏形式由材料的种类而定。
A. 错误
B. 正确
满分:2 分
9.
当载荷不在梁的主惯性平面内时,梁一定产生斜弯曲。
A.
错误
B.
正确
满分:2 分
10.
在交变应力作用下,考虑构件表面加工质量的表面质量系数总是小于1的。
A.
错误
B.
正确
满分:2 分
11.
材料的持久极限仅与材料、变形形式和循环特征有关;而构件的持久极限仅与应力集中、截面尺寸和表面质量有关。
A.
错误
B.
正确
满分:2 分
12.
不同强度理论的破坏原因不同。
A. 错误
B. 正确
满分:2 分
13.
斜弯曲时中性轴一定过截面的形心。
B.
正确
满分:2 分
14.
塑性材料具有屈服阶段,脆性材料没有屈服阶段,因而应力集中对塑性材料持久极限的影响可忽略不计,而对脆性材料持久极限的影响必须考虑。
A.
错误
B.
正确
满分:2 分
15.
圆杆两面弯曲时,可分别计算梁在两个平面内弯曲的最大应力,叠加后即为圆杆的最大应力。
A.
错误
B.
正确
满分:2 分
16.
对于轴向受压杆来说,由于横截面上的正应力均匀分布,因此不必考虑横截面的合理形状问题。
A.
错误
B. 正确
满分:2 分
17.
在功的互等定理中,广义力系Fi和Fj所包含的广义力的性质和个数可以不相同。
B.
正确
满分:2 分
18.
拉伸(压缩)和弯曲组合变形时中性轴一定不过截面的形心。
A.
错误
B.
正确
满分:2 分
19.
超静定结构的相当系统和补充方程不是唯一的,但其计算结果都是唯一的。
A.
错误
B.
正确
满分:2 分
20.
构件在交变应力作用下,构件的尺寸越小,材料缺陷的影响越大,所以尺寸系数就越小。
A.
错误
B.
正确
满分:2 分
21.
提高构件的疲劳强度,关键是减缓应力集中和提高构件表面的加工质量。
A. 错误
B. 正确
满分:2 分
22.
第二强度理论要求材料直到破坏前都服从虎克定律。
A.
错误
B.
正确
满分:2 分
23.
若由载荷引起的内力图面积总和为零(即ω=0),则不论其形心处所相应的,由单位力引起的内力为何值,其位移总等于零。
A.
错误
B.
正确
满分:2 分
24.
强度理论只能用于复杂应力状态。
A.
错误
B.
正确
满分:2 分
25.
对于各种超静定问题,力法正则方程总可以写为11X1+Δ1F=0。
A. 错误
B. 正确
满分:2 分
26.
动载荷作用下,构件内的动应力与构件的材料的弹性模量有关。
A.
错误
B.
正确
满分:2 分
27.
在弹性变形能的计算中,对线性弹性材料在小变形条件下的杆件,可以应用力作用的叠加原理,对非线性弹性材料在小变形条件下的杆件,不能应用力作用的叠加原理。
A.
错误
B.
正确
满分:2 分
28.
力法的正则方程是解超静定问题的变形协调方程。
A.
错误
B.
正确
满分:2 分
29.
两构件的截面尺寸,几何外形和表面加工质量都相同,强度极限大的构件,持久极限也大。
A. 错误
B. 正确
满分:2 分
30.
变形能等于外力所作的功,由于功有正有负,因此杆的变形能也有正有负。
B.
正确
满分:2 分
31.
交变应力是指构件内的应力随时间作周期性的变化,而作用在构件上的载荷可能是动载荷,也可能是静载荷。
A.
错误
B.
正确
满分:2 分
32.
构件由突加载荷所引起的应力,是由相应的静载荷所引起的应力的两倍。
A.
错误
B.
正确
满分:2 分
33.
. 用力法解超静定问题时,由于有标准形式的正则方程,故不需要考虑静力平衡、变形几何和物理关系三个方面。
A.
错误
B. 正确
满分:2 分
34.
塑性材料在疲劳破坏时表现为脆性断裂,说明材料的性能在交变应力作用下,由塑性变为脆性。
A. 错误
满分:2 分
35.
在表示交变应力特征的参数σmax ,σmin ,σa ,σm和r中只有两个参数是独立的。
A.
错误
B.
正确
满分:2 分
36.
装配应力的存在,必将使结构的承载能力降低。
A.
错误
B.
正确
满分:2 分
37.
构件作自由落体运动时,构件内任意一点的应力都等于零。
A.
错误
B.
正确
满分:2 分
38.
两个二向应力状态叠加仍然是一个二向应力状态。
A. 错误
B. 正确
满分:2 分
39.
压杆的临界应力值与材料的弹性模量成正比。
A.
错误
B.
正确
满分:2 分
40.
动荷系数总是大于1。
A.
错误
B.
正确
满分:2 分。