高等数学第一章1
高等数学第一章《函数与极限》
第一章 函数与极限一、内容提要(一)主要定义【定义 1.1】 函数 设数集,D R ⊂如果存在一个法则,使得对D 中每个元素x ,按法则f ,在Y 中有唯一确定的元素y 与之对应,则称:f D R →为定义在D 上的函数,记作(),y f x x D =∈.x 称为自变量,y 称为因变量,D 称为定义域.【定义1.2】 数列极限 给定数列{}x n 及常数a ,若对任意0ε>,总存在正整数N ,使得当n N >时,恒有x a n -<ε成立,则称数列{}x n 收敛于a ,记为a x n n =∞→lim .【定义1.3】 函数极限(1)对于任意0ε>,存在()0δε>,当δ<-<00x x 时,恒有()ε<-A x f .则称A 为()f x 当0x x →时的极限,记为A x f x x =→)(lim 0.(2) 对于任意0ε>,存在0X >,当x X >时,恒有f x A ()-<ε.则称A 为()f x 当x →∞时的极限,记为lim ()x f x A →∞=.(3)单侧极限左(右)极限 任意0ε>,存在()0δε>,使得当000(0)x x x x δδ-<-<<-<时,恒有()ε<-A x f .则称当00()x x x x -+→→时)(x f 有左(右)极限A ,记为00lim ()(lim ())x x x x f x A f x A -+→→== 或00(0)((0))f x A f x A -=+=.单边无穷极限 任意0ε>,存在0X >,使得当x X >(x X <-)时, 恒有f x A ()-<ε, 则lim ()x f x A →+∞=(lim ()x f x A →-∞=) .【定义1.4 】 无穷小、无穷大 若函数()f x 当0x x →(或x →∞)时的极限为零(|()|f x 无限增大),那么称函数()f x 为当0x x →(或x →∞)时的无穷小(无穷大).【定义1.5】 等价无穷小 若lim 0,lim 0,lim 1βαβα===,则α与β是等价的无穷小.【定义 1.6】 连续 若)(x f y =在点0x 附近有定义,且)()(lim 00x f x f x x =→,称()y f x =在点0x 处连续.否则0x 为()f x 的间断点.(二)主要定理【定理1.1】极限运算法则 若a x u =)(lim , b x v =)(lim ,则 (1)()lim u v ±存在,()lim lim lim u v u v a b ±=±=±且; (2)()lim u v ⋅存在,()lim lim lim u v u v a b ⋅=⋅=⋅且; (3)当0≠b 时, limu v 存在,lim lim lim u u a v v b==且 推论 ⑴ lim lim Cu C u Ca ==; ⑵ ()lim lim nnnu u a ==. 【定理1.2】极限存在的充要条件⇔=→A x f x x )(lim 0lim ()x x f x -→=0lim ()x x f x A +→=.lim ()x f x A →∞=⇔lim ()x f x →-∞=lim ()x f x A →+∞=【定理1.3】极限存在准则 (1) 单调有界数列必有极限(2) 夹逼准则: 设数列{}n x 、{}n y 及{}n z 满足① n n n y x z ≤≤, ② lim =lim n n n n y z a →∞→∞=,则lim n n x →∞存在,且lim n n x a →∞=.【定理1.4】极限与无穷小的关系 若lim (),f x A =则(),f x A α=+其中lim 0.α=【定理1.5】两个重要极限 1sin lim0=→x x x ,e x xx =⎪⎭⎫⎝⎛+∞→11lim .【定理1.6】 初等函数的连续性 初等函数在其定义区间内连续. 【定理1.7】闭区间上连续函数的性质(1)最值定理 闭区间上连续函数在该区间上一定有最大值M 和最小值m . (2)有界定理 闭区间上连续函数一定在该区间上有界.(3)介值定理 闭区间上连续函数必可取介于最大值M 与最小值m 之间的任何值. (4)零点存在定理 设函数()x f 在[]b a ,上连续,()a f ()0<⋅b f ,则至少存在一个ξ∈()b a ,,使 ()0f ξ=.二、典型题解析函数两要素:定义域,对应关系定义域:使表达式有意义的自变量的全体,方法为解不等式 对应关系:主要方法用变量替换(一)填空题【例1.1】 函数23arccos2xy x =+的定义域是 . 解 由arccos y u =的定义域知11u -≤≤,从而23112xx -≤≤+, 即 (][][),21,12,-∞--+∞.【例1.2】 设()()()2sin ,1f x x f x xφ==-,则函数()x φ的定义域为 .解 由已知()()2sin[()]1fx x xφφ==-,所以()2sin(1)x arc x φ=-,则2111,x -≤-≤即x ≤.【例1.3】设1()(0,1),()([...()])1n n f x x x f x f f f x x =≠≠=+次,试求()n f x 解 由()1xf x x =-,则21()[()]11xx f x f f x x x x -===--,显然复合两次变回原来的形式,所以,2(),211n x n k f x x n k x =⎧⎪=⎨=+⎪-⎩(二)选择题【例 1.9】设函数()f x 在(),-∞+∞上连续,又0a >且1a ≠,则函数()()()sin 2sgn sin F x f x x =-是 [ ](A) 偶函数 (B) 奇函数 (C) 非奇非偶函数 (D) 奇偶函数. 解 因为()()sgn sin sgn sin x x -=-⎡⎤⎣⎦,所以()sgn sin x 为奇函数.而()sin 2f x -为偶函数,故()()sin 2sgn sin f x x -⋅为奇函数,故选 B .【例 1.10】设()f x 是偶函数,当[]0,1x ∈时,()2f x x x =-,则当[]1,0x ∈-时,()f x = [ ](A) 2x x -+(B) 2x x + (C) 2x x - (D) 2x x --.解 因为()()f x f x -=,取[]1,0x ∈-,则[0,1]x -∈,所以()()()22f x x x x x -=---=--, 故选 D .(三)非客观题 1.函数及其性质【例1.16】 求函数()lg(1lg )f x x =-的定义域. 解 要使()f x 有意义,x 应满足0,1lg 0x x >⎧⎨->⎩ 即010x <<,所以()f x 的定义域为 (0,10).【例1.17】 设函数()f x 的定义域是[0,1],试求()f x a ++()f x a -的定义域(0a >).解 由()f x 的定义域是[0,1],则0101x a x a ≤+≤⎧⎨≤-≤⎩,故1a x a ≤≤-,则当1a a =-时,即12a =时,函数的定义域为12x =; 当1a a ->时,即12a <时,函数的定义域为[],1a a -; 当1a a -<时,即12a >时,函数的定义域为空集. 【例1.18】设()2,x f x e =()()1f x x ϕ=-并且()0x ϕ≥,求()x ϕ及其定义域.解 因为()()2[()]1,x fx e x φϕ==-且()0x ϕ≥,故()x ϕ=,为使此式有意义,ln(1)0x -≥,所以函数()x ϕ的定义域为{}0x x ≤.【例1.19】 设()2422x xf x x ++=-,求()2f x -.解( 法一)配方法 ()2(2)422(2)2x f x x +-+=-++,所以()24224.x xf x x --=-+解(法二) 变量代换法 令2x t =-,代入得()2422t f t t -=-+,即()2422xf x x -=-+,则()24224xxf x x --=-+.【例1.20】 设()22,01,12x x f x x x ≤≤⎧=⎨<≤⎩,()ln g x x =,求()f g x ⎡⎤⎣⎦. 解 ()[]ln f g x f x =⎡⎤⎣⎦ 22ln ,0ln 1ln ,1ln 2x x x x ≤≤⎧=⎨<≤⎩[]()()222ln ,1,0, ln , ,0,x x e x x e e ⎧∈+∞⎪=⎨⎡⎤∈+∞⎪⎣⎦⎩[]222ln ,1,ln , ,x x e x x e e ⎧∈⎪=⎨⎡⎤∈⎪⎣⎦⎩【例1.21】 设()1,10,1x x x ϕ⎧≤⎪=⎨>⎪⎩,()22,12,1x x x x ψ⎧-≤⎪=⎨>⎪⎩,求 ()x ϕϕ⎡⎤⎣⎦,()x ϕψ⎡⎤⎣⎦. 解 ⑴ 当(),x ∈-∞+∞时,()01x ϕ≤≤ ,所以 ()()1,,x x ϕϕ≡∈-∞+∞⎡⎤⎣⎦.⑵ 因为 ()()()1,10,1x x x ψϕψψ⎧≤⎪=⎡⎤⎨⎣⎦>⎪⎩, 且 ()()1,12,1x x x x ψψ⎧==⎪⎨<≤≠⎪⎩ 1,故 ()1,10,1x x x ϕψ⎧=⎪=⎡⎤⎨⎣⎦≠⎪⎩. 【例1.22】 求函数()2312,1,121216,2x x f x x x x x ⎧-<-⎪=-≤≤⎨⎪->⎩的反函数.解 当21121,x y x <- -<-时,=则x =, 当312=8,x y x -≤≤ ≤≤时,-1则x =当212168,x y x > =->时, 则16,12y x +=所以()f x 的反函数为 ()111816,812x y f x x x x -⎧<-⎪⎪⎪==-≤≤⎨⎪+⎪>⎪⎩.【例 1.23】设()f x 在(,)-∞+∞上有定义,且对任意,(,)x y ∈-∞+∞有()()f x f y x y -<-,讨论()()F x f x x =+在(,)-∞+∞上的单调性.解 任取12,(,)x x ∈-∞+∞,不妨设21x x >,则由条件有()()()()21212121f x f x f x f x x x x x -<-<-=-,所以()()1221f x f x x x -<-,则可变形为()()1122f x x f x x +<+,即()()12F x F x <,故()F x 在(,)-∞+∞上单调增加.【例1.24】 求c 的一个值,使()sin()()sin()0b c b c a c a c ++-++=,这里b a >,且均为常数.解 令()sin f x x x =,则()f x 是一个偶函数,则有[]()()f b c f b c +=-+要使()(),()f b c f a c a b +=+≠成立,则有1()()()2a cbc c a b +=-+⇒=-+.极限与连续:不定式,等价关系,特殊极限 极限待定系数的确定原理 连续待定系数确定的原理【例1.4】 设2lim 8xx x a x a →∞+⎛⎫= ⎪-⎝⎭,则a = . 解 因为 233lim lim lim 1x x xx x x x a x a a a x a x a x a →∞→∞→∞+-+⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭3333lim 1x a axa x aa x a e x a --→∞⎛⎫=+= ⎪-⎝⎭再由3ln83ln 28ln 2aee e a ===⇒=.【例1.5】(2004数三)若()0sin lim cos 5x x xx b e a→-=-,则a = ,b = .解 因()0sin limcos 5x x xx b e a→-=-,而()0limsin cos 0x x x b →-=,则0lim 0x x e a →-=, 所以1a =,又0x →时,sin ,1x xx e x -,则()()000sin limcos lim cos limcos51x x x x x x x b x b x b x e →→→-=-=-=-,154b b -=⇒=-. 【例 1.6】 已知当0x →时,123(1)1ax +-与1cos x -是等价无穷小,则常数a = .解 由1230(1)1lim1,1cos x ax x→+-=-而1222ln(1)3112ln(1)2333220000(1)112limlim limlim1cos 1cos 32ax ax ax x x x x ax e a xx x x ++→→→→+--====--,故3.2a = 【例1.7】 (2004数二)设()()21lim1n n x f x nx →∞-=+,则()f x 的间断点为x = .解 ()()()22111limlim ,0110,0n n n x n x x f x xnx nx x →∞→∞⎧--=⋅=≠⎪=⎨++⎪=⎩而 ()001lim lim(0)x x f x f x→→===∞≠,故()f x 的间断点(无穷)为0x =.【例1.8】 设()1sin , 02, 0x x f x x a x ⎧≠⎪=⎨⎪=⎩,在0x =处连续,则a = . 解 要使()f x 在0x =处连续,应有()()0lim 0,x f x f a →==而()0001sin1122lim lim sin lim 222x x x xx f x x x →→→===, 所以12a =.(二)选择题 【例1.11】()1, 10,01x x f x x x --<≤⎧=⎨<≤⎩ ,则()0lim x f x →= [ ](A) -1 (B) 0 (C) 不存在 (D) 1. 解 ()0lim lim 0x x f x x →+→+==, ()()0lim lim 11x x f x x →-→-=-=-.因为()()0lim lim x x f x f x →+→-≠,所以()0lim x f x →不存在,故选 C.【例1.12】 下列结论正确的是 [ ] (A) 若1lim1n n na a +→∞=,则lim n n a →∞存在;(B) 若lim n n a A →∞=,则11lim lim1lim n n n n nn n a a A a a A ++→+∞→∞→∞===; (C) 若lim n n a A →∞=,若lim n n b B →∞=,则()lim n bB n n a A →+∞=;(D) 若数列{}2n a 收敛且()2210n n a a n --→→∞,则数列{}n a 收敛.解 (A)不正确,反例{}n a n =,(B)不正确,因为只有当lim 0n n a →∞≠时,才能运用除法法则:11lim lim lim n n n n nn n a a a a ++→+∞→∞→∞= ,(C)不正确,只有0A ≠时,()lim n b B n n a A →+∞=成立.故选 D.注意无穷大与有界量的乘积关系 【例1.13】 当0x →时,变量211sin x x是 [ ] (A) 无穷小; (C) 有界的,但不是无穷小量; (B) 无穷大; (D) 无界的,但不是无穷大量. 解 M ∀,1,22n x n ππ∃=+只要,2M n π⎡⎤>⎢⎥⎣⎦则()2,2n f x n M ππ=+> 所以211sin x x 无界.再令 12x k π=,()0,1,2,k =±±,则()20lim lim(2)x k f x k π→→∞=⋅ sin 20k π≡,故()lim x f x →∞≠∞.故选 D.趋向无穷大主要是最高次项 趋向无穷小主要是最低次项【例1.14】 当0x →时,下列4个无穷小关于x 的阶最高的是 [ ](A) 24x x + (B)1 (C)sin 1xx- (D)-解 242200lim lim(1)1x x x x x x→→+=+=,所以24x x +是x 的2阶无穷小. 当0x →111sin 22x x ,故(B )是x 的同阶无穷小. 311000sin 11sin 6lim lim lim k k k x x x x x x xx x xx ++→→→---==,要使极限存在2k =,故(C )是x 的2阶无穷小.0x x →→= 3001sin (1cos )1lim lim 24cos k k x x x x x x xx →→-==, 同理(D )是x 的3阶无穷小.故选D.指数函数的极限要注意方向【例1.15】(2005数二)设函数()111xx f x e-=-,则 [ ](A) 0x =,1x =都是()f x 的第一类间断点; (B) 0x =,1x =都是()f x 的第二类间断点;(C) 0x =是()f x 的第一类间断点,1x =是()f x 的第二类间断点; (D) 0x =是()f x 的第二类间断点,1x =是()f x 的第一类间断点. 解 因为()0lim x f x →=∞,则0x =是()f x 的第二类间断点;而()()11111111lim lim 0,lim lim 111xx x xx x x x f x f x ee++--→→→→--====---, 所以1x =是()f x 的第一类(跳跃)间断点,故选 D. (三)非客观题 求极限的各种方法(1) 用N ε-定义证明数列极限定义证明的关键是利用n x A ε-<倒推找正整数N (与ε有关),这个过程常常是通过不等式适当放大来实现.【例1.25】求证lim1n n→∞=. 证明 对0ε∀>,1ε-<成立,则需1-n n =n a n n +-<a nε=<只要1an n ⎡⎤>+⎢⎥⎣⎦,取1a N n ⎡⎤=+⎢⎥⎣⎦,当n N >时,1ε<.证毕. 【例1.26】 设常数1,a >用N ε-定义证明lim 0!nn a n →∞=. 证明 对0ε∀>,要使0!na n ε-<成立,则需[]0!1[]([]1)[]1n a n a a a a a aa k n a a n a ε-⎛⎫⋅⋅⋅⋅-=<⋅< ⎪⋅⋅+⋅⋅+⎝⎭,(其中1[]a ak a ⋅⋅=⋅⋅)只要lg []lg[]1k n a a a ε>++,为保证0,N >取lg max 1,[]lg []1k N a a a ε⎧⎫⎡⎤⎪⎪⎢⎥⎪⎪⎢⎥=+⎨⎬⎢⎥⎪⎪⎢⎥+⎪⎪⎣⎦⎩⎭,当n N >时,有 0!na n ε-<,证毕. (2)通过代数变形求数列极限 逐项平方差【例1.27】求极限2421111lim(1)(1)(1)(1)2222nn →∞++++解 2421111lim(1)(1)(1)(1)2222n n →∞++++=2111(1)(1)(1)222lim n →∞-++2n 1(1+)211-22(1)12lim(1)22n n +→∞=-=平方差公式【例1.28】求极限lim )n n n →∞.解lim )nn n →∞n =limn →∞=limn =12=. 等比求和【例1.29】 求极限221112333lim 111555nn n →∞+++++++. 解 由等比数列的求和公式2(1)1n nq q q q q q-+++=-将数列变形,则221113211113213333lim lim 11111155551515n n n n n n →∞→∞-+⨯++++-=+++-⨯-112123lim 11145n x n →∞⎛⎫+- ⎪⎝⎭=⎛⎫- ⎪⎝⎭1221014+==. 分项求和【例1.30】 求[]31lim(21)2(23)3(25)n n n n n n →∞-+-+-++.解 []31lim (21)2(23)3(25)n n n n n n →∞-+-+-++()311lim 221nn k k n k n →∞==-+∑()23111lim 212n nn k k n k k n →∞==⎡⎤=+-⎢⎥⎣⎦∑∑()()()()32111211lim 226n n n n n n n n →∞++++⎡⎤=-⎢⎥⎣⎦()()312111lim63n n n n n →∞++==.拆分原理【例1.31】 求极限2111lim()31541n n →∞+++-.解 因为()()1111212122121n n n n ⎛⎫=-⎪-+-+⎝⎭,则 2111lim()31541n n →∞+++-111111lim [(1)()()]23352121n n n →∞=-+-++--+ 111lim (1)2212n n →∞=-=+. 求和后拆分【例1.32】 求极限111lim(1)1212312n n→∞+++++++++.解 111lim(1)1212312n n→∞+++++++++(由等差数列的前n 项和公式)222lim 12334(1)n n n →∞⎡⎤=++++⎢⎥⨯⨯+⎣⎦ (逐项拆分) 111111lim 12()23341n n n →∞⎡⎤=+-+-++-⎢⎥+⎣⎦2lim 221n n →∞⎛⎫=-= ⎪+⎝⎭(3)利用夹逼准则求数列极限 【例1.33】求lim n解 11111n n ≤+<+,而1lim(1)1n n→∞+=,∴ 由夹逼准则得 lim 1n →∞=. 掌握扩大和缩小的一般方法 【例1.34】 求22212lim()12n nn n n n n n n →∞+++++++++. 解212n n n n +++++2221212nn n n n n n n<+++++++++2121n n n +++<++ 且 2121lim,2n n n n n →∞+++=++ 2121lim 21n n n n →∞+++=++, 由夹逼准则得 22212lim()12n nn n n n n n n →∞+++++++++=12. 【例1.35】 求极限226n nn →∞++.解≤≤,则2221nnnk k k===≤≤且 22111limlim 3nnn nk k →∞→∞====,由夹逼准则得原式21lim3nn k→∞===.以下两题了解一下即可 【例1.36】 证明 1;1(0)n n a ==>证明 1) 1n h =+,则22(1)(1)(1)122n nn n n n n n n n n n h nh h h h --=+=+++>,即 0n h <<由夹逼准则 lim 0,n n h →∞=从而lim(1) 1.n n n h →∞=+=2)当1a >时,0<<由夹逼准则1n =;当01a <<,令11b a=>,则lim lim 1n n →∞→∞==,从而1(0).n a =>注 【例1.36】的结果以后直接作为结论使用. 【例1.37】 求极限nk n a ++.(12,,,0k a a a >,k N ∈)解 记{}12max ,,,k aa a a =,则nk a≤++≤.且,n n n a a a ==⋅=,由夹逼准则得{}12max ,,,nk k n a a a a a ++==.(4)利用单调有界准则求数列极限给出前后项的关系,证明其单调,有界,设出极限解方程数列单调性一般采用证明110,1,nn n n x x x x ---≥≥或函数的单调性;数列的有界性方法比较灵活.【例1.38】 求lim n n a a a a →∞++++个根号.解 设n x a =++,则12x x ==…,n x =,从而 1n nx x -<,数列{}n x 单调增加;又n x =,21n nx a x -=+,111n n n n x a x x x -=+<+=,数列有上界,故{}n x 有极限.不妨设lim n n x A →∞=,将21n n x ax -=+两边取极限,有2A a A =+,故12A ±=【例1.39】 求33n .(共有n 个根号)解 设33n x =,显然1n n x x ->,{}nx单调增加;且1n x x =2x =3n x <,{}n x 有上界,所以数列极限存在.不妨设lim n n x A →∞=,将213n n x x -=两边取极限,有23A A =,则()3,0A A ==舍.【例1.40】 设2110,0,,1,2,2n n nx aa x x n x ++>>==,证明数列{}n x 收敛,并求极限.解 2102nn n na x x x x +--=≤,数列{}n x 单调递减;且21122n n n n n x a a x x x x +⎛⎫+==+ ⎪⎝⎭≥=,{}n x 有界,所以数列{}n x 收敛.令lim n n x A →∞=,对212n n nx a x x ++=两边取极限,有12a A A A ⎛⎫=+ ⎪⎝⎭,则A =. (5)利用无穷小的性质求数列极限 【例1.41】 求下列极限(1)(2)题的方法化为指数形式常用,(3)要说明无穷小乘有界量为无穷小 (1) lim 1)(0)n n a →∞-> (2)1121lim (33)n n n n +→∞- (3)2lim 1n nn →∞+解 (1)当1ln 11ln a nn e a n→∞-时, ,则 1ln lim 1)lim (1)a nn n n n e→∞→∞-=-1lim ln ln n n a a n→∞=⋅=(2)当n →∞时, 1ln 331nn-(n+1)(n+1),则11112211lim (33)lim3(31)nnn n n n n n ++→∞→∞-=-(n+1)121ln 3lim 3lim ln 3n n n n n+→∞→∞⋅=⋅=(n+1)(3)因为0n →∞=,而sin 1n ≤,由于无穷小与有界函数的乘积仍为无穷小,所以2lim 01n nn →∞=+ 注 limsin n n →∞不存在,故不能写成lim sin 0n n n n →∞→∞→∞=⋅=. 综合题了解一下即可【例1.42】 求())()22211131lim arctan !22311n n nn n n n →∞⎡⎤⎛⎫+⨯-+++⎢⎥ ⎪ ⎪⨯--⎢⎥⎝⎭⎣⎦. 解()arctan !2n π≤,()221=()2limarctan !0n n →∞∴=,有界量乘无穷小()1111lim lim 112231n n n n n →∞→∞⎡⎤⎛⎫+++=-=⎢⎥ ⎪⨯-⎝⎭⎣⎦,拆分求和2231lim 31n n n →∞+=-, 则 ()2211131lim 322311n n n n n →∞⎡⎤++++=⎢⎥⨯--⎣⎦ )()222131lim arctan !lim 1lim 1n n x n n n n n →∞→∞→∞+⎛⎫⎡⎤-- ⎪⎢⎥⎣⎦-⎝⎭故原式= 033=-=-.两极限都存在用四则运算法则注利用函数极限求数列极限见第三章;利用定积分定义求数列极限见第六章; 利用级数收敛的性质求极限见第十一章. 3.函数的极限(1)用εδ-定义或X ε-定义证明极限用εδ-定义证明函数极限关键是用倒推法适当放缩找到0x x -与ε的关系,确定()δε;而X ε-定义证明函数极限关键是用倒推法适当放缩找到x 与ε的关系,确定()X ε.【例1.43】 证明 22lim 4x x →= 此题典型要搞清楚自变量的约束范围的确定证明 对于0ε∀>,不妨设21,x -<则222225,x x x +≤+<-++< 要使242252x x x x ε-=+⋅-<⋅-<,只要取min{1,}5εδ=,当02x δ<-<时,有24x ε-<.证毕.注 函数在0x 的极限只与函数在0(,)U x δ的定义有关,与函数的整个定义范围无关.因此上例作了假设2 1.x -<也可假设122x -<等. 【例1.44】 用X ε-定义证明:232lim .33x x x →∞+=证明 对于0ε∀>,要使2322321333x x x x x xε++--==<,只要1.x ε>故取11,X ε=+当x X >时,均有23233x x ε+-<,即232lim .33x x x →∞+=(2)用极限存在的充要条件研讨极限 含有,xxe e-的表达式x →∞的极限;含有[]11,,,xxe e x x -的表达式0x →的极限;分段函数在分段点的极限,一般来说用极限存在的充要条件讨论.注意指数函数的极限,一般要考虑两边趋势【例1.45】 讨论极限 lim x xx xx e e e e --→∞-+.解 221lim lim 11x x x xx x x x e e e e e e --→-∞→-∞--==-++; 221lim lim 11x x xx x x x x e e e e e e--→+∞→+∞--==++. 所以 lim x xx xx e e e e --→∞-+不存在.【例1.46】 求1402sin lim 1x x x e x x e →⎡⎤+⎢⎥+⎢⎥+⎢⎥⎣⎦. 解 1402sin lim 1x x x e x x e +→⎡⎤+⎢⎥+⎢⎥⎢⎥+⎣⎦43402sin lim 0111x xx xe e x x e +--→-⎡⎤+⎢⎥=+=+=⎢⎥⎢⎥+⎣⎦; 1402sin lim 2111x x x e x x e -→⎡⎤+⎢⎥-=-=⎢⎥⎢⎥+⎣⎦; 所以 1402sin lim 1x x x e x x e →⎡⎤+⎢⎥+⎢⎥+⎢⎥⎣⎦1=. 【例1.47】 []x 表示不超过x 的最大整数,试确定常数a 的值,使[]210ln(1)lim ln(1)x x x e a x e →⎧⎫+⎪⎪+⎨⎬⎪⎪+⎩⎭存在,并求出此极限.解 由[]x 的定义知,[][]0lim 1,lim 0,x x x x -+→→=-=故所给极限应分左、右极限讨论. []22211110000ln(1)ln(1)lim lim lim lim .ln(1)ln(1)x x x x x x x x x x xe e e a x a a e a a e e e ----→→→→⎧⎫++⎪⎪+=-=-=-=-⎨⎬⎪⎪++⎩⎭[]222211110002ln(1)ln(1)ln (1)lim lim 0lim 01ln(1)ln (1)ln(1)x xxxx x x x x x xe e e e x a x e e e e x+++--→→→--⎧⎫+++⋅+⎪⎪+=+=+⎨⎬⎪⎪+⋅+++⎩⎭212ln(1)lim 21ln(1)xx xe e +-→-++==++.所以,当2a =-时所给极限存在,且此时极限为2.【例1.48】设21,1,()23, 1.x f x x x x ⎧≥⎪=⎨⎪+<⎩试求点1x =处的极限.解 211(10)lim ()lim(23)5x x f f x x --→→-==+=; 111(10)lim ()lim 1x x f f x x++→→+===; 即(10)(10)f f -≠+,1lim ()x f x →∴不存在.(3)通过代数变形求函数极限 【例1.49】求下列极限(1)22232lim 2x x x x x →-+++- (2)422123lim 32x x x x x →+--+ (3)11lim ,()1n x x n Z x +→-∈- 解 (1)原式222(1)(2)(1)(2)limlim (1)(1)(1)(11)x x x x x x x x x x →-→-++++==-+--++211lim.13x x x →-+==-(2)原式22211(1)(3)(1)(3)limlim 8.(2)(1)2x x x x x x x x x →→-+++===---- (3)原式121(1)(1)lim1n n x x x x x x --→-++++=- (提零因子)121lim(1)n n x xx x n --→=++++=.注 分子分母都为0必有共同的0因子① 因为分母极限为零,所以不能直接用计算法则; ② 当0x x →时,0x x ≠. 【例1.50】求下列极限注意多项式商的三种形式的规律0x x x a →∞→→,,,最高项,最低项,零因子(1)247lim 52x x x x x →∞-+++ (2)()()()3020504192lim 61x x x x →∞++- (3) 3225lim 34x x x x →∞-++解(1)原式234341170lim 0.5211x x x x x x→∞-+==++(2)原式3020501249lim 16x x x x →∞⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=⎛⎫- ⎪⎝⎭1030205049263⋅⎛⎫== ⎪⎝⎭. (3)3225lim 34x x x x →∞-=∞++ (因为2334lim 025x x x x →∞++=-) 注 x →∞时有理函数求极限,分子、分母同时除以x 的最高幂次.即抓“大头”.综合题也可直接用结论 0101101,lim0,,m m m n n x n a n m b a x a x a n m b x b x b n m --→∞⎧=⎪⎪+++⎪=>⎨+++⎪∞<⎪⎪⎩. 【例1.51】求下列极限了解共轭因式,尤其是N 方差公式 (1))0lim 0x aa +→>. (2)0x → (3)limx解 ⑴原式0lim x a+→=limx a+→=lim x a+→==⑵ 原式=2x x →x →=32=⑶ 原式2limx=2123lim 1x --==.(4)利用两个重要极限求极限利用0sin lim 1x x x →=,1lim 1nn e n →∞⎡⎤+=⎢⎥⎣⎦求极限,则有0sin 1lim 1,lim(1)e →→∞=+=(此两式中的形式必须相同).【例1.52】 求下列极限 (1)201cos limx xx →-)(2)22sin sin lim x a x a x a→--(3)31lim sin ln(1)sin ln(1)x x x x→∞⎡⎤+-+⎢⎥⎣⎦解 (1)原式22200212sin sin1222limlim 2()2x x x xx x →→==.(2)原式()()sin sin sin sin limx ax a x a x a→-+=-()2limsin cos sin sin 22x a x a x a x a x a →-+=+-()sin2limcos sin sin 22x a x ax a x a x a →-+=⋅+-1cos 2sin sin 2a a a =⨯⨯=. (3)3lim sin ln(1)x x x →∞+ 3sin ln(1)33lim ln(1)0 limln(1)3ln(1)x x x x x x x→∞→∞++=⋅++ 33333lim ln 1ln lim[(1)]3x x x x x x⋅→∞→∞⎛⎫=+=+= ⎪⎝⎭同理 1lim sin ln(1)1x x x→∞+=,所以 31lim sin ln(1)sin ln(1)x x x x →∞⎡⎤+-+⎢⎥⎣⎦312=-=.【例1.53】 求下列极限 趋向常数的极限通常会做变量替换 (1)1lim(1)tan2x xx π→- (2)22sin lim1x xx ππ→- 解 (1)令1,t x =-则 原式02lim tan()lim cotlimlim222tan22t t t t ttt tt t ttππππππ→→→→=⋅-=⋅===(2) 令,x t π=-则原式2222200002sin()sin sin lim lim lim lim .()2(2)221t t t t t t t t t t t t t ππππππππππ→→→→-====----- 【例1.54】 求下列极限(1)32lim 22xx x x →∞-⎛⎫ ⎪-⎝⎭ (2)cot 0lim tan 4xx x π→⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦解 (1)原式1222111lim 1lim 11222222x xx x x x x --→∞→∞⎡⎤⎛⎫⎛⎫⎛⎫=+=+⋅+⎢⎥ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦1e e =⋅=(2)原式11tan t 001tan 1t lim()lim()1tan 1t x x t x x →→--==++122t 102t lim(1)1tt t t +-⋅-+→-=++02lim1122t02tlim(1)1t t ttt e →-++--→⎡⎤-=+=⎢⎥+⎣⎦.注 1∞型极限的计算还可用如下简化公式:设(),(),u u x v v x ==且lim 1,lim u v ==∞,则lim(1)lim .u vvu e-=(因为 (1)1lim(1)1lim lim [1(1)]u vu vvu u u e---⎧⎫⎪⎪=+-=⎨⎬⎪⎪⎩⎭)和ln lim lim .v v uu e=【例1.55】 求下列极限 (1)lim hx kx ax b ax c +→∞+⎛⎫⎪+⎝⎭(2)1sin sin 20cos lim cos 2x xx x x →⎛⎫⎪⎝⎭解 (1) 原式=()()lim 1lim x x ax b b c hx k hx k ax c ax c e e→∞→∞+-⎛⎫⎛⎫-++ ⎪ ⎪++⎝⎭⎝⎭=()b c hae-=(2) 原式22000cos 1cos cos 211cos cos 2lim 1lim limcos 2sin sin 2cos 2cos 222x x x x x x x xxx xx xxx eee→→→--⎛⎫⎛⎫-⋅⎪⎪⎝⎭⎝⎭===2222220011(2)1cos 21cos 322lim []lim []22224x x x x x xx x x xeee →→----===.(5)利用函数的连续性求极限① 设()f x 在x a =连续,按定义则有 lim ()()x af x f a →=.因此对连续函数求极限就是用代入法求函数值.② 一切初等函数在它的定义域上连续.因此,若()f x 是初等函数,a 属于它的定义域,则lim ()()x af x f a →=.③ 设lim ()x ag x A →=,若补充地定义()g a A =,则()g x 在x a =连续.若又有()y f u =在u A =连续,则由复合函数的连续性得 lim (())(lim ())()x ax af g x f g x f A →→==.【例1.56】 求下列极限(1)3225lim243x x x x →+++ (2)3x →解 利用函数的连续性得 (1)332252251lim243224233x x x x →+⨯+==++⨯+⨯+,(2)x →==(6)利用无穷小的性质求极限常用的几个重要等价无穷小代换(当0→x 时)有: sin arcsin tan arctan 1ln(1)x xx x x xe x -+x cos 1-~22x , 1-xa ~)0(ln >a a x , )1(log x +α~ln x a.1)1(-+αx ~x α(α为任意实数), 3tan sin ,2x x x -3sin .6x x x - 利用等价无穷小代换时,通常代换的是整个分子、分母或分子、分母的因子. 【例1.57】求下列极限(1)201lim sin 3x x e x →- (2)cos 0lim sin x x e e x x →- (3)0x →解 (1)当0x →时,212,sin 33xex x x -,∴200122limlim sin 333x x x e x x x →→-==. (2)当0x →时,1cos 0x -→,1cos 11cos xex -∴--.原式cos 1cos 1cos cos 22000(1)(1)lim lim lim x x x xx x x e e e e x x--→→→--==⋅20(1cos )1lim2x x x→-==(因为当210,1cos 2x x x →-). (3)原式0x →=0x x →→=012x →=201112lim 1222x xx x →==⋅.【例1.58】 已知()0ln 1sin lim 231x x f x x →⎡⎤+⎢⎥⎣⎦=-,求()20lim x f x x →. 解 由()0lim 310x x →-=及()0ln 1sin lim 231x x f x x →⎡⎤+⎢⎥⎣⎦=-,必有()0limln 10sin x f x x →⎡⎤+=⎢⎥⎣⎦, 所以 ()ln 1sin f x x ⎡⎤+⎢⎥⎣⎦~()sin f x xln3311x x e -=-~ln 3x 原式()0sin lim ln 3x f x x x →=()201lim ln 3sin x f x x x x →=⋅ ()201lim ln 3x f x x→==2,则 ()2lim2ln 3x f x x→=.【例1.59】 求 30sin tan limsin x x xx→- 解 原式33001sin (1)sin (cos 1)cos limlim sin cos sin x x x x x x x x x →→--==⋅23001()1lim lim cos 22x x x x x x→→⋅-=⋅=-⋅.注 3300sin tan limlim 0.sin sin x x x x x xx x→→--≠= 【例1.60】 求 213sin 2sin lim x x xx x→∞+解 213sin 2sin lim x x xx x→∞+=13sin 1lim2lim sin 1x x x x x x→∞→∞+, 1sin1lim1;lim 0,sin 1,1x x x x x x→∞→∞==≤ 则1lim sin 0x x x →∞=, ∴原式=303+=.(7)利用其它方法求极限① 利用导数定义求极限(见第二章) 利用导数定义=')(0x f 00)()(limx x x f x f x x --→可以将某些求极限问题转化为求导数;② 利用罗必达法则(详见第三章); ③ 利用微分中值定理(详见第三章); 【例1.61】 设()()00,0f f '=存在,求()limx f x x→. 解 因为()()00,0f f '=存在,所以()0limx f x x →()()()00lim 0x f x f f x→-'== *【例1.62】 求lim x→+∞解 令()f t =,显然当0x >时,()f t 在[,1]x x +上满足拉格朗日中值定理,所以有,()()()()f b f a f b a ξ'-=⋅-.所以,原式=cos ξ 其中1x x ξ≤≤+故lim lim cos 0x ξξ→+∞→+∞==4.函数的连续性(1)函数的连续性与间断点的讨论【例1.63】 设()2,0sin ,0a bx x f x bx x x⎧+≤⎪=⎨>⎪⎩在点0x =处连续,求常数a b 与的关系.解 ()00sin sin lim lim lim x x x bx bx f x b b x bx+++→→→==⋅= ()()200lim lim x x f x a bx a --→→=+=. 因为函数在点0x =连续,所以()0lim x f x +→b =()0lim x f x a -→==,故a b =. *【例1.64】 设()2122lim 1n n n x ax bxf x x +→∞++=+,当,a b 取何值时,()f x 在(),-∞+∞处连续.解 ()2,1,11,121,12a bx x x x ab f x x a b x ⎧+ <⎪>⎪⎪--=⎨=-⎪⎪++⎪=⎩,由于()f x 在()()(),1,1,1,1-∞--+∞上为初等函数,所以是连续的,只要选取适当的,a b ,使()f x 在1x =±处连续即可. 即11lim ()lim ()(1)x x f x f x f -+→→==; ()()()11lim lim 1x x f x f x f -+→-→-==-. 得 1011a b a a b b +==⎧⎧⇒⎨⎨-=-=⎩⎩. 【例1.65】 研究函数(),111,11x x f x x x -≤≤⎧=⎨<->⎩或的连续性,并画出函数的图形.解 ()f x 在(),1-∞-与()1,-+∞内连续, 在1x =-处间断,但右连续,因为在1x =-处,()()11lim lim 11x x f x x f ++→-→-==-=-,但()11lim lim 11x x f x --→-→-==,即()()11lim lim x x f x f x +-→-→-≠.【例1.66】 指出函数22132x y x x -=-+的间断点,说明这些间断点的类型.解 ()22132x f x x x -=-+在1x =、2x =点没有定义,故1x =、2x =是函数的间断点.因为 ()()()()2211111lim lim3212x x x x x x x x x →→-+-=-+--11lim 22x x x →+==--,所以1x =为第一类可去间断点.因为2lim x y →=∞,所以2x =为第二类无穷间断点.【例1.67】 讨论函数()221lim 1nnn x f x x →∞-=+的连续性,若有间断点,判别其类型.解 ()22 11lim0 1 1 1nnn x x x f x x x x x →∞⎧->⎪-===⎨+⎪<⎩, ()11lim lim 1x x f x x ++→→=-=-,()11lim lim 1x x f x x --→→==,()()11lim lim x x f x f x +-→→≠; ()11lim lim 1x x f x x ++→-→-==-,()11lim lim 1x x f x x --→-→-=-=,()()11lim lim x x f x f x +-→-→-≠.故 1x =±为第一类跳跃间断点.(2)闭区间上连续函数的性质【例1.68】 证明方程3910x x --=恰有三个实根. 证明 令()391f x x x =--,则()f x 在[]3,4-上连续,且()()310,290,f f -=-<-=> ()()010,4270f f =-<=>所以()f x 在()()()3,2,2,0,0,4---各区间内至少有一个零点,即方程3910x x --=至少有三个实根. 又它是一元三次方程,最多有三个实根.证毕【例1.69】 若n 为奇数,证明方程110n n n x a x a -+++=至少有一个实根.证 令()11n n n f x x a x a -=+++,则()1(1)nnn a a f x x xx=+++, 于是 lim (),lim ()x x f x f x →-∞→+∞=-∞=+∞,故存在1,x 使()10f x A =>;存在2,x 使()20f x B =<.所以()f x 在[]12,x x 至少有一个零点,即方程至少有一个实根.【例1.70】 设()f x 在[],a b 上连续,且()(),f a a f b b <>,试证:在(),a b 内至少有一点ξ,使得()fξξ=.证 令()()F x f x x =-,()F x 在[],a b 连续,且()0,()0,F a F b <>由介值定理得在(),a b 内至少存在一点ξ,使得()0F ξ=,即()fξξ=.【例1.71】 设()f x 在[]0,2a ()0a >上连续,且()()02f f a =,求证存在()0,a ξ∈,使()()ff a ξξ=+.证 构造辅助函数()()()g x f x a f x =+-,则()()()00g fa f =-,()()()2g a f a f a =-()()0f a f =--⎡⎤⎣⎦()0g =-,即()0g 与()g a 符号相反,由零点存在定理知存在()0,a ξ∈,使()0g ξ=,即()()ff a ξξ=+.【例1.72】 设()f x 在[],a b 上连续,且a c d b <<<,证明:在[],a b 内至少存在一点ξ,使得()()()()pf c qf d p q f ξ+=+,其中,p q 为任意正常数.证()f x 在[],a b 上连续,∴ ()f x 在[],a b 上有最大值M 和最小值m ,则()m f x M ≤≤.由于,[,]c d a b ∈,且,0p q >,于是有(),()pm pf c pM qm qf d qM ≤≤≤≤.⇒ ()()()()p q m pf c qf d p q M +≤+≤+, ⇒()()pf c qf d m M p q+≤≤+.由介值定理,在[],a b 内至少存在一点ξ,使得()()()pf c qf d f p qξ+=+,即()()()()pf c qf d p q f ξ+=+ 5.综合杂例【例1.73】 已知lim 2003,(1)ab bn n n n →∞=--求常数,a b 的值.解 lim lim lim 11(1)[1(1)](1)1aaa bbb n n n b b b n n n n n n n n-→∞→∞→∞-==------ 1lim lim 1a b a b n n n n bb n--+→∞→∞-==- 为使极限为2003,故10,a b -+=且12003,b =所以12002,.20032003b a ==- 【例1.74】 已知221lim2,sin(1)x x ax bx →++=-求常数,a b 的值. 解 由221lim 2,sin(1)x x ax bx →++=-则分子的极限必为0,即21lim()0x x ax b →++=, 从而 10a b ++=;另一方面,当1x →时,22sin(1)1x x --,因此2222221111lim lim 10lim sin(1)11x x x x ax b x ax b x ax a a b x x x →→→+++++--=++=--- 1(1)(1)lim2(1)(1)x x x a x x →-++==-+,从而11211a ++=+,即2,a =又10a b ++=, 得 3.b =【例1.75】已知lim ())0,x ax b →+∞+=求常数,a b 的值.解lim ())lim ())0,x x bax b x a x→+∞→+∞-+=+=而lim ,x x →+∞=∞要使原式极限为0,则lim()0,x ba x→+∞-+=所以 1.a =1lim )lim )lim.2x x x b ax x →+∞→+∞=-===【例1.76】 若 30sin 6()lim 0,x x xf x x →+=求206()lim .x f x x→+ 解 因为30sin 6()lim0,x x xf x x→+=由极限存在与无穷小的关系,得 3sin 6()0,x xf x x α+=+其中0lim 0.x α→=从而 2236()6sin 6,f x xx x x α+=-+ 所以 32233300006()6sin 66sin 6(6)lim lim()lim lim 366x x x x f x x x x x x x x x xα→→→→+-=-+=== 【例1.77】 已知0()lim4,1cos x f x x →=-求10()lim 1.xx f x x →⎛⎫+ ⎪⎝⎭解 因为200()2()limlim 4,1cos x x f x f x x x→→==-则20()lim 2x f x x →=.从而 221()()lim()200()()lim 1lim 1x x f x f x xf x x x x x f x f x e e x x →⋅→→⎛⎫⎛⎫+=+== ⎪ ⎪⎝⎭⎝⎭注 此题也可用极限存在与无穷小的关系求解.【例1.78】 当0x →x 的几阶无穷小量. 解3255x-=则203limx xx→→==∴x 的23阶无穷小.三、综合测试题。
高等数学第一章.
记作A
B,即A
B
x
xA或xB.
交集(Intersection): 设A和B是两个集合,由既属
于集合A又属于集合B的元素组成的集合,称为集合A
和集合B的交集, 空集:如果A和B没有公共元素,则称集合A和集合B
集合的表示方法:列举法和描述法。
1.列举法:就是把所有元素都列出来,用大括号括
起来。
s 例如:如果令 表示由2、3、4三个数组成的集合,
用列举法将其写成:s ={2,3,4}
2. 描述法:用语言描述出所有元素的共有特征。
若令 I 表示所有正整数集合,列举便很困难,则我们
可以简单地描述其元素,
写成:
称A是有限集,否则称为无限集(Infinite Set). 我们用N表示全体自然数的集合,即N{1,2,3,L }, 如果存在从A到自然数集合N的双射,则称A是可数无 限集(Countable Infinite Set). 1.2 实数 用Z表示全体整数的集合, 用Q表示全体有理数的集合。
有理数和无理数统称为实数, 用R表示. 把数轴叫做实直线。 上界(Upper Bound):令X是R的一个子集。若存在一 个实数u(不一定属于X), 满足对X中的任意x都有xu, 则称u是X的上界(Upper Bound). 这时称X是有上界的(Bounded Above).类似地,可以
定义下界(Lower Bound).
上确界(Supremum): 令X是R 的一个有上界的子集,
若s是X的一个上界,且对于任意的 y s 都存在一个 xX ,使得x y,则称s是X的上确界。 记为s=sup X; 类似地,可以定义X的下确界(Infimum)。 上确界是最小上界,下确界是最大下界 若X是R的一个有上界(下界)的子集,则X有上确界
高等数学第一章第一课-2022年学习资料
空集为任意集合A的子集,即Φ cA-若A与B互为子集,即AcB,且BCA,则称集合-A与B相等,记作A=B或 =A.-五、集合的运算-交集:A∩B={xxeA且xeB}:-→∩
并集:AUB={xx∈A或x∈B;-例5设A={1,2,4,6,B={2,4,7}-则AUB={1,2,3 4,6,7-A∩B={2,4-6设A={x-1≤x≤2,B={xx>0,-则AUB={xx≥-1,AnB= x0<x≤2-例7设A={xx≤1,B={x2≤x≤5}-则AUB={xx≤1,或2x≤5},AnB=D. →∩
例4设fx=x2+x-1,求f1,fa,fx+1-〔》奶-解f1=1+1-1=1-fa=a2+a-1-fx =x++x+-1-=x2+3x+1-→
f[fx]=[fx]+[fx]-1-=x2+x-1+x2+x--1-=x4+2x3-1-→∩
如果自变量在定义域内任取一个数值时-对应的函数值总是只有一个,叫做单值函数,-否则叫做多值函数.-例如:y ±V2-x2-定义:点集C={x,yy=∫x,x∈D}称为-函数y=fx的图形-→∩
第一章-函数-极限与连续-§1.1-集合-一、概念-具有某种特定性质并且可以彼此区别的事物的-总体,称为集 -集合里的每一个事物称为集合的元素。-例1方程x2-3x+2=0的根.-有限集合-→∩
例2-全体实数.常记为R.-例3-全体正实数.常记为R-例4-全体自然数.常记为N.-无限集合-若某个元素 属于集合A,则记作x∈A;-若某个元素x不属于集合A,则记作xEA.-例如:-2R,4∈N.-二、集合的表 法-1.列举法:按任意顺序列出集合的所有元素-并用花括号括起来,
高等数学第一章的总结-PPT
n
1
lim
n
n2 n2
lim n1
1
n2
1
lim n
n
1
n2
n2
1
2
n2
1
n
1
例:
lim
1
1
(e n
2
en
n
en
)
n n
1
e
x
d
x
e 1
0
1
n
1
解:原式
lim
n
1 n
e
n
(1
e
1
n
)
(1
e) lim
n
n
1
1en
1en
1
(1 e) lim ln(1 u) (1 e) lim ln(1 u) u e 1.
)x
e
两个重要极限
(1) lim sin 1
0
(2) lim ( 1 1 ) e
1
或 lim(1 ) e
0
注: 代表相同的表达式
思考与练习
填空题 ( 1~4 )
1. lim sin x __0___ ;
x x
3. lim xsin 1 _0___ ;
x0
x
2. lim xsin 1 __1__ ;
从此时刻以后 0 x x0 0 x x0
f (x)
f (x) A
x x0
x x0 0
思考题
x
sin
1 x
,
试问函数 f ( x) 10,
5
x2,
x0 x 0在x 0处
x0
的左、右极限是否存在?当 x 0 时, f ( x) 的
大一高数第一章知识点笔记
大一高数第一章知识点笔记一、集合和映射1. 集合的定义和表示方法集合是由一些确定的、互不相同的元素构成的整体。
可以通过列举元素的方式表示集合,也可以使用描述性的方式表示集合。
2. 集合的运算(1) 并集:将两个或多个集合中的元素统一起来,去除重复元素后形成的集合。
(2) 交集:两个或多个集合中共有的元素组成的集合。
(3) 差集:如果A、B是集合,差集A-B是指由属于A而不属于B的元素组成的新集合。
(4) 补集:设U是全集,A是U的一个子集,那么相对于全集U中的A的补集是U中那些不属于A的元素组成的集合。
二、数列和极限1. 数列的定义和表示方法数列是按照一定规律排列的一列数,可以按照顺序排列或者按照递推公式得到。
2. 数列的极限如果对于数列{an},当n趋于无穷大时,数列中的数a_n(n 为正整数)趋于某个常数A,那么称数列{an}的极限为A。
3. 数列的极限存在性(1) 单调有界准则:如果数列{an}单调递增且有上界(或数列单调递减且有下界),那么{an}必定收敛。
(2) 夹逼准则:如果对于数列{an},有两个数列{bn}和{cn},其中{bn}≤{an}≤{cn},且lim{bn}=lim{cn}=A,则数列{an}的极限也是A。
(3) 子数列收敛准则:如果数列{an}的任意子列都收敛于同一极限A,则数列{an}也收敛于A。
三、函数与极限1. 函数的定义和表示方法函数是一种映射关系,将一个自变量的值对应到一个因变量的值上。
2. 函数的极限如果当自变量趋近某个特定值时,函数的值趋近于某个常数L,那么称函数在这个特定值处的极限为L。
3. 函数的连续性(1) 函数在某个点a处连续,当且仅当该点的极限值等于函数在该点的值,即lim{h→0} f(a+h) = f(a)。
(2) 若函数f(x)在[a,b]上连续,则在该区间上f(x)有界。
(3) 若函数g(x)在[a,b]上连续,且g(x)≠0,则在该区间上1/g(x)也连续。
高等数学第一章:函数与极限
第一章:函数与极限第一节:函数1、函数的性质:单调性,有界性(包括有界与无界),奇偶性,周期性。
(重点在于单调性与奇偶性)单调性:)()(,,212121x f x f x x X x x <⇒<∈∀单调增加。
)()(,,212121x f x f x x X x x >⇒<∈∀单调减少 有界性:M x f X x M ≤∈∀>∃)(,,0 无界性:M x f X x M >∈∃>∀)(,,0奇偶性:)()(x f x f -=偶,)()(-x f x f -=奇。
奇函数如果连续则一定经过0点,值为0周期性:)()(T x f x f +=,注意,a T x f a x f ++=+)()(, 如果)()(b ax f x f +=,T 为)(x f 的周期,则周期为aT第二节:极限1、数列极限定义:εε<->>∃>∀⇔=∞→A x N n N A x n n n ,,0,0limM x N n N M x n n n >>>∃>∀⇔∞=∞→,,0,0lim性质:1) 唯一性:收敛数列极限唯一 2) 有界性:收敛数列必有界3) 子数列收敛:注意震荡数列并不是,一个数列收敛,则它的所有子数列都收敛。
4) 保号性:A x n n =∞→lim ,当A>0时,存在从某个N 开始,n x > 0.5) 有序性: n n y x ≤,则n n n n y x ∞→∞→≤lim lim 。
四则运算:1) b a y x n n n +=+∞→)(lim2) b a y x n n n ⋅=⋅∞→)(lim3) bay x n n n =∞→)(lim ,(b ≠0) 2、函数极限定义:εε<->>∃>∀⇔=∞→a x f X x X a x f x )(,0,0)(lim 时,当εδδε<-<-<>∃>∀⇔=→a x f x x a x f x x )(0,0,0)(lim 00,当性质:1) 唯一性,左极限等于右极限。
高等数学第一章函数与极限可修改文字
xn
1
1 n
O
102 103 104
105 106 107
108 109 1010 1011 n
xn
xn n
xn
●
n
●
OO
n
目标不惟一!!!!!!!!!!!!
xn
xn (1)n
1
●
●
●
●
●
●
●
●
O n 3120 3121 3122 1323 3124 3125 3126 3127 3128 3129 4320 4321 n
高等数学第一章函数与极限
1.1.1 常量与变量
常量:在某一变化过程中不变化,保持一定的数值的 量叫做常量。
变量:在某一变化过程中变化,可以取不同的数值的
量叫做变量。
A r 2
常量与变量的划分是相对的。
1.1.2 函数的概念
定义1:设x 和 y 为同一过程两个变量 ,若对非空数集D
中任一x (记为 x D ) ,在数集M中存在 y
(3)有界性 设函数 y = f ( x ) 定义在区间 (a,b) 上,若存在
一个常 数 k , 使得当 x ∈ (a,b) 时,恒有 f (x) k
( f (x) k) 成立,则称f ( x )在 (a,b)有上界(下界)。
若 f ( x )在 (a,b)既有上界又有下界, 则称f (x )在 (a,b)上有界。 如果函数 f ( x ) 在其定义域内有界,则称f ( x ) 为有界函数。
则称函数 f ( x ) 为奇函数(或偶函数)。
(2)单调性 若函数 f ( x ) 在区间 I 上有定义,如果对于区间 I 上
任意两点 x1 及 x2 ,当 x1 x2 时,有
高等数学第一章函数例题及答案
高等数学第一章 函数、极限、连续§1.1 函数一.求函数的定义域例1.求函数()2100ln ln ln x x x f -+=的定义域 例2.求5ln 1-+-=x x x y 的定义域例3.设()x f 的定义域为[]()0,>-a a a ,求()12-x f 的定义域 例4.设()⎩⎨⎧≤≤<≤=42 ,220 ,1x x x g 求()()()12-+=x g x g x f 的定义域,并求⎪⎭⎫ ⎝⎛23f 。
二.求函数的值域 例1.求3311-=x ey 的值域例2.求()()⎪⎩⎪⎨⎧>--≤≤---<-==2,2122,52,323x x x x x x x f y 的值域,并求它的反函数 三.求复合函数有关表达式 1.已知()x f 和()x g ,求()[]x g f 例1.已知()1-=x xx f ,求()⎥⎦⎤⎢⎣⎡-11x f f 例2.设()21x x x f +=,求()()[]()重复合n x f x f f f n =例3.设()⎩⎨⎧>≤-=2,02,42x x x x f ,求()[]x f f 2.已知()x g 和()[]x g f ,求()x f 例1.设()x e e e f x xx++=+21,求()x f例2.已知()xxxee f -=',且()01=f ,求()x f例3.设()x x fsin =,求()x f '例4.已知()x x f 2cos 3sin -=,求证()x x f 2cos 3cos += 3.已知()x f 和()[]x g f ,求()x g例.已知()()x x f +=1ln ,()[]x x g f =,求()x g 解:()[]x fx g 1-=实际上为求反函数问题()[]()[]x x g x g f =+=1ln ,()x e x g =+1 ()1-=x e x g 4.有关复合函数方程 例.设()x x f x x f 2311-=⎪⎭⎫⎝⎛-+,求()x f 四.有关四种性质例1.设()()x f x F =',则下列结论正确的是[ ](A )若()x f 为奇函数,则()x F 为偶函数。
《高等数学(上册)》 第一章
作U (a , ) ,即
o
U (a , ) {x | 0 | x a | } . 点 a 将整个邻域分为两部分,左边的称为左邻域,用区间 (a ,a) 表示,右边的称为 右邻域,用区间 (a ,a ) 表示.
1.1.2 函数的概念
在研究各种实际问题时,经常会遇到两种不同类型的量:一种 在所研究问题的过程中可取不同的数值;另一种在所研究问题的过 程中保持不变,只取一个固定值.前者为变量,后者为常量.在同 一个过程中,往往有几个变量同时变化,但是它们的变化不是孤立 的,而是按照一定的规律互相联系着.变量之间互相依赖的关系, 就是下面我们要介绍的函数关系.
1.1.3 函数的几种特性
2.单调性 一般地,设函数 y f (x) 在区间 (a ,b) 内有定义,如果对于 (a ,b) 内的任意两点 x1 和 x2 ,当 x1 x2 时,有 f (x1) f (x2 ) ,则称函数 f (x) 在 (a ,b) 内单调增加;如果对于 (a ,b) 内的任意两点 x1 和 x2 ,当 x1 x2 时,有 f (x1) f (x2 ) ,则称函数 f (x) 在 (a ,b) 内 单调减少. 单调增加函数与单调减少函数统称为单调函数,若函数 f (x) 在区间 (a ,b) 内是单 调函数,则称 (a ,b) 是该函数的单调区间.
一般地,设 y 是 u 的函数 y f (u) ,u 是 x 的函数 u (x) .如果 u (x) 的值
域或其部分包含在 y f (u) 的定义域中,则 y 通过 u 构成 x 的函数,称为 x 的复合
函数,记作 y f [ (x)] .其中,x 是自变量,u 称为中间变量.
1.1.4 反函数与复合函数
y f 1(x) 在各自的定义域内具有相同的单调性,在同一直角 坐标系中,它们的图像关于直线 y x 对称,如图所示.
《高等数学》 第一章(上)
25
1 005
5
超过 35 000 元至 55 000 元的部分
30
2 755
6
超过 55 000 元至 80 000 元的部分
35
5 505
7
超过 80 000 元的部分
45
13 505
第一节 函数的概念
个人所得税=(工资-五险一金-个税起征点)×税率-速算扣除数,用分段函 数可表示为
3%x ,
y0 y |xx0 f (x0 ) .
函数 y f (x) 的定义域 D 是自变量 x 的取值范围,而函数值 y 又是由对应 法则 f 来确定的,所以函数实质上是由其定义域 D 和对应法则 f 所确定的.通 常称函数的定义域 D 和对应法则 f 为函数的两要素.只要函数的定义域相同, 对应法则也相同,它们就是相同的函数,而与变量用什么字母或符号表示无关.
第一节 函数的概念
三、函数的概念
函数的记号通常记作 y f (x) ,在后续内容或后续课程中可能有下列记号, 也表示函数.例如
y F(x),y g(x) ,y G(x) ,y (x) , s s(t),v v(t) ,a a(t) ,r r( ) .
又如,经济学中的成本函数就是表示企业总成本与产量之间关系的公式,它 分为短期成本函数和长期成本函数,其中,短期成本函数 C C(q) 可分为固定成 本 b 与可变成本 f (q) ,即 C b f (q) .经济学中除了成本函数外,还有收入函 数 R R(q) 和利润函数 L L(q) ,其中, L R C ,这里 q 表示产品的数量.
y f (x) ,x D . 其中,变量 x 称为自变量,变量 y 称为因变量,集合 D 称为函数的定义域, f 称为函数的对应法则.
高数大一知识点总结第一章
高数大一知识点总结第一章在大一的数学课程中,高等数学(简称高数)是一门重要的基础课程。
在高等数学的学习中,第一章涵盖了很多基础知识点,包括数列与极限、函数与极限以及连续性等内容。
接下来,我将对这些知识点进行总结和概述。
1. 数列与极限数列是由一系列有序的数所组成的序列。
在数列的学习中,我们需要了解等差数列和等比数列两种基本类型。
等差数列的通项公式为an=a1+(n-1)d,其中a1为首项,d为公差,n为项数。
等比数列的通项公式为an=a1*r^(n-1),其中a1为首项,r为公比,n为项数。
极限是数列中的一个重要概念。
如果一个数列的前n项无限接近于某个常数a,那么我们称这个常数a为该数列的极限,记作lim(n→∞)an=a。
通过计算数列的极限,我们可以探讨数列的性质、趋势以及收敛性。
2. 函数与极限函数是一种关系,将一个自变量映射到一个因变量。
数学中有多种类型的函数,如线性函数、二次函数、指数函数和对数函数等。
函数的图像反映了自变量和因变量之间的关系。
函数的极限是研究函数性质的重要内容。
如果一个函数在某个点处的自变量无限接近于某个常数x0时,其因变量也无限接近于某个常数a,我们称这个常数a为该函数在点x0处的极限。
记作lim(x→x0)f(x)=a。
通过研究函数的极限,我们可以了解函数在不同自变量值下的表现和趋势。
3. 连续性连续性是函数的一种性质,反映了函数在一定区间内的光滑程度。
如果一个函数在某个点处的极限等于该点处的函数值,那么我们称这个函数在该点处连续。
函数的连续性可以分为左连续、右连续和间断。
我们可以利用函数的连续性来探讨函数的变化情况和特性。
通过分析函数的连续性,可以判断函数是否在某一区间内单调增加或者单调减少。
4. 极大值与极小值极大值和极小值是函数图像上的特殊点。
对于定义在某个区间的函数,如果存在一个点x0使得在该点的某个领域内,函数值都小于等于f(x0),那么我们称该点x0为函数的极大值点。
高等数学上册第一章函数与极限
y f (x) ex ex 偶函数 2
记 ch x 双曲余弦
ex
y e
x
y ch x
o
x
又如, y f (x) ex ex 2
y
ex
ex
奇函数
y sh x
记
sh x 双曲正弦
o
x
再如,
y sh x ch x
ex ex
ex ex
奇函数
记
th x 双曲正切
y
1 y th x
或
交集 A B x
且
差集 A \ B x
且 xB
余集 BAc A \ B (其中B A)
直积 A B (x , y) x A, y B
特别有 R R 记 R 2
为平面上的全体点集
A B
B A
A\B AB
AB BAc
B AB
A
返回
集合运算法则:
(1)交换律 A∪B=B∪A, A∩B=B∩A;
f
f 1
f (D)
的逆映射记成 y f 1(x) , x f (D)
例如, 映射
其逆映射为
(2) 复合映射
定义 设有映射链
g xD
f u D1
u g(x) g(D)
则当 g(D) D1 时, 由上述映射链可定义由 D 到 Y 的复
合映射 , 记作
或 f g(x), x D.
g(D) f g
y
解: 当 1 x 0 时, y x2(0,1] ,
2e
则 x y , y (0,1]
当0 x 1 时, y ln x ( , 0] ,
则 x ey , y(, 0]
当 1 x 2 时, y 2ex1( 2, 2e] ,
《高等数学》第一章函数与极限第一节 函数
4 x 5,
4
5
6
x
5) . 因此,函数的定义域为 D [4,
14
第1 章 函数与极限
1.1 函数
3. 单值函数与多值函数
若自变量在定义域内任取一个数值时,对应的 函数值总是只有一个,这种函数称为单值函数,否 则称为多值函数.
例如,x y a .
2 2 2
y a x
( 0,1)
当 0<a<1 时,函数单调减少
28
第1 章 函数与极限
1.1 函数
3. 对数函数
y loga x (a 0, a 1)
y log a x
对数函数是指数函数 y = ax 的反函数 定义域为(0, +) 图形通过(1, 0)点 当 a>1 时, 函数单调增加 当 0<a<1 时, 函数单调减少
则称 f ( x ) 在I 上有上界, M 为 f ( x ) 的一个上界.
若I D, 数m, x I , 总有 f ( x) m 成立,
则称 f ( x) 在I 上有下界, m为 f ( x ) 的一个下界.
如果 f ( x ) 在 I 上既有上界, 又有下界, 则称函数 f ( x ) 在 I 上有界.
32
第1 章 函数与极限
1.1 函数
5. 反三角函数
y
反正弦函数
y arcsin x
-1
p
2
定义域为[-1, 1]
p p 值域为 , 2 2
O
1 x
p
2
函数单调增加,奇函数,是有界函数
33
第1 章 函数与极限
1.1 函数
高等数学第一章第二章总结
高等数学第一章第二章总结1 第一章:绪论第一章是高等数学的绪论,其中介绍了数学的定义、作用、历史及其发展等。
在第一章中,数学是定量和定性研究物质及其结构、关系及运动规律的科学。
它由实数、整数、有理数、分数和平面几何等基本概念组成,用各种计算、逻辑推理及分析等方法来描述客观的现象或思想的抽象模型,从而得出准确的结果。
另外,数学涉及到它在科学、技术、社会、文化等方面的应用,它是社会发展的基础。
数学发展史从古代有算术、代数、几何等学科,逐渐发展至近代以及现代,学科不断壮大,研究的领域越来越广泛,涉及到人类生活的方方面。
2 第二章:初等数学第二章主要介绍初等数学,包括数论、向量运算、数列和统计等。
数论是计算数值的研究,它涉及到质数分解、最大公约数、最小公倍数、随机数等概念,数论在正文、加密等方面有广泛的应用。
向量运算是向量和向量、向量和物体之间的运算关系,它包括线性组合、内积、外积等,向量运算在物理、声学、飞行、机器人等领域有着重要的用途。
数列是按数次递增或递减的数值序列,它包括等差数列和等比数列,比如阶乘及斐波那契数列,它们能够描述物理几何尺寸及次序关系,有着极为广泛的应用。
最后,统计是从测量、计数、比较等不同数据中抽象出的概念,它包括平均数、标准差、概率分布等,是综合应用概率论、数理逻辑及数学知识。
统计学主要用来分析和预测人们的意见、举措等,对于改进社会的规划、预防未来的决策都有着重要意义。
综上所述,第一章绪论介绍了数学的定义、作用、历史及其发展,第二章介绍了初等数学,包括数论、向量运算、数列和统计等,它们都是数学学科中非常重要的知识。
高等数学1
3、函数的奇偶性:
设D关于原点对称 若对于 x D, 有 - x Î D, ,
f ( x ) f ( x )
则称 f ( x )为偶函数 ;
y
y f ( x)
f ( x )
-x o x
f ( x)
x
偶函数
设D关于原点对称 若对于 x D, 有 ,
f ( x ) f ( x )
(6) xy x y ;
x x ( 7 ) ( y 0). y y
一、概念
1、区间: 是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.
a, b R, 且a b.
{ x a x b} 称为开区间, 记作 (a, b)
o a x b { x a x b} 称为闭区间, 记作 [a, b] o a
b
x
{ x a x b} { x a x b}
称为半开区间, 记作 [a , b) 称为半开区间, 记作 (a , b]
有限区间
[a ,) { x a x }
( , b) { x x b}
无限区间
o
a o
b
x x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
函数值全体组成的数集 W { y y f ( x ), x D } 称为函数的值域 .
注意:
(1)上述定义中, 法则 f 确定了变量x与变量y之间 的对应关系, 这种对应关系也称为函数关系. (2)函数的两要素:
(
定义域 D( f ) 与对应法则 f.
x
y
D
对应法则f
x0 )
自变量
(
高等数学第一章1-8
�
一,无穷小的比较
1 例如, 例如 当x → 0时, x , x , sin x , x sin 都是无穷小 . x 2 x 2 lim = 0, x 比3 x要快得多 ; 观 x→0 3 x 察 各 sin x sin x x ; = 1, lim 极 x→0 x 限 1 2 x sin x = lim sin 1 lim 比. 比 . 2 x→0 x→0 x x
解
当x → 0时, sin 2 x ~ 2 x , 时
1 3 tan x sin x = tan x (1 cos x ) ~ x , 2 1 3 x 2 = 1. 原式 = lim x→0 → ( 2 x )3 16
例5 解tan 5 x c来自s x + 1 . 求 lim x→0 sin 3 x
tan x sin x tan x 1 cos x 1 解 Q lim )= , = lim( 3 2 x→0 x→0 x x x 2
∴ tan x sin x为x的三阶无穷小 .
常用等价无穷小: 常用等价无穷小:
当x → 0时, 时
sin x ~ x , tan x ~ x , ln(1 + x ) ~ x ,
arcsin x ~ x , arctan x ~ x , e 1 ~ x,
x
1 2 1 cos x ~ x . 2
用等价无穷小可给出函数的近似表达式: 用等价无穷小可给出函数的近似表达式 β αβ Q lim = 1, ∴ lim α = 0, 即 α β = o(α ), α α
于是有 α = β + o(α ). α
是无穷小, 三,证明:若α , β 是无穷小,则α ~ β α β = 0(α ) . 证明: 四,设 f(x)= lim
高等数学(1)函数极限与连续(1)
x
x
2, 1,
于是函数 f (x) arcsin(x 1) ln(x 1) 定义域为 (1,2].
x 1 0,
x 1,
(2)函数的定义域应满足 x 2 x 2 0, 即 x 2 x 2 0,
1 2 x 1. 1 x 2 3.
于是函数的定义域为[1,2) (2,3] .
第一章 函数 极限与连续
一、函数
1.理解函数的概念,掌握函数的表示法,会建立应用问题的
函数关系.
定义 设 D R, f 是一个对应法则.对于D 中任意的x ,按照
对应法则 f ,总存在唯一的一个 yR 与x 对应,则称对应法则
f :D R是定义在D 上函数,记为y f (x),x D .其中x 为自变量,
例 2 若函数y f (x) 的定义域为[0,1] ,试求函数y f [ln(x 1)], y f (sinx)的定义域.
解 因为 函数 y f (x) 的定义域为[0,1] ,所以 y f [ln(x 1)] 的 定 义域应满足 0 ln(x 1) 1,即1 x 1 e , 于是x 应满足1 x 1 e . 故 函数 的定 义域为 [1,e ] .
于是所求反函数为x 3 y 或 y 3 x .
例
求函数y
1
1 x
2
,
x 0, 的反函数
x 2 1, x 0.
解
当x 0时,
0y 1,
此时由y
1 1x2
可得x
1 y
1
;当
x 0 时, y 1,由y x 2 1可得x y 1 . 所以,所求反函数为
数 f (x)在 D 上有界.也称函数 f (x)是D 上的有界函数. 例如函数y sinx,y cosx,y x2(0 x 1) 都是有界函数. 若函数 f (x)的定义域 D 是一个关于原点对称的区间,且对于
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高数第一周测试题
出题人:洪义伟姜继伟贾西南马刚
一、选择题
1. 数列有界是函数收敛的()
A 充要条件
B 必要条件
C 充分条件D即非充分条件又非必要条件
2.根据limXn=a的定义,对任给ε>0,存在正整数N,使得对于n>N的一切Xn,不等式|Xn—a|<ε都成立,这里的N()
A 是ε的函数N(ε),且当ε减小时N(ε)增大
B 与ε有关,但ε给定时N并不唯一确定
C 是由ε所唯一确定的
D 是一个很大的常数,与ε无关
3. f(x)=在其定义域(—∞,+∞)上是()
A 最小正周期为3π的周期函数
B 最小正周期为的周期函数
C 最小正周期为的周期函数D非周期函数
5.函数f(x)=(x∈R)的值域是()
A (0,1)
B (0,1]
C [0,1)
D [ 0 , 1 ]
7.函数f(x)=x²-mx+5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是增函数,则f(1)等于( )
A -7
B 1
C 17
D 25
8.下列函数是无穷小量的是()
( )
A g(2)>g(-1)>g(-3)
B g(2)>g(-3)>g(-1)
C g(-1)>g(-3)>g(2)
D g(-3)>g(-1)>g(2)
A 1
B ∞
C 2
D 0
二、填空题
13.求 的定义域____________。
14. 已知求f (5)____________。
15.数列 的极限______。
16.求函数 的极限______。
三、 解答题
17.求函数 在指定定义域下的单调性。
18.求 的极限。
19.用数列极限的定义证明 。
20.用函数极限的定义证明 。
21.根据定义证明
22.求 的极限。
⎩⎨⎧<+≥-=8,)]5([8
,3)(x x f f x x x f。