2015年 浙江省衢州市中考数学试卷及答案(word版)

合集下载

浙江省衢州地区2015届九年级数学下学期阶段检测试题(一) 新人教版

浙江省衢州地区2015届九年级数学下学期阶段检测试题(一) 新人教版

某某省某某地区2015届九年级数学下学期阶段检测试题(一)卷Ⅰ说明:本卷共有1大题,10小题,共30分.一、选择题(本题有10小题,每小题3分,共30分) 1.在实数1322-,-2,,中,最小的是() A .3-B .2-C .12D .2 2.下列计算正确的是()A .428a a a ⋅=B .23+a a a =C .()2362a ba b =D .2(3)26x y x y --=--3.南海是我国的固有领土,2014年在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为() A . 1.94×109B . 0.194×1010C . 19.4×109D . 1.94×10104.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()5.在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是() A .15B .13C .38D .586.把不等式组的解集表示在数轴上,下列选项正确的是()A .B .C .D .7.如图,在Rt △ACB 中,∠ACB=90°,∠A=25°,D 是AB 上一点.将Rt △ABC 沿CD 折叠,使B 点落在AC 边上的B ′处,则∠ADB ′等于() A .25° B .30° C .35° D .40°8.如图,Rt △ABC 中,∠A=90°,AD ⊥BC 于点D , 若BD :CD=3:2,则tanB=()A .32B .63C .62D .23B'CDA9.如图,已知A 、B 是反比例函数上的两点,BC ∥x 轴,交y 轴于C ,动点P 从坐标原点O 出发,沿O→A→B→C 匀速运动,终点为C ,过运动路线上任意一点P 作PM ⊥x 轴于M ,PN ⊥y 轴于N ,设四边形OMPN 的面积为S ,P 点运动的时间为t ,则S 关于t 的函数图象大致是() A .B .C .D .10.已知直线(1)122n y x n n -+=+++(n 为正整数)与坐标轴围成的三角形的面积为S n ,则S 1+S 2+S 3+…+S 2012的值为() A .5032015B .10062015C .10062014D .5032014卷Ⅱ说明:本卷共有2大题,14小题,共90分. 二、填空题(本题有6小题,每小题4分,共24分) 11.分解因式:24a a -=.12.扇形的半径为4,圆心角θ为90︒,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为. 13.为了解某毕业班学生的睡眠时间情况,小红随机调查了该班15名同学,结果如下表:则这15名同学每天睡眠时间的众数是小时,中位数是小时.14.如图,△ABC 内接于⊙O ,∠BAC=120°,AB=AC ,BD 为⊙O 的直径,AD=6,则DC=.15.如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线y=x 2+k 与扇形OAB 的边界总有两个公共点,则实数k 的取值X 围是. 16.如图,ABCD 中,AB >AD ,AE ,BE ,CM ,DM 分别为∠DAB ,∠ABC ,∠BCD ,∠CDA的平分线,AE 与DM 相交于点F ,BE 与CM 相交于点N ,连接EM .若ABCD 的周长为42cm ,FM=6cm ,EF=8cm ,则EM=cm ,AB=cm .三、解答题(本题有8小题,第17~19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分.各小题都必须写出解答过程)每天睡眠时间(单位:小时) 78 9 人数24531第16题图第15题第14题图第9题图17.-20112(31)4sin 602⎛⎫----+ ⎪⎝⎭18.先化简,再求值:231839x x ---,其中103x =-. 19.如图,AB 是⊙O 的直径,弦CD ⊥AB 与点E ,点P 在⊙O 上, ∠1=∠C ,(1)求证:CB ∥PD ; (2)若BC=3,sin ∠P=35,求⊙O 的直径.20.如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,A 、C 分别在坐标轴上,点B 的坐标为(6,3),直线142y x =-+交AB ,BC 分别于点M ,N ,反比例函数y=kx的图象经过点M ,N .(1)求反比例函数的解析式;(2)若点P 在y 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.21.2015年体育中考在即,学校体育组对九(1)班50名学生进行了长跑项目的测试,根据测试成绩制作了下面两个统计图。

2015年浙江衢州中考数学真题及解析word完整版

2015年浙江衢州中考数学真题及解析word完整版

2015年浙江衢州中考数学真题卷一、选择题(本题有10小题,每小题3分,共30分)1.-3的相反数是( )A.3B.-3C.13D.13- 【考查内容】相反数【答案】A2.一个几何体零件如图所示,则它的俯视图是( )主视方向第2题图A B C D【考查内容】简单组合体的三视图.【答案】C【解析】这个几何体零件的俯视图是一个正中间有一个小正方形的矩形,所以它的俯视图是选项C 中的图形.故选C .3.下列运算正确的是( )A.3362a a a +=B.235()x x =C.63222a a a ÷=D.325x x x ⋅= 【考查内容】代数式.【答案】D【解析】对于A ,正确答案应为3332a a a +=,故本选项错误;B.应为23236()x x x ⨯==,故本选项错误;C.应为63322a a a ÷=,故本选项错误;故选D .4.如图,在四边形ABCD 中,已知AD =12cm ,AB =8cm ,AE 平分∠BAD 交BC 边于点E ,则CE 的长等于( )第4题图A.8cmB.6cmC.4cmD.2cm【考查内容】平行四边形的性质.【答案】C【解析】因为四边形ABCD是平行四边形,所以BC=AD=12cm,AD∥BC,∠DAE=∠BEA,因为AE平分∠BAD,所以∠BAE=∠DAE,所以∠BEA=∠BAE,故BE=AB=8cm,得CE=BC -BE=4cm;故答案为C.5.某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,则这组数据的中位数是( )A.7B. 6C.5D.4【考查内容】中位数【答案】C【解析】因为某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,所以x=5×7-4-4-5-6-6-7=3,所以这一组数从小到大排列为:3,4,4,5,6,6,7,所以这组数据的中位数是5.故选C.6.下列四个函数图象中,当x>0时,y随x的增大而减小的是( )A BC D【考查内容】二次函数的图象;一次函数的图象;反比例函数的图象.【答案】B【解析】当x>0时,y随x的增大而减小的是B,故选B.7.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是( )第7题图A.勾股定理B.直径所对的圆心角是直角C.勾股定理的逆定理2015年浙江衢州中考数学真题卷第3页,共12页D. 90°的圆周角所对的弦是直径 【考查内容】作图,勾股定理的逆定理,圆周角定理【答案】B【解析】由作图痕迹可以看出O 为AB 的中点,以O 为圆心,AB 为半径作圆,然后以B 为圆心BC =a 为半径花弧与圆O 交于一点C ,故∠ACB 是直径所对的圆周角,所以这种作法中判断∠ACB 是直角的依据是:直径所对的圆心角是直角.故选:B .8.如图,已知某广场菱形花坛ABCD 的周长是24米,∠BAD =60°,则花坛对角线AC 的长等于()第8题图A. B.6米C. D.3米【考查内容】菱形的性质.【答案】A【解析】四边形ABCD 为菱形,所以AC ⊥BD ,OA =OC ,OB =OD ,AB =BC =CD =AD =24÷4=6(米),又∠BAD =60°,从而△ABD 为等边三角形,所以BD =AB =6米,OD =OB =3米, 在Rt △AOB 中,据勾股定理得:OA=AC =2OA=A .9.如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60 cm 长的绑绳EF ,5tan 2α=,则“人字梯”的顶端离地面的高度AD 是( )第9题图A. 144 cmB. 180 cmC. 240 cmD. 360 cm【考查内容】解直角三角形的应用.【答案】B【解析】如图根据题意可知:△AFO ∽△ABD ,OF =12EF =30cm ,,OF AF DC AC∴= 30 2.56DC ∴=∴CD =72cm ,tan α=52AD DC =,AD =572180cm 2⨯=.故选B . 10.如图,已知△ABC ,AB=BC ,以AB 为直径的圆交AC 于点D ,过点D 的⊙O 的切线交BC 于点E .若CD =5,CE =4,则⊙O 的半径是( )第10题图A. 3B. 4C.256 D. 258【考查内容】切线的性质.【答案】D第10题图【解析】如图,连接OD 、BD ,DE ⊥BC ,CD =5,CE =4,∴DE =3,AB 是⊙O 的直径,∴∠ADB =90°,BCD S =△22BD CD BC DE ⋅÷=⋅÷,∴5BD =3BC ∴35BD BC = 222BD CD BC +=,∴2223()55BC BC +=,解得BC =254,AB =BC ,∴AB =254,∴⊙O 的半径是;2525248÷=.故选D . 二、填空题(本题有6小题,每小题4分,共24分)11.(4分)从小明、小聪、小惠和小颖四人中随机选取1人参加学校组织的敬老活动,则小明被选中的概率是 .【考查内容】概率公式 【答案】14【解析】因为小明、小聪、小惠和小颖四人中随机选取1人参加学校组织的敬老活动, 所以小明被选中的概率是14,故答案为14. 12.(4分)如图,小聪与小慧玩跷跷板,跷跷板支架高EF 为0.6米,E 是AB 的中点,那么小聪能将小慧翘起的最大高度BC 等于 米.2015年浙江衢州中考数学真题卷第5页,共12页第12题图【考查内容】三角形中位线定理【答案】1.2【解析】因为EF ⊥AC ,BC ⊥AC ,所以EF ∥BC ,因为E 是AB 的中点,所以F 为AC 的中点,所以BC =2EF ,因为EF =0.6米,所以BC =1.2米,故答案为:1.2.13.(4分)写出一个解集为x >1的一元一次不等式____.【考查内容】不等式的解集【答案】x -1>0【解析】移项,得x -1>0(答案不唯一).14.(4分)一条排水管的截面如图所示,已知排水管的半径OA =1m ,水面宽AB =1.2m ,某天下雨后,水管水面上升了0.2m ,则此时排水管水面宽CD 等于 m .第14题图【考查内容】垂径定理的应用;勾股定理【答案】1.6【解析】因为AB =1.2m ,OE ⊥AB ,OA =1m ,所以AE =0.8m ,因为水管水面上升了0.2m , 所以AF =0.8﹣0.2=0.6m ,所以CF0.8==m ,所以CD =1.6m .15.(4分)已知,正六边形ABCDEF 在直角坐标系内的位置如图所示,A (2,0)-,点B 在原点,把正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转,每次翻转60°,经过2015次翻转之后,点B 的坐标是_____________.第15题图【考查内容】坐标与图形变化,旋转【答案】(4031.【解析】因为正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转,每次翻转60°,所以每6次翻转为一个循环组循环,因为2015÷6=335余5,所以经过2015次翻转为第336循环组的第5次翻转.点B 在开始时点C 的位置,因为A (2,0-),所以AB =2,所以翻转前进的距离=2×2015=4030,如图,过点B 作BG ⊥x 于G ,则∠BAG =60°,所以,AG=2×12=1,BG OG =4030+1=4031,所以,点B 的坐标为(4031.故答案为(4031.16.(4分)如图,已知直线334y x =-+分别交x 轴、y 轴于点A 、B ,P 是抛物线21252y x x =-++的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线334y x =-+于点Q ,则当PQ =BQ 时,a 的值是 .第16题图【考查内容】二次函数综合题【答案】-1,4,4+4-【解析】设点P 的坐标为21(,25)2a a a -++则点Q 为3(,3)4a a -+,点B 为(0,3),当点P 在点Q 上方时,BQ 54a =,PQ =21325(3)24a a a -++--+ 2111224a a =-++,因为PQ =BQ ,所以251112424a a a =-++整理得2340a a --=解得1,4a a =-=,当点P 在点Q 下方BQ 54a =PQ =2313(25)42a a a -+--++ 2111224a a =--,因为PQ =BQ ,所以251112424a a a =--,整理得:2840a a --=解得:4a =+4a =-a 的值为:-1,4,4+4-答案为-1,4,4+4-2015年浙江衢州中考数学真题卷第7页,共12页三、解答题(本题有8小题,第17-19小题每小题6分,第20-21小题每小题6分,第22-23小题每小题6分,第24小题12分,共66分。

资料:年浙江衢州中考数学试卷及答案(word版)

资料:年浙江衢州中考数学试卷及答案(word版)

浙江省2014年初中毕业生学业考试(衢州卷)数 学 试 题 卷满分为120分,考试时间为120分钟参考公式:二次函数)0(2≠++=a c bx ax y 图象的顶点坐标是(a b 2-,ab ac 442-);一组数据1x ,2x ,3x ,…,n x 的方差:])()()()[(122322212x x x x x x x x nS n -++-+-+-=(其中x 是这组数据的平均数)。

一、选择题(本题有10小题,每小题3分,共30分) 1. 在数32,1,-3,0中,最大的数....是 A.32B. 1C. -3D. 0 2. 下列四个几何体中,主视图为圆的是3. 下列式子运算正确的是A. 628a a a =÷ B. 532a a a =+C. 1)1(22+=+a a D. 12322=-a a4. 如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=60°,则∠2的度数是A. 50°B. 45°C. 35°D. 30°5. 如图,河坝横断面迎水坡AB 的坡比是3:1(坡比是坡面的铅直高度BC 与水平宽度AC 之比),坝高BC=3m ,则坡面AB 的长度是A. 9mB. 6mC. 36mD. 33m6. 某地区5月3日至5月9日这7天的日气温最高值统计图如图所示。

从统计图看,该地区这7天日气温最高值的众数与中位数分别是A. 23,25B. 24,23C. 23,23D. 23,247. 如图,小红在作线段AB 的垂直平分线时,是这样操作的:分别以点A ,B 为圆心,大于线段AB 长度一半的长为半径画弧,相交于点C ,D ,则直线CD 即为所求。

连结AC ,BC ,AD ,BD ,根据她的作图方法可知,四边形ADBC 一定是... A. 矩形 B. 菱形 C. 正方形 D. 等腰梯形8. 在同一平面直角坐标系内,将函数3422-+=x x y 的图象向右平移2个单位,再向下平移1个单位得到图象的顶点坐标是A.(-3,-6)B. (1,-4)C. (1,-6)D. (-3,-4) 9. 如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD 。

中考数学——2015浙江中考汇编

中考数学——2015浙江中考汇编

2015年浙江省中考试卷汇编浙江省杭州市2015年中考数学试卷 (2)浙江省湖州市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。

浙江省湖州市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。

浙江省金华市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。

浙江省金华市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。

浙江省宁波市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。

浙江省衢州市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。

浙江省绍兴市2015年中考数学试卷 ................................................................................................ 错误!未定义书签。

2015年浙江省衢州市中考一模数学试卷(解析版)

2015年浙江省衢州市中考一模数学试卷(解析版)

2015年浙江省衢州市中考数学一模试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在实数﹣,﹣2,,中,最小的是()A.﹣B.﹣2C.D.2.(3分)下列计算正确的是()A.a4•a2=a8B.a+a2=a3C.(a3b)2=a6b2D.﹣2(x﹣3y)=﹣2x﹣6y3.(3分)南海是我国的固有领土,2014年在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×109B.0.194×1010C.19.4×109D.1.94×1010 4.(3分)如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()A.长方体B.圆柱体C.球体D.三棱柱5.(3分)在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是()A.B.C.D.6.(3分)把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.7.(3分)如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25°B.30°C.35°D.40°8.(3分)如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD:CD=3:2,则tan B=()A.B.C.D.9.(3分)如图,已知A、B是反比例函数上的两点,BC∥x 轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是()A.B.C.D.10.(3分)已知直线y=x+(n为正整数)与坐标轴围成的三角形的面积为S n,则S1+S2+S3+…+S2012的值为()A . B. C . D .二、填空题(本题有6小题,每小题4分,共24分)11.(4分)分解因式:a 2﹣4a = .12.(4分)扇形的半径为4,圆心角θ为90°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为 .13.(4分)为了解某毕业班学生的睡眠时间情况,小红随机调查了该班15名同学,结果如表,则这15名同学每天睡眠时间的众数是 小时,中位数是 小时.14.(4分)如图,△ABC 内接于⊙O ,∠BAC =120°,AB =AC ,BD 为⊙O 的直径,AD =6,则DC = .15.(4分)如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线y =x 2+k 与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是 .16.(4分)如图,▱ABCD 中,AB >AD ,AE ,BE ,CM ,DM 分别为∠DAB ,∠ABC ,∠BCD ,∠CDA 的平分线,AE 与DM 相交于点F ,BE 与CM 相交于点N ,连接EM .若▱ABCD 的周长为42cm ,FM =6cm ,EF =8cm ,则EM =cm,AB=cm.三、解答题(本题有8小题,第17~19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分.各小题都必须写出解答过程)17.(6分)(﹣)﹣2﹣﹣(﹣1)0+4sin60°.18.(6分)先化简,再求值:,其中.19.(6分)如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,(1)求证:CB∥PD;(2)若BC=3,sin∠P=,求⊙O的直径.20.(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(6,3),直线y=﹣x+4交AB,BC分别于点M,N,反比例函数y=的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P 的坐标.21.(8分)2015年体育中考在即,学校体育组对九(1)班50名学生进行了长跑项目的测试,根据测试成绩制作了如图两个统计图.根据统计图解答下列问题:(1)本次测试的学生中,得4分的学生有多少人?(2)本次测试的平均分是多少?(3)通过一段时间的训练,体育组对该班学生的长跑项目进行第二次测试,测得成绩的最低分为3分,且得4分和5分的人数共有45人,平均分比第一次提高了0.8分,问第二次测试中,得4分、5分的学生分别有多少人?22.(10分)3月15日是国际消费者权益日.某品牌专卖店准备出售甲、乙两种服装.其中甲、乙两种服装的进价和售价如表:已知:专卖店用3000元购进甲种服装的数量与用2400元购进乙种服装的数量相同.(1)求m的值;(2)要使购进的甲、乙两种服装共200件的总利润(利润=售价﹣进价)不少于21700元,且甲种服装的件数不超过总件数的一半,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种服装进行优惠促销活动,决定对甲种服装每件优惠a(50<a<70)元出售,乙种服装价格不变.那么该专卖店要获得最大利润应如何进货?23.(10分)请利用两个直角三角形完成以下两个探究问题:探究一:如图①,在等腰直角△ABC中,点D是斜边BC上的中点,点E为AB 边上的一点,连接DE,过D点作DE的垂线交AC于点F,连接AD,EF.求证:△AED≌△CDF;探究二:如图②,将△DEF的顶点D放在Rt△ABC斜边BC的中点处,并以点D为旋转中心旋转△DEF,使△DEF的两直角边与△ABC的两直角边分别交于M、N两点,连接MN.已知∠B=45°,BC=3,在旋转△DEF的过程中,△AMN的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由.24.(12分)已知:如图,直线y=x+与x轴、y轴分别交于A、B两点,动点D从A点出发向O点运动(运动到O点停止),过D作DE∥AB交y轴于点E;对称轴过点A且顶点为M的抛物线y=a(x﹣k)2+h(a<0)始终经过点E,过E作EG∥OA交抛物线于点G,交AB于点F,连结DE、DF、AE、BG.设D的运动速度是1个单位长度/秒,运动时间为t秒.(1)用含t代数式分别表示EF、BE、AF的长;(2)在整个运动过程中是否存在点D,使AE∥BG?若存在,求出t的值,并判断此时四边形ADEF的形状且说明理由;若不存在,请说明理由;(3)当△ADF是直角三角形,且抛物线的顶点M恰好在BG上时,求抛物线的解析式.2015年浙江省衢州市中考数学一模试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在实数﹣,﹣2,,中,最小的是()A.﹣B.﹣2C.D.【解答】解:正数有:;负数:,﹣2,∵,∴,∴最小的数是﹣2,故选:B.2.(3分)下列计算正确的是()A.a4•a2=a8B.a+a2=a3C.(a3b)2=a6b2D.﹣2(x﹣3y)=﹣2x﹣6y【解答】解:A、a4•a2=a6,故此选项错误;B、a+a2,无法计算,故此选项错误;C、(a3b)2=a6b2,正确;D、﹣2(x﹣3y)=﹣2x+6y,故此选项错误;故选:C.3.(3分)南海是我国的固有领土,2014年在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×109B.0.194×1010C.19.4×109D.1.94×1010【解答】解:将194亿用科学记数法表示为1.94×1010.故选:D.4.(3分)如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()A.长方体B.圆柱体C.球体D.三棱柱【解答】解:长方体、圆柱体、三棱体为柱体,它们的主视图都是矩形;球的三种视图都是圆形.故选:C.5.(3分)在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是()A.B.C.D.【解答】解:根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,从中随机摸出一个,则摸到红球的概率是=.故选:D.6.(3分)把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.【解答】解:由第一个不等式得:x>﹣1;由x+2≤3得:x≤1.∴不等式组的解集为﹣1<x≤1.故选:B.7.(3分)如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25°B.30°C.35°D.40°【解答】解:∵在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°﹣25°=65°,∵△CDB′由△CDB反折而成,∴∠CB′D=∠B=65°,∵∠CB′D是△AB′D的外角,∴∠ADB′=∠CB′D﹣∠A=65°﹣25°=40°.故选:D.8.(3分)如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD:CD=3:2,则tan B=()A.B.C.D.【解答】解:在Rt△ABC中,∵AD⊥BC于点D,∴∠ADB=∠CDA,∵∠B+∠BAD=90°,∠BAD+∠DAC=90°,∴∠B=∠DAC,∴△ABD∽△CAD,∴=,∵BD:CD=3:2,设BD=3x,CD=2x,∴AD==x,则tan B===.故选:D.9.(3分)如图,已知A、B是反比例函数上的两点,BC∥x 轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是()A.B.C.D.【解答】解:①点P在AB上运动时,此时四边形OMPN的面积S=K,保持不变,故排除B、D;②点P在BC上运动时,设路线O→A→B→C的总路程为l,点P的速度为a,则S=OC×CP=OC×(l﹣at),因为l,OC,a均是常数,所以S与t成一次函数关系.故排除C.故选:A.10.(3分)已知直线y=x+(n为正整数)与坐标轴围成的三角形的面积为S n,则S1+S2+S3+…+S2012的值为()A .B.C .D .【解答】解:令x=0,则y =,令y=0,则x+=0,解得x =,所以,S n =••=(﹣),所以,S1+S2+S3+…+S2012=(﹣+﹣+﹣+…+﹣)=(﹣)=.故选:D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)分解因式:a2﹣4a=a(a﹣4).【解答】解:a2﹣4a=a(a﹣4).故答案为:a(a﹣4).12.(4分)扇形的半径为4,圆心角θ为90°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为1.【解答】解:∵扇形的弧长==2π,∴圆锥的底面半径为2π÷2π=1.故答案为:1.13.(4分)为了解某毕业班学生的睡眠时间情况,小红随机调查了该班15名同学,结果如表,则这15名同学每天睡眠时间的众数是8小时,中位数是8小时.【解答】解:睡眠时间出现的次数最多的是8小时,因而众数是8小时;15个数据大小处于中间位置的是第8位,是8小时,因而中位数是8小时.故答案是:8;8.14.(4分)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC=2.【解答】解:∵BD为⊙O的直径,∴∠BAD=∠BCD=90°,∵∠BAC=120°,∴∠CAD=120°﹣90°=30°,∴∠CBD=∠CAD=30°,又∵∠BAC=120°,∴∠BDC=180°﹣∠BAC=180°﹣120°=60°,∵AB=AC,∴∠ADB=∠ADC,∴∠ADB=∠BDC=×60°=30°,∵AD=6,∴在Rt△ABD中,BD=AD÷sin60°=6÷=4,在Rt△BCD中,DC=BD=×4=2.故答案为:2.15.(4分)如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB 的边界总有两个公共点,则实数k的取值范围是﹣2<k<.【解答】解:由图可知,∠AOB=45°,∴直线OA的解析式为y=x,联立消掉y得,x2﹣2x+2k=0,△=b2﹣4ac=(﹣2)2﹣4×1×2k=0,即k=时,抛物线与OA有一个交点,此交点的横坐标为1,∵点B的坐标为(2,0),∴OA=2,∴点A的坐标为(,),∴交点在线段AO上;当抛物线经过点B(2,0)时,×4+k=0,解得k=﹣2,∴要使抛物线y=x2+k与扇形OAB的边界总有两个公共点,实数k的取值范围是﹣2<k<.故答案为:﹣2<k<.16.(4分)如图,▱ABCD中,AB>AD,AE,BE,CM,DM分别为∠DAB,∠ABC,∠BCD,∠CDA的平分线,AE与DM相交于点F,BE与CM相交于点N,连接EM.若▱ABCD的周长为42cm,FM=6cm,EF=8cm,则EM=10cm,AB=15.5cm.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠EAB=∠DAB,同理:∠ABE=∠CBE=∠ABC,∠BCM=∠DCM=∠BCD,∠CDM=∠ADM=∠ADC.∵四边形ABCD是平行四边形,∴∠DAB=∠BCD,∠ABC=∠ADC,AD=BC.∴∠DAF=∠BCN,∠ADF=∠CBN.在△ADF和△CBN中,∴△ADF≌△CBN(ASA).∴DF=BN.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠ABC=180°.∴∠EAB+∠EBA=90°.∴∠AEB=90°.同理可得:∠AFD=∠DMC=90°.∴∠EFM=90°.∵FM=6,EF=8,∴ME==10(cm).∵∠EFM=∠FMN=∠FEN=90°.∴四边形EFMN是矩形.∴EN=FM=6.∵∠DAF=∠EAB,∠AFD=∠AEB,∴△AFD∽△AEB.∴=.∴=.∴8DF=6AF.设DF=6k,则AF=8k.∵∠AFD=90°,∴AD=10k.∵∠AEB=90°,AE=8(k+1),BE=6(k+1),∴AB=10(k+1).∵2(AB+AD)=42,∴AB+AD=21.∴10(k+1)+10k=21.∴k=0.55.∴AB=15.5(cm).故答案为:10;15.5.三、解答题(本题有8小题,第17~19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分.各小题都必须写出解答过程)17.(6分)(﹣)﹣2﹣﹣(﹣1)0+4sin60°.【解答】解:原式=4﹣2﹣1+4×=4﹣2﹣1+2=3.18.(6分)先化简,再求值:,其中.【解答】解:原式=﹣===,当x=﹣3时,原式===.19.(6分)如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,(1)求证:CB∥PD;(2)若BC=3,sin∠P=,求⊙O的直径.【解答】(1)证明:∵∠C=∠P又∵∠1=∠C∴∠1=∠P∴CB∥PD;(2)解:连接AC∵AB为⊙O的直径,∴∠ACB=90°又∵CD⊥AB,∴=,∴∠P=∠CAB,又∵sin∠P=,∴sin∠CAB=,即=,又知,BC=3,∴AB=5,∴直径为5.20.(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(6,3),直线y=﹣x+4交AB,BC分别于点M,N,反比例函数y=的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P 的坐标.【解答】解:(1)∵B(6,3),四边形OABC是矩形,∴OA=BC=3,将y=3代入y=﹣x+4得:x=2,∴M(2,3),把M的坐标代入y=得:k=6,∴反比例函数的解析式是y=;(2)∵S四边形BMON =S矩形OABC﹣S△AOM﹣S△CON=6×3﹣6=12,由题意得:OP×AM=12,∵AM=2,∴OP=12,∴点P的坐标是(0,12)或(0,﹣12).21.(8分)2015年体育中考在即,学校体育组对九(1)班50名学生进行了长跑项目的测试,根据测试成绩制作了如图两个统计图.根据统计图解答下列问题:(1)本次测试的学生中,得4分的学生有多少人?(2)本次测试的平均分是多少?(3)通过一段时间的训练,体育组对该班学生的长跑项目进行第二次测试,测得成绩的最低分为3分,且得4分和5分的人数共有45人,平均分比第一次提高了0.8分,问第二次测试中,得4分、5分的学生分别有多少人?【解答】解:(1)得4分的学生有50×50%=25(人);(2)本次测试的平均分是:=3.7(分);(3)设第二次测试中得4分的学生有x人,得5分的学生有y人,由题意,得,解得:.答:第二次测试中得4分的学生有15人,得5分的学生有30.22.(10分)3月15日是国际消费者权益日.某品牌专卖店准备出售甲、乙两种服装.其中甲、乙两种服装的进价和售价如表:已知:专卖店用3000元购进甲种服装的数量与用2400元购进乙种服装的数量相同.(1)求m的值;(2)要使购进的甲、乙两种服装共200件的总利润(利润=售价﹣进价)不少于21700元,且甲种服装的件数不超过总件数的一半,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种服装进行优惠促销活动,决定对甲种服装每件优惠a(50<a<70)元出售,乙种服装价格不变.那么该专卖店要获得最大利润应如何进货?【解答】解:(1)依题意得,,整理得,3000(m﹣20)=2400m,解得m=100经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种服装x件,则乙种服装(200﹣x)件,根据题意得,(240﹣100)x+(160﹣80)(200﹣x)≥21700解不等式得,x≥95,∵x≤100,所以95≤x≤100∵x是正整数,100﹣95+1=6,∴共有6种方案;(3)设总利润为W,则W=(140﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤100),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=100时,W有最大值,即此时应购进甲种服装100件,购进乙种服装100件;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=95时,W有最大值,即此时应购进甲种服装95件,购进乙种服装105件.23.(10分)请利用两个直角三角形完成以下两个探究问题:探究一:如图①,在等腰直角△ABC中,点D是斜边BC上的中点,点E为AB 边上的一点,连接DE,过D点作DE的垂线交AC于点F,连接AD,EF.求证:△AED≌△CDF;探究二:如图②,将△DEF的顶点D放在Rt△ABC斜边BC的中点处,并以点D为旋转中心旋转△DEF,使△DEF的两直角边与△ABC的两直角边分别交于M、N两点,连接MN.已知∠B=45°,BC=3,在旋转△DEF的过程中,△AMN的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由.【解答】探究一:证明:∵在等腰直角△ABC中,∴∠C=45°,∠BAC=90°,又∵点D为AB上的中点,∴∠DAE=∠C=45°,AD=DC,AD⊥BC,∴∠ADF+∠FDC=90°,∵∠EDF=90°,∴∠ADF+∠ADE=90°,∴∠FDC=∠ADE,在△AED与△CDF中,,∴△AED≌△CDF;探究二:△AMN的周长存在有最小值.如答图3所示,连接AD,∵△ABC为等腰直角三角形,点D为斜边BC的中点,∴AD=CD,∠C=∠MAD=45°,∵∠EDF=90°,∠ADC=90°,∴∠MDA=∠NDC,∵在△AMD与△CND中,,∴△AMD≌△CND(ASA),∴AM=CN,DM=DN.∴AM+AN=AC.则△AMN的周长等于MN+AC.所以当MN取最小值时,△AMN的周长存在最小值.由DM=DN,∠EDF=90°可知△DMN是等腰直角三角形,所以MN=DN.当DN⊥AC时,DN取得最小值,则MN取得最小值.在等腰直角△ABC中,AC=BC.在等腰直角△ADC中,当DN⊥AC时,DN=AC=BC.此时MN=DN =BC.所以△AMN的周长最小值为:BC+BC=.24.(12分)已知:如图,直线y=x+与x轴、y轴分别交于A、B两点,动点D从A点出发向O点运动(运动到O点停止),过D作DE∥AB交y轴于点E;对称轴过点A且顶点为M的抛物线y=a(x﹣k)2+h(a<0)始终经过点E,过E作EG∥OA交抛物线于点G,交AB于点F,连结DE、DF、AE、BG.设D的运动速度是1个单位长度/秒,运动时间为t秒.(1)用含t代数式分别表示EF、BE、AF的长;(2)在整个运动过程中是否存在点D,使AE∥BG?若存在,求出t的值,并判断此时四边形ADEF的形状且说明理由;若不存在,请说明理由;(3)当△ADF是直角三角形,且抛物线的顶点M恰好在BG上时,求抛物线的解析式.【解答】解:(1)在直线解析式y=x+中,令x=0,得y=;令y=0,得x=﹣1.∴A(﹣1,0),B(0,),OA=1,OB=.∴tan∠OAB=.∴∠OAB=60°.∴AB=2OA=2.∵EG∥OA,DE∥AB,∴四边形ADEF为平行四边形.∴EF=AD=t,BF=2EF=2t.∴BE=t,∴AF=AB﹣BF=2﹣2t;(2)存在,∵GE=2OA=2,∴GF=2﹣t,若AE∥BG,则△FGB∽△FEA,∵∠GFB=∠EF A,∴,,解得t=.∴t=时,AE∥BG.此时四边形ADEF是菱形,EF=AF=,∴四边形ADEF是菱形;(3)当△ADF是直角三角形时,①若∠ADF=90°,此时AF=2DA,即2﹣2t=2t,解得t=.∴BE=EF=t=,OE=OB﹣BE=.∴E(0,),G(﹣2,).设直线BG的解析式为y=kx+b,将B(0,),G(﹣2,)代入得:,解得.∴直线BG的解析式为y=.令x=﹣1,得y=,∴M(﹣1,).设抛物线解析式为y=a(x+1)2+,∵点E(0,)在抛物线上,∴,解得a=﹣.抛物线解析式为y=﹣(x+1)2+,即y=﹣x2﹣+;②若∠AFD=90°,此时AD=2AF,即:t=2(2﹣2t),解得:t=.∴BE=t=,OE=OB﹣BE=.∴E(0,),G(﹣2,).设直线BG的解析式为y=k1x+b1,将B(0,),G(﹣2,)代入得:,解得,.∴直线BG的解析式为y=x+.令x=﹣1,得y=,∴M(﹣1,).设抛物线解析式为y=a(x+1)2+,∵点E(0,)在抛物线上,∴,解得a=﹣.∴抛物线解析式为y=﹣(x+1)2+,即y=﹣x2﹣x+.。

衢州中考数学试题与答案

衢州中考数学试题与答案

数学试卷(一)一、单项选择题1、数2-的相反数为( ) A 、2 B 、21 C 、2- D 、21- 2、某市“十二五”规划纲要指出,力争到2015年,全市农民人均年纯收入超13000元,数13000用科学记数法可以表示为( )A 、31013⨯ B 、4103.1⨯ C 、41013.0⨯ D 、210130⨯3、在九年级体育中考中,某校某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):44,45,42,48,46,43,47,45.则这组数据的极差为( ) A 、2 B 、4 C 、6 D 、84、如下图,下列几何体的俯视图是右面所示图形的是( )5、某市新农村建设推动了农村住宅旧貌变新颜, 如图为一农村民居侧面截图,屋坡AF 、AG 分别架 在墙体的点B 、点C 处,且AB=AC ,侧面四边形 BDEC 为矩形,则∠FBD=( ) A 、35° B 、40° C 、55° D 、70°6、如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的 一个动点,若PA=2,则PQ 的最小值为( ) A 、1 B 、2 C 、3 D 、47、5月19日为中国旅游日,某市推出“读万卷书,行万里 路,游某市景”的主题系列旅游惠民活动,市民王先生准备 在优惠日当天上午从孔氏南宗家庙、烂柯山、龙游石窟中随 机选择一个地点;下午从江郎山、三衢石林、开化根博园中 随机选择一个地点游玩,则王先生恰好上午选中孔氏南宗家庙, 下午选中江郎山这两个地的概率是( ) A 、91 B 、31 C 、32 D 、92 8、小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为1v ,2v ,3v ,1v <2v <3v ,则小亮同学骑车上学时,离家的路程s 与所用时间t 的函数关系图象可能是( ) BC DEGOAPO QMN小亮家学校s(第4题) (第5题)(第6题)(第9题)二、填空题9、方程0x 2x 2=-的解为___________________;10、如图,直尺一边AB 与量角器的零刻度线CD 平行,若量角 器的一条刻度线OF 的读数为70°,OF 与AB 交于点E , 那么∠AEF=___________11、在一资助夏令营活动中,小明同学从营地A 出发,要到A 地 的北偏东60°方向的C 处,他先沿正东方向走了200m 到达B 地, 再沿北偏东30°方向走,恰能到达目的地C(如图),那么,由此 可知,B 、C 两地相距___________m 。

浙江省衢州市实验学校2015届九年级中考一模数学试卷

浙江省衢州市实验学校2015届九年级中考一模数学试卷

1 的图象上,另“7”字形有两个顶点落在 x 轴上,一 x
个顶点落在 y 轴上. (1)图 1 中的每一个小正方形的面积是 ; (2)按照图 1→图 2→图 3→图 4→…这样的规律拼接下去,第 n 个图形中每一个小正方 形的面积是 . (用含 n 的代数式表示)
三、解答题(有 8 题,共 66 分) 17. (6 分)计算: 12 4sin 60 ( 2015 5) 0 ( ) 1
版权所有:中华资源库
21.(8 分)如图,△ABC 是等腰三角形,AB=BC,点 D 为 BC 的中点. (1)用圆规和没有刻度的直尺作图,并保留作图痕迹: C ①过点 B 作 AC 的平行线 BP; ②过点 D 作 BP 的垂线,分别交 AC,BP, BQ 于点 E,F,G. D (2)在(1)所作的图中,连接 BE,CF. 求证:四边形 BFCE 是平行四边形.
版权所有:中华资源库
版权所有:中华资源库
衢州市实验学校 下
2014 学年 学 期
九年级数学综合测试卷(一)
参考答案
一、 选择题(本题共 10 小题,每小题 3 分,共 30 分) 题号 答案 1 A 2 B 3 C 4 B 5 C 6 C 7 D 8 D 9 B 10 C
2
b 4ac b 2 , ) ; 2a 4a
一组数据 x1,x2,x3, ,xn 的方差:
1 S 2 = [( x1 x) 2 ( x2 x) 2 ( x3 x) 2 ( xn x) 2 ] (其中 x 是这组数据的平均数). n
卷 Ⅰ
说明:本卷共有 1 大题,10 小题,共 30 分.请用 2B 铅笔在“答题纸”上将你认为正确 的选项对应的小方框涂黑、涂满,不选、多选、错选均不给分. 一、选择题(有 10 小题,每题 3 分,共 30 分) 1. 3 的相反数等于( A. 3 B. 3 ) C.

2015年中考数学试题及答案(Word版)

2015年中考数学试题及答案(Word版)

2015年初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.........1.2的相反数是A.2 B.12C.-2 D.-122.有一组数据:3,5,5,6,7,这组数据的众数为A.3 B.5 C.6 D.73.月球的半径约为1 738 000m,1 738 000这个数用科学记数法可表示为A.1.738×106B.1.738×107C.0.1738×107D.17.38×1054.若()2m=-,则有A.0<m<1 B.-1<m<0 C.-2<m<-1 D.-3<m<-2 5.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15min的频率为A.0.1 B.0.4 C.0.5 D.0.96.若点A(a,b)在反比例函数2yx=的图像上,则代数式ab-4的值为A.0 B.-2 C.2 D.-67.如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =35°,则∠C 的度数为 A .35° B .45°C .55°D .60°8.若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x的方程x 2+bx =5的解为 A .120,4x x ==B .121,5x x ==C .121,5x x ==-D .121,5x x =-=9.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD .若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为 A.43πB.43π-C.πD.23π10.如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为 A .4kmB.(2kmC.D.(4-km二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上......... 11.计算:2a a ⋅= ▲ .12.如图,直线a ∥b ,∠1=125°,则∠2的度数为 ▲ °.DCB A(第7题)(第9题)(第10题)l13.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 ▲ 名. 14.因式分解:224a b -= ▲ .15.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 ▲ .16.若23a b -=,则924a b -+的值为 ▲ .17.如图,在△ABC 中,CD 是高,CE 是中线,CE =CB ,点A 、D 关于点F 对称,过点F作FG ∥CD ,交AC 边于点G ,连接GE .若AC =18,BC =12,则△CEG 的周长为 ▲ .18.如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则()224x y +-的值为 ▲ . 三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.(第17题)GF E D CBA F EDC B A (第18题)ba(第13题)20%10%30%40%其他乒乓球篮球羽毛球(第15题)19.(本题满分5分)(052--. 20.(本题满分5分)解不等式组:()12,31 5.x x x +≥⎧⎪⎨-+⎪⎩>21.(本题满分6分)先化简,再求值:2121122x x x x ++⎛⎫-÷⎪++⎝⎭,其中1x .22.(本题满分6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?23.(本题满分8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是 ▲ ;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.24.(本题满分8分)如图,在△ABC中,AB=AC.分别以B、C为圆心,BC长为半径在BC下方画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD.(1)求证:AD平分∠BAC;(2)若BC=6,∠BAC=50︒,求 DE、 DF的长度之和(结果保留π).25.(本题满分8分)如图,已知函数kyx=(x>0)的图像经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图像经过点A、D,与x轴的负半轴交于点E.(1)若AC=32OD,求a、b的值;(2)若BC∥AE,求BC的长.(第24题)F EDCBA26.(本题满分10分)如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点,过点B 作BE ∥AD ,交⊙O 于点E ,连接ED . (1)求证:ED ∥AC ;(2)若BD =2CD ,设△EBD 的面积为1S ,△ADC 的面积为2S ,且2121640S S -+=,求△ABC 的面积.27.(本题满分10分)如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC . (1)∠ABC 的度数为 ▲ °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.(第26题)28.(本题满分10分)如图,在矩形ABCD 中,AD =a cm ,AB =b cm (a >b >4),半径为2cm的⊙O 在矩形内且与AB 、AD 均相切.现有动点P 从A 点出发,在矩形边上沿着A →B →C →D 的方向匀速移动,当点P 到达D 点时停止移动;⊙O 在矩形内部沿AD 向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O 回到出发时的位置(即再次与AB 相切)时停止移动.已知点P 与⊙O 同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P 从A →B →C →D ,全程共移动了 ▲ cm (用含a 、b 的代数式表示); (2)如图①,已知点P 从A 点出发,移动2s 到达B 点,继续移动3s ,到达BC 的中点.若点P 与⊙O 的移动速度相等,求在这5s 时间内圆心O 移动的距离;(3)如图②,已知a =20,b =10.是否存在如下情形:当⊙O 到达⊙O 1的位置时(此时圆心O 1在矩形对角线BD 上),DP 与⊙O 1恰好相切?请说明理由.(第28题)(图②)(图①)2015年苏州市初中毕业暨升学考试数学试题答案一、选择题1.C 2.B 3.A 4.C 5.D6.B 7.C 8.D 9.A 10.B二、填空题11.3a12.55 13.60 14.()()22a b a b+-15.1416.3 17.27 18.16三、解答题19.解:原式=3+5-1 =7.20.解:由12x+≥,解得1x≥,由()315x x-+>,解得4x>,∴不等式组的解集是4x>.21.解:原式=()21122xxx x++÷++=()2121211x xx xx++⨯=+++.当1x===.22.解:设乙每小时做x面彩旗,则甲每小时做(x+5)面彩旗.根据题意,得60505x x=+.解这个方程,得x=25.经检验,x=25是所列方程的解.∴x+5=30.答:甲每小时做30面彩旗,乙每小时做25面彩旗.23.解:(1)1.(2)用表格列出所有可能的结果:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.∴P(两次都摸到红球)=212=16.24.证明:(1)由作图可知BD =CD .在△ABD 和△ACD 中,,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).∴∠BAD =∠CAD ,即AD 平分∠BAC .解:(2)∵AB =AC ,∠BAC =50°,∴∠ABC =∠ACB=65°.∵BD = CD = BC ,∴△BDC 为等边三角形. ∴∠DBC =∠DCB=60°. ∴∠DBE =∠DCF=55°. ∵BC =6,∴BD = CD =6.∴ DE的长度= DF 的长度=556111806ππ⨯⨯=. ∴ DE、 DF 的长度之和为111111663πππ+=. 25.解:(1)∵点B (2,2)在ky x=的图像上,∴k =4,4y x=. ∵BD ⊥y 轴,∴D 点的坐标为(0,2),OD =2. ∵AC ⊥x 轴,AC =32OD ,∴AC =3,即A 点的纵坐标为3. ∵点A 在4y x=的图像上,∴A 点的坐标为(43,3).∵一次函数y =ax +b 的图像经过点A 、D , ∴43,3 2.a b b ⎧+=⎪⎨⎪=⎩ 解得3,42.a b ⎧=⎪⎨⎪=⎩ (2)设A 点的坐标为(m ,4m),则C 点的坐标为(m ,0). ∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 为平行四边形. ∴CE = BD =2.∵BD ∥CE ,∴∠ADF =∠AEC .∴在Rt △AFD 中,tan ∠ADF =42AF mDF m -=, 在Rt △ACE 中,tan ∠AEC =42AC mEC =, ∴4422m m m -=,解得m =1.∴C 点的坐标为(1,0),BC26.证明:(1)∵AD 是△ABC 的角平分线, ∴∠BAD =∠DAC .∵∠E=∠BAD ,∴∠E =∠DAC . ∵BE ∥AD ,∴∠E =∠EDA . ∴∠EDA =∠DA C . ∴ED ∥AC .解:(2)∵BE ∥AD ,∴∠EBD =∠ADC .∵∠E =∠DAC ,∴△EBD ∽△ADC ,且相似比2BDk DC==. ··················· ∴2124S k S ==,即124S S =. ∵2121640S S -+=,∴222161640S S -+=,即()22420S -=.∴212S =. ∵233ABC S BC BD CD CD S CD CD CD +==== ,∴32ABC S = . 27.解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =.∵0<m <1,点A 在点B 的左侧,∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°. (2)解法一:如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,由题意得,抛物线的对称轴为12mx -+=. 设点P 坐标为(12m-+,n ). ∵P A = PC , ∴P A 2= PC 2,即AE 2+ PE 2=CD 2+ PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. 解法二:连接PB .由题意得,抛物线的对称轴为12m x -+=. ∵P 在对称轴l 上,∴P A =PB . ∵P A =PC ,∴PB =PC .∵△BOC 是等腰直角三角形,且OB =OC ,∴P 在BC 的垂直平分线y x =-上.∴P 点即为对称轴12mx -+=与直线y x =-的交点. ∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭.图①图②(3)解法一:存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴P A 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴P A 2+ PC 2=AC 2.∴∠APC =90°. ∴△P AC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ). ①如图①,当Q 点的坐标为(-m ,0)时,若PQ 与x 轴垂直,则12m m -+=-,解得13m =,PQ =13. 若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(25-,0)时, PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时,若PQ 与y 轴垂直,则12m m -=,解得13m =,PQ =13. 若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ.<13, ∴当25m =,即Q 点的坐标为(0,25)时, PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ 的长度最小.解法二: 如图①,由(2)知P 为△ABC 的外接圆的圆心. ∵∠APC 与∠ABC 对应同一条弧AC ,且∠ABC =45°, ∴∠APC =2∠ABC =90°.下面解题步骤同解法一.28.解:(1)a +2b .(2)∵在整个运动过程中,点P 移动的距离为()2a b +cm ,圆心O 移动的距离为()24a -cm , 由题意,得()224a b a +=-. ①∵点P 移动2s 到达B 点,即点P 用2s 移动了b cm ,点P 继续移动3s ,到达BC 的中点,即点P 用3s 移动了12a cm .∴1223a b =. ② 由①②解得24,8.a b =⎧⎨=⎩∵点P 移动的速度与⊙O 移动的速度相等,∴⊙O 移动的速度为42b=(cm/s ). ∴这5s 时间内圆心O 移动的距离为5×4=20(cm ). (3)存在这种情形.解法一:设点P 移动的速度为v 1cm/s ,⊙O 移动的速度为v 2cm/s ,由题意,得()()1222021052422044v a b v a ++⨯===--.FE如图,设直线OO 1与AB 交于点E ,与CD 交于点F ,⊙O 1与AD 相切于点G . 若PD 与⊙O 1相切,切点为H ,则O 1G =O 1H . 易得△DO 1G ≌△DO 1H ,∴∠ADB =∠BDP . ∵BC ∥AD ,∴∠ADB =∠CBD . ∴∠BDP =∠CBD .∴BP =DP .设BP =x cm ,则DP =x cm ,PC =(20-x )cm ,在Rt △PCD 中,由勾股定理,可得222PC CD PD +=,即()2222010x x -+=,解得252x =.∴此时点P 移动的距离为25451022+=(cm ). ∵EF ∥AD ,∴△BEO 1∽△BAD . ∴1EO BE AD BA =,即182010EO =. ∴EO 1=16cm .∴OO 1=14cm .①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm , ∴此时点P 与⊙O 移动的速度比为454521428=.∵455284≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ), ∴此时点P 与⊙O 移动的速度比为45455218364==. ∴此时PD 与⊙O 1恰好相切. 解法二:∵点P 移动的距离为452cm (见解法一), OO 1=14cm (见解法一),1254v v =,∴⊙O 应该移动的距离为4541825⨯=(cm ). ①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm ≠18 cm , ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ),∴此时PD 与⊙O 1恰好相切.解法三:点P 移动的距离为452cm ,(见解法一) OO 1=14cm ,(见解法一) 由1254v v =可设点P 的移动速度为5k cm/s ,⊙O 的移动速度为4k cm/s , ∴点P 移动的时间为459252k k=(s ).①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的时间为1479422k k k=≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的时间为2(204)14942k k⨯--=, ∴此时PD 与⊙O 1恰好相切.。

2015-2016年浙江省衢州市初三上学期期末数学试卷及答案

2015-2016年浙江省衢州市初三上学期期末数学试卷及答案

2015-2016学年浙江省衢州市初三上学期期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)sin30°的值是()A.B.C.D.12.(3分)已知=,则的值是()A.B.C.2D.3.(3分)一个几何体的三视图如图所示,那么这个几何体是()A.B.C.D.4.(3分)一个不透明的布袋中装有1个黄球,2个红球和3个白球,这些球除颜色不同外其他完全相同,则从布袋中随机摸出一个球是白球的概率为()A.B.C.D.5.(3分)二次函数y=2x2的图象向上平移1个单位,则平移后图象的函数表达式是()A.y=2(x﹣1)2B.y=2x2﹣1C.y=2(x+1)2D.y=2x2+1 6.(3分)如图,若∠ABC=30°,则∠AOC的度数为()A.30°B.45°C.60°D.70°7.(3分)如图,PA、PB分别切⊙O于点A、B,且PA=8,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长为()A.8B.16C.24D.328.(3分)如图,在半径为2cm,圆心角为90°的扇形OAB内,以OB为直径作半圆交弦AB于点C,则图中阴影部分的面积是()A.π﹣1B.π﹣2C.D.9.(3分)综合实践课上,小敏将一张两直角边长分别为6cm、8cm的直角三角:S 形纸片,按如图所示那样折叠,使点A与点B重合,折痕为DE,则S△BCE等于()△BDEA.2:5B.14:25C.16:25D.4:21 10.(3分)如图,二次函数y=﹣x2+2x+m+1的图象交x轴于点A(a,0)和B(b,0),交y轴于点C,图象的顶点为D.下列四个命题:①当x>0时,y>0;②若a=﹣1,则b=4;③点C关于图象对称轴的对称点为E,点M为x轴上的一个动点,当m=2时,△MCE周长的最小值为2;④图象上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2,其中真命题的个数有()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题4分,满分24分)11.(4分)在“海上生明月”这幅图中,把月亮与地平线分别抽象成圆和直线,则该图所呈现的直线与圆之间的位置关系是.12.(4分)某种品牌牛奶包装盒的表面展开图如图所示(单位:mm),那么这种牛奶包装盒的容积是mm3(包装材料厚度不计).13.(4分)在创建全国文明城市活动中,衢州市园林部分为了扩大市区的绿化面积,进行了大量的树木移栽,如表记录的是在相同条件下移栽某种幼树的棵树和成活棵树:移栽棵树1005001000500010000成活棵树8945891044989000请根据表中数据估计,现园林部门移栽5000棵这种幼树,大约能成活棵.14.(4分)如图,正方形网格中每个小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的余弦值是.15.(4分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…﹣10123…y…105212…则当y<5时,x的取值范围是.16.(4分)如图,在平面直角坐标系中,含30°锐角的三角板的直角顶点C落在第二象限,其斜边两端点A、B分别落在x轴、y轴上,且AB=12cm,OB=6cm.点C′是第二象限内不与点C重合的一个点,且以A、B、C′为顶点的三角形与△ABC相似(相似比不为1),则点C′的坐标为.三、解答题(共8小题,满分66分)17.(6分)计算:﹣3tan60°+(﹣2)0.18.(6分)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.19.(6分)美丽的衢江宛如一条玉带穿城而过,沿江两岸的江滨大道和风景带是我市最美的景观之一.教学课外实践活动中,小峰在衢江西岸学仕路AC上的A,B两点处,利用测角仪分别对东岸的观景亭D进行了测量,如图,测得∠DAC=45°,∠DBC=60°.若AB=100米,求观景台D到学仕路AC的距离约为多少米(精确到1米)(≈1.41,≈1.73)20.(8分)如图,在⊙O中,半径OC⊥AB于点D,连结BC.(1)若D是OC的中点,求∠C的度数;(2)若AB=8,CD=2,求⊙O的半径.21.(8分)某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现;当销售单价25元/件时,每天的销售量是250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大?最大利润是多少?22.(10分)如图,以线段AB为直径作⊙O,CD与⊙O相切于点E,交AB的延长线于点C,连结BE,过点O作OD∥BE交切线CE于点D,连结AD.(1)求证:AD是⊙O的切线;(2)若AD=6,AC=8,求BC的长.23.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a>0)的顶点为M,直线l与x轴平行,且与抛物线交于点A、B,若△AMB为等腰直角三角形,我们就把抛物线上A、B两点之间的部分与线段AB围成的图象称为该抛物线对应的“准蝶形”,线段AB的长称为碟宽,顶点M称为碟顶.(1)填空:抛物线y=x2的碟宽为,碟顶坐标为;(2)求抛物线y=a(x﹣2)2+3(a>0)的碟宽(用含a的代数式表示);(3)若抛物线y=ax2﹣4ax﹣(a>0)的碟宽为6,求该抛物线的碟顶坐标.24.(12分)如图,菱形ABCD中,AB=4,∠ABC=60°,对称中心为P,点F为BC边上一个动点,点E在AB边上,且满足条件∠EPF=60°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)△APE和△CFP是否相似?若相似,请说明理由;(2)设四边形CMPF的面积为S2,CF=x,y=,①求y关于x的函数表达式及自变量x的取值范围;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.2015-2016学年浙江省衢州市初三上学期期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)sin30°的值是()A.B.C.D.1【解答】解:sin30°=.故选:A.2.(3分)已知=,则的值是()A.B.C.2D.【解答】解:由和比性质,得==,故选:D.3.(3分)一个几何体的三视图如图所示,那么这个几何体是()A.B.C.D.【解答】解:由于俯视图为圆形可得为球、圆柱、圆锥.主视图和左视图为三角形可得此几何体为圆锥.故选:B.4.(3分)一个不透明的布袋中装有1个黄球,2个红球和3个白球,这些球除颜色不同外其他完全相同,则从布袋中随机摸出一个球是白球的概率为()A.B.C.D.【解答】解:∵一个不透明的布袋中装有1个黄球,2个红球和3个白球,∴共有1+2+3=6个,∴从布袋中随机摸出一个球是白球的概率为=;故选:C.5.(3分)二次函数y=2x2的图象向上平移1个单位,则平移后图象的函数表达式是()A.y=2(x﹣1)2B.y=2x2﹣1C.y=2(x+1)2D.y=2x2+1【解答】解:原抛物线的顶点为(0,0),向上平移1个单位,那么新抛物线的顶点为(0,1);可设新抛物线的解析式为y=(x﹣h)2+k,代入得:y=2x2+1.故选:D.6.(3分)如图,若∠ABC=30°,则∠AOC的度数为()A.30°B.45°C.60°D.70°【解答】解:∵∠AOC=2∠ABC,∴∠AOC=2×30°=60°,故选:C.7.(3分)如图,PA、PB分别切⊙O于点A、B,且PA=8,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长为()A.8B.16C.24D.32【解答】解:∵PA、PB分别切⊙O于点A、B,∴PA=PB=8,∵CD切⊙O于点E,∴CA=CE,DB=DE,∴△PCD的周长=PC+CD+PD=PC+CE+DE+PD=PC+AC+BD+PD=PA+PB=16.故选:B.8.(3分)如图,在半径为2cm,圆心角为90°的扇形OAB内,以OB为直径作半圆交弦AB于点C,则图中阴影部分的面积是()A.π﹣1B.π﹣2C.D.【解答】解::在Rt△ACB中,AB==2,∵BC是半圆的直径,∴∠CDB=90°,在等腰Rt△ACB中,CD垂直平分AB,CD=BD=,∴D为半圆的中点,∴S阴影部分=S扇形ACB﹣S△ADC=π×22﹣×()2=π﹣1.故选:A.9.(3分)综合实践课上,小敏将一张两直角边长分别为6cm、8cm的直角三角形纸片,按如图所示那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S △BDE等于()A.2:5B.14:25C.16:25D.4:21【解答】解:在Rt△BAC中,BC=6,AC=8,∴AB==10,∵把△ABC沿DE使A与B重合,∴AD=BD,EA=EB,∴BD=AB=5,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中,∵BE2=EC2+BC2,即x2=(8﹣x)2+62,∴x=,∴EC=8﹣x=8﹣=,∴S△BCE=BC•CE=×6×=,在Rt△BED中,∵BE2=ED2+BD2,∴ED==,∴S△BDE=BD•DE=×5×=,∴S△BCE :S△BDE=:=14:25.故选:B.10.(3分)如图,二次函数y=﹣x2+2x+m+1的图象交x轴于点A(a,0)和B(b,0),交y轴于点C,图象的顶点为D.下列四个命题:①当x>0时,y>0;②若a=﹣1,则b=4;③点C关于图象对称轴的对称点为E,点M为x轴上的一个动点,当m=2时,△MCE周长的最小值为2;④图象上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2,其中真命题的个数有()A.1个B.2个C.3个D.4个【解答】解:①当a<x<b时,y>0.故①错误.②==1,∴当a=﹣1时,b=3,故②错误.③当m=2时,C(0,3),E(2,3).E′与E关于x轴对称,∴E′(2,﹣3),∴CE′=2,∴△MCE的周长的最小值为2+2,故③错误.④设x1关于对称轴的对称点x1′,∴x1′=2﹣x1,∵x1+x2>2,∴x2>﹣x1+2,∴x2>x1′,∵x1<1<x2,∴x1<1<x1′<x2,∵函数图象在x>1时,y随x增大而减小,∴y2<y1,∴④正确.故选:A.二、填空题(共6小题,每小题4分,满分24分)11.(4分)在“海上生明月”这幅图中,把月亮与地平线分别抽象成圆和直线,则该图所呈现的直线与圆之间的位置关系是相离.【解答】解:∵月亮与地平线没有公共点,∴该图所呈现的直线与圆之间的位置关系是相离.故答案为相离.12.(4分)某种品牌牛奶包装盒的表面展开图如图所示(单位:mm),那么这种牛奶包装盒的容积是 2.24×105mm3(包装材料厚度不计).【解答】解:根据图形可知:长方体的容积是:40×70×80=2.24×105;故答案为:2.24×105.13.(4分)在创建全国文明城市活动中,衢州市园林部分为了扩大市区的绿化面积,进行了大量的树木移栽,如表记录的是在相同条件下移栽某种幼树的棵树和成活棵树:移栽棵树1005001000500010000成活棵树8945891044989000请根据表中数据估计,现园林部门移栽5000棵这种幼树,大约能成活4500棵.【解答】解:设能成活x棵,根据题意得:,解得:x=4500,故答案为:4500.14.(4分)如图,正方形网格中每个小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的余弦值是.【解答】解:在Rt△OAC中,AC=4,OA==2,则cos∠OAB====,故答案为:15.(4分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…﹣10123…y…105212…则当y<5时,x的取值范围是0<x<4.【解答】解:由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故答案为:0<x<4.16.(4分)如图,在平面直角坐标系中,含30°锐角的三角板的直角顶点C落在第二象限,其斜边两端点A、B分别落在x轴、y轴上,且AB=12cm,OB=6cm.点C′是第二象限内不与点C重合的一个点,且以A、B、C′为顶点的三角形与△ABC相似(相似比不为1),则点C′的坐标为(﹣6,24)、(﹣2,12)、(﹣12,18)和(﹣8,6).【解答】解:依照题意画出图形,如图所示.∵AB=12cm,OB=6cm,∴sin∠BAO==,∴∠BAO=30°,∠ABO=60°,OA=6.①当AB为较短的直角边且∠ABC1′为直角时,BC1′=AB•tan∠BAC1′=12,在Rt△BC1′D中,∠BDC1′=90°,∠C1′BD=30°,BC1′=12,∴C1′D=6,BD=18,∴OD=24,点C1′的坐标为(﹣6,24);②当AB为较长的直角边且∠ABC2′为直角时,BC2′=AB•tan∠BAC=4,在Rt△BC2′E中,∠BEC2′=90°,∠C2′BE=30°,BC2′=4,∴C2′E=2,BE=6,∴OE=12,点C2′的坐标为(﹣2,12);③当AB为较短的直角边且∠BAC3′为直角时,AC3′=AB÷tan∠BC3′A=12,在Rt△AC3′F中,∠AFC3′=90°,∠C3′AF=60°,AC3′=12,∴C3′F=18,AF=6,∴OF=12,点C3′的坐标为(﹣12,18);④当AB为较长的直角边且∠BAC4′为直角时,AC4′=AB÷tan∠BC4′A=4,在Rt△AC4′M中,∠AMC4′=90°,∠C4′AM=60°,AC4′=4,∴C4′M=6,AM=2,∴OM=8,点C4′的坐标为(﹣8,6).综上可知:点C′的坐标可以为(﹣6,24)、(﹣2,12)、(﹣12,18)和(﹣8,6).故答案为:(﹣6,24)、(﹣2,12)、(﹣12,18)和(﹣8,6).三、解答题(共8小题,满分66分)17.(6分)计算:﹣3tan60°+(﹣2)0.【解答】解:原式=2﹣3+1=1﹣.18.(6分)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.19.(6分)美丽的衢江宛如一条玉带穿城而过,沿江两岸的江滨大道和风景带是我市最美的景观之一.教学课外实践活动中,小峰在衢江西岸学仕路AC上的A,B两点处,利用测角仪分别对东岸的观景亭D进行了测量,如图,测得∠DAC=45°,∠DBC=60°.若AB=100米,求观景台D到学仕路AC的距离约为多少米(精确到1米)(≈1.41,≈1.73)【解答】解:设CD为xm,∵∠CAD=45°,∠CDB=60°,∴AC=x,BC==x,∴AB=x﹣x=100,则x=100,解得:x=150+50≈150+86.5≈237,答:观景台D到学仕路AC的距离约为237米.20.(8分)如图,在⊙O中,半径OC⊥AB于点D,连结BC.(1)若D是OC的中点,求∠C的度数;(2)若AB=8,CD=2,求⊙O的半径.【解答】解:(1)连接OB,∵OC⊥AB,D是OC的中点,∴OD=OB,∴∠COB=60°,∴△OBC是等边三角形,∴∠C=60°;(2)设⊙O的半径为r,由勾股定理得,r2=(r﹣2)2+16,解得,r=5,则⊙O的半径为5.21.(8分)某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现;当销售单价25元/件时,每天的销售量是250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大?最大利润是多少?【解答】解:(1)由题意可得:w=(x﹣20)[250﹣10(x﹣25)]=﹣10(x﹣20)(x﹣50)=﹣10x2+700x﹣10000;(2)∵w=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250,∴当x=35时,w取到最大值2250,即销售单价为35元时,每天销售利润最大,最大利润为2250元.22.(10分)如图,以线段AB为直径作⊙O,CD与⊙O相切于点E,交AB的延长线于点C,连结BE,过点O作OD∥BE交切线CE于点D,连结AD.(1)求证:AD是⊙O的切线;(2)若AD=6,AC=8,求BC的长.【解答】(1)证明:连接EO,∵OD∥BE,∴∠3=∠2,∠1=∠4,∵EO=BO,∴∠1=∠2,∴∠3=∠4,在△ADO和△EDO中,∴△ADO≌△EDO(SAS),∴∠DEO=∠DAO=90°,∴AD是⊙O的切线;(2)∵AD=6,AC=8,∴DC=10,∴EC=4,设BC=x,∴(x+)2=16+()2,解得:x=2,∴BC=2.23.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a>0)的顶点为M,直线l与x轴平行,且与抛物线交于点A、B,若△AMB为等腰直角三角形,我们就把抛物线上A、B两点之间的部分与线段AB围成的图象称为该抛物线对应的“准蝶形”,线段AB的长称为碟宽,顶点M称为碟顶.(1)填空:抛物线y=x2的碟宽为2,碟顶坐标为(0,0);(2)求抛物线y=a(x﹣2)2+3(a>0)的碟宽(用含a的代数式表示);(3)若抛物线y=ax2﹣4ax﹣(a>0)的碟宽为6,求该抛物线的碟顶坐标.【解答】解:(1)∵a>0,∴y=ax2的图象大致如下:其必过原点O,记AB为其碟宽,AB与y轴的交点为C,连接OA,OB.∵△OAB为等腰直角三角形,AB∥x轴,∴OC⊥AB,∴∠AOC=∠BOC=∠AOB=×90°=45°,∴△ACO与△BCO亦为等腰直角三角形,∴AC=OC=BC,∴x A=y A,x B=y B,代入y=ax2,∴A(﹣,),B(,),C(0,),∴AB=,OC=,即y=ax2的碟宽为.∵抛物线y=x2对应的a=1,得碟宽为2;碟顶(0,0),故答案为:2,(0,0)(2)由(1)知抛物线y=ax2(a>0),碟宽为;抛物线y=a(x﹣2)2+4(a>0)可看成y=ax2向右平移2个单位长度,再向上平移3个单位长度后得到的图形,∵平移不改变形状、大小、方向,∴抛物线y=a(x﹣2)2+3(a>0)与抛物线y=ax2的碟宽一样,∵抛物线y=ax2(a>0),碟宽为,∴抛物线y=a(x﹣2)2+3(a>0),碟宽为.(3)∵y=ax2﹣4ax﹣=a(x﹣2)2﹣(4a+),∴同(1),其碟宽为,∵y=ax2﹣4ax﹣的碟宽为6,∴=6,解得a=.把a=代入y=ax2﹣4ax﹣=x2﹣x﹣,∴顶点坐标为(2,﹣3),即:碟顶为(2,﹣3).24.(12分)如图,菱形ABCD中,AB=4,∠ABC=60°,对称中心为P,点F为BC边上一个动点,点E在AB边上,且满足条件∠EPF=60°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)△APE和△CFP是否相似?若相似,请说明理由;(2)设四边形CMPF的面积为S2,CF=x,y=,①求y关于x的函数表达式及自变量x的取值范围;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.【解答】解:(1)如图1中,相似.理由如下:∵四边形ABCD是菱形,∠ABC=60°,∴AB=BC=AD=CD,∠ABC=∠ADC=60°,∴△ABC,△ADC都是等边三角形,∴∠4=∠5=60°,∵∠EPF=60°,∴∠1+∠2=120,∠2+∠3=120°,∴∠1=∠3,∴△PAE∽△FCP.(2)②如图2中,作PG⊥AB于G,PH⊥BC于H,连接PB.∵BA=BC,AP=PC,∴∠PBA=∠PBC,∵PG⊥AB,PH⊥BC,∴PG=PH,∵△PAE∽△FCP,∴=,∴=,∴AE=,∴BE=4﹣,∴y==﹣﹣1(1≤x≤4).③如图3中,∵图中两块阴影部分图形关于点P成中心对称,∴∠APE=∠APN=∠CPF=∠CPM,∵∠EPF=∠MPN=60°,∴∠APE=∠CPF=60°,∴∠1=∠2=30°,∠C=∠CPF=60°,∴△PCF是等边三角形,∴CF=CP=x=2,∴y=﹣﹣1=2.。

衢州中考试卷

衢州中考试卷

衢州中考试卷篇一:2015年衢州市中考科学试卷(扫描版有答案)2015年衢州市中考科学试卷及参考答案篇二:2015浙江中考衢州科学试卷和参考答案2015浙江中考衢州科学试卷本卷可能用到的相对原子质量:H-1 C-12 O-16 Na-23 Cl -35.5 Ca-40 Cu-64 Ba-137一.选择题(本题有15小题,1-10题每小题3分,11-15题每小題2分,共40分。

请选出各题中一个符合题意的选项,不选、多选、错选均不给分)1.下列各图能正确反映电荷之间、磁极之间相互作用规律的是()第1题图2.2014年我市重新发现白蚁家族中的“大熊猫”——浙江亮白蚁,它体表有外骨骼,身体分头、胸、腹三部分。

在生物分类上它属于()A.昆虫类 B.两栖类 C.爬行类 D.鸟类3.系统由器官组成,下列器官属于循环系统的是()第3题图4.地球是人类生存的家园。

下列有关的叙述错误的是()A.全球有六大板块组成 B.火山和地震都是地壳变动的表现C.地球由外向内分为地壳、地幔、地核三屋 D.地球上的水是循环不息的,不必担心水资短缺5.近年来禽流感等传染病流行,向人类发出了新的挑战。

下列有关传染病的说法错误的是()A.病毒是传染源 B.传染病有传染性、流行性和免疫性C.积极研制疫苗,进行预防接种是预防传染病的有效措施D.传染病的流行具备传染源、传播途径和易感人群三个环节6.科学家发现一种新元素。

该元素原子核外电子数为117,中子数为174,相对原子质量为291,元素名称Ununseptium,符号Uus。

请模仿甲,将该元素对应信息编写到图乙中相应位置,“①”处应填()A.291 B.174 C.117D.577.如图是桃树的果实,下列说法正确的是()A.桃树是裸子植物 B.①是种子,②是果皮C.桃花的子房发育成种子 D.桃子是桃树的生殖系统8.如图所示,一束光线斜射到平面镜上,其中反射角是()A.∠1B.∠2 C.∠3 D.∠49.我国科学家在甲烷高效转化研究中获得重大突破,如图为该转化的微观示意图。

浙江省衢州市中考数学试题及答案(word版)

浙江省衢州市中考数学试题及答案(word版)

浙江省2009年初中毕业生学业考试(衢州卷)数 学 试 卷1.本卷共三大题,24小题.全卷满分为150分,考试时间为120分钟.2.答题前,请用蓝、黑墨水的钢笔或圆珠笔将县(市、区)、学校、姓名、准考证号分别填在密封线内相应的位置上,不要遗漏.3.本卷不另设答题卡和答题卷,请在本卷相应的位置上直接答题. 答题必须用蓝、黑墨水的钢笔或圆珠笔(画图请用铅笔),答题时允许使用计算器. 温馨提示:用心思考,细心答题,相信你一定会有出色的表现!一、选择题(本大题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项填在相应的答案栏内,不选、1. 计算:-2+3 = A .5B .-5C .1D .-12. 外切两圆的圆心距是7,其中一圆的半径是4,则另一圆的半径是A .11B .7C .4D .33. 从红桃A 、黑桃A 、梅花A 、方块A 四张牌中,随机抽取一张,则抽到方块A 的概率为A .14 B .13C .12 D .1 4. 二次函数2(1)2y x =--的图象上最低点的坐标是A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2)得 分 评卷人(第3题)5.为测量如图所示上山坡道的倾斜度,小明测得图中所示的数据(单位:米),则该坡道倾斜角α的正切值是A.14B.4CD6.据统计,2008年在国际金融危机的强烈冲击下,我国国内生产总值约30 067 000 000 000元,仍比上年增长9.0%.30 067 000 000 000元用科学记数法表示为A.30 067×109元B.300.67×1011元C.3.006 7×1013元D.0.300 67×1014元7.P1(x1,y1),P2(x2,y2)是正比例函数y= -x图象上的两点,则下列判断正确的是A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y28.某班体育委员调查了本班46名同学一周的平均每天体育活动时间,并制作了如图所示的频数分布直方图,从直方图中可以看出,该班同学这一周平均每天体育活动时间的中位数和众数依次是A.40分,40 分B.50分,40分C.50分,50 分D.40分,50分9.在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为A.9.5 B.10.5C.11 D.15.510. 如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边长放大到原来的2倍,记所得的像是△A′B′C.设点B的对应点B′的横坐标是a,则点B的横坐标是A.12a-B.1(1)2a-+C.1(1)2a--D.1(3)2a-+(分)某班46名同学一周平均每天体育活动时间频数分布直方图(第8题)(第9题)CBDAE FCBA二、填空题(本大题有6小题,每小题5分,共30分.将答案填在题中横线上) 11.计算:01)= . 12. 化简:2111x x x x -+=++ . 13. 如图,AB ∥CD ,∠BAC 的平分线和∠ACD 的平分线交于点E ,则∠AEC 的度数是 . 14. 据《衢州日报》2009年5月2日报道:“家电下乡”农民得实惠.村民小郑购买一台双门冰箱,在扣除13%的政府财政补贴后,再减去商场赠送的“家电下乡”消费券100元,实际只花了1 726.13元钱,那么他购买这台冰箱节省了 元钱. 15. 陈老师要为他家的长方形餐厅(如图)选择一张餐桌,并且想按如下要求摆放:餐桌一侧靠墙,靠墙对面的桌边留出宽度不小于80cm 的通道,另两边各留出宽度不小于60cm的通道.那么在下面四张餐桌中,其大小规格符合要求的餐桌编号是 (把符合要求的编号都写上).16. 如图,DB 为半圆的直径,A 为BD 延长线上一点,AC 切半圆于点E ,BC ⊥AC 于点C ,交半圆于点F .已知BD =2,设AD =x ,CF =y ,则y 关于x 的函数解析式是 .三、解答题(本大题有8小题,共80分,请务必写出解答过程) 17.(本题8分)给出三个整式a 2,b 2和2ab . (1) 当a =3,b =4时,求a 2+b 2+2ab 的值; (2) 在上面的三个整式中任意选择两个整式进行加法或减法运算,使所得的多项式能够因式分解.请写出你所选的式子及因式分解的过程.B 得 分 评卷人得 分 评卷人(第13题)E D C BA(第15题)桌面是边长为80cm 的正方形桌面是长、宽分别为100cm 和64cm 的长方形桌面是半径 为45cm 的圆 桌面的中间是边长为60cm 的正方形, 两头均为半圆18.(本题8分)解不等式组 231,1(1).2x x x -<⎧⎪⎨-⎪⎩≥19.(本题8分)水产公司有一种海产品共2 104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:第1天 第2天 第3天 第4天 第5天 第6天 第7天 第8天 售价x (元/千克) 400 250 240 200 150 125 120 销售量y (千克)304048608096100观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y (千克)与销售价格x (元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y (千克)与销售价格x (元/千克)之间都满足这一关系.(1) 写出这个反比例函数的解析式,并补全表格;(2) 在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?得 分 评卷人得 分 评卷人20.(本题8分)如图,四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P 在矩形上方,点Q 在矩形内. 求证:(1)∠PBA =∠PCQ =30°;(2)P A =PQ .21.(本题10分)一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.得 分 评卷人主视图俯视图左视图ACBD PQ得 分 评卷人22.(本题12分)2009年5月17日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累计确诊病例人数如图所示.(1) 在5月17日至5月21日这5天中,日本新增甲型H1N1流感病例最多的是哪一天?该天增加了多少人?(2) 在5月17日至5月21日这5天中,日本平均每天新增加甲型H1N1流感确诊病例多少人?如果接下来的5天中,继续按这个平均数增加,那么到5月26日,日本甲型H1N1流感累计确诊病例将会达到多少人?(3) 甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天..传染后共有9人患了甲型H1N1流感,每天..传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?得 分 评卷人161718 192021 日本2009年5月16日至5月21日 甲型H1N1流感疫情数据统计图人数(人)23.(本题12分)如图,AD是⊙O的直径.(1)如图①,垂直于AD的两条弦B1C1,B2C2把圆周4等分,则∠B1的度数是,∠B2的度数是;(2)如图②,垂直于AD的三条弦B1C1,B2C2,B3C3把圆周6等分,分别求∠B1,∠B2,∠B3的度数;(3)如图③,垂直于AD的n条弦B1C1,B2C2,B3 C3,…,B n C n把圆周2n等分,请你用含n的代数式表示∠B n的度数(只需直接写出答案).得分评卷人图①B C2图②nB-2图③24. (本题14分)如图,已知点A (-4,8)和点B (2,n )在抛物线2y ax =上.(1) 求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标;(2) 平移抛物线2y ax =,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C (-2,0)和点D (-4,0)是x 轴上的两个定点. ① 当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式; ② 当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.浙江省2009年初中毕业生学业考试(衢州卷)数学试题参考答案及评分标准得 分 评卷人ACBDPQ二、填空题(每小题5分,共30分)11. 1 12. 1 13. 90° 14. 372.87 15. ①②③④ 16. 1x y x=+ 三、解答题(共80分) 17.(本题8分)解:(1) 当a =3,b =4时, a 2+b 2+2ab =2()a b +=49.……4分(2) 答案不唯一,式子写对给2分,因式分解正确给2分.例如, 若选a 2,b 2,则a 2-b 2=(a +b )(a -b ).……4分 若选a 2,2ab ,则a 2±2ab =a (a ±2b ). ……4分 18.(本题8分)解:不等式231x -<的解是 x <2,……3分 不等式1(1)2x x -≥的解是 x ≥-1,……3分 ∴ 不等式组的解是 -1≤x <2 .……2分19.(本题8分)解:(1) 函数解析式为12000y x=. ……2分填表如下:第1天 第2天第3天 第4天 第5天 第6天 第7天 第8天 售价x (元/千克) 400 300250 240200 150 125 120 销售量y (千克)30404850608096100……2分(2) 2 104-(30+40+48+50+60+80+96+100)=1 600, 即8天试销后,余下的海产品还有1 600千克. (1)分当x =150时,12000150y ==80. ……2分 1 600÷80=20,所以余下的这些海产品预计再用20天可以全部售出. (1)分20.(本题8分)证明:(1) ∵ 四边形ABCD 是矩形,∴ ∠ABC =∠BCD =90°.……1分∵ △PBC 和△QCD 是等边三角形, ∴ ∠PBC =∠PCB =∠QCD =60°, ……1分 ∴ ∠PBA =∠ABC -∠PBC =30°, ……1分∠PCD = ∠BCD -∠PCB =30°.∴ ∠PCQ =∠QCD -∠PCD =30°. ∴ ∠PBA =∠PCQ =30°. ……1分 (2) ∵ AB =DC =QC ,∠PBA =∠PCQ ,PB =PC ,……1分 ∴ △P AB ≌△PQC , ……2分 ∴ P A =PQ . ……1分 21.(本题10分)解:该几何体的形状是直四棱柱(答直棱柱,四棱柱,棱柱也给4分).……4分 由三视图知,棱柱底面菱形的对角线长分别为4cm ,3cm .……2分 ∴ 菱形的边长为52cm , ……2分 棱柱的侧面积=52×8×4=80(cm 2).……2分22.(本题12分)解:(1) 18日新增甲型H1N1流感病例最多,增加了75人;……4分 (2) 平均每天新增加267452.65-=人,……2分 继续按这个平均数增加,到5月26日可达52.6×5+267=530人;……2分(3) 设每天传染中平均一个人传染了x 个人,则 1(1)9x x x +++=,2(1)9x +=,解得2=x (x = -4舍去). ……2分再经过5天的传染后,这个地区患甲型H1N1流感的人数为 (1+2)7=2 187(或1+2+6+18+54+162+486+1 458=2 187), 即一共将会有2 187人患甲型H1N1流感. ……2分 23.(本题12分) 解:(1) 22.5°,67.5°……4分(2) ∵ 圆周被6等分,∴ 11B C =12C C =23C C =360°÷6=60°. ……1分∵ 直径AD ⊥B 1C 1,∴ 1AC =1211B C =30°,∴ ∠B 1m=121AC =15°.……1分 ∠B 2m=122AC =12×(30°+60°)=45°, ……1分 ∠B 3m=123AC =12×(30°+60°+60°)=75°. (1)分(3) 11360360[(1)]2222n B n n n ︒︒∠=⨯+-⨯(9045)n n-︒=. (或3604590908n B n n ︒︒∠=︒-=︒-) (4)分24.(本题14分)解:(1) 将点A (-4,8)的坐标代入2y ax =,解得12a =. ……1分将点B (2,n )的坐标代入212y x =,求得点B 的坐标为(2,2), ……1分则点B 关于x 轴对称点P 的坐标为(2,-2). ……1分 直线AP 的解析式是5433y x =-+.……1分 令y =0,得45x =.即所求点Q 的坐标是(45,0).……1分 (2)① 解法1:CQ =︱-2-45︱=145,……1分故将抛物线212y x =向左平移145个单位时,A ′C +CB ′最短, ……2分此时抛物线的函数解析式为2114()25y x =+.……1分解法2:设将抛物线212y x =向左平移m 个单位,则平移后A ′,B ′的坐标分别为A ′(-4-m ,8)和B ′(2-m ,2),点A ′关于x 轴对称点的坐标为A ′′(-4-m ,-8).直线A ′′B ′的解析式为554333y x m =+-.……1分要使A ′C +CB ′最短,点C 应在直线A ′′B ′上,……1分 将点C (-2,0)代入直线A ′′B ′的解析式,解得145m =.……1分故将抛物线212y x =向左平移145个单位时A ′C +CB ′最短,此时抛物线的函数解析式为2114()25y x =+.……1分② 左右平移抛物线212y x =,因为线段A ′B ′和CD 的长是定值,所以要使四边形A ′B ′CD 的周长最短,只要使A ′D +CB ′最短; ……1分第一种情况:如果将抛物线向右平移,显然有A ′D +CB ′>AD +CB ,因此不存在某个位置,使四边形A ′B ′CD 的周长最短.……1分 第二种情况:设抛物线向左平移了b 个单位,则点A ′和点B ′的坐标分别为A ′(-4-b ,8)和B ′(2-b ,2).因为CD =2,因此将点B ′向左平移2个单位得B ′′(-b ,2),要使A ′D +CB ′最短,只要使A ′D +DB ′′最短. ……1分 点A ′关于x 轴对称点的坐标为A ′′(-4-b ,-8),(第24题(1))直线A ′′B ′′的解析式为55222y x b =++.……1分 要使A ′D +DB ′′最短,点D 应在直线A ′′B ′′上,将点D (-4,0)代入直线A ′′B ′′的解析式,解得165b =. 故将抛物线向左平移时,存在某个位置,使四边形A ′B ′CD 的周长最短,此时抛物线的函数解析式为2116()25y x =+.……1分。

浙江省中考数学试题附答案

浙江省中考数学试题附答案

浙江省2015年中考数学试题(附答案)浙江省2015年中考数学试题(附答案)满分150分,考试时间120分钟一、选择题(本题有10小题,每小题4分,共40分)1.计算的结果是A.-3B.-2C.2D.32.据中国电子商务研究中心监测数据显示,2015年第一季度中国轻纺城市场群的商品成交额达27800000000元,将27800000000用科学计数法表示为A.2.78×1010B.2.78×1011C.27.8×1010D.0.278×10113.有6个相同的立方体搭成的几何体如图所示,则它的主视图是4.下面是一位同学做的四道题:①;②;③;④,其中做对的一道题的序号是A.①B.②C.③D.④5.在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是A.B.C.D.6.化简的结果是A.B.C.D.7.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB 和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线。

此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE。

则说明这两个三角形全等的依据是A.S8.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长A.B.C.D.9.如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换。

已知抛物线经过两次简单变换后的一条抛物线是,则原抛物线的解析式不可能的是A.B.C.D.10.挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走。

如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:=▲12.如图,已知点A(0,1),B(0,-1),以点A为圆心,AB为半径作圆,交轴的正半轴于点C,则∠BAC等于▲度13.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作。

2015年中考数学试题(含答案)

2015年中考数学试题(含答案)

2015年河南初中学业水平暨高级中等学校招生考试试题数 学注意事项:1. 本试卷共6页,三个大题,满分120分,考试时间100分钟。

2. 本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。

答在试卷上的答案无效。

一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的。

1. 下列各数中最大的数是( )A. 5B.3C. πD. -8 2. 如图所示的几何体的俯视图是( )3. 据统计,2014年我国高新技术产品出口总额达40 570亿元,将数据40 570亿用科学记数法表示为( ) A.4.0570×109 B. 0.40570×1010 C. 40.570×1011 D. 4.0570×10124. 如图,直线a ,b 被直线c ,d 所截,若∠1=∠2,∠3=125°,则∠4的度数为( ) A. 55° B. 60° C.70° D. 75°5. 不等式组⎩⎨⎧>-≥+13,05x x 的解集在数轴上表示为( )6. 小王参加某企业招聘测试,他的笔试,面试、技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )A. 255分B. 84分C. 84.5分D.86分7. 如图,在□ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF =6,AB =5,则AE 的长为( )C DB A 正面 第2题dc ba第4题-52 0 -520 -52 0 -520 CDBAA. 4B. 6C. 8D. 108. 如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是( )A.(2014,0)B.(2015,-1)C. (2015,1)D. (2016,0)二、填空题(每小题3分,共21分) 9.计算:(-3)0+3-1=.10. 如图,△ABC 中,点D 、E 分别在边AB ,BC 上,DE //AC ,若DB =4,DA =2,BE =3,则EC = . 11. 如图,直线y =kx 与双曲线)0(2>=x xy 交于点 A (1,a ),则k = .12. 已知点A (4,y 1),B (2,y 2),C (-2,y 3)都在二次函数y =(x -2)2-1的图象上,则y 1,y 2,y 3的大小关系是 . 13. 现有四张分别标有数字1,2,3,4的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再 背面朝上洗匀,从中随机抽取一张,则两次抽出的卡片所标数 字不同的概率是 .14. 如图,在扇形AOB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交AB 于点E ,以点O 为圆心,OC 的长为半径 作CD 交OB 于点D ,若OA =2,则阴影部分的面积为 .15. 如图,正方形ABCD 的边长是16,点E 在边AB 上,AE =3,点F 是边BC 上不与点B 、C 重合的一个动点,把△EBF 沿EF 折叠,点B 落在B ′处,若△CDB ′恰为等腰三角形,则DB ′的长为 .E FCDBGA第7图第8题E CDBA第14题EFCDBA 第15题B ′三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:)11(22222ab b a b ab a -÷-+-,其中15+=a ,15-=b .17.(9分)如图,AB 是半圆O 的直径,点P 是半圆上不与点A 、B 重合的一个动点,延长BP 到点C ,使PC =PB ,D 是AC 的中点,连接PD ,PO . (1)求证:△CDP ≌△POB ; (2)填空:① 若AB =4,则四边形AOPD 的最大面积为 ; ② 连接OD ,当∠PBA 的度数为 时,四边形BPDO18.(9分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图。

2013-2019年浙江省衢州市中考数学试题汇编(含参考答案与解析)

2013-2019年浙江省衢州市中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2013—2019年浙江省衢州市中考数学试题汇编(含参考答案与解析)1、2013年浙江省衢州市中考数学试题及参考答案与解析 (2)2、2014年浙江省衢州市中考数学试题及参考答案与解析 (25)3、2015年浙江省衢州市中考数学试题及参考答案与解析 (49)4、2016年浙江省衢州市中考数学试题及参考答案与解析 (72)5、2017年浙江省衢州市中考数学试题及参考答案与解析 (94)6、2018年浙江省衢州市中考数学试题及参考答案与解析 (115)7、2019年浙江省衢州市中考数学试题及参考答案与解析 (137)2013年浙江省衢州市中考数学试题及参考答案与解析一、选择题(本大题共有10小题,每小题3分,共30分.请选出各题中一个符合题意的选项,不选、多选、错选均不给分.)1.比1小2的数是()A.3 B.1 C.﹣1 D.﹣22.下列计算正确的是()A.3a+2b=5ab B.a﹣a4=a4C.a6÷a2=a3D.(﹣a3b)2=a6b23.衢州新闻网2月16日讯,2013年春节“黄金周”全市接待游客总数为833100人次.将数833100用科学记数法表示应为()A.0.833×106B.83.31×105C.8.331×105D.8.331×1044.下面简单几何体的左视图是()A.B.C.D.5.若函数2myx+=的图象在其所在的每一象限内,函数值y随自变量x的增大而增大,则m的取值范围是()A.m<﹣2 B.m<0 C.m>﹣2 D.m>06.将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A.3cm B.6cm C.D.7.一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖).那么被遮盖的两个数据依次是()A.80,2 B.80C.78,2 D.788.如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为()(结果精确到0.1m≈1.73).A .3.5mB .3.6mC .4.3mD .5.1m9.抛物线y=x 2+bx+c 的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为y=(x ﹣1)2﹣4,则b 、c 的值为( )A .b=2,c=﹣6B .b=2,c=0C .b=﹣6,c=8D .b=﹣6,c=210.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,沿A→D→C→B→A 的路径匀速移动,设P 点经过的路径长为x ,△APD 的面积是y ,则下列图象能大致反映y 与x 的函数关系的是( )A .B .C .D .二、填空题(本大题共有6小题,每小题4分,共24分.)11.不等式组2031x x x -⎧⎨+⎩≥>的解集是 .12.化简:224442x x xx x ++-=-- . 13.小芳同学有两根长度为4cm 、10cm 的木棒,她想钉一个三角形相框,桌上有五根木棒供她选择(如图所示),从中任选一根,能钉成三角形相框的概率是 .14.如图,将一块三角板和半圆形量角器按图中方式叠放,三角板一边与量角器的零刻度线所在直线重合,重叠部分的量角器弧()AB 对应的圆心角(∠AOB )为120°,OC 的长为2cm ,则三角板和量角器重叠部分的面积为 .15.某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一颗树,平均每棵树就会少结5个橘子.设果园增种x 棵橘子树,果园橘子总个数为y 个,则果园里增种 棵橘子树,橘子总个数最多.16.如图,在菱形ABCD 中,边长为10,∠A=60°.顺次连结菱形ABCD 各边中点,可得四边形A 1B 1C 1D 1;顺次连结四边形A 1B 1C 1D 1各边中点,可得四边形A 2B 2C 2D 2;顺次连结四边形A 2B 2C 2D 2各边中点,可得四边形A 3B 3C 3D 3;按此规律继续下去….则四边形A 2B 2C 2D 2的周长是 ;四边形A 2013B 2013C 2013D 2013的周长是 .三、简答题(本大题共有8小题,共66分.务必写出解答过程.)17.(6﹣23÷|﹣2|×(﹣7+5)18.(6分)如图所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形. (1)用a ,b ,x 表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.19.(6分)如图,函数y 1=﹣x+4的图象与函数22k y x=(x >0)的图象交于A (a ,1)、B (1,b )两点.(1)求函数y 2的表达式;(2)观察图象,比较当x >0时,y 1与y 2的大小.20.(8分)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,求AD:OC的值.21.(8分)据《2012年衢州市国民经济和社会发展统计公报》(2013年2月5日发布),衢州市固定资产投资的相关数据统计图如下:根据以上信息,解答下列问题:(1)求2012年的固定资产投资增长速度(年增长速度即年增长率);(2)求2005﹣2012年固定资产投资增长速度这组数据的中位数;(3)求2006年的固定资产投资金额,并补全条形图;(4)如果按照2012年的增长速度,请预测2013年衢州市的固定资产投资金额可达到多少亿元(精确到1亿元)?22.(10分)【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM 为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.23.(10分)“五•一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.(1)求a的值.(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?24.(12分)在平面直角坐标系x、y中,过原点O及点A(0,2)、C(6,0)作矩形OABC,∠AOC的平分线交AB于点D.点P从点O个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒2个单位长度的速度沿x轴正方向移动.设移动时间为t秒.(1)当点P移动到点D时,求出此时t的值;(2)当t为何值时,△PQB为直角三角形;(3)已知过O、P、Q三点的抛物线解析式为y=1t(x﹣t)2+t(t>0).问是否存在某一时刻t,将△PQB绕某点旋转180°后,三个对应顶点恰好都落在上述抛物线上?若存在,求出t的值;若不存在,请说明理由.参考答案与解析一、选择题(本大题共有10小题,每小题3分,共30分.请选出各题中一个符合题意的选项,不选、多选、错选均不给分.)1.比1小2的数是()A.3 B.1 C.﹣1 D.﹣2【知识考点】有理数的减法.【思路分析】根据有理数的减法运算法则进行计算即可得解.【解答过程】解:1﹣2=﹣1.故选C.【总结归纳】本题考查了有理数的减法,是基础题.2.下列计算正确的是()A.3a+2b=5ab B.a﹣a4=a4C.a6÷a2=a3D.(﹣a3b)2=a6b2【知识考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【思路分析】根据同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘;合并同类项,只把系数相加减,字母与字母的次数不变,对各选项分析判断后利用排除法求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学中考教学资料2019年编
2015年浙江省衢州市中考数学试卷
一、选择题(本题有10小题,每小题3分,共30分)
1.﹣3的相反数是()
A.3 B.﹣3 C.D.﹣
2.一个几何体零件如图所示,则它的俯视图是()
3.下列运算正确的是()
A.a3+a3=2a6B.(x2)3=x5C.2a6÷a3=2a2D.x3•x2=x5
4.如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于()
A.8cm B.6cm C.4cm D.2cm
5.某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,则这组数据的中位数是()
A.7 B.6C.5D.4
6.下列四个函数图象中,当x>0时,y随x的增大而减小的是()
7.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()
A.勾股定理
B.直径所对的圆心角是直角
C.勾股定理的逆定理
D.90°的圆周角所对的弦是直径
8.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()
A.6米B.6米C.3米D.3米
9.如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60cm长的绑绳EF,tanα=,则“人字梯”的顶端离地面的高度AD是()
A.144cm B.180cm C.240cm D.360cm
10.如图,已知△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E.若CD=5,CE=4,则⊙O的半径是()
A.3 B.4C.D.
二、填空题(本题有6小题,每小题4分,共24分)
11.(4分)(2015•衢州)从小明、小聪、小惠和小颖四人中随机选取1人参加学校组织的敬老活动,则小明被选中的概率是.
12.(4分)(2015•衢州)如图,小聪与小慧玩跷跷板,跷跷板支架高EF为0.6米,E是AB的中点,那么小聪能将小慧翘起的最大高度BC等于米.
13.(4分)(2015•衢州)写出一个解集为x>1的一元一次不等式:.
14.(4分)(2015•衢州)一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于m.
15.(4分)(2015•衢州)已知,正六边形ABCDEF在直角坐标系内的位置如图所示,A(﹣2,0),点B 在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过2015次翻转之后,点B的坐标是.
16.(4分)(2015•衢州)如图,已知直线y=﹣x+3分别交x轴、y轴于点A、B,P是抛物线y=﹣x2+2x+5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=﹣x+3于点Q,则当PQ=BQ时,a的值是.
三、解答题(本题有8小题,第17-19小题每小题6分,第20-21小题每小题6分,第22-23小题每小题6分,第24小题12分,共66分。

请务必写出解答过程)
17.(6分)(2015•衢州)计算:﹣|﹣2|+﹣4sin60°.
18.(6分)(2015•衢州)先化简,再求值:(x2﹣9)÷,其中x=﹣1.
19.(6分)(2015•衢州)如图,已知点A(a,3)是一次函数y1=x+b图象与反比例函数y2=图象的一个
交点.
(1)求一次函数的解析式;
(2)在y轴的右侧,当y1>y2时,直接写出x的取值范围.
20.(8分)(2015•衢州)某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:
(1)本次抽样调查的书籍有多少本?请补全条形统计图;
(2)求出图1中表示文学类书籍的扇形圆心角度数;
(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?
21.(8分)(2015•衢州)如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处.再将矩形ABCD沿CE折叠,此时顶点B恰好
落在DE上的点H处.如图2.
(1)求证:EG=CH;
(2)已知AF=,求AD和AB的长.
22.(10分)(2015•衢州)小明在课外学习时遇到这样一个问题:
定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.
求函数y=﹣x2+3x﹣2的“旋转函数”.
小明是这样思考的:由函数y=﹣x2+3x﹣2可知,a1=﹣1,b1=3,c1=﹣2,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能确定这个函数的“旋转函数”.
请参考小明的方法解决下面问题:
(1)写出函数y=﹣x2+3x﹣2的“旋转函数”;
(2)若函数y=﹣x2+mx﹣2与y=x2﹣2nx+n互为“旋转函数”,求(m+n)2015的值;
(3)已知函数y=﹣(x+1)(x﹣4)的图象与x轴交于点A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分布是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数y=﹣(x+1)(x﹣4)互为“旋转函数.”
23.(10分)(2015•衢州)高铁的开通,给衢州市民出行带来了极大的方便,“五一”期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘坐高铁从衢州出发,先到杭州火车站,然后再转车出租车取游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(千米)与乘车时间t(小时)的关系如图所示.
请结合图象解决下面问题:
(1)高铁的平均速度是每小时多少千米?
(2)当颖颖达到杭州火车东站时,乐乐距离游乐园还有多少千米?
(3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?
24.(12分)(2015•衢州)如图,在△ABC中,AB=5,AC=9,S△ABC=,动点P从A点出发,沿射线
AB方向以每秒5个单位的速度运动,动点Q从C点出发,以相同的速度在线段AC上由C向A运动,当Q点运动到A点时,P、Q两点同时停止运动,以PQ为边作正方形PQEF(P、Q、E、F按逆时针排序),以CQ为边在AC上方作正方形QCGH.
(1)求tanA的值;
(2)设点P运动时间为t,正方形PQEF的面积为S,请探究S是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;
(3)当t为何值时,正方形PQEF的某个顶点(Q点除外)落在正方形QCGH的边上,请直接写出t的值.。

相关文档
最新文档