2019年全国高中数学联赛重庆赛区预赛试题及参考答案

合集下载

2019年全国高中数学联赛试题及解答

2019年全国高中数学联赛试题及解答

全国高中数学联合竞赛试题(A 卷)一试一、填空题(本大题共8小题,每小题8分,共64分)1. 若正数,a b 满足()2362log 3log log a b a b +=+=+,则11a b+的值为________.答案:设连等式值为k ,则232,3,6k k ka b a b --==+=,可得答案108分析:对数式恒等变形问题,集训队讲义专门训练并重点强调过2. 设集合3|12b a b a ⎧⎫+≤≤≤⎨⎬⎩⎭中的最大元素与最小你别为,M m ,则M m -的值为______.答案:33251b a +≤+=,33b a a a+≥+≥,均能取到,故答案为5-分析:简单最值问题,与均值、对勾函数、放缩有关,集训队讲义上有类似题 3. 若函数()21f x x a x =+-在[0,)+∞上单调递增,则实数a 的取值范围是______.答案:零点分类讨论去绝对值,答案[]2,0-分析:含绝对值的函数单调性问题,集训队讲义专门训练并重点强调过4. 数列{}n a 满足12a =,()()*1221n n n a a n N n ++=∈+,则2014122013a a a a =+++______. 答案:()1221n n n aa n ++=+,迭乘得()121n n a n -=+,()212232421n n S n -=+⨯+⨯+++,乘以公比错位相减,得2n n S n =,故答案为20152013.分析:迭乘法求通项,等差等比乘积求前n 项和,集训队讲义专门训练并重点强调过5. 正四棱锥P ABCD -中,侧面是边长为1的正三角形,,M N 分别是边,AB BC 的中点,则异面直线MN与PC 之间的距离是________.答案:OB 为公垂线方向向量,故距离为12OB =分析:异面直线距离,也可以用向量法做,集训队讲义专门练并重点强调过6. 设椭圆Γ的两个焦点是12,F F ,过点1F 的直线与Γ交于点,P Q .若212PF F F =,且1134PF QF =,则椭圆Γ的短轴与长轴的比值为________.答案:不妨设焦点在x 轴(画图方便),设114,3PF QF ==,焦距为2c ,224a c =+,可得△2PQF 三边长为7,21,2c c +,过2F 作高,利用勾股可得5c =. 分析:椭圆中常规计算,与勾股定理、解三角形、斯特瓦尔特等有关,集训队讲义训练过相关7. 设等边三角形ABC 的内切圆半径为2,圆心为I .若点P 满足1PI =,则△APB 与△APC 的面积之比的最大值为________.答案:sin sin APB APC S PABS PAC ∠=∠,又两角和为60最大,即AP 与(),1I 切于对称轴右侧2分析:平面几何最值、面积、三角函数、轨迹8. 设,,,A B C D 是空间中四个不共面的点,以12的概率在每对点之间连一条边,任意两点之间是否连边是相互独立的,则,A B 之间可以用空间折线(一条边或者若干条边组成)连结的概率为_______. 答案:总连法64种,按由A 到B 最短路线的长度分类.长度为1,即AB 连其余随意,32种; 长度为2,即AB 不连,ACB 或ADB 连,其余随意,ACB 连8种,故共88214+-=种 (一定注意,ACB ADB 同时连被算了2次,根据CD 是否连有2种情形);长度为3,两种情形考虑ACDB ,ACDB 连、,,AB CB AD 均不连只有1种,故连法为2种;综上,答案483644=分析:组合计数,分类枚举,难度不大但容易算错,集训队讲义训练过类似题目二、解答题(本大题共3小题,共56分)9. (本题满分16分)平面直角坐标系xOy 中,P 是不在x 轴上的一个动点,满足条件:过P 可作抛物线24y x =的两条切线,两切点连线P l 与PO 垂直.设直线P l 与直线PO ,x 轴的交点分别为,Q R . (1)证明:R 是一个定点;(2)求PQQR的最小值.答案:(1)设(),P a b ,()()1122,,,A x y B x y ,0,0a b ≠≠,()11:2PA yy x x =+,()22:2PB yy x x =+ 故,A B 两点均适合方程()2by a x =+,利用垂直,可得2a =-,故交点为定点()2,0(2)∵2a =-,故,2PO PR b bk k =-=-,设OPR α∠=,则α为锐角,1tan PQ QR α=,利用两角差 的正切公式,可得282PQ b QR b+=≥. 分析:涉及圆锥曲线切点弦方程、两直线夹角公式、不等式求最值,集训队讲义专门训练并重点过10. (本题满分20分)数列{}n a 满足16a π=,()()*1arctan sec n n a a n N +=∈.求正整数m ,使得121sin sin sin 100m a a a ⋅⋅⋅=. 答案:由反函数值域,知,22n a ππ⎛⎫∈- ⎪⎝⎭,2222132tan sec tan 1tan 3n n n n a a a +-==+==,1212112122311tan tan tan tan tan tan tan sin sin sin sec sec sec tan tan tan tan m m m m m m a a a a a a a a a a a a a a a a a ++⋅⋅⋅=⋅=⋅==故3333m =分析:涉及简单反三角函数、数列通项公式求法,集训队讲义对类似题目进行过训练11. (本题满分20分)确定所有的复数α,使得对任意复数()121212,,1,z z z z z z <≠,均有()()221122z z z z αααα++≠++.答案:转换命题为计算存在12,z z 使得相等时的充要条件存在12,z z 使得相等,记()()2f z z z αα=++,()()()()()1212121220f z f z z z z z z z αα-=++-+-=, 则()()()1212122z z z z z z αα-=-++-,故12122222z z z z a ααα=++≥-->-, 故2α<; 若2α<,令12,22z i z i ααββ=-+=--,其中012αβ<<-,则12z z ≠,122i ααββ-±≤-+<,计算121212,2,2z z z z i z z i αββ+=--=-=-并代入,知()()12f z f z =.综上,满足条件的α为,2Z αα∈≥二试一、(本题满分40分)设实数,,a b c满足1a b c++=,0abc>.求证:14ab bc ca++<.a b c≥≥>,则1a≥1c≤.)ab bc ca c++-+⎭12c-,故有()()111122c c cc cc c⎛---≤-+-⎭⎝⎭由于1110,3333c-≥+≥>310c->,故原不等式成立.方法2:不妨设0a b c≥≥>,则13a≥c,设()()1f b ab bc ca ab c c=++=+-,()f b递增f⇔,()())()1f b ab a b a b⎛'=--=-⎝,()010f b'≥⇔≥⇔≤≥故()f b a;题目转化为21ac+=,a c≥,记()()222212g a a ac a a a=+-=+--()()262621g a a a⎫'=-+=-⎪⎭,由于13a≥1=,得1532a=,115,332a⎛⎫∈ ⎪⎝⎭时g'151,322⎫⎪⎝⎭时()g a在13或12max1124g g⎛⎫==⎪⎝⎭分析:一道偏函数化的不等式题,可以将其放缩为一元函数,也可以拿导数与调整法很快做出来,集训队讲义上两种方法都训练过.二、(本题满分40分)在锐角三角形ABC中,60BAC∠≠,过点,B C分别作三角形ABC的外接圆的切线,BD CE,且满足BD CE BC==.直线DE与,AB AC的延长线分别交于点,F G.设CF与BD交于点M,CE与BG交于点N.证明:AM AN=.答案:设△ABC三边为,,a b c,则BD CE a==,先计算AM,∵,BFD ABC BDF DBC BAC∠=∠∠=∠=∠,∴△BFD∽△CBA.由比例可知acDFb=,故BM BC bBDDF c==,故abBMb c=+,故由余弦定理知()2222cosab abAM c c A Bb c b c⎛⎫=+-⋅+⎪++⎝⎭222cosab abcc Cb c b c⎛⎫=++⎪++⎝⎭,整理可得此式关于,b c对称故可知22AM AN=分析:由于一旦,,a b c三边确定则图形固定,所以通过相似、比例、余弦定理计算的思路比较显然GF ED三、(本题满分50分)设{}1,2,3,,100S =.求最大的整数k ,使得S 有k 个互不相同的非空子集,具有性质:对这k 个子集中任意两个不同子集,若它们的交非空,则它们交集中的最小元素与这两个子集中的最大元素均不相同.答案:一方面,取包含1的、至少含2个元素的所有子集,共9921-个,显然满足题意; 另外归纳证对于{}1,2,3,,S n =,任取()123n n -≥个子集,均存在两个的交集中最小的等于某个中最大的当3n =时,将7个非空子集分为三类:{}{}{}31,32,3,{}{}21,2,{}{}11,2,3.任取四个必有两个同类. 假设n k =时命题成立,当1n k =+时,如果取出的2k 个子集中至少有12k -个不含1k +,利用归纳假设知成 立;如果不含1k +的不足12k -,则至少有121k -+个含有1k +,而S 含有1k +的子集共2k 个,可以配成12k - 对,使得每对中除了公共元素1k +外,其余恰为1到n 的互补子集,这样,如果选出121k -+个,则必有两 个除1k +外不交,故命题成立. 综上,k 的最大值为9921-.分析:集合中的组合最值问题,比较常规的一道题,类似感觉的题集训队讲义在组合中的归纳法中有过四、(本题满分50分)设整数122014,,,x x x 模2014互不同余,整数122014,,,y y y 模2014也互不同余.证明:可将122014,,,y y y 重新排列为122014,,,z z z ,使得112220142014,,,x z x z x z +++模4028互不同余.答案:不妨设()mod 2014i i x y i ≡≡,1,2,,2014i =.下面对i y 序列进行1007次调整从而构成i z 序列:若i i x y +与10071007i i x y +++模4028不同余,则1007,i i y y +不调整;否则,交换1007,i i y y +位置,1,2,,2014i =.下证,进行1007次调整后,得到的i z 序列一定满足条件. 任意挑选一列()1,2,,1007i i x z i +=,只需证其与10071007i i x z +++、()1,2,,1007,j j x z j j i +=≠、10071007j j x z +++模4028不同余即可由i z 构造方法,i i x z +与10071007i i x z +++不同余是显然的,因为不可能调整前后均同余,故只需看另两个; 首先,对于不同的,i j ,2i 与2j 模4028不同余,否则会导致()mod 2014i j ≡.若,i j y y 均未调整,则()2mod 2014i i x z i +≡,()100710072mod 2014j j j j x z x z j +++≡+≡,故成立;若,i j y y 均已调整,则()21007mod 2014i i x z i +≡+,()1007100721007mod 2014j j j j x z x z j +++≡+≡+,故成立; 若只有一个被调整过,不妨设i y 未调整、j y 已调整,则()2mod 2014i i x z i +≡, ()1007100721007mod 2014j j j j x z x z j +++≡+≡+,若()4028|21007i j --,则()1007|i j -,矛盾,故同样成立. 综上,构造的i z 序列满足条件.全国高中数学联赛试题及解答2014高中联赛试题分析从试题类型来看,今年代数、几何、数论、组合4部分所占的比例为:代数37.3%,几何26.7%,数论16.7%,组合19.3%.这方面和历年情况差不多,但具体的知识点差别极大.一试第7题填空题可谓出人意表,虽然解答是用三角函数的方法处理的,对比历年试题,这题毫无疑问也是顶替了三角函数的位置.但本题却是一道彻头彻尾的平面几何题.从图中不难看出,最值情况在相切时取到,剩下的只是利用三角函数处理了一下计算上的问题.其余填空题中,第1~6题和往年出题风格类似,第8题概率计算略显突兀,本题几乎不需要用到计数的技巧,而是用单纯枚举的方法即可解决.放在填空题最后一题的位置不免显得难度不够.一试三道解答题中,第9题和第10题均不太难,所考知识点也和往年类似,无需多说.第11题又再次爆了冷门,考了一道复数问题.联赛已经多年没有考复数的大题了,许多学生都没有准备.可以说,这次一下戳中了学生的罩门.相信本题最终的得分率不容乐观.而本次试题中最特殊的要数加试中的平面几何题了.一反从1997年开始保持到如今的惯例,没有将平面几何题放在加试的第一题.而且本题实则为《中等数学》2012年第12期中的数学奥利匹克高中训练题中的原题,这无疑又让此题失色不少.今年的加试第一题放了一道不等式问题,虽然近几年不等式考察得较少,但是不等式一直是数学竞赛中的热门,在历年联赛中多有出现.考虑到本题难度并不大,放在联赛加试第一题还是非常合适的.加试第三题组合最值问题的出题风格一如既往,可以从很极端的情况下猜出答案,再进行证明.值得全国高中数学联赛试题及解答一提的是本题题干描述有歧义,最后一句“则它们交集中的最小元素与这两个子集中的最大元素均不相同”中,记最小元素为a ,两个最大元素为b 和c .本句话中到底是指a 、b 、c 这3个数互不相同还是指a b ≠且a c ≠,无疑是容易让人误解的.希望今后联赛试题中能避免出现这种情况.加试第四题虽说考察的是数论中的同余知识,但更多考察的是构造法技巧,这也符合联赛加试中试题综合各方面知识的出题思想.从难度上来说本题难度不算太大,只要能从较小的数开始构造并寻找规律,找出2014的构造并不显得困难.但本题的出题背景无疑和以下题目相关:“n 为给定正整数,()122,,,n x x x 和()122,,,n y y y 均为1~2n 的一个排列,则112222,,,n n x y x y x y +++这2n 个数不可能模2n 互不同余.” 总的说来,本次联赛考察的知识点和往年比差别较大,但从试卷难度来说,和前两年是相当的.预计今年联赛的分数线可能比去年略低.。

2019年全国高中数学联赛试题及答案

2019年全国高中数学联赛试题及答案

说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一、(本题满分40分)如图,在锐角ABC D 中,M 是BC 边的中点.点P 在ABC D 内,使得AP 平分BAC .直线MP 与,ABP ACP D D 的外接圆分别相交于不同于点P 的两点,D E .证明:若DE MP =,则2BC BP =.证明:延长PM 到点F ,使得MF ME =.连接,,BF BD CE .由条件可知BDP BAPCEP CEM === = . ………………10分 因为BM CM =且EM FM =,所以BF CE =且//BF CE .于是F CEM = = ,进而BD BF =. ………………20分 又DE MP =,故DP EM FM ==.于是在等腰BDF D 中,由对称性得BP BM =.从而22BC BM BP ==. ………………40分二、(本题满分40分)设整数122019,,,a a a 满足122019199a a a =£££=.记22212201913243520172019()()f a a a a a a a a a a a =+++-++++.求f 的最小值0f .并确定使0f f =成立的数组122019(,,,)a a a 的个数. 解:由条件知2017222221220182019212()i i i f a a aaa a +==++++-å.①由于12,a a 及2(1,2,,2016)i i a a i +-=均为非负整数,故有221122,a a a a ³³,且222()(1,2,,2016)i i i i a a a a i ++-³-=.于是201620162221221222017201811()()i i i i i i a a a a a a a a a a ++==++-³++-=+åå.②………………10分参考答案及评分标准 2019年全国高中数学联合竞赛加试(A 卷)由①、②得2222017201820192017201820192()f a a a a a a ³++-++, 结合201999a =及201820170a a ³>,可知()22220172017201712(99)992f a a a ³+-++22017(49)74007400a =-+³.③………………20分另一方面,令1219201920211920220191,(1,2,,49),99k k a a a a a k k a +-+========, 此时验证知上述所有不等式均取到等号,从而f 的最小值07400f =.………………30分以下考虑③的取等条件.此时2017201849a a ==,且②中的不等式均取等,即121a a ==,2{0,1}(1,2,,2016)i i a a i +-Î=.因此122018149a a a =£££=,且对每个(149)k k ££122018,,,a a a 中至少有两项等于k .易验证知这也是③取等的充分条件对每个(149)k k ££,设122018,,,a a a 中等于k 1k n +,则k n 为正整数,且1249(1)(1)(1)2018n n n ++++++=124n n n +++=该方程的正整数解1249(,,,)n n n 的组数为1968,且每组解唯一对应一个使④取等的数组122019(,,,)a a a ,故使0f f =立的数组122019(,,,)a a a 有481968C 个.………………40分三、(本题满分50分)设m 为整数,2m ||³.整数数列12,,a a 满足:12,a a 不全为零,且对任意正整数n均有21n n n a a ma ++=-.证明:若存在整数,r s (2)r s >³使得1r s a a a ==,则r s m ||-³.证明:不妨设12,a a 互素(否则,若12(,)1a a d =>,则1a d 与2ad互素,并且用123,,,a a a d d d代替123,,,a a a ,条件与结论均不改变). 由数列递推关系知234(mod )a a a m || ººº.① 以下证明:对任意整数3n ³,有2212((3))(mod )n a a a n a m m º-+-.②………………10分事实上,当3n =时②显然成立.假设n k =时②成立(其中k 为某个大于2的整数),注意到①,有212(mod )k ma ma m -º,结合归纳假设知112122((3))k k k a a ma a a k a m ma +-=-º-+--2212((2))(mod )a a k a m º-+-,即1n k =+时②也成立.因此②对任意整数3n ³均成立. ………………20分注意,当12a a =时,②对2n =也成立.设整数,(2)r s r s >³,满足1r s a a a ==. 若12a a =,由②对2n ³均成立,可知2212212((3))((3))(mod )r s a a r a m a a a a s a m m -+-º=º-+-,即1212(3)(3)(mod )a r a a s a m ||+-º+-,即2()0(mod )r s a m ||-º.③若12a a ¹,则12r s a a a a ==¹,故3r s >³.此时由于②对3n ³均成立,故类似可知③仍成立. ………………30分我们证明2,a m 互素.事实上,假如2a 与m 存在一个公共素因子p ,则由①得p 为234,,,a a a 的公因子,而12,a a 互素,故p 1a ,这与1r s a a a ==矛盾.因此,由③得0(mod )r s m ||-º.又r s >,所以r s m ||-³.………………50分四、(本题满分50分)设V 是空间中2019个点构成的集合,其中任意四点不共面.某些点之间连有线段,记E 为这些线段构成的集合.试求最小的正整数n ,满足条件:若E 至少有n 个元素,则E 一定含有908个二元子集,其中每个二元子集中的两条线段有公共端点,且任意两个二元子集的交为空集.解:为了叙述方便,称一个图中的两条相邻的边构成一个“角”.先证明一个引理:设(,)G V E =是一个简单图,且G 是连通的,则G 含有||2E ⎡⎤⎢⎥⎣⎦个两两无公共边的角(这里[]a 表示实数a 的整数部分). 引理的证明:对E 的元素个数E 归纳证明.当0,1,2,3E =时,结论显然成立.下面假设4E ≥,并且结论在E 较小时均成立.只需证明,在G 中可以选取两条边,a b 构成一个角,在G 中删去,a b 这两条边后,剩下的图含有一个连通分支包含||2E -条边.对这个连通分支应用归纳假设即得结论成立.考虑G 中的最长路12:k P v v v ,其中21,,,k v v v 是互不相同的顶点.因为G 连通,故3k ≥.情形1:1deg()2v ≥.由于P 是最长路,1v 的邻点均在2,,k v v 中,设1i v v E ∈,其中3i k ≤≤.则121{,}i v v v v 是一个角,在E 中删去这两条边.若1v 处还有第三条边,则剩下的图是连通的;若1v 处仅有被删去的两条边,则1v 成为孤立点,其余顶点仍互相连通.总之在剩下的图中有一个连通分支含有2E -条边.情形2:1deg()1v =,2deg()2v =.则1223{,}v v v v 是一个角,在G 中删去这两条边后,12,v v 都成为孤立点,其余的点互相连通,因此有一个连通分支含有2E -条边.情形3:1deg()1v =,2deg()3v ≥,且2v 与4,,k v v 中某个点相邻.则1223{,}v v v v是一个角,在G 中删去这两条边后,1v 成为孤立点,其余点互相连通,因此有一个连通分支含有2E -条边.情形4:1deg()1v =,2deg()3v ≥,且2v 与某个13{,,,}k u v v v ∈/ 相邻.由于P 是最长路,故u 的邻点均在2,,k v v 之中.因122{,}v v v u 是一个角,在G 中删去这两条边,则1v 是孤立点.若u 处仅有边2uv ,则删去所述边后u 也是孤立点,而其余点互相连通.若u 处还有其他边i uv ,3i k ≤≤,则删去所述边后,除1v 外其余点互相连通.总之,剩下的图中有一个连通分支含有2E -条边.引理获证. ………………20分 回到原题,题中的V 和E 可看作一个图(,)G V E =.首先证明2795n ≥.设122019{,,,}V v v v = .在1261,,,v v v 中,首先两两连边,再删去其中15条边(例如1311216,,,v v v v v v ),共连了26115C 1815-=条边,则这61个点构成的图是连通图.再将剩余的2019611958-=个点配成979对,每对两点之间连一条边,则图G 中一共连了181********+=条线段.由上述构造可见,G 中的任何一个角必须使用1261,,,v v v 相连的边,因此至多有18159072⎡⎤⎢=⎥⎣⎦个两两无公共边的角.故满足要求的n 不小于2795. ………………30分另一方面,若2795E ≥,可任意删去若干条边,只考虑2795E =的情形.设G 有k 个连通分支,分别有1,,k m m 个点,及1,,k e e 条边.下面证明1,,k e e 中至多有979个奇数.反证法,假设1,,k e e 中有至少980个奇数,由于12795k e e ++= 是奇数,故1,,k e e 中至少有981个奇数,故981k ≥.不妨设12981,,,e e e 都是奇数,显然12981,,,2m m m ≥ .令9812k m m m =++≥ ,则有2C 1980)(i m i e i ≥≤≤,2981C m k e e ≥++ ,故98022112795C C imk i i i m e ===≤+∑∑. ① 利用组合数的凸性,即对3x y ≥≥,有222211C C C C x y x y +-+≤+,可知当1980,,,m m m 由980个2以及一个59构成时,980221C C imm i =+∑取得最大值.于是 98022225921C C C 980C 26912795imm i =≤=<++∑, 这与①矛盾.从而1,,k e e 中至多有979个奇数. ………………40分对每个连通分支应用引理,可知G 中含有N 个两两无公共边的角,其中1111979(2795979)908222kki i i i e N e ==⎛⎫⎡⎤=≥-=-= ⎪⎢⎥⎣⎦⎝⎭∑∑.综上,所求最小的n 是2795. ………………50分2019年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分. 1. 已知正实数a 满足8(9)a a a a =,则log (3)a a 的值为 .答案:916.解:由条件知189a a =,故9163a a ==,所以9log (3)16a a =.2. 若实数集合{1,2,3,}x 之和,则x 的值为 .答案:32-.解:假如0x ³,则最大、最小元素之差不超过max{3,}x ,而所有元素之和大于max{3,}x ,不符合条件.故0x <,即x 为最小元素.于是36x x -=+,解得32x =-.3. 平面直角坐标系中,e 是单位向量,向量a 满足2a e⋅=,且25a a te£+对任意实数t 成立,则a的取值范围是 .答案:.解:不妨设(1,0)e .由于2a e ⋅=,可设(2,)a s=,则对任意实数t ,有2245s a a te +=£+= 这等价于245s s +£,解得[1,4]s Î,即2[1,16]s Î.于是a=Î.4. 设,A B 为椭圆G 的长轴顶点,,E F 为G 的两个焦点,4,AB =2AF =P 为G 上一点,满足2PE PF ⋅=,则PEF D 的面积为 . 答案:1.解:不妨设平面直角坐标系中G 的标准方程为22221(0)x y a b a b +=>>.根据条件得24,2a AB a AF ====可知2,1a b ==,且EF ==由椭圆定义知24PE PF a +==,结合2PE PF ⋅=得()2222212PE PF PE PF PE PF EF +=+-⋅==,所以EPF 为直角,进而112PEF S PE PF D =⋅⋅=.5. 在1,2,3,,10 中随机选出一个数a ,在1,2,3,,10 ----中随机选出一个数b ,则2a b +被3整除的概率为 .答案:37100.解:数组(,)a b 共有210100=种等概率的选法.考虑其中使2a b +被3整除的选法数N .若a 被3整除,则b 也被3整除.此时,a b 各有3种选法,这样的(,)a b 有239=组.若a 不被3整除,则21(mod3)a º,从而1(mod3)b º-.此时a 有7种选法,b 有4种选法,这样的(,)a b 有7428´=组.因此92837N =+=.于是所求概率为37100.6. 对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值.若正数a 满足[0,][,2]2a a a M M =,则a 的值为 .答案:56p 或1312p .解:假如02a p<£,则由正弦函数图像性质得[0,][,2]0sin a a a M a M <=£,与条件不符.因此2a p >,此时[0,]1a M =,故[,2]12a a M =.于是存在非负整数k ,使得51322266k a a k p p p p +£<£+, ①且①中两处“£”至少有处取到等号.当0k =时,得56a p =或1326a p =.经检验,513,612a p p =均满足条件. 当1k ³时,由于13522266k k p p p p æö÷ç+<+÷ç÷çèø,故不存在满足①的a . 综上,a 的值为56p 或1312p .7. 如图,正方体ABCD EFGH -的一个截面经过顶点,A C 及棱EF 上一点K ,且将正方体分成体积比为3:1的两部分,则EKKF 的值为 .答案.解:记a 为截面所在平面.延长,AK BF 交于点P ,则P在a 上,故直线CP 是a 与平面BCGF 的交线.设CP 与FG 交于点L ,则四边形AKLC 为截面.因平面ABC 平行于平面KFL ,且,,AK BF CL 共点P ,故ABC KFL -为棱台.不妨设正方体棱长为1,则正方体体积为1,结合条件知棱台ABC KFL -的体积14V =.设PF h =,则1KF FL PF h AB BC PB h ===+.注意到,PB PF 分别是棱锥P ABC -与棱锥P KFL -的高,于是111466P ABC P KFL V V V AB BC PB KF FL PF --==-=⋅⋅-⋅⋅ 3221331(1)1616(1)h h h h h h æöæö++÷ç÷ç÷ç=+-=÷÷çç÷ç÷èø÷ç++èø. 化简得231h =,故h =1EK AE KF PF h ===. 8. 将6个数2,0,1,9,20,19按任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数为 .答案:498.解:将2,0,1,9,20,19的首位不为0的排列的全体记为A .易知55!600A =´=(这里及以下,X 表示有限集X 的元素个数). 将A 中2的后一项是0,且1的后一项是9的排列的全体记为B ;A 中2的后一项是0,但1的后一项不是9的排列的全体记为C ;A 中1的后一项是9,但2的后一项不是0的排列的全体记为D .易知4!B =,5!B C +=,44!B D +=´,即24,96,72B C D ===. 由B 中排列产生的每个8位数,恰对应B 中的224´=个排列(这样的排列中,20可与“2,0”互换,19可与“1,9”互换).类似地,由C 或D 中排列产生的每个8位数,恰对应C 或D 中的2个排列.因此满足条件的8位数的个数为\()42B C DA B C D +++3600184836498422B C DA =---=---=.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在ABC D 中,,,BC a CA b AB c ===.若b 是a 与c 的等比中项,且sin A 是sin()B A -与sin C 的等差中项,求cos B 的值.解:因b 是,a c 的等比中项,故存在0q >,满足2,b qa c q a ==. ①因sin A 是sin(),sin B A C -的等差中项,故2sin sin()sin sin()sin()2sin cos A B A C B A B A B A =-+=-++=.…………………4分结合正、余弦定理,得222sin cos sin 2a A b c a A b B bc+-===, 即2222b c a ac +-=. …………………8分αLD F B K将①代入并化简,可知24212q q q +-=,即421q q =+,所以212q =. …………………12分 进而2224222111cos 222c a b q q B ac q q +-+-====. …………………16分10. (本题满分20分) 在平面直角坐标系xOy 中,圆W 与抛物线2:4y x G =恰有一个公共点,且圆W 与x 轴相切于G 的焦点F .求圆W 的半径.解:易知G 的焦点F 的坐标为(1,0).设圆W 的半径为(0)r r >.由对称性,不妨设W 在x 轴上方与x 轴相切于F ,故W 的方程为222(1)()x y r r -+-=. ①将24y x =代入①并化简,得2221204y y ry æö÷ç÷-+-=ç÷÷çèø.显然0y >,故222221(4)12432y y r y y y æöæö÷+ç÷ç÷ç÷=-+=÷çç÷÷ç÷ç÷èøçèø. ② …………………5分根据条件,②恰有一个正数解y ,该y 值对应W 与G 的唯一公共点.考虑22(4)()(0)32y f y y y+=>的最小值.由平均值不等式知2244444333y y +=+++³,从而1()329f y y ³⋅=. 当且仅当243y =,即3y =时,()f y取到最小值9. ………………15分由②有解可知9r ³.又假如9r >,因()f y 随y 连续变化,且0y +及y +¥时()f y 均可任意大,故②在0,3æççççèø及3æö÷ç÷+¥ç÷ç÷çèø上均有解,与解的唯一性矛盾.综上,仅有9r =满足条件(此时1,33æ÷ç÷ç÷ç÷çèø是W 与G 的唯一公共点). …………………20分11. (本题满分20分)称一个复数数列{}n z 为“有趣的”,若11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=.求最大的常数C ,使得对一切有趣的数列{}n z 及任意正整数m ,均有12m z z z C +++³.解:考虑有趣的复数数列{}n z .归纳地可知*0()n z n N ¹Î.由条件得2*114210()n n n nz z n z z N ++æöæö÷÷çç÷÷++=Îçç÷÷ç÷÷çèøèø,解得*11()4N n n z n z +-=Î.因此1112n n n n z z z z ++===,故 *11111()22N n n n z z n --=⋅=Î.①…………………5分进而有*11111()22N n n n n n n n z z z z n z ++-+=⋅+==Î. ②记*12()N m m T z z z m =+++Î. 当*2()N m s s =Î时,利用②可得122122sm k k k T z z z z -=³+-+å21222k k k z z ¥-=>-+å212223k k ¥-==-=å.…………………10分 当*21()N m s s =+Î时,由①、②可知21212221211112322s k k s s k k s k s z z z ¥¥+---=+=+=<==+⋅åå, 故12212212s m k k s k T z z z z z -+=æö÷ç³+-+-÷ç÷çèøå212223k k k z z ¥-=>-+=å. 当1m =时,1113T z ==>.以上表明3C =满足要求. …………………15分另一方面,当*1221221111,,()22N k k k k z z z k ++--===Î时,易验证知{}n z 为有趣的数列.此时2112211lim lim ()ss k k s s k T z z z ++ ¥¥==++å134lim 11833ss k ¥=-=+=+⋅=, 这表明C不能大于3. 综上,所求的C为3. …………………20分。

2019年重庆市学考选考浙江省高中数学竞赛预赛试题与解答

2019年重庆市学考选考浙江省高中数学竞赛预赛试题与解答

2019年“中南传媒湖南新教材杯”重庆市高中数学竞赛 暨全国高中数学联赛(重庆赛区)预赛试题参考答案一、填空题(每小题8分,共64分)1.设A 为三元集合(三个不同实数组成的集合),集合{|,,}B x y x y A x y =+∈≠,若222{log 6,log 10,log 15}B =,则集合A =________. 答案:22{1,log 3,log 5}提示:设222{log ,log ,log }A a b c =,其中0.a b c <<<则6,10,15.ab bc ad ===解得2,3,5a b c ===,从而22{1,log 3,log 5}A =。

2.函数 的最小值为 ,最大值为 ,则________.答案:提示:设 ,则 且 ,∴ .,令, . 令 得 , , , ∴ , ,∴.3. ________. 答案:提示:.4.已知向量 , , 满足 ,且 ,若 为 , 的夹角,则 ________. 答案:提示:∵ ∴ ∴ ∵ ∴又∵ ∴ ∴.5.已知复数 , , 使得为纯虚数, , ,则 的最小值是________.1提示:设 ,则 ,由已知∴∴ ∴ ∴ 。

当12321,,(1)2z z i z i ===+时,最小值能取到。

6.已知正四面体可容纳10个半径为1的小球,则正四面体棱长的最小值为________. 答案:提示:当正四面体棱长最小时,设棱长为 ,此时,一、二、三层分别有1、3、6个小球, 且相邻小球两两相切,注意到重心分四面体的高为 ,所以正四面体的高, 得7. 设()f x 是定义在(0,)+∞上的单调函数,对任意0x >有4()f x x >-,4(())3f f x x+=,则(8)f = . 答案:72提示:由题意存在00x >使0()3f x =。

又因()f x 是(0,)+∞上的单调函数,这样的00x >是唯一的,再由004(())3f f x x +=得00044()3x f x x x=+=+解得04x =或01x =-(舍)。

2019年全国高中数学联赛A卷一试(含附加)参考答案与评分标准

2019年全国高中数学联赛A卷一试(含附加)参考答案与评分标准

为 0),则产生的不同的 8 位数的个数为

答案: 498 .
解:将 2, 0, 1, 9, 20, 19 的首位不为 0 的排列的全体记为 A .
一、填空题:本大题共 8 小题,每小题 8 分,满分 64 分.
1. 已知正实数 a 满足 aa = (9a)8a ,则 loga (3a) 的值为

答案: 9 . 16
1
解:由条件知 9a = a8 ,故 3a =
9a ⋅a
=
9
a 16
,所以 loga (3a)
=
9 16

2. 若实数集合{1, 2, 3, x} 的最大元素与最小元素之差等于该集合的所有元素
所以 EPF
为直角,进而 SDPEF
=
1⋅ 2
PE

PF
=1.
5. 在1, 2, 3, , 10 中随机选出一个数 a ,在-1, - 2, -3, , -10 中随机选出一
个数 b ,则 a2 + b 被 3 整除的概率为

答案:
37 100

解:数组 (a, b) 共有102 =100 种等概率的选法.
台.不妨设正方体棱长为 1,则正方体体积为 1,结合条件知棱台 ABC - KFL 的
体积V = 1 .
4
P

PF
=
h
,则
KF AB
=
FL BC
=
PF PB
=
h
h +1
.注意到
PB,
PF
E
H K
G L
分别是棱锥 P - ABC 与棱锥 P - KFL 的高,于是

2019年高中数学竞赛试题及答案及答案

2019年高中数学竞赛试题及答案及答案

高中数学竞赛试题及答案一、选择题(本大题共6小题,每小题6分,共36分.每小题各有四个选择支,仅有一个选择支正确.请把正确选择支号填在答题卡的相应位置.)1.集合{0,4,}A a =,4{1,}B a =,若{0,1,2,4,16}A B ⋃=,则a 的值为A .0B .1C .2D .2.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能... 是.①长方形;②正方形;③圆;④菱形. 其中正确的是 A .①② B .②③ C .③④ D .①④ 3.设0.50.320.5,log 0.4,cos3a b c π-===,则A .c b a <<B .c a b <<C .a b c <<D .b c a <<4. 平面上三条直线210,10,0x y x x ky -+=-=-=,如果这三条直线将平面划分为六部分,则实数k 的值为A . 1B . 2C . 0或2D . 0,1或2 5.函数()sin()f x A x ωϕ=+(其中0,||2A πϕ><)的图象如图所示,为了得到()cos 2g x x =的图像,则只要将()f x 的图像A .向右平移6π个单位长度 B .向右平移12π个单位长度 C .向左平移6π个单位长度 D .向左平移12π个单位长度6. 在棱长为1的正四面体1234A A A A 中,记12(,1,2,3,4,)i j i j a A A A A i j i j =⋅=≠,则i j a 不同取值的个数为A .6B .5C .3D .2二、填空题(本大题共6小题,每小题6分,共36分.请把答 案填在答题卡相应题的横线上.) 7.已知)1,(-=m a ,)2,1(-=b ,若)()(b a b a -⊥+,则m = .8.如图,执行右图的程序框图,输出的T= . 9. 已知奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 则不等式0)()1(<⋅-x f x 的解集为 .10.求值:=+250sin 3170cos 1 . 11.对任意实数y x ,,函数)(x f 都满足等式)(2)()(22y f x f y x f +=+,且0)1(≠f ,则(第5题图)(第8题图)3侧视图正视图2222=)2011(f .12.在坐标平面内,对任意非零实数m ,不在抛物线()()22132y mx m x m =++-+上但在直线1y x =-+ 上的点的坐标为 .答 题 卡一、选择题(本大题共6小题,每小题6分,共36分.)二、填空题(本大题共6小题,每小题6分,共36分.)7. 8. 9. 10. 11. 12.三、解答题(本大题共6小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤.) 13.(本小题满分12分)为预防(若疫苗有效已知在全体样本中随机抽取1个,抽到B 组的概率是0.375. (1)求x 的值;(2)现用分层抽样的方法在全部测试结果中抽取360个,问应在C 组中抽取多少个? (3)已知465≥y ,25≥z ,求该疫苗不能通过测试的概率.已知函数x x x f 2sin )12(cos 2)(2++=π.(1)求)(x f 的最小正周期及单调增区间; (2)若),0(,1)(παα∈=f ,求α的值. 15.(本题满分13分)如图,在直三棱柱111C B A ABC -中,21===AA BC AC ,︒=∠90ACB ,G F E ,,分别是AB AA AC ,,1的中点.(1)求证://11C B 平面EFG ; (2)求证:1AC FG ⊥;(3)求三棱锥EFG B -1的体积.ACBB 1A 1C 1FGE已知函数t t x x x f 32)(22+--=.当∈x ),[∞+t 时,记)(x f 的最小值为)(t q . (1)求)(t q 的表达式;(2)是否存在0<t ,使得)1()(tq t q =?若存在,求出t ;若不存在,请说明理由.已知圆22:228810M x y x y +---=和直线:90l x y +-=,点C 在圆M 上,过直线l 上一点A 作MAC ∆.(1)当点A 的横坐标为4且45=∠MAC 时,求直线AC 的方程; (2)求存在点C 使得45=∠MAC 成立的点A 的横坐标的取值范围.18.(本题满分14分)在区间D 上,若函数)(x g y =为增函数,而函数)(1x g xy =为减函数,则称函数)(x g y =为区间D 上的“弱增”函数.已知函数()1f x =-. (1)判断函数()f x 在区间(0,1]上是否为“弱增”函数,并说明理由; (2)设[)1212,0,,x x x x ∈+∞≠,证明21211()()2f x f x x x -<-; (3)当[]0,1x ∈时,不等式xax +≥-111恒成立,求实数a 的取值范围.参考答案一、选择题:C B A D D C二、填空题:7. 2± 8.29 9. ),2()1,0()2,(+∞--∞10.3 11.2201112. 31(,),(1,0),(3,4)22-- 三、解答题:13. (本题满分12分) 解:(1)因为在全体样本中随机抽取1个,抽到B 组的概率0.375,所以375.0200090=+x , ………………2分 即660x =. ………………3分(2)C 组样本个数为y +z =2000-(673+77+660+90)=500, ………………4分 现用分层抽样的方法在全部测试结果中抽取360个,则应在C 组中抽取个数为360500902000⨯=个. ………………7分 (3)设事件“疫苗不能通过测试”为事件M.由(2)知 500y z +=,且,y z N ∈,所以C 组的测试结果中疫苗有效与无效的可能的情况有: (465,35)、(466,34)、(467,33)、……(475,25)共11个. ……………… 9分 由于疫苗有效的概率小于90%时认为测试没有通过,所以疫苗不能通过测试时,必须有9.02000660673<++y, …………………10分即1800660673<++y , 解得467<y ,所以事件M 包含的基本事件有:(465,35)、(466,34)共2个. …………………11分所以112)(=M P , 故该疫苗不能通过测试的概率为211. …………………12分14. (本小题满分12分) 解:x x x f 2sin )62cos(1)(+++=π…………………1分x x x 2sin 6sin2sin 6cos 2cos 1+-+=ππx x 2sin 212cos 231++= ………………… 2分 1)32sin(++=πx . …………………4分(1))(x f 的最小正周期为ππ==22T ; …………………5分 又由]22,22[32πππππ+-∈+k k x , …………………6分得)](12,125[Z k k k x ∈+-∈ππππ, …………………7分 从而)(x f 的单调增区间为)](12,125[Z k k k ∈+-ππππ. …………………8分 (2)由11)32sin()(=++=πααf 得0)32sin(=+πα, …………………9分所以ππαk =+32,62ππα-=k )(Z k ∈. …………………10分又因为),0(πα∈,所以3πα=或65π. …………………12分15. (本题满分13分) 解:(1)因为E G 、分别是AC AB 、的中点,所以BC GE //;……1分 又BC C B //11,所以GE C B //11; …………2分又⊆GE 平面EFG ,⊄11C B 平面EFG ,所以//11C B 平面EFG . …………3分 (2)直三棱柱111C B A ABC -中,因为︒=∠90ACB ,所以⊥BC 平面C C AA 11; ……………4分 又BC GE //,所以⊥GE 平面C C AA 11,即1AC GE ⊥; ……………5分 又因为21==AA AC ,所以四边形11A ACC 是正方形,即11AC C A ⊥; ……………6分 又F E ,分别是1,AA AC 的中点,所以C A EF 1//,从而有1AC EF ⊥, ……………7分 由E GE EF =⋂,所以⊥1AC 平面EFG ,即1AC FG ⊥. ……………8分 (3)因为//11C B 平面EFG ,所以111EFC G EFG C EFG B V V V ---==. ……………10分由于⊥GE 平面C C AA 11,所以GE S V EFC EFC G ⋅=∆-1131,且121==BC GE .…………11分 又由于2321114111111=---=---=∆∆∆∆ECC FC A AEF A ACC EFC S S S S S 正方形,……………12分所以21123313111=⋅⋅=⋅=∆-GE S V EFC EFC G ,即211=-EFG B V . ……………13分16. (本题满分13分)解:(1)t t x x x f 32)(22+--=13)1(22-+--=t t x . ……………1分①当1≥t 时,)(x f 在∈x ),[∞+t 时为增函数,所以)(x f 在∈x ),[∞+t 时的最小值为t t f t q ==)()(;……………3分②当1<t 时,13)1()(2-+-==t t f t q ; ……………5分 综上所述,2(1)()31(1)t t q t t t t ≥⎧=⎨-+-<⎩. ……………6分ACBB 1A 1C 1FGE(2)由(1)知,当0<t 时,13)(2-+-=t t t q ,所以当0<t 时,131)1(2-+-=tt tq . ……………7分 由)1()(t q t q =得:1311322-+-=-+-tt t t , ……………8分即013334=-+-t t t , ……………9分 整理得0)13)(1(22=+--t t t , ……………11分解得:1±=t 或253±=t . ……………12分 又因为0<t ,所以1-=t .即存在1-=t ,使得)1()(tq t q =成立. ……………13分17. (本题满分14分)解:(1)圆M 的方程可化为:2217(2)(2)2x y -+-=,所以圆心M (2,2),半径r=2. ……1分由于点A 的横坐标为4,所以点A 的坐标为(4,5),即AM =……………2分 若直线AC 的斜率不存在,很显然直线AM 与AC 夹角不是45,不合题意,故直线AC 的斜率一定存在,可设AC 直线的斜率为k ,则AC 的直线方程为5(4)y k x -=-,即540kx y k -+-=. ……………3分由于45=∠MAC 所以M 到直线AC 的距离为226||22==AM d ,此时r d <,即这样的点C 存在. ……………4分2=,2=,解得15 5k k =-=或. ……………5分 所以所求直线AC 的方程为0255=-+y x 或0215=+-y x . ……………6分 (2)当r AM 2||=时,过点A 的圆M 的两条切线成直角,从而存在圆上的点C (切点)使得45=∠MAC . ……………7分设点A 的坐标为),(y x ,则有⎪⎩⎪⎨⎧=-+=⋅=-+-09172342)2()2(22y x y x , ……………8分解得⎩⎨⎧==63y x 或⎩⎨⎧==36y x . ……………9分记点)6,3(为P ,点)3,6(为Q ,显然当点A 在 线段PQ 上时,过A 的圆的两条切线成钝角,从而必存在圆上的一点C 使得45=∠MAC ;……当点A 在线段PQ 的延长线或反向延长线上时,过A 的圆的两条切线成锐角,从而必不存在圆上的点C 使得45=∠MAC , …………所以满足条件的点A 为线段PQ 上的点,即满足条件的点的横坐标取值范围是.……14分18.(本题满分14分) 解:(1)由()1f x =-可以看出,在区间(0,1]上,()f x 为增函数. ………………1分 又11()(1f x x x ===3分 显然)(1x f x在区间(0,1]∴ ()f x 在区间(0,1]为“弱增”函数. ………………4分(2)21()()f x f x -===.…6分[)1212,0,,x x x x ∈+∞≠,∴111≥+x ,112≥+x ,21121>+++x x ,即2>,………………8分21()()f x f x ∴-2112x x <-. ………………9分 (3)当0x =时,不等式xax +≥-111显然成立. ………………10分“当(]0,1x ∈时,不等式xax +≥-111恒成立”等价于“ 当(]0,1x ∈时,不等式)111(1xx a +-≤即)(1x f x a ≤恒成立” . ………………11分也就等价于:“ 当(]0,1x ∈时, min )](1[x f xa ≤成立” . ………………12分 由(1)知1()f x x 在区间(0,1]上为减函数, 所以有221)1()](1[min -==f x f x . ……………13分 ∴221-≤a ,即221-≤a 时,不等式xax +≥-111对[]0,1x ∈恒成立. ……………14分。

专题12导数与极限第一辑2022年高中数学联赛之历年真题分类汇编(2015-2021)

专题12导数与极限第一辑2022年高中数学联赛之历年真题分类汇编(2015-2021)

备战2022年高中数学联赛之历年真题分类汇编(2015-2021)专题12导数与极限第一辑1.【2021年福建预赛】若关于x 的不等式(x −2)e x <ax +1有且仅有三个不同的整数解,则整数a 的最小值为.【答案】3【解析】设f(x)=(x −2)e x , g(x)=ax +1.则f ′(x)=(x −1)e x ,x <1时,f ′(x)<0;x >1时,f ′(x)>0. 因此,f(x)在区间(−∞,1)上递减,在区间(1,+∞)上递增: 且x <2时,f(x)<0;x >2时,f(x)>0. 由此作出f(x)的草图如图所示.又g(x)的图像是过点(0,1)的直线,结合图像可知a >0.由于a >0时,f(0)=−2<g(0)=1;f(1)=−e <g(1)=a +1; f(2)=0<g(2)=2a +1,因此,0,1,2是不等式(x −2)e x <ax +1的三个整数解. 由于不等式(x −2)e x <ax +1有且仅有三个不同的整数解, 所以{f(−1)≥g(−1)f(3)≥g(3) ,即{−3e −1≥−a +1e 3≥3a +1,1+3e ≤a ≤e 3−13 .经检验,a=3符合要求,所以,符合条件的a 的最小值为3.2.【2019年贵州预赛】已知函数f(x)=(e x −e −x )⋅x 3,若m 满足f (log 2m )+f (log 0.5m )⩽2(e 2−1e).则实数m 的取值范围是 .【答案】[12,2]【解析】由f(x)=(e x −e −x )⋅x 3⇒f(−x)=f(x),且x ∈(0,+∞)时,f(x)是增函数.又由f(log2m)+f(log0,5m)≤2(e2−1e)⇒f(log2m)≤f(1).所以|log2m|≤1⇒−1≤log2m≤1⇒12≤m≤2.即m的取值范围是[12,2].3.【2018年广西预赛】若定义在R上的函数f(x)满足f′(x)−2f(x)−4>0,f(0)=−1,则不等式f(x)> e2x−2的解为___________.【答案】x>0【解析】构造函数g(x)=e−2x[f(x)+2],则g(0)=1.由g′(x)=e−2x[f′(x)−2f(x)−4]>0可知g(x)在(−∞,+∞)内单调递增,从而有g(x)>1⇔x>0.故f(x)>e2x−2⇔x>0.4.【2018年甘肃预赛】已知函数f(x)=x3+sinx(x∈R),函数g(x)满足g(x)+g(2−x)=0(x∈R),若函数ℎ(x)=f(x−1)−g(x)恰有2019个零点,则所有这些零点之和为______.【答案】2019【解析】易知函数f(x)=x3+sinx为奇函数,从而f(x−1)的图象关于(1,0)点对称.函数g(x)+g(2−x)=0,可知g(x)的图象也关于(1,0)点对称.由此ℎ(x)的图象关于(1,0)点对称,从而这2019个零点关于点(1,0)对称,由于ℎ(1)=f(0)−g(1)=0⇒x=1是ℎ(x)的一个零点,其余2018个零点首尾结合,两两关于(1,0)点对称,和为2018,故所有这些零点之和为2019.5.【2018年四川预赛】设直线y=kx+b与曲线y=x3−x有三个不同的交点A、B、C,且|AB|=|BC|=2,则k的值为______.【答案】1【解析】曲线关于点(0,0)对称,且|AB|=|BC|=2,所以直线y=kx+b必过原点,从而b=0.设A(x,y),则{y=kx, y=x3−x,√x2+y2=2.由此得x=√k+1,y=k√k+1,代入得(k+1)+k2(k+1)=4,即(k−1)(k2+2k+3)=0,解得k=1.故答案为:16.【2017年广西预赛】设函数f (x )在R 上存在导数f ′(x ),对任意的x ∈R 有f (x )+f (−x )=x 2,在(0,+∞)上f ′(x )>x .若f (1+a )−f (1−a )≥2a ,则实数a 的范围是 .【答案】a ≥0【解析】提示:由题意得f ′(x )>x ,构造函数g (x )=f (x )−12x 2,则g ′(x )=f ′(x )−x >0.从而g (x )在(0,+∞)上单调递增. 由条件f (x )+f (−x )=x 2得g (x )+g (−x )=0,则g (x )是奇函数.因为g (x )在R 上单调递增,由f (1+a )−f (1−a )≥2a 知g (1+a )−g (1−a )≥0,g (1+a )≥g (1−a ), 所以1+a ≥1−a 解得a ≥0.7.【2017年湖南预赛】设函数f (x )是定义在(−∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2017)2f (x +2017)−f (−1)>0的解集为 .【答案】(−∞,−2018)【解析】提示:将不等式(x +2017)2f (x +2017)−f (−1)>0 化为(x +2017)2f (x +2017)>(−1)2f (−1),①构造F (x )=x 2f (x ),使得①式化为F (x +2017)>F (−1),② 因为F ′(x )=2xf (x )+x 2f ′(x ),由已知条件2f (x )+xf ′(x )>x 2, 两边同乘以x ,可得F ′(x )=2xf (x )+x 2f ′(x )<x 3<0(因x ∈(−∞,0)). 所以,F (x )在(−∞,0)上是减函数,不等式②化为x +2017<−1,即x <−2018, 所以,不等式的解集为(−∞,−2018).8.【2016年福建预赛】函数f (x ) =x 2lnx +x 2-2零点的个数为________. 【答案】1 【解析】由条件知f ′(x)=2x ln x +x +2x =x(2lnx +3). 当0<x <e −32时,f ′(x)<0; 当x >e −32时,f ′(x)>0.于是,f (x )在区间(0,−32)上为减函数,在区间(−32,+∞)上为增函数.又0<x <e −32时,lnx +1<−32+1=−12<0f (x )=x 2(lnx +1)-2<0,注意到,f(e −32)=e −3(−32+1)−2<0,f(e)=2e 2−2>0 故函数f (x )零点的个数为1.9.【2015年山东预赛】设a >1.若关于x 的方程a x =x 无实根,则实数a 的取值范围是______. 【答案】a >e 1e【解析】由函数y =a x 与y =x 的图像,知若a >1,且a x =x 无实根,则a x >x 恒成立, 设f (x )=a x −x .则:f′(x )=a x (lna )−1>0⇒x >−log a (lna ).故f (x )=a x −x 在区间(−∞,−log a (lna ))上递减,在区间(−log a (lna ),+∞)上递增. 从而, f (x )在x =−log a (lna )时取得最小值,即:f (x )min =f(−log a (lna ))=a −log a (ln a )−(−log a (lna ))>0, ⇒1lna −(−log a (lna ))>0.又1lna =log a e,−log a (lna )=log a 1lna , ⇒log a e >log a1lna⇒lna >1e⇒a >e 1e .10.【2015年福建预赛】函数f (x )=e x (x −ae x )恰有两个极值点x 1,x 2(x 1<x 2),则a 的取值范围是__________. 【答案】(0,12) 【解析】∵函数f (x )=e x (x −ae x ),∴f′(x )=(x +1−2a ⋅e x )e x ,由于函数f (x )两个极值点为x 1,x 2,即x 1,x 2是方程f′(x )=0的两个不等实数根,即方程x +1−2ae x =0,且a ≠0,∴x+12a=e x ;设y 1=x+12a(a ≠0),y 2=e x ,在同一坐标系内画出两个函数图象,如图所示,要使这两个函数有2个不同的交点,应满足{12a >01 2a >1,解得0<a<12,所以a的取值范围为(0,12),故选A.【方法点睛】本题主要考查函数的极值、函数与方程以及数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决选择题、填空题是发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将已知函数的性质研究透,这样才能快速找准突破点. 充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解11.【2018年湖南预赛】函数f(x)=ln(x2+1)的图像大致是()【答案】A【解析】由于函数为偶函数又过(0,0)所以直接选A.【考点定位】对图像的考查其实是对性质的考查,注意函数的特征即可,属于简单题.12.【2018年湖南预赛】设函数f(x)是R上的奇函数,当x>0时,f(x)=e x+x−3,则f(x)的零点个数是A.1 B.2 C.3 D.4【答案】C【解析】∵函数f(x)是定义域为R的奇函数,∴f(0)=0,所以0是函数f(x)的一个零点;当x>0时,令f(x)=e x+x-3=0,则e x=-x+3,分别画出函数y=e x,和y=-x+3的图象,如图所示,有一个交点,所以函数f (x )有一个零点,又根据对称性知,当x <0时函数f (x )也有一个零点.综上所述,f (x )的零点个数为3个, 故选:C .13.【2017年四川预赛】已知函数f (x )=a ln x +x 2在x =1处有极值,则实数a 的值是()(A)−2(B)−1(C)1(D)2【答案】A【解析】提示:因为f ′(x )=ax+2x =a+2x 2x由条件知f ′(1)=0,解得a =−2.14.【2016年陕西预赛】设函数f (x )=x 3+ax 2+6x +c (a 、b 、c 均为非零整数).若f (a )=a 3,f (b )=b 3,则c 的值为(). A .-16 B .-4 C .4 D .16 【答案】D 【解析】设g (x )=f (x )-x 3=ax 2+bx +c . 由f (a )=a 3,f (b )=b 3⇒g (a )=g (b )=0.则a 、b 为方程g (x )=0的两个根⇒a +b =−ba,ab =ca⇒c =−a 4a+1=−(a 2+1)(a −1)−1a+1.因为c 为整数,所以,a +1=±1⇒a =0(舍去)或-2. 故c =16. 选D.15.【2015年黑龙江预赛】设0(sin cos )k x x dx π=-⎰,若8280128(1)kx a a x a x a x -=++++,则128a a a +++=()A.-1B.0C.1D.256 【答案】B 【解析】试题分析:000(sin cos )sin cos cos sin 2k x x dx xdx xdx x x πππππ=-=-=--=⎰⎰⎰,所以88280128(1)(12)kx x a a x a x a x -=-=++++,令1x =得80128(12)1a a a a ++++=-=,,令0x =得01a =,所以12801280()110a a a a a a a a +++=++++-=-=,故选B.考点:1.积分运算;2.二项式定理.16.【2015年黑龙江预赛】设函数f (x )=sin 5x +1.则∫f (x )π2−π2dx 值为()。

2019年全国高中数学联合竞赛A卷试题(含答案)

2019年全国高中数学联合竞赛A卷试题(含答案)

一、填空题:本大题共 8小題,每小题8分,满分64分。

1•已知正实数a满足a a=(9a)8a,则log a(3a)的值为__________2•若实数集合{1,2,3,x}的最大元素与最小元素之差等于该集合的所有元素之和,则X的值为一、(本题满分40分)如图,在锐角厶 ABC中,M是BC边的中点。

点 P在厶ABC内,使得AP 平分∠ BAC直线MP与厶ABR A ACP的外接圆分别相交于不同于点P的两点D,E证明:若DE=MP贝U BC=2BP—、(本题满分40分)设整数aι,a2…,a20i9,满足 1= aι ≤ a2≤ …≤ a20i9=99 记 f=(a^+a^+ …+a20192)-(a1a3+a2a4+a3a5+…+a2017a2019).求f的最小值f0∙并确定使f=f0成立的数组佝,a2,∙∙∙ ,a2019)的个数三、(本題满分50分)设m为整数,≥2.整数数列a1,a2,…满足:a1,a2不全为零,且对任意正整数n,均有a n+2=a∏+1-ma∏.证明:若存在整效r,s(r>s≥ 2)使得a r=a s,=a1,则r-s≥.四、(本题满分50分)设V是空间中2019个点构成的集合,其中任意四点不共面。

某些点之间连有线段,记 E为这些线段构成的集合。

试求最小的正整数n,满足条件:若 E至少有n个元素,则E一定含有908个二元子集,其中每个二元子集中的两条线段有公共端点,且任意两个二元子集的交为空集2019年全国高中数学联合竞赛一试(A卷》参考答案及评分标准1.评阅试雜时.请依据本评分标准•填空屋只设*分和O分两档,其他各般的评闽.请严格按照本即分标准的评分档次給分P不得堆加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步•正甌在评卷时可參考本评分标准适当划分档次评分.解答题中第9小AU分为一个档次■第Kh H小题$分为一个档次,不得増加其他中间档次.一、填空题;本大题共8小込每小题8分.满分64分.I.己知正实数“满足= __________ 则IOM3①的們为・W: Ih 条件l3S59^ —.故5α = >fi)a ∙ a = a tfl•所W IogJ 3d)=—・2.___________________ 若实数集合}I.2J.Λ∣的处大兀索勺用小元索Z密⅛于该集合的所付元盘之和,则T的值为___ ・解:1K⅛χ>0.则凰大•凰小元衣Z羌不超过max{3∕∙而所有元董之和大:Inax{3,x∣.不符合条件.故*V0■即N为最小元索.3-x=6÷x.解3.____________________________________ 平而"J坐折系4 ;足唯位向氐向越満足二;=2・叫可≤平皿对任童实血成立.则Pl的取值范用足 -答案:∣√5.2√5∣.M:不妨JQe = (U))-由Fa e= 2.耐设Cf=(2.$) •姻对任意实数f∙仃这笞价T4+?<5|J|.解得μ∣∈[U4]> 即√∈[U6].于是Pl = √4+7 ∈ [√5.2金]•4.R为椭関I、的长轴顶点,F,F为】5勺两个焦点.I^I = 4. ∣.4Γ∣ = 2÷√3, P为1•上■点•满处∣PE∣∙∣M∣ = 2・则△/":/的曲枳为___________________ .答案,I.解:不妨设平面I•询坐标系屮「的标准方程为4+4=∣(Λ>A>0).(T Λ*根据条件ft∣2fl =∣.IΛ∣≡i 4. a±Ja z—Λ2⅛ ∣JΛ∣ = 2÷>A. ∏IS∣Λ = 2.ft = I ,H. ∣f∕∣=2√α∙-A2=2j3.由椭阴定义知IM|十IMl =加=4 •结仟|P£|・∖PF∖ "紂|?£f 十IPFI l= (∣∕1f∣+∣PFO i-2∣ff∣∙∣PΓ∣ = l2 = ∣^ .所以厶EPF为Il«1.进而E Vt F = 1∙∣∕^∣∙∣PΛ∙∣= I.5.的.2.3.…』)中碗机选岀一个数S崔-L-2-3∙∙∙∙.-10中勃机选岀一个豺∙Uh "心;整除的槪率为_________________ ・**∙ Ioo eM:数组(""JHilO j = IOO忡導悅帑的选法・考虑真中便a2÷∕>½ 3廉除的迭法数N•若“帔3協除.则b也被3整除・此时“上各冇3种选法•这祥的(Gb)冇护=9组.若口平被 3 醱除∙K∙∣√≡l(m□d3).从iΛjft≡ Km(Xl3).此时αU 7 选法./>有4种选法•这样(Kj(tf,Λ)^7x4≡28fa.37因此* = 9十28=≡37∙ F是所求概率为二.1006.对任盘闭(XfIiH・fl] M l /<示函数」∙ = Mir在/上的Q大(t'[.若IE数α满足Λ∕lυ βl= 2Λ∕lιf jβl・则“ W l fft 为__ .VJkt 或F jr•6 12M:假如OVd∙≤专・则曲Il:效園数图像性质得OVMlM = SinmSMχa∣∙与条件不符.因此«>y・此时MMd=丨,故M b.纽=!,F是存在菲负烙数R・使紂2Λπ÷-s<α<2(∕ <2AΛ⅛-π•①6 6且①中两处"≤ w至少有一处取到零号.”*=0时•得“=丄J T或加=匕注・经检脸・a=^π.-π均満足糸件・6 6 6 12-1U >1 时.fllT∙2A∙7Γ-t-^r<2∣2jt7r + ~r∣ ・故不存在満足①的“.综上.“的值为丄兀或匕帀・6 127.如图.正方体ABC D-EFCH一个截而纾过顶点A9C及投EF上一点K∙ O IE方体分成体枳比为3:1的两都分,则黑的值为_________________________ ・Ar答第√3.脈记料为蔽面所6:Tm.延—不交•「点尸•则P在α上•故直线CPα与他BMF的交练设CP与甩?交于点J割四边形AKLC为裁面•因平而.4 眈平IT TT而K"∙ H AK9 Bl∖ CL点尸∙^ABC-KI-L 7^0.不舫设正方体梭长为l ∙则正方体休枳为l ∙讎合条件^^ABC-KFLtfJ 休积y=}∙4 r紗—烷=鈴唱=倉臓到Ps分别足棱钳Γ - IfiC 1I 稜推P-KFL 的高•『址化简得3∕, = l ∙故Λ=ψ•从而^Γ=⅛ = 7=√3.√3 A? PK hR 将6个救2.0J9,20,19按任磁次序排成行■拼成个8位效睛位不 为0人则产生的不同的8位数的个数为 ______________________________________ •答案:498.解:将2,0∙ L9. 20, 19¾ιv f G (4<为()的捋列的全体记为儿 ⅛>liM≡5x5∙=6CO 〈这里及以下.M 表示有限集X β⅛元索个数〉・V2的肓一项是0∙ HJ 的后一项建9的排列的全体记为5: A 屮2的后 一顼是0∙但I 的后一项不是9的It 列的全体记为r : A 中I 的后一项是9∙但2 的后一项不是0的排列的全体记为D •⅛to∣β∣ = 4?. ∣β∣÷(c∣=5!. ∣Λ∣+∣D∣ =4×4!> β∏∣B∣= 24, ∣C∣ = 96t ∣D∣= 72 ・由P 中排列产生的毎个8{⅛βl,恰对应〃中的2x2=4个禅列(这样的排列 中.20可与-IO M 互换.!9可I J M L9 H 互换)•类似地.由「或D 中推列产 生的每个8位数•恰对应(7或。

专题06基本初等函数二(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021)

专题06基本初等函数二(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021)

备战2022年高中数学联赛之历年真题分类汇编(2015-2021)专题06基本初等函数第二缉1.【2019年重庆预赛】函数f (x )=(√1+x +√1−x −3)(√1−x 2+1)的最小值为m ,最大值为M ,则M m=________.【答案】3−√22【解析】设t =√1+x +√1−x ,则t ≥0且t 2=2+2√1−x 2,∴t ∈[√2,2]. f (x )=(t −3)·t 22,令g (t )=12t 2(t −3),t ∈[√2,2].令g ′(t )=0得t =2,g(√2)=√2−3,g (2)=−2, ∴M =g (t )max =√2−3,m =g (t )min =−2,∴Mm =3−√22.2.【2019年重庆预赛】设f(x)是定义在(0,+∞)上的单调函数,对任意x >0有f(x)>−4x ,f(f(x)+4x )=3,则f(8)=. 【答案】72【解析】由题意存在x 0>0使f(x 0)=3。

又因f(x)是(0,+∞)上的单调函数,这样的x 0>0是唯一的,再由f(f(x 0)+4x 0)=3得x 0=f(x 0)+4x 0=3+4x 0解得x 0=4或x 0=−1(舍)。

所以f(x)=4−4x,f(8)=4−48=72。

3.【2019年北京预赛】函数f (x )满足f (1)=1,且f (n )=f (n −1)+1n (n−1),其中n ≥2,n ∈N +,那么f (2019)=. 【答案】40372019.【解析】因为f(n)−f(n −1)=1n(n−1)=1n−1−1n ,所以 f(2)−f(1)=1−12, f(3)−f(2)=12−13,f(4)−f(3)=13−14,⋯⋯f(2018)−f(2017)=12017−12018,f(2019)−f(2018)=12018−12019,将以上各式等号两边分别相加得f(2019)−f(1)=1−12019,进而有 f(2019)=2−12019=120182019.4.【2019年福建预赛】函数f(x)=√2x −x 2+x 的值域为 .【答案】[0,√2+1]【解析】解法一:f(x)=√1−(x −1)2+x .设x −1=sinα (−π2≤α≤π2),则f(x)=cosα+(1+sinα)=√2sin (α+π4)+1.由−π2≤α≤π2,得−π4≤α+π4≤3π4, −√22≤sin (α+π4)≤1.∴f (x )值域为[0,√2+1]. 解法二:f ′(x)=√2+1=√21 (0<x <2).∵ 0<x <1+√22时,f ′(x)>0;1+√22<x <2时,f ′(x)<0.∴f (x )在区间[0,1+√22]上为增函数,在区间[1+√22,2]上为减函数. ∴f (x )值域为[0,√2+1].5.【2019年福建预赛】已知f(x)=x 3+ax 2+bx +2的图象关于点(2,0)对称,则f (1)=.【答案】4【解析】解法一:由f (x )的图象关于点(2,0)对称,知:f(x +2)=(x +2)3+a(x +2)2+b(x +2)+2=x 3+(a +6)x 2+(b +4a +12)x +4a +2b +10为奇函数.∴{a +6=04a +2b +10=0,{a =−6b =7∴ f(1)=1+a +b +2=1−6+7+2=4. 解法二:由f (x )的图象关于点(2,0)对称,知 对任意x ∈R ,f (2+x )+f (2-x )=0于是,对任意x ∈R ,(2+x)3+a(2+x)2+b(2+x)+2+(2−x)3+a(2−x)2+b(2−x)+2=0. 即(2a +12)x 2+(8a +2b +20)=0恒成立. ∴{2a +12=08a +4b +20=0,{a =−6b =7.∴ f(1)=1+a +b +2=1−6+7+2=4.解法三:依题意,有f (x )=(x -2)3+m (x -2). 利用f (0)=-8-2m =2,得m =-5.于是,f (x )=(x -2)3-5(x -2),f (1)=-1-(-5)=4.6.【2019年福建预赛】已知f(x)=x 5−10x 3+ax 2+bx +c ,若方程f (x )=0的根均为实数,m 为这5个实根中最大的根,则m 的最大值为 .【答案】4【解析】设f (x )=0的5个实根为x 1≤x 2≤x 3≤x 4≤m ,则由韦达定理,得m +x 1+x 2+x 3+x 4=0. m (x 1+x 2+x 3+x 4)+(x 1x 2+x 1x 3+x 1x 4+x 2x 3+x 2x 4+x 3x 4)=−10. 于是,x 1x 2+x 1x 3+x 1x 4+x 2x 3+x 2x 4+x 3x 4=−10+m 2.∴ x 12+x 22+x 32+x 42=(x 1+x 2+x 3+x 4)2−2(x 1x 2+x 1x 3+x 1x 4+x 2x 3+x 2x 4+x 3x 4)=m 2−2(−10+m 2)=20−m 2.另一方面,由柯西不等式,知(x 1+x 2+x 3+x 4)2≤4(x 12+x 22+x 32+x 42)于是,m 2≤4(20−m 2),m 2≤16,m ≤4.又对f(x)=(x −4)(x +1)4=x 5−10x 3−20x 2−15x −4,方程f (x )=0的根均为实数,且5个实根中最大的根m =4. ∴m 的最大值为4.7.【2019年广西预赛】已知xyz +y +z =12,则log 4x +log 2y +log 2z 的最大值为 .【答案】3【解析】log 4x +log 2y +log 2z =log 2x 2+log 2y +log 2z =log 2(xyz⋅y⋅z)2⩽log 2(xyz+y+z 3)32=3.当xyz=y=z=4取到等号.8.【2019年贵州预赛】已知方程x 5−x 2+5=0的五个根分别为x 1,x 2,x 3,x 4,x 5,f(x)=x 2+1.则∏s i=1f (x i )=.【答案】37【解析】设g(x)=x 5−x 2+5,则g(x)=∏(x −x k )5k=1,又f(x)=x 2+1=(x-i)(x+i),所以∏5i=1f (x k )=∏(x k −i )5i=1⋅∏(x k +i )5i=1=g(i)⋅g(−i)=(i 5−i 2+5)⋅[(−i)5−(−i)2+5]=(6+i)(6−i)=37.9.【2019年吉林预赛】已知函数f(x)=-x 2+x+m+2,若关于x 的不等式f(x)≥|x|的解集中有且仅有1个整数,则实数m 的取值范围为.【答案】[-2,-1)【解析】f(x)≥|x|⇔2−|x|≥x 2−x −m . 令g(x)=2−|x|,h(x)=x 2−x −m . 在同一直角坐标系内作出两个函数的图象, 由图象可知,整数解为x=0,故{f(0)≥0−0−m f(1)<1−1−m.解得−2≤m <−1.10.【2019年吉林预赛】已知函数f(x)=a +x −b x 的零点x 0∈(n,n +1)(n ∈Z),其中常数a 、b 满足条件2019a =2020, 2020b =2019,则n 的值为 .【答案】-1【解析】因为2019°=2020,2020b =2019,所以1<a<2,0<b<1,故函数f(x)在R 上为増函数,又f(0)=a −1>0, f(−1)=a −1−1b <a −1−1<0,故由零点定理可知,函数f(x)在区间(1,0)有唯ー的零点,则n 的值是-1. 11.【2019高中数学联赛A 卷(第01试)】已知正实数a 满足a a =(9a)8a ,则log a (3a)的值为.【答案】916【解析】由条件知9a =a 18,故3a =√9a ⋅a =a 916,所以log a (3a)=916.12.【2018年山西预赛】函数y =√1−x 22+x的值域为________.【答案】[0,√33] 【解析】由条件知x ∈[−1,1]. 令x =cosα(α∈[0,π]).则 y =sinα2+cosα(y ≥0),⇒2y =sinα−ycosα=√1+y 2sin (α+θ)≤√1+y 2, ⇒1+y 2≥4y 2⇒y 2≤13, 因为y ≥0,所以,y ∈[0,√33]. 13.【2018年福建预赛】函数f(x)=[log 3(13√x)]⋅[log √3(3x 2)]的最小值为________. 【答案】−258【解析】设log 3x =t ,则log 3(13√x)=−1+12t ,log √3(3x 2)=32log √3=2(1+2t).∴f(x)=g(t)=(−1+12t)⋅2(1+2t)=2t 2−3t −2=2(t −34)2−258.∴当t =34,log 3x =34,x =334时,f (x )取最小值−258.14.【2018年福建预赛】若函数f (x )=x 2-2ax +a 2-4在区间[a -2,a 2](a >0)上的值域为[-4,0],则实数a 的取值范围为________. 【答案】[1,2] 【解析】∵f (x )=x 2-2ax +a 2-4=(x -a )2-4,f (a )=-4,f (a -2)=0,f (x )在区间[a -2,a 2]上的值域为[-4,0],f (x )的图像为开口向上的拋物线.∴{a −2≤a ≤a 2a ≥a−2+a 22 ,解得-1≤a ≤0或1≤a ≤2.结合a >0,得1≤a ≤2. ∴a 的取值范围为[1,2].15.【2018年江苏预赛】设g(n)=∑(k,n)nk=1,期中n ∈N *,(k,n)表示k 与n 的最大公约数,则g(100)的值为________. 【答案】520 【解析】如果(m,n)=1,则g(mn)=g(m)g(n),所以g(100)=g(4)g(25). 又g(4)=1+2+1+4=8.g(25)=5×4+25+(25−5)=65, 所以g(100)=8×65=520. 故答案为:52016.【2018年贵州预赛】牛得亨先生、他的妹妹、他的儿子,还有他的女儿都是网球选手,这四人中有以下情况:①最佳选手的孪生同胞与最差选手性别不同;②最佳选手与最差选手年龄相同.则这四人中最佳选手是_______.【答案】牛得亨先生的女儿 【解析】由题意知,最佳选手和最佳选手的孪生同抱年龄相同;由②,最佳选手和最差选手的年龄相同;由①,最佳选手的孪生同胞和最差选手不是间一个人.因此,四个人中有三个人的年龄相同.由于牛得亨先生的年龄肯定大于他的儿子和女儿,从而年龄相同的三个人必定是牛得亨先生的儿子、女儿和妹妹.由此,牛得亨先生的儿子和女儿必定是①中所指的孪生同胞.因此,牛得亨先生的儿子或女儿是最佳选手,而牛得亨先生的妹妹是最差选手.由①,最佳选手的孪生同胞一定是牛得亨先生的儿子,而最佳选手无疑是牛得亨先生的女儿. 故答案为:牛得亨先生的女儿17.【2018年贵州预赛】函数z =√2x 2−2x +1+√2x 2−10x +13的最小值是______. 【答案】√10 【解析】因为z =√2x 2−2x +1+√2x 2−10x +13=√(x −0)2+(x −1)2+√(x −2)2+(x −3)2此即为直线y =x 上的点(x ,y )到点(0,1)与到点(2,3)的距离之和,根据镜像原理,z 的最小值应为点(1,0)到点(2,3)的距离√10. 故答案为:√1018.【2018年贵州预赛】若方程a x >x (a >0,a ≠1)有两个不等实根,则实数a 的取值范围是_______. 【答案】1<a <e 1e 【解析】由a x >x 知x >0,故x ⋅lna −lnx =0⇒lna =lnx x,令f(x)=lnx x(x >0),则f ′(x)=1−lnx x 2.当x ∈(0,e)时,f ′(x)>0;当x ∈(e ,+∞)时,f ′(x)<0.所以f(x)在(0,e )上递增,在(e ,+∞)上递减.故0<lna <f(e)=1e,即1<a <e 1e . 故答案为:1<a <e 1e19.【2018年浙江预赛】已知a 为正实数,且f(x)=1a −1a x +1是奇函数,则f(x)的值域为________.【答案】(−12,12) 【解析】由f(x)为奇函数可知1a −1a x +1=−1a +1a −x +1,解得a = 2,即f(x)=12−12x +1, 由此得f(x)的值域为(−12,12).20.【2018年北京预赛】已知实数a,b,c,d 满足5a =4,4b =3,3c =2,2d =5,则(abcd )2018=________. 【答案】1 【解析】化5a =4,4b =3,3c =2,2d =5为对数,有a =log 54=ln4ln5,b =ln3ln4,c =ln2ln3,d =ln5ln2,所以(abcd )2018=(ln4ln5×ln3ln4×ln2ln3×ln5ln2)2018=12018=1.21.【2018年北京预赛】已知函数f (x )满足f (x +1x )=x 2+1x 2,那么f (x )的值域为_______.【答案】[2,+∞) 【解析】设函数y =f (x )满足f (t +1t )=t 2+1t 2,{x =t +1t (|x |≥2)y =t 2+1t 2(y ≥2),y =t 2+1t 2=(t +1t)2−2=x 2−2.所以所求函数是f (x )=x 2−2(|x |≥2),其图像如图,易知f (x )=x 2−2(|x |≥2)的值域是[2,+∞).22.【2018年湖南预赛】函数f(x)=√4−x 2+ln(2x −1)的定义城为_________. 【答案】[−2,12)【解析】由{4−x 2≥02x −1>0得-2≤x <12,所以函数f(x)=√4−x 2+ln(2x −1)的定义城为[−2,12). 故答案为[−2,12)23.【2018年湖南预赛】已知函数f(x)对任意的实数满足:f(x +6)=f(x),且当−3≤x <−1时,f(x)=−(x +2)2,当−1≤x <3时,f(x)=x ,则y =f(x)象与y =lg |1x |的图象的交点个数为___________。

2019年全国高中数学联赛重庆赛区预赛试题及参考答案

2019年全国高中数学联赛重庆赛区预赛试题及参考答案


1 3

|������������′′|
=
2√1

������������2 ,������������△������������′′′

√1 − ������������2 · (1 + ������������),易知当
������������
=1
3
8√2 时,������������△������������′′′有最大值为 9 ,∴������������△������������������������������������的最大值为
答案: 1
提示:tan 15o
+
2√2 sin
15o
=
sin 15o cos 15o
+
2√2 sin 15o
=
sin 15o+√2 sin 30o cos 15o
=
sin 15o+√2 sin(45o−15o) cos 15o
=
sin 15o+√2(sin 45o cos 15o−cos 45o cos 15o
∴������������
=
������������(������������)max
=
√2 −
3,������������
=
������������(������������)min
=
������������ −2,∴������������
=
3−√2.
2
3.tan 15o + 2√2 sin 15o =________.
∴�������⃗������2
=
1 9
������⃗������2

专题01集合第一缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021)

专题01集合第一缉(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021)

备战2022年高中数学联赛之历年真题分类汇编(2015-2021)专题01集合第一缉1.【2021年江西预赛】集合M 是集合A={1,2,…,100}的子集,且M 中至少含有一个平方数或者立方数,则这种子集M 的个数是.【答案】288(212‒1).【解析】集合 中的平方或者立方数构成集合 ,100},A ={1,2,⋯,100}B ={1,4,8,9,16,25,27,36,49,64,81其中有12个元素,从 中挖去集合 后剩下的元索构成集合 ,则 中有88个元索,A B C C 由于 的子集有 个, 的非空子集有 个,C 288B 212‒1集 可表示为 形式,其中 是 的任一非空子集, 是 的任一子集,因此 的个数为M M =B 0∪C 0B 0B C 0C M 288(212‒1).2.【2021年浙江预赛】给定实数集合A,B,定义运算 .设A ⊗B ={x∣x =ab +a +b,a ∈A,b ∈B} ,则 中的所有元素之和为.A ={0,2,4,⋯,18},B ={98,99,100}A ⊗B 【答案】29970【解析】由 ,x =(a +1)(b +1)‒1则可知所有元素之和为 .(1+3+⋯+19)×300‒3×10=299703.【2021年广西预赛】集合 的所有子集的元素的和等于 .M ={1,2,3,4,5,6}【答案】672【解析】所有子集的元素的和为 .25(1+2+3+4+5+6)=6724.【2021年新疆预赛】若实数集合 的最大元素与最小元素之积等于该集合的所有元素之和,则{3,6,9,x}x 的值为 .【答案】94【解析】若 是最大元素,则 ,解得 ,不合题意;x 3x =18+x x =9若 是最小元素,则 ,解得 ;x 9x =18+x x =94若 既不是最大元素也不是最小元素,则 ,解得 ,不合题意;x 27=18+x x =9所以 .x =945.【2021年全国高中数学联赛A 卷一试】设集合,其中为实数.令.若的A ={1,2,m }mB ={a 2∣a ∈A },C =A ∪B C 所有元素之和为6,则的所有元素之积为 .C【答案】‒8【解析】由条件知(允许有重复)为的全部元素.1,2,4,m ,m 2C 注意到,当为实数时,,故只可能是,且m 1+2+4+m +m 2>6,1+2+4+m 2>6C ={1,2,4,m }1+2+4+m =6.于是(经检验符合题意),此时的所有元素之积为.m =‒1C 1×2×4×(‒1)=‒86.【2020高中数学联赛B 卷(第01试)】设集合,A 是X 的子集,A 的元素个数至少是2,且A X ={1,2,⋯,20}的所有元素可排成连续的正整数,则这样的集合A 的个数为 .【答案】190【解析】每个满足条件的集合A 可由其最小元素a 与最大元素b 唯一确定,其中a ,b ∈X ,a <b ,这样的的(a,b)取法共有种,所以这样的集合A 的个数为190.C 220=1907.【2020年福建预赛】已知[x]表示不超过实数的最大整数,集合,x A ={x∣x 2‒x ‒6<0}B =则.{x∣2x 2‒3[x]‒5=0}.A ∩B =【答案】{‒1,222}【解析】易知, .若 ,则A =(‒2,3)x ∈A [x]=‒2,‒1,0,1,2.当 时,若 ,则 ,[x]=‒2x ∈B 2x 2+6‒5=0 不存在.x 当 时,若 ,则[x]=‒1x ∈B 2x 2+3‒5=0⇒x =±1.经检验, 不符合要求, 符合要求.x =1x =‒1当 时,若 ,则 ,[x]=0x ∈B 2x 2‒0‒5=0⇒x =±102均不符合要求.当 时,若 ,则 ,[x]=1x ∈B 2x 2‒3‒5=0⇒x =±2均不符合要求.当 时,若 ,则 .[x]=2x ∈B 2x 2‒6‒5=0⇒x =±222经检验, 符合要求, 不符合要求.故 .x =222x =‒222A ∩B ={‒1,222}8.【2020年甘肃预赛】设集合: , 若 ,则 的取值范A ={(x,y)∣log a x +log a y >0}B =|(x,y)|x +y <a}.A ∩B =∅a 围是.【答案】(1,2]【解析】若 ,则 a >1A ={(x,y)∣xy >1}.而当 与 相切时,x +y =a xy =1.x +1x =a⇒x 2‒ax +1=0⇒a =2于是,当 时, .若 ,则 ,此时, .a ∈(1,2]A ∩B =∅a <1A ={(x,y)∣xy <1}A ∩B ≠∅综上, .a ∈(1,2]9.【2020年广西预赛】已知集合 ,对 的任意非空子集 为集合 中最大数与最小数的M ={1,2,⋯,2020}M A,λA A 和.则所有这样的 的算术平均数为 .λA 【答案】2021【解析】考虑 的子集 若 ,则 若 ,设 中最大数为 ,最小M A '={2021‒x∣x ∈A}.A '=A λA'=λA =2021.A '≠A A a 数为 ,则 '中最大数为 ,最小数为2021- ,此时,b A 2021‒b a λA'+λA2=2021.故所求算术平均数为2021.10.【2020年广西预赛】设集合 ,且对集合 中的任意元素 则集合 的元索M ={1,2,⋯,2020},A ⊆M A x,4x ∉A.A 个数的最大值为 .【答案】1616【解析】首先,构造404个集合 ,其中,{k,4k}k =1;8,9,⋯,31;127,128,⋯,505.其次,集合 中的数除前述已提到的808个外,剩下的每个数 单独构成一个集合 ,有1212个.M x {x}共 个集合.404+1212=1616据抽臣原理,知若集合 中有多于1616个数,则必有两个数取自上述同一集合.从而,存在 ,矛盾.A x,4x ∈A 故集合 中至多有1616个数,满足条件的一个集合是A .A ={2,3,⋯,7,32;33,⋯,126,506,507,⋯,2020}11.【2020年吉林预赛】已知集合 若 ,则 的取值范围是 .A ={x∣log a (ax ‒1)>1}.2∈A a 【答案】(12,1)∪(1,+∞).【解析】由题意,得log 则 或a (2a ‒1)>1.{0<a <1,0<2a ‒1<a {a >1,2a ‒1>a.解得 或12<a <1a >1.12.【2020年浙江预赛】一个正整数若能写成形式,就称其为“好数".则集合20a +8b +27c (a ,b ,c ∈N) 中好数的个数为.{1,2,⋯,200}【答案】153【解析】先考虑 20a +8b =4(5a +2b). 可取5a +2b 2,4,5,6,⋯,50.则 可取 .20a +8b 8,16,20,24,⋯,200故当 时共有48个非零好数 型);c =0(4k 时共有42个好数 型),此时好数为 ;c =1(4k +327,35,43,47,⋯,199 时共有35个好数 型),此时好数为 c =2(4k +254,62,70,74,⋯,198; 时共有28个好数 型),此时好数为c =3(4k +181,89,97,101,⋯,197.综上,共有 个好数.48+42+35+28=15313.【2020年新疆预赛】已知集合 ,对于集合 的每一个非空子集的所有元素,计算它们A ={1,2,3,⋯,2020}A 乘积的倒数.则所有这些倒数的和为 .【答案】2020【解析】集合的 个非空子集中,每一个集合的所有元素之积分别为:1,2,…,2020,1×2,1A 22020‒1 ,它们的倒数和为×3⋯,2019×2020,⋯,1×2×⋯×2020 1+12+…+12020+11×2+11×3+…+12019×2020+⋯+11×2×⋯×2020 .=(1+1)(1+12)⋯(1+12020)‒1=2×32×⋯×20212020‒1=202014.【2019年全国】若实数集合的最大元素与最小元素之差等于该集合的所有元素之和,则x 的值{1,2,3,x }为.【答案】‒32【解析】由题意知,x 为负值,.∴3‒x =1+2+3+x⇒x =‒3215.【2019年江苏预赛】已知集合,,且,则实数A ={x|x 2‒3x +2≥0}B ={x|x ‒a ≥1}A ∩B ={x|x ≥3}a 的值是 .【答案】2【解析】,.又,故,解得.A ={x|x ≥2或x ≤1}B ={x|x ≥a +1}A ∩B ={x|x ≥3}a +1=3a =216.【2019年江西预赛】将集合中每两个互异的数作乘积,所有这种乘积的和为 .{1,2,⋯,19}【答案】16815【解析】所求的和为12[(1+2+⋯+19)2‒(12+22+⋯+192)]=12[36100‒2470]=1681517.【2019年新疆预赛】已知集合,,,则是集合的子集但U ={1,2,3,4,5,6,7,8}A ={1,2,3,4,5}B ={4,5,6,7,8}U 不是集合的子集,也不是集合B 的子集的集合个数为 .A B 【答案】196【解析】解法一:因为,且,所以满足题意的集合所含的元素至少在中取一个A ∪B =U A ∩B ={4,5}{1,2,3}且至少在中取一个,集合中的元素可取或不取,于是满足题意的集合共有{6,7,8}{4,5}(23‒1)(23‒1)×22个.=196解法二:集合的子集个数为,其中是集合或集合的子集个数为.所以满足条件的集合个数为U 28A B 25+25‒22个.28‒(25+25‒22)=19618.【2019年浙江预赛】已知集合为正整数,若集合中所有元素之和为,A ={k +1,k +2,⋯,k +n },k,n A 2019则当取最大值时,集合A =.n 【答案】A ={334,335,336,337,338,339}【解析】由已知.2k +n +12⋅n =3×673当时,得到;n =2m (2k +2m +1)m =3×673⇒m =3,n =6,k =333当时,得到.n =2m +1(k +m +1)(2m +1)=3×673⇒m =1,n =3所以的最大值为,此时集合.n 6A ={334,335,336,337,338,339}19.【2019年重庆预赛】设为三元集合(三个不同实数组成的集合),集合,若A B ={x +y|x,y ∈A, x ≠y},则集合________.B ={log 26, log 210, log 215}A =【答案】{1, log 23, log 25}【解析】设,其中A ={log 2a, log 2b, log 2c}0<a <b <c.则解得,从而。

2019年全国高中数学联合竞赛试题及解析(AB合版)

2019年全国高中数学联合竞赛试题及解析(AB合版)

2019年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分. 1. 已知正实数a 满足8(9)a a a a =,则log (3)a a 的值为 .答案:916.解:由条件知189a a =,故9163a a ==,所以9log (3)16a a =.2. 若实数集合{1,2,3,}x 的最大元素与最小元素之差等于该集合的所有元素之和,则x 的值为 .答案:32-.解:假如0x ³,则最大、最小元素之差不超过max{3,}x ,而所有元素之和大于max{3,}x ,不符合条件.故0x <,即x 为最小元素.于是36x x -=+,解得32x =-.3. 平面直角坐标系中,e 是单位向量,向量a 满足2a e⋅=,且25a a te£+对任意实数t 成立,则a的取值范围是 .答案:.解:不妨设(1,0)e =.由于2a e ⋅=,可设(2,)a s=,则对任意实数t ,有2245s a a te +=£+= 这等价于245s s +£,解得[1,4]s Î,即2[1,16]s Î.于是a=Î.4. 设,A B 为椭圆G 的长轴顶点,,E F 为G 的两个焦点,4,AB =2AF =P 为G 上一点,满足2PE PF ⋅=,则PEF D 的面积为 . 答案:1.解:不妨设平面直角坐标系中G 的标准方程为22221(0)x y a b a b +=>>.根据条件得24,2a AB a AF ====可知2,1a b ==,且EF ==由椭圆定义知24PE PF a +==,结合2PE PF ⋅=得()2222212PE PF PE PF PE PF EF +=+-⋅==,所以EPF 为直角,进而112PEF S PE PF D =⋅⋅=.5.在1,2,3,,10 中随机选出一个数a ,在1,2,3,,10 ----中随机选出一个数b ,则2a b +被3整除的概率为 .答案:37100.解:数组(,)a b 共有210100=种等概率的选法.考虑其中使2a b +被3整除的选法数N .若a 被3整除,则b 也被3整除.此时,a b 各有3种选法,这样的(,)a b 有239=组.若a 不被3整除,则21(mod3)a º,从而1(mod3)b º-.此时a 有7种选法,b 有4种选法,这样的(,)a b 有7428´=组.因此92837N =+=.于是所求概率为37100.6.对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值.若正数a 满足[0,][,2]2a a a M M =,则a 的值为.答案:56p 或1312p .解:假如02a p<£,则由正弦函数图像性质得[0,][,2]0sin a a a M a M <=£,与条件不符.因此2a p>,此时[0,]1a M =,故[,2]12a a M =.于是存在非负整数k ,使得51322266k a a k p p p p +£<£+, ①且①中两处“£”至少有一处取到等号.当0k =时,得56a p =或1326a p =.经检验,513,612a p p =均满足条件. 当1k ³时,由于13522266k k p p p p æö÷ç+<+÷ç÷çèø,故不存在满足①的a . 综上,a 的值为56p 或1312p .7.如图,正方体ABCD EFGH -的一个截面经过顶点,A C 及棱EF 上一点K ,且将正方体分成体积比为3:1的两部分,则EKKF 的值为 .答案.解:记a 为截面所在平面.延长,AK BF 交于点P ,则P在a 上,故直线CP 是a 与平面BCGF 的交线.设CP 与FG 交于点L ,则四边形AKLC 为截面.因平面ABC 平行于平面KFL ,且,,AK BF CL 共点P ,故ABC KFL -为棱台.不妨设正方体棱长为1,则正方体体积为1,结合条件知棱台ABC KFL -的体积14V =.设PF h =,则1KF FL PF h AB BC PB h ===+.注意到,PB PF 分别是棱锥P ABC -与棱锥P KFL -的高,于是111466P ABC P KFL V V V AB BC PB KF FL PF --==-=⋅⋅-⋅⋅ 3221331(1)1616(1)h h h h h h æöæö++÷ç÷ç÷ç=+-=÷÷çç÷ç÷èø÷ç++èø. 化简得231h =,故h =1EK AE KF PF h ===. 8. 将6个数2,0,1,9,20,19按任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数为 .答案:498.解:将2,0,1,9,20,19的首位不为0的排列的全体记为A .易知55!600A =´=(这里及以下,X 表示有限集X 的元素个数). 将A 中2的后一项是0,且1的后一项是9的排列的全体记为B ;A 中2的后一项是0,但1的后一项不是9的排列的全体记为C ;A 中1的后一项是9,但2的后一项不是0的排列的全体记为D .易知4!B =,5!B C +=,44!B D +=´,即24,96,72B C D ===. 由B 中排列产生的每个8位数,恰对应B 中的224´=个排列(这样的排列中,20可与“2,0”互换,19可与“1,9”互换).类似地,由C 或D 中排列产生的每个8位数,恰对应C 或D 中的2个排列.因此满足条件的8位数的个数为\()42B C DA B C D +++3600184836498422B C DA =---=---=.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在ABC D 中,,,BC a CA b AB c ===.若b 是a 与c 的等比中项,且sin A 是sin()B A -与sin C 的等差中项,求cos B 的值.解:因b 是,a c 的等比中项,故存在0q >,满足2,b qa c q a ==. ①因sin A 是sin(),sin B A C -的等差中项,故2sin sin()sin sin()sin()2sin cos A B A C B A B A B A =-+=-++=.…………………4分结合正、余弦定理,得222sin cos sin 2a A b c a A b B bc+-===, 即2222b c a ac +-=. …………………8分αLD F B K将①代入并化简,可知24212q q q +-=,即421q q =+,所以212q =. …………………12分 进而2224222111cos 222c a b q q B ac q q +-+-====. …………………16分10. (本题满分20分) 在平面直角坐标系xOy 中,圆W 与抛物线2:4y x G =恰有一个公共点,且圆W 与x 轴相切于G 的焦点F .求圆W 的半径.解:易知G 的焦点F 的坐标为(1,0).设圆W 的半径为(0)r r >.由对称性,不妨设W 在x 轴上方与x 轴相切于F ,故W 的方程为222(1)()x y r r -+-=. ①将24yx =代入①并化简,得2221204y y ry æö÷ç÷-+-=ç÷÷çèø.显然0y >,故 222221(4)12432y y r y y y æöæö÷+ç÷ç÷ç÷=-+=÷çç÷÷ç÷ç÷èøçèø. ② …………………5分根据条件,②恰有一个正数解y ,该y 值对应W 与G 的唯一公共点.考虑22(4)()(0)32y f y y y+=>的最小值.由平均值不等式知2244444333y y +=+++³,从而1()329f y y ³⋅=. 当且仅当243y =,即3y =时,()f y取到最小值9. ………………15分由②有解可知9r ³.又假如9r >,因()f y 随y 连续变化,且0y +及y +¥时()f y 均可任意大,故②在0,3æççççèø及3æö÷ç÷+¥ç÷ç÷çèø上均有解,与解的唯一性矛盾.综上,仅有9r =满足条件(此时1,33æ÷ç÷ç÷ç÷çèø是W 与G 的唯一公共点). …………………20分11. (本题满分20分)称一个复数数列{}n z 为“有趣的”,若11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=.求最大的常数C ,使得对一切有趣的数列{}n z 及任意正整数m ,均有12m z z z C +++³.解:考虑有趣的复数数列{}n z .归纳地可知*0()n z n N ¹Î.由条件得2*114210()n n n nz z n z z N ++æöæö÷÷çç÷÷++=Îçç÷÷ç÷÷çèøèø,解得*11()4N n n z n z +-=Î.因此1112n n n n z z z z ++===,故 *11111()22N n n n z z n --=⋅=Î.①…………………5分进而有*11111()22N n n n n n n nz z z z n z ++-+=⋅+==Î. ②记*12()N m m T z z z m =+++Î. 当*2()N m s s =Î时,利用②可得122122sm k k k T z z z z -=³+-+å21222k k k z z ¥-=>-+å212223k k ¥-==-=å. …………………10分 当*21()N m s s =+Î时,由①、②可知21212221211112322s k k s s k k s k s z z z ¥¥+---=+=+=<==+⋅åå, 故12212212s m k k s k T z z z z z -+=æö÷ç³+-+-÷ç÷çèøå212223k k k z z ¥-=>-+=å. 当1m =时,1113T z ==>.以上表明3C =满足要求. …………………15分另一方面,当*1221221111,,()22N k k k k z z z k ++--===Î时,易验证知{}n z 为有趣的数列.此时2112211lim lim ()ss k k s s k T z z z ++ ¥¥==++å134lim 11833ss k ¥=-=+=+⋅=, 这表明C不能大于3. 综上,所求的C为3. …………………20分2019年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一、(本题满分40分)如图,在锐角ABC D 中,M 是BC 边的中点.点P 在ABC D 内,使得AP 平分BAC .直线MP 与,ABP ACP D D 的外接圆分别相交于不同于点P 的两点,D E .证明:若DE MP =,则2BC BP =.证明:延长PM 到点F ,使得MF ME =.连接,,BF BD CE .由条件可知BDP BAP CAP CEP CEM = = = = . ………………10分 因为BM CM =且EM FM =,所以BF CE =且//BF CE .于是F CEM BDP = = ,进而BD BF =. ………………20分 又DE MP =,故DP EM FM ==.于是在等腰BDF D 中,由对称性得BP BM =.从而22BC BM BP ==. ………………40分二、(本题满分40分)设整数122019,,,a a a 满足122019199a a a =£££=.记22212201913243520172019()()f a a a a a a a a a a a =+++-++++. 求f 的最小值0f .并确定使0f f =成立的数组122019(,,,)a a a 的个数. 解:由条件知2017222221220182019212()i i i f a a aaa a +==++++-å.①由于12,a a 及2(1,2,,2016)i i a a i +-=均为非负整数,故有221122,a a a a ³³,且222()(1,2,,2016)i i i i a a a a i ++-³-=.于是201620162221221222017201811()()i i i i i i a a a a a a a a a a ++==++-³++-=+åå.②………………10分由①、②得2222017201820192017201820192()f a a a a a a ³++-++, 结合201999a =及201820170a a ³>,可知()22220172017201712(99)992f a a a ³+-++22017(49)74007400a =-+³.③………………20分另一方面,令1219201920211920220191,(1,2,,49),99k k a a a a a k k a +-+========, 此时验证知上述所有不等式均取到等号,从而f 的最小值07400f =.………………30分以下考虑③的取等条件.此时2017201849a a ==,且②中的不等式均取等,即121a a ==,2{0,1}(1,2,,2016)i i a a i +-Î=.因此122018149a a a =£££=,且对每个(149)k k ££,122018,,,a a a 中至少有两项等于k .易验证知这也是③取等的充分条件.对每个(149)k k ££,设122018,,,a a a 中等于k 的项数为1k n +,则k n 为正整数,且1249(1)(1)(1)2018n n n ++++++=,即12491969n n n +++=.该方程的正整数解1249(,,,)n n n 的组数为481968C ,且每组解唯一对应一个使④取等的数组122019(,,,)a a a ,故使0f f =成立的数组122019(,,,)a a a 有481968C 个.………………40分三、(本题满分50分)设m 为整数,2m ||³.整数数列12,,a a 满足:12,a a 不全为零,且对任意正整数n ,均有21n n n a a ma ++=-.证明:若存在整数,r s (2)r s >³使得1r s a a a ==,则r s m ||-³.证明:不妨设12,a a 互素(否则,若12(,)1a a d =>,则1a d 与2ad互素,并且用123,,,a a a d d d代替123,,,a a a ,条件与结论均不改变). 由数列递推关系知234(mod )a a a m || ººº.① 以下证明:对任意整数3n ³,有2212((3))(mod )n a a a n a m m º-+-.②………………10分事实上,当3n =时②显然成立.假设n k =时②成立(其中k 为某个大于2的整数),注意到①,有212(mod )k ma ma m -º,结合归纳假设知112122((3))k k k a a ma a a k a m ma +-=-º-+--2212((2))(mod )a a k a m º-+-,即1n k =+时②也成立.因此②对任意整数3n ³均成立. ………………20分注意,当12a a =时,②对2n =也成立.设整数,(2)r s r s >³,满足1r s a a a ==. 若12a a =,由②对2n ³均成立,可知2212212((3))((3))(mod )r s a a r a m a a a a s a m m -+-º=º-+-,即1212(3)(3)(mod )a r a a s a m ||+-º+-,即2()0(mod )r s a m ||-º.③若12a a ¹,则12r s a a a a ==¹,故3r s >³.此时由于②对3n ³均成立,故类似可知③仍成立. ………………30分我们证明2,a m 互素.事实上,假如2a 与m 存在一个公共素因子p ,则由①得p 为234,,,a a a 的公因子,而12,a a 互素,故p 1a ,这与1r s a a a ==矛盾.因此,由③得0(mod )r s m ||-º.又r s >,所以r s m ||-³.………………50分四、(本题满分50分)设V 是空间中2019个点构成的集合,其中任意四点不共面.某些点之间连有线段,记E 为这些线段构成的集合.试求最小的正整数n ,满足条件:若E 至少有n 个元素,则E 一定含有908个二元子集,其中每个二元子集中的两条线段有公共端点,且任意两个二元子集的交为空集.解:为了叙述方便,称一个图中的两条相邻的边构成一个“角”.先证明一个引理:设(,)G V E =是一个简单图,且G 是连通的,则G 含有||2E ⎡⎤⎢⎥⎣⎦个两两无公共边的角(这里[]a 表示实数a 的整数部分). 引理的证明:对E 的元素个数E 归纳证明.当0,1,2,3E =时,结论显然成立.下面假设4E ≥,并且结论在E 较小时均成立.只需证明,在G 中可以选取两条边,a b 构成一个角,在G 中删去,a b 这两条边后,剩下的图含有一个连通分支包含||2E -条边.对这个连通分支应用归纳假设即得结论成立.考虑G 中的最长路12:k P v v v ,其中21,,,k v v v 是互不相同的顶点.因为G 连通,故3k ≥.情形1:1deg()2v ≥.由于P 是最长路,1v 的邻点均在2,,k v v 中,设1i v v E ∈,其中3i k ≤≤.则121{,}i v v v v 是一个角,在E 中删去这两条边.若1v 处还有第三条边,则剩下的图是连通的;若1v 处仅有被删去的两条边,则1v 成为孤立点,其余顶点仍互相连通.总之在剩下的图中有一个连通分支含有2E -条边.情形2:1deg()1v =,2deg()2v =.则1223{,}v v v v 是一个角,在G 中删去这两条边后,12,v v 都成为孤立点,其余的点互相连通,因此有一个连通分支含有2E -条边.情形3:1deg()1v =,2deg()3v ≥,且2v 与4,,k v v 中某个点相邻.则1223{,}v v v v是一个角,在G 中删去这两条边后,1v 成为孤立点,其余点互相连通,因此有一个连通分支含有2E -条边.情形4:1deg()1v =,2deg()3v ≥,且2v 与某个13{,,,}k u v v v ∈/ 相邻.由于P 是最长路,故u 的邻点均在2,,k v v 之中.因122{,}v v v u 是一个角,在G 中删去这两条边,则1v 是孤立点.若u 处仅有边2uv ,则删去所述边后u 也是孤立点,而其余点互相连通.若u 处还有其他边i uv ,3i k ≤≤,则删去所述边后,除1v 外其余点互相连通.总之,剩下的图中有一个连通分支含有2E -条边.引理获证. ………………20分 回到原题,题中的V 和E 可看作一个图(,)G V E =.首先证明2795n ≥.设122019{,,,}V v v v = .在1261,,,v v v 中,首先两两连边,再删去其中15条边(例如1311216,,,v v v v v v ),共连了26115C 1815-=条边,则这61个点构成的图是连通图.再将剩余的2019611958-=个点配成979对,每对两点之间连一条边,则图G 中一共连了181********+=条线段.由上述构造可见,G 中的任何一个角必须使用1261,,,v v v 相连的边,因此至多有18159072⎡⎤⎢=⎥⎣⎦个两两无公共边的角.故满足要求的n 不小于2795. ………………30分另一方面,若2795E ≥,可任意删去若干条边,只考虑2795E =的情形.设G 有k 个连通分支,分别有1,,k m m 个点,及1,,k e e 条边.下面证明1,,k e e 中至多有979个奇数.反证法,假设1,,k e e 中有至少980个奇数,由于12795k e e ++= 是奇数,故1,,k e e 中至少有981个奇数,故981k ≥.不妨设12981,,,e e e 都是奇数,显然12981,,,2m m m ≥ .令9812k m m m =++≥ ,则有2C 1980)(i m i e i ≥≤≤,2981C m k e e ≥++ ,故98022112795C C imk i i i m e ===≤+∑∑. ① 利用组合数的凸性,即对3x y ≥≥,有222211C C C C x y x y +-+≤+,可知当1980,,,m m m 由980个2以及一个59构成时,980221C C imm i =+∑取得最大值.于是 98022225921C C C 980C 26912795imm i =≤=<++∑, 这与①矛盾.从而1,,k e e 中至多有979个奇数. ………………40分对每个连通分支应用引理,可知G 中含有N 个两两无公共边的角,其中1111979(2795979)908222kki i i i e N e ==⎛⎫⎡⎤=≥-=-= ⎪⎢⎥⎣⎦⎝⎭∑∑.综上,所求最小的n 是2795. ………………50分2019年全国高中数学联合竞赛一试(B 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 已知实数集合{1,2,3,}x 的最大元素等于该集合的所有元素之和,则x 的值为 .答案:3-.解:条件等价于1,2,3,x 中除最大数以外的另三个数之和为0.显然0x <,从而120x ++=,得3x =-.2. 若平面向量(2,1)m a =-与1(21,2)m m b +=-垂直,其中m 为实数,则a 的模为 .答案解:令2m t =,则0t >.条件等价于(1)(1)20t t t ⋅-+-⋅=,解得3t =.因此a=.3. 设,(0,)a b p Î,cos ,cos a b 是方程25310x x --=的两根,则sin sin a b 的值为 .答案:5. 解:由条件知31cos cos ,cos cos 55a b a b +==-,从而222(sin sin )(1cos )(1cos )a b a b =--22221cos cos cos cos a b a b=--+2222437(1cos cos )(cos cos )5525a b a b æöæö÷çç=+-+=-=÷çç÷ççèøè.又由,(0,)a b p Î知sin sin 0a b >,从而sin sin 5a b =. 4. 设三棱锥P ABC -满足3,2PA PB AB BC CA =====,则该三棱锥的体积的最大值为 .答案:3. 解:设三棱锥P ABC -的高为h .取M 为棱AB 的中点,则h PM £==.当平面PAB 垂直于平面ABC 时,h 取到最大值.此时三棱锥P ABC -的体积取到最大值11333ABC S D ⋅==.5. 将5个数2,0,1,9,2019按任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数为 .答案:95. 解:易知2,0,1,9,2019的所有不以0为开头的排列共有44!96´=个.其中,除了(2,0,1,9,2019)和(2019,2,0,1,9)这两种排列对应同一个数20192019,其余的数互不相等.因此满足条件的8位数的个数为96195-=.6. 设整数4n >,(1)n x +的展开式中4n x -与xy 两项的系数相等,则n 的值为 .答案:51.解:注意到0(1)C 1)nnr n r rnr x x -=+=å.其中4n x -项仅出现在求和指标4r =时的展开式444C 1)n n x -中,其4n x -项系数为44(1)(2)(3)(1)C 24nn n n n ----=.而xy 项仅出现在求和指标1r n =-时的展开式11C 1)n n nx --⋅中,其xy 项系数为12331C C 4(1)(1)2(1)(2)n n n n n n n n ----⋅-=---. 因此有3(1)(2)(3)(1)2(1)(2)24n n n n n n n n ----=---.注意到4n >,化简得33(1)48n n --=-,故只能是n 为奇数且348n -=.解得51n =.7. 在平面直角坐标系中,若以(1,0)r +为圆心、r 为半径的圆上存在一点(,)a b 满足24b a ³,则r 的最小值为 .答案:4.解:由条件知222(1)a r b r --+=,故22224(1)2(1)(1)a b r a r r a a £=---=---.即22(1)210a r a r --++£.上述关于a 的一元二次不等式有解,故判别式2(2(1))4(21)4(4)0r r r r --+=-³,解得4r ³.经检验,当4r =时,(,)(3,a b =满足条件.因此r 的最小值为4. 8. 设等差数列{}n a 的各项均为整数,首项12019a =,且对任意正整数n ,总存在正整数m ,使得12n m a a a a +++=.这样的数列{}n a 的个数为 .答案:5.解:设{}n a 的公差为d .由条件知12k a a a +=(k 是某个正整数),则 112(1)a d a k d +=+-,即1(2)k d a -=,因此必有2k ¹,且12ad k =-.这样就有1111(1)2n n a a n d a a k -=+-=+-,而此时对任意正整数n ,12111(1)(1)(1)22n n n n n a a a a n d a n a d --+++=+=+-+ 1(1)(1)(2)2n n a n k d æö-÷ç=+--+÷ç÷çèø, 确实为{}n a 中的一项.因此,仅需考虑使12|k a -成立的正整数k 的个数.注意到2019为两个素数3与673之积,易知2k -可取1,1,3,673,2019-这5个值,对应得到5个满足条件的等差数列.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在椭圆G 中,F 为一个焦点,,A B 为两个顶点.若3,2FA FB ==,求AB 的所有可能值.解:不妨设平面直角坐标系中椭圆G 的标准方程为22221(0)x y a b a b +=>>,并记c =F 为G 的右焦点.易知F 到G 的左顶点的距离为a c +,到右顶点的距离为a c -,到上、下顶点的距离均为a .分以下情况讨论:(1) ,A B 分别为左、右顶点.此时3,2a c a c +=-=,故25AB a ==(相应地,2()()6b a c a c =+-=,G 的方程为2241256x y +=). …………………4分 (2) A 为左顶点,B 为上顶点或下顶点.此时3,2a c a +==,故1c =,进而2223b a c =-=,所以AB ==G 的方程为22143x y +=).…………………8分 (3) A 为上顶点或下顶点,B 为右顶点.此时3,2a a c =-=,故1c =,进而2228b a c =-=,所以AB ==G 的方程为22198x y +=).…………………12分 综上可知,AB的所有可能值为5,. …………………16分10. (本题满分20分)设,,a b c 均大于1,满足lg log 3,lg log 4.b a a c b c ì+=ïïíï+=ïî求lg lg a c ⋅的最大值.解:设lg ,lg ,lg a x b y c z ===,由,,1a b c >可知,,0x y z >.由条件及换底公式知3,4z zx y y x+=+=,即34xy z y x +==.…………………5分由此,令3,4(0)x t y t t ==>,则241212z x xy t t =-=-.其中由0z >可知(0,1)t Î. …………………10分因此,结合三元平均值不等式得2lg lg 312(1)18(22)a c xz t t t t t ==⋅-=⋅-33(22)2161818333t t t æöæö++-÷çç£⋅=⋅=÷çç÷ççèèø. 当22t t =-,即23t =(相应的,,a b c 分别为8833100,10,10)时,lg lg a c 取到最大值163. …………………20分11. (本题满分20分)设复数数列{}n z 满足:11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=.证明:对任意正整数m ,均有123m z z z +++<. 证明:归纳地可知*0()n z n N ¹Î.由条件得2*114210()n n n n z z n z z N ++æöæö÷çç÷++=Îçç÷çç÷èøèø,解得*11()4N n n z n z +-=Î. …………………5分因此1112n n nnz z z z ++===,故*11111()22N n n n z z n --=⋅=Î. ①进而有*11111()22N n n n n n n nz z z z n z ++-+=⋅+==Î. ②…………………10分当m 为偶数时,设*2()N m s s =Î.利用②可得122122122111123sm k k k k k k k k z z z z z z z ¥¥---===+++£+<+==ååå. …………………15分 当m 为奇数时,设21()N m s s =+Î.由①、②可知21212221211112322s k k s s k k s k s z z z ¥¥+---=+=+=<==+⋅åå, 故1221221212113s m k k s k k k k z z z z z z z z ¥-+-==æö÷ç+++£++<+=÷ç÷çèøåå. 综上,结论获证. …………………20分2019年全国高中数学联合竞赛加试(B 卷)参考答案及评分标准说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一、(本题满分40分)设正实数12100,,,a a a 满足101(1,2,,50)i i a a i -³=.记112(1,2,,99)k k kka x k a a a +==+++.证明:29912991x x x £.证明:注意到12100,,,0a a a >.对1,2,,99k =,由平均值不等式知121210kk k k a a a a a a æöç<£çç+++èø, ……………10分 从而有9999299112991111212kk k k k k k k ka k x x x a a a a a a a ++==æö÷ç÷=£ç÷÷ç+++èø . ①………………20分记①的右端为T ,则对任意1,2,,100i =,i a 在T 的分子中的次数为1i -,在T 的分母中的次数为100i -.从而10121005050210121012(101)101101101111ii i i i i i ii i i ia T a a a a -------===æö÷ç÷===ç÷ç÷èø .………………30分又1010(1,2,,50)i i a a i -<£=,故1T £,结合①得29912991x x x T ££. ………………40分二、(本题满分40分)求满足以下条件的所有正整数n :(1) n 至少有4个正约数;(2) 若12k d d d <<< 是n 的所有正约数,则21321,,,k k d d d d d d ---- 构成等比数列.解:由条件可知4k ≥,且3212112kk k k d d d d d d d d -----=--. ………………10分 易知112231,,,k k k n nd d n d d d d --====,代入上式得3222231n n d d d n n d d d --=--, 化简得223223()(1)d d d d -=-. ………………20分由此可知3d 是完全平方数.由于2d p =是n 的最小素因子,3d 是平方数,故只能23d p =. ………………30分从而序列21321,,,k k d d d d d d ---- 为23212,1,,,k k p p p p p p p ------ ,即123,,,,k d d d d 为21,1,,,k p p p - ,而此时相应的n 为1k p -.综上可知,满足条件的n 为所有形如a p 的数,其中p 是素数,整数3a ≥. ………………40分三、(本题满分50分)如图,点,,,,A B C D E在一条直线上顺次排列,满足BC CD ==,点P 在该直线外,满足PB PD =.点,K L 分别在线段,PB PD 上,满足KC 平分BKE ,LC 平分ALD .证明:,,,A K L E 四点共圆.(答题时请将图画在答卷纸上)证明:令1,(0)AB BC CD t ===>,由条件知2DE t =.注意到180BKE ABK PDE DEK < = < - ,可在CB 延长线上取一点A ¢,使得A KE ABK A BK ¢¢ = = . ………………10分此时有A BK A KE ∽¢¢D D ,故A B A K BKA K A E KE¢¢==¢¢. ………………20分 又KC 平分BKE ,故211BK BC t KE CE t t t===++.于是有 22112A B A B A K BK AB A E A K A E KE t t AEæö¢¢¢÷ç=⋅===÷ç÷碢¢èø++. …………30分 由上式两端减1,得BE BEA E AE=¢,从而A A ¢=.因此AKE A KE ABK ¢ = = . 同理可得ALE EDL = .而ABK EDL = ,所以AKE ALE = .因此,,,A K L E 四点共圆. ………………50分四、(本题满分50分)将一个凸2019边形的每条边任意染为红、黄、蓝三种颜色之一,每种颜色的边各673条.证明:可作这个凸2019边形的2016条在内部互不相交的对角线将其剖分成2017个三角形,并将所作的每条对角线也染AA (为红、黄、蓝三种颜色之一,使得每个三角形的三条边或者颜色全部相同,或者颜色互不相同.证明:我们对5n ≥归纳证明加强的命题:如果将凸n 边形的边染为三种颜色,,a b c ,并且三种颜色的边均至少有一条,那么可作满足要求的三角形剖分. ………………10分当5n =时,若三种颜色的边数为1,1,3,由对称性,只需考虑如下两种情形,分别可作图中所示的三角形剖分.若三种颜色的边数为1,2,2,由对称性,只需考虑如下三种情形,分别可作图中所示的三角形剖分.………………20分假设结论对(5)n n ≥成立,考虑1n +的情形,将凸1n +边形记为121n A A A + . 情形1:有两种颜色的边各只有一条.不妨设,a b 色边各只有一条.由于16n +≥,故存在连续两条边均为c 色,不妨设是111,n n n A A A A ++.作对角线1n A A ,并将1n A A 染为c 色,则三角形11n n A A A +的三边全部同色.此时凸n 边形12n A A A 的三种颜色的边均至少有一条,由归纳假设,可对其作符合要求的三角形剖分.………………30分 情形2:某种颜色的边只有一条,其余颜色的边均至少两条.不妨设a 色边只有一条,于是可以选择两条相邻边均不是a 色,不妨设111,n n n A A A A ++均不是a 色,作对角线1n A A ,则1n A A 有唯一的染色方式,使得三角形11n n A A A +的三边全部同色或互不同色.此时凸n 边形12n A A A 的三种颜色的边均至少有一条,由归纳假设,可对其作符合要求的三角形剖分. ………………40分情形3:每种颜色的边均至少两条.作对角线1n A A ,则1n A A 有唯一的染色方式,使得三角形11n n A A A +的三边全部同色或互不同色.此时凸n 边形12n A A A 的三种颜色的边均至少有一条,由归纳假设,可对其作符合要求的三角形剖分.综合以上3种情形,可知1n +的情形下结论也成立.由数学归纳法,结论获证. ………………50分。

2019年全国高中数学联赛A卷及B卷试题答案及评分标准

2019年全国高中数学联赛A卷及B卷试题答案及评分标准
7.如图,正方体 ABCD-EFGH 的一个截面经过点 A,C 及棱 EF 上一点 K,且将正方体分成体积比为 3:1 的两部分,则 EK FK
的值为 8.将 6 个数 2,0,1,9,20,19 按任意次序排成一行,拼成一个 8 位数(首位不为 0),则产生的不同的 8 位数的个数为 二解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明,证明过程或演算步骤 9(本题分 16 分)在△ABC 中,BC=a,CA=b,AB=c,若 b 是 a 与 c 的等比中项,且 sinA 是 sin(B-A)与 sinC 的等差中项,求 cosB 的值 10.(本题满分 20 分)在平面直角坐标系 xOy 中,圆Ω与抛物线Γ:y2=4x 恰有一个公共点,且圆Ω与 x 轴相切于Γ的焦 点 F,求圆Ω的半径
2019 年全国高中数学联赛 A 卷 一试部分
一、填空题(本大题共 8 小题,每题 8 分,共 64 分)
1.已知正实数 a 满足 aa (9a)8a ,则 loga (3a) 的值为
2.若实数集合{1,2,3,x}的最大元素与最小元素之差等于该集合的所有元素之和,则 x 的值为






而 b≡-1(mod3),此时 a 有 7 种选法,b 有 4 种选法,这样的(a,b)有 7*4=28 组.因此 N=9+28=37.于是所求的概率为 37 100
6.对任意闭区间 I,用 MI 表示函数 y=sinx 在 I 上的最大值,若正数 a 满足 M[0,a]=2M[a,2a],则 a 的值为
4 s2 5 | s | ,解得 | s |[1, 4] ,即 s2 [1,16] ,于是 | a | 4 s2 [ 5, 2 5]
法二:由

2019年全国高中数学联赛A+B卷(含答案)

2019年全国高中数学联赛A+B卷(含答案)

2019年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分. 1. 已知正实数a 满足8(9)a a a a =,则log (3)a a 的值为 .答案:916.解:由条件知189a a =,故9163a a ==,所以9log (3)16a a =.2. 若实数集合{1,2,3,}x 的最大元素与最小元素之差等于该集合的所有元素之和,则x 的值为 .答案:32-.解:假如0x ³,则最大、最小元素之差不超过max{3,}x ,而所有元素之和大于max{3,}x ,不符合条件.故0x <,即x 为最小元素.于是36x x -=+,解得32x =-.3. 平面直角坐标系中,e 是单位向量,向量a 满足2a e⋅=,且25a a te£+对任意实数t 成立,则a的取值范围是 .答案:.解:不妨设(1,0)e =.由于2a e ⋅=,可设(2,)a s=,则对任意实数t ,有2245s a a te +=£+= 这等价于245s s +£,解得[1,4]s Î,即2[1,16]s Î.于是a=Î.4. 设,A B 为椭圆G 的长轴顶点,,E F 为G 的两个焦点,4,AB =2AF =P 为G 上一点,满足2PE PF ⋅=,则PEF D 的面积为 . 答案:1.解:不妨设平面直角坐标系中G 的标准方程为22221(0)x y a b a b +=>>.根据条件得24,2a AB a AF ====可知2,1a b ==,且EF ==由椭圆定义知24PE PF a +==,结合2PE PF ⋅=得()2222212PE PF PE PF PE PF EF +=+-⋅==,所以EPF 为直角,进而112PEF S PE PF D =⋅⋅=.5. 在1,2,3,,10 中随机选出一个数a ,在1,2,3,,10 ----中随机选出一个数b ,则2a b +被3整除的概率为 .答案:37100.解:数组(,)a b 共有210100=种等概率的选法.考虑其中使2a b +被3整除的选法数N .若a 被3整除,则b 也被3整除.此时,a b 各有3种选法,这样的(,)a b 有239=组.若a 不被3整除,则21(mod3)a º,从而1(mod3)b º-.此时a 有7种选法,b 有4种选法,这样的(,)a b 有7428´=组.因此92837N =+=.于是所求概率为37100.6. 对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值.若正数a 满足[0,][,2]2a a a M M =,则a 的值为 .答案:56p 或1312p .解:假如02a p<£,则由正弦函数图像性质得[0,][,2]0sin a a a M a M <=£,与条件不符.因此2a p >,此时[0,]1a M =,故[,2]12a a M =.于是存在非负整数k ,使得51322266k a a k p p p p +£<£+, ①且①中两处“£”至少有一处取到等号.当0k =时,得56a p =或1326a p =.经检验,513,612a p p =均满足条件. 当1k ³时,由于13522266k k p p p p æö÷ç+<+÷ç÷çèø,故不存在满足①的a . 综上,a 的值为56p 或1312p .7. 如图,正方体ABCD EFGH -的一个截面经过顶点,A C 及棱EF 上一点K ,且将正方体分成体积比为3:1的两部分,则EKKF 的值为 . 答案.解:记a 为截面所在平面.延长,AK BF 交于点P ,则P在a 上,故直线CP 是a 与平面BCGF 的交线.设CP 与FG 交于点L ,则四边形AKLC 为截面.因平面ABC 平行于平面KFL ,且,,AK BF CL 共点P ,故ABC KFL -为棱台.不妨设正方体棱长为1,则正方体体积为1,结合条件知棱台ABC KFL -的体积14V =.设PF h =,则1KF FL PF h AB BC PB h ===+.注意到,PB PF 分别是棱锥P ABC -与棱锥P KFL -的高,于是111466P ABC P KFL V V V AB BC PB KF FL PF --==-=⋅⋅-⋅⋅ 3221331(1)1616(1)h h h h h h æöæö++÷ç÷ç÷ç=+-=÷÷çç÷ç÷èø÷ç++èø. 化简得231h =,故h =1EK AE KF PF h ===. 8. 将6个数2,0,1,9,20,19按任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数为 .答案:498.解:将2,0,1,9,20,19的首位不为0的排列的全体记为A .易知55!600A =´=(这里及以下,X 表示有限集X 的元素个数). 将A 中2的后一项是0,且1的后一项是9的排列的全体记为B ;A 中2的后一项是0,但1的后一项不是9的排列的全体记为C ;A 中1的后一项是9,但2的后一项不是0的排列的全体记为D .易知4!B =,5!B C +=,44!B D +=´,即24,96,72B C D ===. 由B 中排列产生的每个8位数,恰对应B 中的224´=个排列(这样的排列中,20可与“2,0”互换,19可与“1,9”互换).类似地,由C 或D 中排列产生的每个8位数,恰对应C 或D 中的2个排列.因此满足条件的8位数的个数为\()42B C DA B C D +++3600184836498422B C DA =---=---=.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在ABC D 中,,,BC a CA b AB c ===.若b 是a 与c 的等比中项,且sin A 是sin()B A -与sin C 的等差中项,求cos B 的值.解:因b 是,a c 的等比中项,故存在0q >,满足2,b qa c q a ==. ①因sin A 是sin(),sin B A C -的等差中项,故2sin sin()sin sin()sin()2sin cos A B A C B A B A B A =-+=-++=.…………………4分结合正、余弦定理,得222sin cos sin 2a A b c a A b B bc+-===, 即2222b c a ac +-=. …………………8分αLD F B K将①代入并化简,可知24212q q q +-=,即421q q =+,所以212q =. …………………12分 进而2224222111cos 222c a b q q B ac q q +-+-====. …………………16分10. (本题满分20分) 在平面直角坐标系xOy 中,圆W 与抛物线2:4y x G =恰有一个公共点,且圆W 与x 轴相切于G 的焦点F .求圆W 的半径.解:易知G 的焦点F 的坐标为(1,0).设圆W 的半径为(0)r r >.由对称性,不妨设W 在x 轴上方与x 轴相切于F ,故W 的方程为222(1)()x y r r -+-=. ①将24yx =代入①并化简,得2221204y y ry æö÷ç÷-+-=ç÷÷çèø.显然0y >,故 222221(4)12432y y r y y y æöæö÷+ç÷ç÷ç÷=-+=÷çç÷÷ç÷ç÷èøçèø. ② …………………5分根据条件,②恰有一个正数解y ,该y 值对应W 与G 的唯一公共点.考虑22(4)()(0)32y f y y y+=>的最小值.由平均值不等式知2244444333y y +=+++³,从而1()329f y y ³⋅=. 当且仅当243y =,即3y =时,()f y取到最小值9. ………………15分由②有解可知9r ³.又假如9r >,因()f y 随y 连续变化,且0y +及y +¥时()f y 均可任意大,故②在0,3æççççèø及3æö÷ç÷+¥ç÷ç÷çèø上均有解,与解的唯一性矛盾.综上,仅有9r =满足条件(此时1,33æ÷ç÷ç÷ç÷çèø是W 与G 的唯一公共点). …………………20分11. (本题满分20分)称一个复数数列{}n z 为“有趣的”,若11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=.求最大的常数C ,使得对一切有趣的数列{}n z 及任意正整数m ,均有12m z z z C +++³.解:考虑有趣的复数数列{}n z .归纳地可知*0()n z n N ¹Î.由条件得2*114210()n n n nz z n z z N ++æöæö÷÷çç÷÷++=Îçç÷÷ç÷÷çèøèø,解得*11()4N n n z n z +-=Î.因此1112n n n n z z z z ++===,故 *11111()22N n n n z z n --=⋅=Î.①…………………5分进而有*11111()22N n n n n n n n z z z z n z ++-+=⋅+==Î. ②记*12()N m m T z z z m =+++Î. 当*2()N m s s =Î时,利用②可得122122sm k k k T z z z z -=³+-+å21222k k k z z ¥-=>-+å212223k k ¥-==-=å.…………………10分 当*21()N m s s =+Î时,由①、②可知21212221211112322s k k s s k k s k s z z z ¥¥+---=+=+=<==+⋅åå, 故12212212s m k k s k T z z z z z -+=æö÷ç³+-+-÷ç÷çèøå212223k k k z z ¥-=>-+=å. 当1m =时,1113T z ==>.以上表明3C =满足要求. …………………15分另一方面,当*1221221111,,()22N k k k k z z z k ++--===Î时,易验证知{}n z 为有趣的数列.此时2112211lim lim ()ss k k s s k T z z z ++ ¥¥==++å134lim 11833ss k ¥=-=+=+⋅=, 这表明C不能大于3. 综上,所求的C为3. …………………20分2019年全国高中数学联合竞赛一试(B 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 已知实数集合{1,2,3,}x 的最大元素等于该集合的所有元素之和,则x 的值为 .答案:3-.解:条件等价于1,2,3,x 中除最大数以外的另三个数之和为0.显然0x <,从而120x ++=,得3x =-.2. 若平面向量(2,1)m a =-与1(21,2)m m b +=-垂直,其中m 为实数,则a 的模为 .答案解:令2m t =,则0t >.条件等价于(1)(1)20t t t ⋅-+-⋅=,解得3t =.因此a=.3. 设,(0,)a b p Î,cos ,cos a b 是方程25310x x --=的两根,则sin sin a b 的值为 .答案:5. 解:由条件知31cos cos ,cos cos 55a b a b +==-,从而222(sin sin )(1cos )(1cos )a b a b =--22221cos cos cos cos a b a b=--+2222437(1cos cos )(cos cos )5525a b a b æöæö÷çç=+-+=-=÷çç÷ççèøè.又由,(0,)a b p Î知sin sin 0a b >,从而sin sin 5a b =. 4. 设三棱锥P ABC -满足3,2PA PB AB BC CA =====,则该三棱锥的体积的最大值为 .答案:3. 解:设三棱锥P ABC -的高为h .取M 为棱AB 的中点,则h PM £==.当平面PAB 垂直于平面ABC 时,h 取到最大值.此时三棱锥P ABC -的体积取到最大值11333ABC S D ⋅==.5. 将5个数2,0,1,9,2019按任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数为 .答案:95. 解:易知2,0,1,9,2019的所有不以0为开头的排列共有44!96´=个.其中,除了(2,0,1,9,2019)和(2019,2,0,1,9)这两种排列对应同一个数20192019,其余的数互不相等.因此满足条件的8位数的个数为96195-=.6. 设整数4n >,(1)n x +的展开式中4n x -与xy 两项的系数相等,则n 的值为 .答案:51.解:注意到0(1)C 1)nnr n r r nr x x -=+=å.其中4n x -项仅出现在求和指标4r =时的展开式444C 1)n n x-中,其4n x -项系数为44(1)(2)(3)(1)C 24n n n n n ----=.而xy 项仅出现在求和指标1r n =-时的展开式11C 1)n n nx --⋅中,其xy 项系数为12331C C 4(1)(1)2(1)(2)n n n n n n n n ----⋅-=---. 因此有3(1)(2)(3)(1)2(1)(2)24n n n n n n n n ----=---.注意到4n >,化简得33(1)48n n --=-,故只能是n 为奇数且348n -=.解得51n =.7. 在平面直角坐标系中,若以(1,0)r +为圆心、r 为半径的圆上存在一点(,)a b 满足24b a ³,则r 的最小值为 .答案:4.解:由条件知222(1)a r b r --+=,故22224(1)2(1)(1)a b r a r r a a £=---=---.即22(1)210a r a r --++£.上述关于a 的一元二次不等式有解,故判别式2(2(1))4(21)4(4)0r r r r --+=-³,解得4r ³.经检验,当4r =时,(,)(3,a b =满足条件.因此r 的最小值为4.8. 设等差数列{}n a 的各项均为整数,首项12019a =,且对任意正整数n ,总存在正整数m ,使得12n m a a a a +++=.这样的数列{}n a 的个数为 .答案:5.解:设{}n a 的公差为d .由条件知12k a a a +=(k 是某个正整数),则 112(1)a d a k d +=+-,即1(2)k d a -=,因此必有2k ¹,且12ad k =-.这样就有1111(1)2n n a a n d a a k -=+-=+-,而此时对任意正整数n ,12111(1)(1)(1)22n n n n n a a a a n d a n a d --+++=+=+-+ 1(1)(1)(2)2n n a n k d æö-÷ç=+--+÷ç÷çèø, 确实为{}n a 中的一项.因此,仅需考虑使12|k a -成立的正整数k 的个数.注意到2019为两个素数3与673之积,易知2k -可取1,1,3,673,2019-这5个值,对应得到5个满足条件的等差数列.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在椭圆G 中,F 为一个焦点,,A B 为两个顶点.若3,2FA FB ==,求AB 的所有可能值.解:不妨设平面直角坐标系中椭圆G 的标准方程为22221(0)x y a b a b+=>>,并记c =F 为G 的右焦点.易知F 到G 的左顶点的距离为a c +,到右顶点的距离为a c -,到上、下顶点的距离均为a .分以下情况讨论:(1) ,A B 分别为左、右顶点.此时3,2a c a c +=-=,故25AB a ==(相应地,2()()6b a c a c =+-=,G 的方程为2241256x y +=). …………………4分(2) A 为左顶点,B 为上顶点或下顶点.此时3,2a c a +==,故1c =,进而2223b a c =-=,所以AB ==G 的方程为22143x y +=). …………………8分 (3) A 为上顶点或下顶点,B 为右顶点.此时3,2a a c =-=,故1c =,进而2228b a c =-=,所以AB ==G 的方程为22198x y +=).…………………12分 综上可知,AB的所有可能值为5,. …………………16分10. (本题满分20分)设,,a b c 均大于1,满足lg log 3,lg log 4.b a a c b c ì+=ïïíï+=ïî求lg lg a c ⋅的最大值.解:设lg ,lg ,lg a x b y c z ===,由,,1a b c >可知,,0x y z >.由条件及换底公式知3,4z zx y y x+=+=,即34xy z y x +==.…………………5分由此,令3,4(0)x t y t t ==>,则241212z x xy t t =-=-.其中由0z >可知(0,1)t Î. …………………10分因此,结合三元平均值不等式得2lg lg 312(1)18(22)a c xz t t t t t ==⋅-=⋅-33(22)2161818333t t t æöæö++-÷çç£⋅=⋅=÷çç÷ççèèø. 当22t t =-,即23t =(相应的,,a b c 分别为8833100,10,10)时,lg lg a c 取到最大值163. …………………20分11. (本题满分20分)设复数数列{}n z 满足:11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=.证明:对任意正整数m ,均有123m z z z +++<. 证明:归纳地可知*0()n z n N ¹Î.由条件得2*114210()n n n n z z n z z N ++æöæö÷çç÷++=Îçç÷çç÷èøèø,解得*11()4N n n z n z +-=Î. …………………5分因此1112n n nnz z z z ++===,故*11111()22N n n n z z n --=⋅=Î. ①进而有*11111()22N n n n n n n n z z z z n z ++-+=⋅+==Î. ②…………………10分当m 为偶数时,设*2()N m s s =Î.利用②可得122122122111123sm k k k k k k k k z z z z z z z ¥¥---===+++£+<+==ååå. …………………15分 当m 为奇数时,设21()N m s s =+Î.由①、②可知21212221211112322s k k s s k k s k s z z z ¥¥+---=+=+=<==+⋅åå, 故1221221212113s m k k s k k k k z z z z z z z z ¥-+-==æö÷ç+++£++<+=÷ç÷çèøåå. 综上,结论获证. …………………20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∶3
∴������������2
=
1 9
+
4
+
4 3
cos
������������

(2,6)
又∵������������ ∈ ������������+
∴������������ = 2
∴cos
������������
=

1.
12
5.已知复数������������1,������������2,������������3使得������������������������12为纯虚数,|������������1| = |������������2| = 1,|������������1 + ������������2 + ������������3| = 1,则|������������3|的最小 值是________.
∴�������⃗������2
=
1 9
������⃗������2
+
4 9
������⃗������2
+
4 9
������⃗������
·
������⃗������
∵|������⃗������| ∶ ��������⃗������� ∶ |������⃗������| = 1 ∶ ������������
(������������

������������+).
(1)证明:数列{������������������������}是正整数数列;
(2)是否存在������������ ∈ ������������+,使得2109 ∣ ������������������������,并说明理由.
������������ = ������������(������������ − 3)
联立

������������
2

������������2 3
=
1
得(������������2 − 3)������������2 − 6������������2������������ + 9������������2 + 3 = 0
∴������������
=
������������(������������)max
=
√2 −
3,������������
=
������������(������������)min
=
������������ −2,∴������������
=
3−√2.
2
3.tan 15o + 2√2 sin 15o =________.
x
则 f (8) =
.
答案: 7 2
提示:由题意存在 x0 > 0 使 f (x0 ) = 3 。又因 f (x) 是 (0, +∞) 上的单调函数,这样的 x0 > 0
是唯一的,再由
f
(f
(x0 ) +
4) x0
= 3 得 x0
=f
(x0 ) +
4 x0
=3 +
4 x0
解得 x0 = 4 或 x0 = −1(舍)。所以 f (x)=
夹角,则cos ������������ =________.
答案:
−Hale Waihona Puke 1 12提示:∵�������⃗������ − ������⃗������ = 2(������⃗������ − �������⃗������)
∴�������⃗������
=
1 3
������⃗������
+
2 3
������⃗������
ℎ = �23 ������������ = 3 + �23 · 2 + �23 · 2 + 1, 得������������ = 4 + 2√6
7. 设 f (x) 是定义在 (0, +∞) 上的单调函数,对任意 x > 0 有 f (x) > − 4 ,f ( f (x) + 4) = 3 ,
x

2
.......12 分
∴������������ = ±3.
........ 16 分。
10.数列{������������������������}满足������������1
=
3,������������2
=
6,������������������������+2
=
���������������2���������+1+9 ������������������������
16√2. 3
二、解答题(第 9 题 16 分,第 10、11 题各 20 分)
9.已知过点������������(3,0)斜率为������������的直线������������交双曲线:������������2

������������2 3
=
1右支于������������、两点,������������为双曲线的
94
值为________.
答案: 16√2 3
提示:经伸缩变换�������������������������
= =
32������������������������得△
������������′′′内接于圆������������2
+
������������2
=
1,������������′′过点������������′(13
答案: 2 −1
提示:设������������ = ������������1 + ������������2 + ������������3,则|������������| = 1,由已知
������������1 ������������2
+ (��z�1��)
z2
=
0
∴������������1�������������2 + ������������2�������������1 = 0
,
0),
������������△������������������������������������
=
6������������△������������′′′ ,设������������′ 距������������′′ 的距离 为������������ ,则0

������������
答案: 1
提示:tan 15o
+
2√2 sin
15o
=
sin 15o cos 15o
+
2√2 sin 15o
=
sin 15o+√2 sin 30o cos 15o
=
sin 15o+√2 sin(45o−15o) cos 15o
=
sin 15o+√2(sin 45o cos 15o−cos 45o cos 15o
右焦点,且|������������| + || = 16,求������������的值.
解:设������������(������������1, ������������1),(������������2, ������������2),则直线 l:������������ = ������������(������������ − 3).离心率������������ = 2。......4 分
∴|������������3| = |������������1 + ������������2 − ������������| ≥ |������������1 + ������������2| − |������������| = √2 − 1。 当 =z1 1,= z2 i,= z3
2 − 2 (1+ i) 时, 2
������������(������������)
=
(������������

3)
·
���������2���2,令������������(������������)
=
1 2
������������2(������������

3),������������

[√2,
2].
令������������′(������������) = 0得������������ = 2,�������������√2� = √2 − 3,������������(2) = −2,
������������ =________.
������������
答案: 3−√2 2
提示:设������������ = √1 + ������������ + √1 − ������������,则������������ ≥ 0且������������2 = 2 + 2√1 − ������������2,∴������������ ∈ �√2, 2�.
∴������������1 + ������������2 = ���������6���2���−���������23...........8 分
∴16
=
|������������|
+
||
=
(2������������1

1)
+
(2������������2

1)
=
2
×
相关文档
最新文档