压弯构件稳定计算

合集下载

拉弯和压弯构件的强度与稳定计算.

拉弯和压弯构件的强度与稳定计算.

拉弯和压弯构件的强度与稳定计算1.拉弯和压弯构件的强度计算考虑部分截面发展塑性,《规范》规定的拉弯和压弯构件的强度计算式f W M A N nxx x n ≤+γ (6-1)承受双向弯矩的拉弯或压弯构件,《规范》采用了与式(6-1)相衔接的线性公式f W M W M A Nnyy y nx x x n ≤++γγ (6-2)式中:n A ——净截面面积;nx W 、ny W ——对x 轴和y 轴的净截面模量;x γ、y γ——截面塑性发展系数。

当压弯构件受压翼缘的外伸宽度与其厚度之比t b />y f /23513,但不超过yf /23515时,应取x γ=1.0。

对需要计算疲劳的拉弯和压弯构件,宜取x γ=y γ=1.0,即不考虑截面塑性发展,按弹性应力状态计算。

2.实腹式压弯构件在弯矩作用平面内的稳定计算目前确定压弯构件弯矩作用平面内极限承载力的方法很多,可分为两大类,一类是边缘屈服准则的计算方法,一类是精度较高的数值计算方法。

按边缘屈服准则推导的相关公式y Ex x x xx f N N W M AN =⎪⎪⎭⎫⎝⎛-+ϕϕ11(6-4)式中:x ϕ——在弯矩作用平面内的轴心受压构件整体稳定系数。

边缘纤维屈服准则认为当构件截面最大受压纤维刚刚屈服时构件即失去承载能力而发生破坏,更适用于格构式构件。

实腹式压弯构件当受压最大边缘刚开始屈服时尚有较大的强度储备,即容许截面塑性深入。

因此若要反映构件的实际受力情况,宜采用最大强度准则,即以具有各种初始缺陷的构件为计算模型,求解其极限承载力。

弯矩沿杆长均匀分布的两端铰支压弯构件,《规范》采用数值计算方法,考虑构件存在l/1000的初弯曲和实测的残余应力分布,算出了近200条压弯构件极限承载力曲线。

然后《规范》借用了弹性压弯构件边缘纤维屈服时计算公式的形式,经过数值运算,得出比较符合实际又能满足工程精度要求的实用相关公式y Ex px xx f N N W M AN=⎪⎪⎭⎫⎝⎛-+8.01ϕ(6-5)式中:px W ——截面塑性模量。

非栈桥区域压弯构件强度与稳定计算

非栈桥区域压弯构件强度与稳定计算

非栈桥区域压弯构件强度与稳定计算非栈桥区域型钢立柱验算:1、计算简图排序体图2、荷载计算第一道提振重量:(12×0.6×0.6+10.5×0.8×0.8)×25=276.0kn;第二道提振重量:(12×0.7×0.7+10.5×0.9×0.9)×25=360.0kn;第一道提振上活载:(12×0.6+10.5×0.8)×4=62.4kn;第二道支撑上活载:(12×0.7+10.5×0.9)×4=71.4.4kn;3、计算结果《钢结构设计规范》(gb50017-2021),本文简称《钢结构规范》-----------------------------------------------------------------------1输出数据1.1基本输入数据构件材料特性材料名称:q235构件横截面的最小厚度:14.00(mm)设计强度:215.00(n/mm2)屈服强度:235.00(n/mm2)截面特性横截面名称:角钢女团矩形横截面(gb9787-88):xh=l140x14(型号)角钢型号:l140x14(型号)截面宽度[100≤w≤600]:460(mm)绣件类型:方钢绣板构件高度:6.000(m)允许强度安全系数:1.00容许稳定性安全系数:1.001.2荷载信息恒载分项系数:1.20活载分项系数:1.40是否考虑自重:考虑轴向恒有载标准值:636.000(kn)轴向活载标准值:133.800(kn)偏心距ex:6.0(cm)偏心距ey:6.0(cm)1.3相连接信息连接方式:普通连接横截面与否被弱化:否1.4端部约束信息x-z平面内顶部约束类型:简支 x-z平面内底部约束类型:固定 x-z平面内计算长度系数:0.80 y-z平面内顶部约束类型:简支 y-z平面内底部约束类型:紧固 y-z平面内计算长度系数:0.80 2中间结果2.1截面几何特性面积:150.28(cm2)惯性矩ix:57120.60(cm4)抵抗矩wx:2483.50(cm3)回转半径ix:19.50(cm)惯性矩iy:57120.60(cm4)抵抗矩wy:2483.50(cm3)回转半径iy:19.50(cm)塑性发展系数γx1:1.00塑性发展系数γy1:1.00塑性发展系数γx2:1.00塑性发展系数γy2:1.00分肢的ix:688.81(cm4)分肢的iy:688.81(cm4)分肢的ix:4.28(cm)分肢的iy:4.28(cm)2.2材料特性抗拉强度:215.00(n/mm2)抗压强度:215.00(n/mm2)抗弯强度:215.00(n/mm2)抗剪强度:125.00(n/mm2)屈服强度:235.00(n/mm2)密度:785.00(kg/m3)2.3平衡信息绕x轴弯曲:长细比:λx=29.56轴心受压构件截面分类(按受压特性):b类轴心承压整体平衡系数:φx=0.938均匀弯曲的受弯构件整体稳定系数:φby=1.000最轻稳定性安全系数:1.88最大稳定性安全系数:1.88最轻稳定性安全系数对应的横截面至构件顶端的距离:6.000(m)最小稳定性安全系数对应的横截面至构件顶端的距离:0.000(m)拖y轴伸展:长细比:λy=29.56轴心承压构件横截面分类(按承压特性):b类轴心受压整体稳定系数:φy=0.938光滑伸展的受弯构件整体平衡系数:φbx=1.000最小稳定性安全系数:1.88最小稳定性安全系数:1.88最小稳定性安全系数对应的截面到构件顶端的距离:6.000(m)最大稳定性安全系数对应的截面到构件顶端的距离:0.000(m)2.4强度信息最大强度安全系数:1.97最轻强度安全系数:1.97最大强度安全系数对应的截面到构件顶端的距离:0.000(m)最轻强度安全系数对应的横截面至构件顶端的距离:6.000(m)计算荷载:951.91kn受力状态:双向受弯2.5缀件类型:方钢缀板3分析结果构件安全状态:稳定满足要求,强度满足要求。

压弯构件的整体稳定

压弯构件的整体稳定

NAfyx
N xAWx1mM xNNEfy
三、实腹式压弯构件在弯矩作用平面内的稳定计算
1、双轴对称的实腹式压弯构件
N
mM x x
f
xA xW1x10.8NNEX
NEX——欧拉临界力
NE2ElI22EA 2
f 钢材抗压,抗拉, 强抗 度弯 设计值
2、单轴对称的实腹式压弯构件,当弯矩作用在对 称平面内且使较大的翼缘受压时,有可能在受拉侧首 先发展塑性而使构件失稳。
公式N: txMx f yA bW1x
y —弯矩作用平面外受的压轴稳心定系数
由y
loy iy
查表
b—均匀弯曲的定 受性 弯,系 构 (y 数 件 12稳 023f5y)
tx —非均匀弯矩作用弯的矩等系效数。
均匀弯曲的受 定弯 性构 系 b(件 数 y 1稳 2023f5y
1、工字形截面 双轴对称时:
h0tw4800.52.2 6
235 fy
—构件在弯矩作用的 平长 面细 内比
当λ<30时,取λ=30,
当λ>100时,取λ=100,即30≤λ≤100。
二、腹板的局部稳定 (二)箱形截面的腹板
当00 1.6时h0tw0.8160 0.525
235 fy
当1.60 2.0时h0tw0.8480 0.526.2
压弯构件的整体稳定
第八节 压弯构件的整体稳定 一、压弯构件在弯矩作用平面内的失稳现象
二、压弯构件在弯矩作用平面内的弹性性能 力的平衡方程
EIdd2xy2 NyM
二、压弯构件在弯矩作用平面内的弹性性能 构件中点的挠度
M[sec N 1]
N 2 NE
sec
N
2

钢结构压弯构件验算计算书

钢结构压弯构件验算计算书
=1.07-(60.04×60.04/44000)×(345/235) =0.95
平面内弯矩等效系数计算:
2轴平面内,有相对水平位移: βm2=1
3轴平面内,有相对水平位移: βm3=1
平面外弯矩等效系数计算: 2轴平面内,有相对水平位移:
βt2=1 3轴平面内,有相对水平位移:
βt3=1
截面影响系数η: 非闭合截面:η=1.0
截面钢材类型:Q345 钢材弹性模量:E=206000N/mm2 钢材强度标准值:fy=345N/mm2 强度换算系数:CF=(235/fy)0.5=(235/345)0.5=0.825 构件计算长度:
l02=7.62m l03=8.73m 构件长细比: λ2=762.31/12.7=60.04 λ3=872.74/22.24=39.24
=1/(2×0.5112)×{(0.965+0.3×0.511+0.5112) -[(0.965+0.3×0.511+0.5112)2-4×0.5112]0.5}
=0.867
均匀弯曲的受弯构件整体稳定系数: 工字形截面:
2轴:ψb2=1.0 3轴计算: λ2=60.04<120*CF=99.04 采用近似计算: ψb3=1.07-(λ22/44000)*(fy/235)
=0.734 3轴轴压稳定系数:
b类截面 α1=0.65 α2=0.965
α3=0.3 正则化长细比:λn3=(fy/E)0.5*(λ/π)=(345/20600)0.5×(39.24/3.14)=0.511 λn3=0.511>0.215 ψ3=1/(2λn2){(α2+α3λn+λn2)-[(α2+α3λn+λn2)2-4λn2]0.5}

压弯构件的整体稳定资料

压弯构件的整体稳定资料

N EY

f
其中
N EY


2
EA
2y
第六节 格构式压弯构件的稳定性计算 一、弯矩绕实轴作用时
2、弯矩作用平面外的稳定性 (同实腹式闭合式箱形截面类似)
N x A ty M y bW1y f 其中 x由换算长细比0x确定
b 1,为均匀弯曲的受弯构件整体系数
二、弯矩绕虚轴作用时 1、弯矩作用平面内的稳定性
/ mm 2
P 475kN
P的最小值为381.8kN, 边柱和中柱的承载能力分别为 381.8kN和763.6kN, 由中柱的稳定承载能力决定。
第六节 格构式压弯构件的稳定性计算
一、弯矩绕实轴作用时
1、弯矩作用平面内的稳定性
弯矩作用平面内的稳定性和 实腹式压弯构件相同。
N y A myM y yW1y 1 0.8 N
第八节压弯构件的整体稳定一压弯构件在弯矩作用平面内的失稳现象二压弯构件在弯矩作用平面内的弹性性能nydx力的平衡方程二压弯构件在弯矩作用平面内的弹性性能构件中点的挠度二压弯构件在弯矩作用平面内的弹性性能构件中点的弯矩secmaxmax二压弯构件在弯矩作用平面内的弹性性能构件中点的最大弯矩假定构件的挠度曲线与正弦曲线的半个波段相一致即ysinxl可以得到二压弯构件在弯矩作用平面内的弹性性能构件中点的最大弯矩max理论值2单轴对称的实腹式压弯构件当弯矩作用在对称平面内且使较大的翼缘受压时有可能在受拉侧首先发展塑性而使构件失稳
• 对框架柱 在框架平面内的计算长度是根据框架失稳时的形式 (有、无)侧移来确定。
在框架平面外的计算长度是根据框架侧向支承点布 置的情况确定。
一、在框架平面内的计算长度
(一) 单层等截面框架柱

压弯构件的整体稳定_图文_图文

压弯构件的整体稳定_图文_图文
1、有侧向支承时,框架平面外的 计算长度等于侧向支承点之间的 距离。 2、无侧向支承时,框架平面外 的计算长度等于柱的全长。
[例题6-8]柱与基础铰接的双跨框架上,沿构件 的轴线作用有轴线压力,边柱为P, 中柱为2P, 沿横梁的水平力为0.2P, 承受弯距如图,框架平 面外有足够支撑。 要求确定柱的承载能力。
Байду номын сангаас
二、腹板的局部稳定
(一) 工字形截面的 腹板
二、腹板的局部稳定 (一) 工字形截面的
腹板
当λ<30时,取λ=30, 当λ>100时,取λ=100,即30≤λ≤100。
二、腹板的局部稳定 (二)箱形截面的腹板
二、腹板的局部稳定 (三)T形截面的腹板
第 五节 压弯构件的计算长度
• 当压弯构件的端部支承条件比较简单,其计算 长度可按照轴心压杆的计算长度系数进行计算;
四、实腹式压弯构件在弯矩作用平面外的稳定计算
四、实腹式压弯构件在弯矩作用平面外的稳定计算
四、实腹式压弯构件在弯矩作用平面外的稳定计算
1、工字形截面 双轴对称时 :
单轴对称时:
2、T形截面(弯矩作用在对称轴平面,绕x 轴) (1)弯矩使翼缘受压时:
双角钢T形截面:
两板组合T形截面:
(2)弯矩使翼缘受拉时: b=1.0 3、箱形截面: b=1.4 4、 对轧制普通工字钢之压弯构件,可由附表直接查得, 当查得的 b >0.6时,应按表查相应的/ b代替 b
构件看作一个平行桁架,分肢视为弦杆,将压 力和弯矩分配到分肢并按轴心压杆计算。分肢 的轴向力按下式计算:
分肢1
分肢2
压弯构件的整体稳定_图文_图文.ppt
二、压弯构件在弯矩作用平面内的弹性性能 力的平衡方程

5.压弯构件稳定计算

5.压弯构件稳定计算

压弯构件的整体失稳
2. 压弯构件弯矩作用平面内的整体稳定
确定压弯构件弯矩作用平面内极限承载力的方法可分为两类,即: 极限荷载计算方法和相关公式方法。
极限荷载计算法
采用解析法或数值法直接求解压弯构件弯矩作用平面内的极限荷载。
解析法是在各种近似假定的基础上,通过理论方法求得构件在弯矩 作用平面内极限荷载的解析解。 数值法可以求得单一构件弯矩作用平面内极限承载力的数值解,可 以考虑构件的几何缺陷和残余应力的影响,适用于各种边界条件以 及弹塑性工作阶段,是最常用的方法。
Af y W v0 ( 1) 1 A N E 1
m M
N W 1 N E fy
边缘屈服准则导出的相关公式。 规范将上式作为格构式压弯构件绕虚轴平面内稳定计算的 相关公式
N x A
m M x
N W1x 1 x N Ex
ex ey x
N x A
mx M x
xW1x 1 0.8 N Ex
ty M y f byW1y N
(a)
y
y1 ey x
y
y1
x1
N y A
my M y M tx x f bxW1x N yW1y 1 0.8 N Ey
A 470 10 2 400 15 16700 mm2
I x (400 5003 390 4703 ) / 12 792.4 106 mm4
Wx 792.4 106 / 250 3.170106 mm3
ix 217.8mm
x 16000/ 217.8 73.5 [ ] 150

受弯构件的强度、整体稳定和局部稳定计算

受弯构件的强度、整体稳定和局部稳定计算

《钢结构》网上辅导材料受弯构件的强度、整体稳定和局部稳定计算钢梁的设计应进行强度、整体稳定、局部稳定和刚度四个方面的计算。

一、强度和刚度计算1.强度计算强度包括抗弯强度、抗剪强度、局部承压强度和折算应力。

(1)抗弯强度荷载不断增加时正应力的发展过程分为三个阶段,以双轴对称工字形截面为例说明如下:图1 梁正应力的分布1)弹性工作阶段荷载较小时,截面上各点的弯曲应力均小于屈服点f,荷载继续增y加,直至边缘纤维应力达到f(图1b)。

y2)弹塑性工作阶段荷载继续增加,截面上、下各有一个高度为a的区域,其应力σ为屈服应力f。

截面的中间部分区域仍保持弹性(图1c),此时梁处于弹塑性工作阶段。

y3)塑性工作阶段当荷载再继续增加,梁截面的塑性区便不断向内发展,弹性核心不断变小。

当弹性核心完全消失(图1d)时,荷载不再增加,而变形却继续发展,形成“塑性铰”,梁的承载能力达到极限。

计算抗弯强度时,需要计算疲劳的梁,常采用弹性设计。

若按截面形成塑性铰进行设计,可能使梁产生的挠度过大。

因此规范规定有限制地利用塑性。

梁的抗弯强度按下列公式计算:单向弯曲时f W Mnxx x≤=γσ (1)双向弯曲时f W MW Mnyy ynxx x≤+=γγσ (2)式中 M x 、M y —绕x 轴和y 轴的弯矩(对工字形和H 形截面,x 轴为强轴,y 轴为弱轴);W nx 、W ny —梁对x 轴和y 轴的净截面模量; y x γγ,—截面塑性发展系数,对工字形截面,20.1,05.1==yxγγ;对箱形截面,05.1==yxγγ;f —钢材的抗弯强度设计值。

当梁受压翼缘的外伸宽度b 与其厚度t 之比大于y f /23513 ,但不超过yf /23515时,取0.1=xγ。

需要计算疲劳的梁,宜取0.1==yx γγ。

(2)抗剪强度主平面受弯的实腹梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状态。

v wf It VS ≤=τ(3)式中 V —计算截面沿腹板平面作用的剪力设计值;S —中和轴以上毛截面对中和轴的面积矩; I —毛截面惯性矩; t w —腹板厚度;f v —钢材的抗剪强度设计值。

C82-压弯构件弯矩作用平面内整体稳定计算式

C82-压弯构件弯矩作用平面内整体稳定计算式
件。) 框架柱和两端支承的构件
① 无横向荷载作用, βmx =0.65+0.35M2/M1
M1 和 M2 是构件两端的弯矩,|M1|≥|M2|;当两端弯矩使构 件产生同向曲率时取同号,使构件产生反向 曲率(有反弯点) 时取异号。
N M1
M2 N
N M1
M2 N
M2/M1>0
M2/M1<0
② 有端弯矩和横向荷载同时作用
(3)压弯构件弯矩作用平面内整体稳定计算式
单向压弯构件弯矩作用平面内整体稳定验算公式为:
绕虚轴( x 轴)弯曲的格构式压弯构件
y
N
M mx x
f
A W 1 N N
x
实腹式压弯构件和绕实轴弯曲的格构 式压弯构件
N
M mx x
f
A W 1 0.8N N
2
1
x

拉 fy
式中:
γ2x — 较小翼缘端的截面塑性发展系数;
W2x — 较小翼缘端的毛截面模量;
x Mx
x
压 拉
1.25— 经验修正系数。
2
fy
等效弯矩系数 βmx
按以下规定采用。 悬臂构件和在内力分析中未考虑二阶效应的无支撑和弱支撑框
架柱,βmx =1.0 (弯矩作用平面内两端有相对侧移的压弯构
x
x 1x
Ex
1 y
x
1
y
x
对于单轴对称截面(如 T 形截面)压弯构件 当弯矩作用在对称
轴平面内且使较大翼缘受压时,有可能在
较小翼缘(或无翼缘)一侧产生较大的拉应力而出现受拉破坏

1
对这种情况,除上述计算外,尚应补
充如下计算:

基本计算拉弯和压弯构件的强度与稳定计算

基本计算拉弯和压弯构件的强度与稳定计算

拉弯和压弯构件的强度与稳定计算1.拉弯和压弯构件的强度计算考虑部分截面发展塑性,《规范》规定的拉弯和压弯构件的强度计算式f W M A N nxx x n ≤+γ (6-1)承受双向弯矩的拉弯或压弯构件,《规范》采用了与式(6-1)相衔接的线性公式f W M W M A Nnyy y nx x x n ≤++γγ (6-2)式中:n A ——净截面面积;nx W 、ny W ——对x 轴和y 轴的净截面模量;x γ、y γ——截面塑性发展系数。

当压弯构件受压翼缘的外伸宽度与其厚度之比t b />y f /23513,但不超过yf /23515时,应取x γ=1.0。

对需要计算疲劳的拉弯和压弯构件,宜取x γ=y γ=1.0,即不考虑截面塑性发展,按弹性应力状态计算。

2.实腹式压弯构件在弯矩作用平面内的稳定计算目前确定压弯构件弯矩作用平面内极限承载力的方法很多,可分为两大类,一类是边缘屈服准则的计算方法,一类是精度较高的数值计算方法。

按边缘屈服准则推导的相关公式y Ex x x xx f N N W M AN =⎪⎪⎭⎫⎝⎛-+ϕϕ11(6-4)式中:x ϕ——在弯矩作用平面内的轴心受压构件整体稳定系数。

边缘纤维屈服准则认为当构件截面最大受压纤维刚刚屈服时构件即失去承载能力而发生破坏,更适用于格构式构件。

实腹式压弯构件当受压最大边缘刚开始屈服时尚有较大的强度储备,即容许截面塑性深入。

因此若要反映构件的实际受力情况,宜采用最大强度准则,即以具有各种初始缺陷的构件为计算模型,求解其极限承载力。

弯矩沿杆长均匀分布的两端铰支压弯构件,《规范》采用数值计算方法,考虑构件存在l/1000的初弯曲和实测的残余应力分布,算出了近200条压弯构件极限承载力曲线。

然后《规范》借用了弹性压弯构件边缘纤维屈服时计算公式的形式,经过数值运算,得出比较符合实际又能满足工程精度要求的实用相关公式y Ex px xx f N N W M AN=⎪⎪⎭⎫⎝⎛-+8.01ϕ(6-5)式中:px W ——截面塑性模量。

压弯构件的计算长度、格构式压弯构件的稳定性计算(PPT-27)

压弯构件的计算长度、格构式压弯构件的稳定性计算(PPT-27)

在缀件平面内取缀条相邻节点中 心间的距离或缀板间的净距。
V Af f y 85 235
在缀件平面外取侧向支承点之间的距离。
(一) 单层等截面框架柱
基本假定:横梁没有轴力或轴力很小,且各柱同时失稳。 1、单层单跨框架
(1)无侧移框架 横梁两端转角大小相等,方向相反
(2)有侧移框架
有侧移失稳的变形是反对称的,横梁两端的转角θ大小 相等方向相同。
横梁线刚度i1=I1/L与柱线刚度i=I/H的比值为K1=I1H/IL= i1/ i
H01 H 2.076 800 1661cm
强度
(2)求边柱的承载能力
弯距作用平面内稳定
N
mxM x
f
N
Mx
xA
f
xWx 1 0.8 N NEX
An xWn x
(2)求边柱的承载能力 边柱的截面特性
A = 36 1+2 301.2 =108cm2
Wx = 28800/19.2 =1500cm3
由N
mxM x
f
x A xWx 1 0.8 N NEX
P103
1.0 0.384P 106
0.546108102 1.051500103 1 0.8 P 2133.4
f 215N / mm2
P 461.5kN
由 N Mx f
An xWn x
P 103 108 102
0.384 P 106 1.05 1500 10
215 N / mm2
P 475kN
P的最小值为381.8kN, 边柱和中柱的承载能力分别为 381.8kN和763.6kN, 由中柱的稳定承载能力决定。
三、 格构式压弯构件的稳定性计算

圆钢压弯稳定计算

圆钢压弯稳定计算

圆钢压弯稳定计算
圆钢压弯稳定计算是指对圆钢进行压弯操作时,考虑其稳定性的计算。

在进行圆钢压弯时,需要考虑以下几个因素:
1. 弯曲力矩:圆钢在压弯过程中所受到的力矩,可以通过力学计算得到。

弯曲力矩的大小与圆钢的弯曲角度、材料的弯曲强度有关。

2. 稳定性判据:圆钢在压弯过程中,可能会出现稳定性失稳的情况,如屈曲或翻边。

因此,需要根据圆钢的几何形状和材料特性,通过相应的稳定性判据进行计算,以确定圆钢在压弯过程中的稳定性。

3. 材料特性:圆钢的材料特性对其压弯稳定性有重要影响。

包括材料的屈服强度、弹性模量、塑性变形能力等。

在进行圆钢压弯稳定计算时,可以参考相关的力学理论和计算方法,如欧拉稳定性理论、弹性稳定性理论等。

根据具体情况,可以使用数值计算方法或经验公式进行计算。

同时,为了保证计算结果的准确性,还需要进行实际试验验证。

压弯构件稳定计算课件

压弯构件稳定计算课件
可以计算出框架结构在压弯作用下的临界承载力和安全系数,从而评估其稳定性。
压弯构件的优化设计建议
优化材料选择
总结词
选择高强度、高弹性模量的材料可以提高压弯构件的稳定性。
详细描述
在材料选择上,可以考虑使用高强度钢材或其他合金材料, 这些材料具有较高的抗弯刚度和稳定性,能够提高压弯构件 的承载能力。
优化截面形状和尺寸
整体稳定计算公式
根据压弯构件的几何尺寸、 材料特性、边界条件等因 素,通过计算确定构件的 整体稳定性。
计算方法
采用有限元法、能量法、 传递矩阵法等数值分析方 法进行计算。
影响因素
包括截面尺寸、材料特性、 支撑条件、荷载大小和分 布等。
压弯构件的局部稳定计算
局部稳定计算公式
针对压弯构件的局部区域,如翼 缘、腹板等,进行稳定性计算。
压弯构件的承载能力
承载能力与截面尺寸、材料强度有关
压弯构件的承载能力主要取决于截面尺寸和所用材料的强度,截面尺寸越大、材 料强度越高,承载能力越强。
需满足稳定性要求
在承载能力满足要求的前提下,还需满足稳定性要求,以防止构件在受压过程中 发生屈曲或失稳。
压弯构件的稳定性分析方法
01
02
03
弹性稳定性分析
总结词
合理的截面形状和尺寸可以改善压弯构 件的稳定性。
VS
详细描述
根据压弯构件的受力特点,可以设计合理 的截面形状,如工字形、箱形等,以充分 利用材料的力学性能。同时,合理的尺寸 也能够提高构件的稳定性,如增加翼缘宽 度、减小腹板厚度等。
优化支撑和连接方式
总结词
合理的支撑和连接方式可以增强压弯构件的 整体稳定性。
随着计算机技术和有限元方法的不断 发展,采用数值模拟方法进行压弯构 件的稳定性分析,提高了计算精度和 可靠性。

压弯构件的稳定-陈绍蕃

压弯构件的稳定-陈绍蕃


2015年11月18日
第 5章

兼承轴力和弯矩的构件稳定
压弯构件
5.1.2

构 稳 定 设 计 指
图5.1.2a承受偏心压力作用的构件,图5-1-2b有横向荷 载作用的压杆及图5.1.2c有端弯矩作用的压杆,都属于压弯 构件。该类构件应用十分广泛,如有节间荷载作用的屋架的 上弦杆,厂房的框架柱,高层建筑的框架柱和海洋平台的立 柱等均属于压弯构件。

2015年11月18日
第 5章

兼承轴力和弯矩的构件稳定
给出了双轴对称的工 形和单轴对称的 T 形 截面构件在偏心压力 作用下受力最大截面

构 稳 定 设 计 指
的应力图形。两者相
比较可知,前者总是 在受压侧先进入塑性,
后者则是在偏心较大
的情况下从受拉侧先
图5.3.3 单轴对称截面的压弯构件

屈服。
2015年11月18日

第 5章

兼承轴力和弯矩的构件稳定

构 稳 定 设 计 指
双轴对称截面的压弯构件,塑性区可能仅出现在弯矩 作用的受压侧,也可能两侧同时出现。但对单轴对称截面 的压弯构件,当弯矩作用于对称轴平面内且使较大翼缘受 压时,塑性区也可能仅出现在弯矩作用的受拉侧,削弱截面 刚度。如图5.3.3b,d 所示。
1.失稳时附加挠度对弯矩的增大影响 构件失稳时各截面将产生一定的附加挠度,这一 附加挠度将使各截面的弯矩增大,如果假定构件的挠 曲线与正弦曲线的半个波段相一致,则中央截面的最 大弯矩为: M M max (5.3.3)
1 N / NE
在式中

1 称为弯矩放大系数。 1 N / NE

机械-实腹式压弯构件弯矩作用平面内整体稳定计算

机械-实腹式压弯构件弯矩作用平面内整体稳定计算
0.0
N e0
残余应力分布
v0 l
= 0.001
v
0
ε
=
e0 A W
e
ε = 0.5
N0
1.0 2.0
4.0
20
40
60
80

偏心压杆的柱子曲
线
100 120
l
对设计人员要求 高,不便于工程 设计!
N
NEx
Nux
BE F C
D
A
v 0
压弯构件的轴力—位 移曲线
2、实腹式压弯构件弯矩作用平面内整体稳定计算
计算方法分为两大类: 极限荷载计算方法 相关公式方法
(1)极限荷载法
弯矩作用平面内极限荷载础上
N
NEx
Nux
BE F CD
A
, 通过理论方法求得构件在弯矩作用平
面内 稳定承载力Nux的解析解,解析法
0
v
很难得到
压弯构件的轴力—位移曲线
稳定承载力的闭合解,使用很不方便。
数值计算方法可求得单一构件弯矩作用平面内稳定承载力Nux 的数值解,可以考虑构件的几何缺陷和残余应力影响,适用于各
种 边界条件以及弹塑性工作阶段,是最常用的方法。
1.0 0.9 0.8 0.7 0.6 Nux 0.5 Afy 0.4 0.3 0.2 0.1

5.压弯构件稳定计算

5.压弯构件稳定计算


1.05
3.17
106
400 106 (1 0.81.1
900
/
6285)
73.9 137.5 211.4 f 215N/mm2
满足要求
5.在弯矩作用平面外的稳定性验算:
y 81.7 y 0.677 1.0
b(b) 1.07 2y / 44000 1.07 81.72 / 44000 0.918
ey x
x1
ex
N
mx M x
tyM y f
x A

xW1x
1
0.8
N NEx

byW1y
y
(a)
N
myM y
tx M x f
y A

yW1y
1
0.8
N N E y

bxW1x
(b)
y
ex
y1
ey x
y1
x1
例题: 某压弯构件的简图、截面尺寸、受力和侧向支承情况 如图所示,试验算所用截面是否满足强度、刚度和稳定性要 求。钢材为Q235钢,翼缘为焰切边;构件承受静力荷载设计 值F=100kN和N=900kN。
ix 217 .8mm x 16000/ 217.8 73.5 [] 150 iy 97.9mm y 8000/ 97.9 81.7 [] 150
刚度满足要求
3.强度验算
N / An M x /( xWnx )
900103 /16700 400106 / 1.053.170106
采用数值计算方法,考虑l/1000的初弯曲和实测的残余应力 ,算出了近200条压弯构件极限承载力曲线。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压弯构件稳定计算
(1)概述
压弯构件实际上就是轴力与弯矩共同作用的构件,也就是轴心受力构件与受弯构件的组合,典型的两种压弯构件如图所示。

同其他构件一样,压弯构件也需同时满足正常使用及承载能力两种极限状态的要求,即
正常使用极限状态:刚度条件;
承载能力极限状态:强度、整体稳定、局部稳定.
(2) 类型与截面形式
单向压弯构件: 只绕截面一个形心主轴受弯;
双向压弯构件: 绕两个形心主轴均有弯矩作用。

弯矩由偏心轴力引起的压弯构件也称作偏压构件。

截面形式:
同轴心受力构件一样,分实腹式截面与格构式截面。

实腹式:型钢截面与组合截面
格构式:缀条式与缀板式
☻按截面组成方式分为型钢(a、b),钢板焊接组合截面型钢(c、g),组合截面(d、e、f、h、i)
☻按截面几何特征分为开口截面,闭口截面(g、h、i、j)
☻按截面对称性分为单轴对称截面(d、e、f、n、p),双轴对称截面(其余各图)
☻按截面分布连续性分为实腹式截面(a~j)格构式截面(k~p)
(3)破坏形式
强度破坏、整体失稳破坏和局部失稳破坏。

强度破坏:截面的一部分或全部应力都达到甚至超过钢材屈服点的状况。

整体失稳破坏:
单向压弯构件:
弯矩平面失稳:极值失稳,应考虑
效应(二阶效应)。

弯矩平面外失稳:弯扭变形,分岔失稳。

双向压弯构件:一定伴随扭转变形,为分岔失稳。

7.2.1 强度计算
两个工作阶段,两个特征点。

弹性工作阶段:以边缘屈服为特征点(弹性承载力);
弹塑性工作阶段:以塑性铰弯矩为特征点(极限承载力)。

7.2.2 极限承载力与相关条件
联立以上两式,消去η,则有如下相关方程
7.2.3 为计算方便,改用线性相关方程, 得《规》公式:
关于±号的说明:如右图所示对于单对称截面,弯矩绕非对称轴作用时,会出现图示两种控制应力状况。

7.2.4 刚度条件:
一般情况,刚度由构件的长细比控制,即:
7.3.1 概述
实腹式压弯构件在轴力及弯矩作用下,即可能发生弯矩作用平面的弯曲失稳,也可能发生弯矩作用平面外的弯曲扭转失稳(类似梁)。

两方面在设计中均应保证。

7.3.2 弯矩作用平面的整体稳定
考虑初弯曲V0的影响
以受压边缘纤维屈服为破坏准则,则有
若令M X=0,则构件变为轴心压杆,则有轴力极限值:
上式成为:
联立a、b两式,消去V0则有:
引入弯矩非均匀分布时的等效弯矩系数,可得:
适用于绕虚轴的格构式及冷弯薄壁型钢压弯构件
如果采用极限承载力准则, 则有
(试验研究与数值分析相结合确定)
适用于实腹式压弯构件及绕实轴的格构式压弯构件
βmx:等效弯矩系数,按产生的最大弯矩相等的原则选用。

对于不对称的工字形截面、T形截面而且弯矩使较大的翼缘受压时,还应按下式计算:
βmx的取值:
(1)两端有相对水平位移(有侧移框架柱):βmx=1.0(2)两端无相对水平位移:
无横向荷载时:
有端弯矩和横向荷载时:
使构件产生同向曲率时: βmx=1.0
使构件产生反向曲率时:βmx=0.85
无端弯矩但有一个跨中集中荷载作用:
无端弯矩但有几个横向集中荷载作用或横向均匀荷载作用:β
=1.0
mx
7.3.3 弯矩作用平面外的整体稳定
首先建立平面外弯扭屈曲的微分方程
进行一系列推导,得到相关方程
最后得到实用设计公式
φb---均匀弯曲的受弯构件整体稳定系数
η---截面影响系数,闭口截面为0.7,其他截面为1.0βtx---等效弯矩系数,可采用下面数值:
βtx的取值
在弯矩作用平面外有支撑时
(1)所考虑段无横向荷载作用
(2)有端弯矩和横向荷载同时作用
使构件段产生同向曲率,βtx=1.0
使构件段产生异向曲率,βtx=0.85
(3)无端弯矩但有横向荷载作用βtx=1.0 7.4.1格构式压弯构件的计算
(1) 整体稳定计算:绕虚轴
(式7-10),且:
7.4.2单肢稳定计算
弯矩绕虚轴作用时,单肢轴力按下式计算
缀板式构件的计算尚应考虑剪力引起的局部弯矩, 并按压弯构件计算。

其剪力可取下面两个值的较大者。

缀板式构件单肢的平面外稳定计算,可按轴心压杆,计算长度取两相邻侧向支承点间的距离。

7.5.1 按照不允许板件发生局部失稳的准则
翼缘板:
(外伸翼缘)
(两边支承)
腹板:
1.工字形截面
2.箱形截面
腹板的宽厚比不应大于上述值的0.8倍;且当此值小于时, 用该数值。

3.T形截面
7.5.2 考虑利用屈曲后强度的准则
该准则的核心是采用有效截面的概念。

即认为腹板局部屈曲后部分截面退出工作,然后考虑有效截面的作用再按此截面进行构件的强度和整体稳定性验算。

但计算构件长细比时仍按毛截面考虑。

对于有效截面,目前缺乏统一的计算方法。

有待于进一步研究。

相关文档
最新文档