中考专题第九讲几何最值及路径长
初中几何中的最短路径与最值问题,快速解题思路及典型练习
初中几何中的最短路径与最值问题,快速解题思路及典型练习
展开全文
初中几何中最值问题的依据是:''两点之间,线段最短''、''垂线段最短''.在解决最值问题时,通常利用轴对称、平移等变换作出最值位置,从而把已知问题转化为容易解决的问题。
平面几何中最值问题综合性强、能力要求高.解题时要善于运用特殊与一般、转化、建模等数学思想,灵活运用特殊位置法、轴对称法、平移法、旋转法、构造三角形法、判别式法、配方法等各种数学方法,找到几何最值取得时的位置;或将问题转化成基本最短路径模型;或建立方程、函数模型,再求解。
两点在直线同侧的最短路径问题
给出一条直线,A、B两点在直线的同侧,要在直线上找到一个点,使这个点到A点和到B点的距离最短。
步骤:
①找到A(或B)关于直线的对称点P
②连接PB(PA)交直线于O,点O就是所要找的点
造桥选址问题
A、B在一条河的两岸,要在河上造一座桥MN,使A到B的路径AMNB最短。
步骤:
①作出河的宽度M′N′
②将M′N′平移,使M′向A点平移,N′向A′点平移,即AA′=M′N′
③连接A′B与河岸b交于N点
④过N点作直线a的垂线,垂足为M 。
则MN就是桥的位置.
涉及到两个动点的最短路径问题
给出一个正方形,已知两个定点和两个动点,
要在直线上找到这两个动点,使这四个点所围的四边形周长最小。
步骤:
①找到两个定点关于正方形的边的对称点,
②连接两个对称点,和正方形边的两边有两个交点。
③交点就是动点的位置
下面小编找了很多相关的练习,提供给老师、同学们去练习,只有见得多,练得多,才能熟能生巧哦!。
中考专题第九讲几何最值及路径长
中考专题第九讲几何最值及路径长第九讲几何最值及路径长预览1.如图,a,b为定点,p为直线l上一点,若点p恰好使ap+bp最短,请画出点p的位置.提示:a① 分析固定点(a,b),移动点(P在直线L上移动)和不变特征lp②以l为对称轴利用轴对称进行转化③ 位置由“两点之间的最短线段”确定2.如图,a,b为定点,mn为直线l上一可以移动的线段,且mn长度固定,若点m恰好使am+mn+bn最短的,请画出M点的位置。
提示:①分析定点(a,b),动点(m,n在l上动,且mn长度固定),不变特征②先平移bn,使平移后的点n与m重合,将其转化为问题1③ 以l为对称轴,用轴对称变换④ 通过“两点之间,最短线段”确定位置3.如图,∠aob=60°,点p在∠aob的平分线上,op=10cm,点e,f分别是∠aob两边oa,ob当△ PEF最小,从点P到EF的距离为① 分析固定点(P)、移动点(e在OA上移动,f在OB上移动)和不变特征② 分别以OA和ob为对称轴,对称通过p得到P1和P2③连接p1p2,由“两点之间,线段最短”确定位置,进而求解p到ef的距离.aPeofbamnlb知识点1.几何极大值问题的处理思路①分析定点、动点,寻找不变特征;② 如果是常见的模型或结构,调用该模型或结构来解决问题;若不属于常见模型,要结合所求目标,根据不变特征转化为基本定理或表达为函数解决问题.转化原则:尽量减少变量,接近固定点、固定线段和固定图形,或者使用相同的变量来表达所需的目标。
基本定理:两点之间,线段最短(已知两个定点)垂线段最短(已知一个定点、一条定直线)三角形三边关系(已知两边的长度是固定的,或和与差是固定的)过圆内一点,最长的弦为直径,最短的弦为垂直于直径的弦常用模型、结构示例:①轴对称最值模型一bapb'lab'pbl求pa+pb的最小值,使点在线异侧b'b求| PA Pb |的最大值,使点位于直线的同一侧a固定长度段Mn在直线L上滑动,以找到am+Mn+BN的最小值。
中考试题几何中的最值问题(讲义)
几何中的最值问题(讲义)一、知识点睛几何中最值问题包括:“面积最值”及“线段(和、差)最值”.求面积的最值,需要将面积表达成函数,借助函数性质结合取值范围求解; 求线段及线段和、差的最值,需要借助“垂线段最短”、“两点之间线段最短”及“三角形三边关系”等相关定理转化处理. 一般处理方法:常用定理:两点之间,线段最短(两个定点) 垂线段最短(一个定点、一条定直线)三角形三边关系(两边长固定或其和、差固定)lB'BAPlB'ABP线段和差、 周长最值 几何变换、 等线段转移 构建三角形线段最值 ① 折转直;②集中线段长; ③目标线段转化为相关线段. 转化 P A +PB 最小, 需要点在异侧|P A -PB |最大, 需要点在同侧1. 如图,圆柱形玻璃杯,高为12cm ,底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为______cm .蜂蜜蚂蚁ACQP ED CBA第1题图 第2题图2. 如图,正方形ABCD 的边长是4,∠DAC 的平分线交DC 于点E ,若点P ,Q 分别是AD 和AE 上的动点,则DQ +PQ 的最小值为 .3. 如图,在锐角△ABC 中,42AB ,∠BAC =45°,∠BAC 的平分线交BC于点D ,点M ,N 分别是AD 和AB 上的动点,则BM +MN 的最小值为___________.NMABDCQPKDCBA第3题图 第4题图 4. 如图,在菱形ABCD 中,AB =2,∠A =120°,点P 、Q 、K 分别为线段BC 、CD 、BD 上的任意一点,则PK +QK 的最小值为 .5. 如图,当四边形P ABN 的周长最小时,a = .N (a +2,0)P (a ,0)B (4,-1)A (1,-3)OyxP ABDCD'C'B'第5题图 第6题图6. 如图,正方形ABCD 的边长为1,点P 为边BC 上任意一点(可与点B 或点C 重合),分别过点B 、C 、D 作射线AP 的垂线,垂足分别是B ′、C ′、D ′,则BB ′+CC ′+DD ′的最大值为 ,最小值为 .7. 如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC =8,B 到MN 的距离BD =5,CD =4,P 在直线MN 上运动,则PA PB -的最大值等于 .ABCDPMNxOABy第7题图 第8题图8. 点A 、B 均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA +QB 的值最小的点,则OP OQ ⋅= .9. 如图,在△ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为_________.ABCE FPM ABCDP第9题图 第10题图10. 如图,已知AB =10,P 是线段AB 上任意一点,在AB 的同侧分别以AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 . 11. 如图,点P 在第一象限,△ABP 是边长为2的等边三角形,当点A 在x 轴的正半轴上运动时,点B 随之在y 轴的正半轴上运动,运动过程中,点P 到原点的最大距离是________.A BO PxyA DCB PQ A'第11题图 第12题图12. 动手操作:在矩形纸片ABCD 中,AB =3,AD =5.如图所示,折叠纸片,使点A 落在BC 边上的A ′处,折痕为PQ ,当点A ′在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定点P 、Q 分别在AB 、AD 边上移动,则点A ′在BC 边上可移动的最大距离为 .13. 如图,直角梯形纸片ABCD ,AD ⊥AB ,AB =8,AD =CD =4,点E 、F 分别在线段AB 、AD 上,将△AEF 沿EF 翻折,点A 的落点记为P . (1)当P 落在线段CD 上时,PD 的取值范围为 ; (2)当P 落在直角梯形ABCD 内部时,PD 的最小值等于多少?AB C D P FE D CBAA BCD EFP14. 如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM .(1)当M 点在何处时,AM +CM 的值最小; (2)当M 点在何处时,AM +BM +CM 的值最小,并说明理由.15. 如图,已知平面直角坐标系中A ,B 两点的坐标分别为A (2,-3),B (4,-1). (1)若P (p ,0)是x 轴上的一个动点,则当p =________时,△P AB 的周长最短;(2)若C (a ,0),D (a +3,0)是x 轴上的两个动点,则当a =________时,四边形ABDC 的周长最短;(3)设M ,N 分别为x 轴和y 轴上的动点,请问:是否存在这样的点M (m ,0),N (0,n ),使四边形ABMN 的周长最短?若存在,请写出m 和n 的值;若不存在,请说明理由.BA Ox y(3)BA Ox y(2)(1)yx OA BABCDEM N1. 15 2.22 3.4 4.3 5.74 6.2,27.58.39.12510.5 11. 3+112.213.(1)8434-≤≤PD ;(2) 458-14.(1)点M 在BD 的中点时,AM+CM 的值最小;(2)点M 在EC 与BD 的交点处时,AM+BM +CM 的值最小15.(1)72;(2)54;(3)55,23==-m n初中数学试卷灿若寒星制作。
中考数学----几何最值
中考数学————几何最值【知识梳理】1.常见的几何最值问题有:线段最值问题,线段和差最值问题,周长最值问题、面积最值问题等2.几何最值问题的基本原理。
①两点之间线段最短②垂线段最短 ③利用函数关系求最值一般处理方法:常用定理:两点之间,线段最短(已知两个定点时) 垂线段最短(已知一个定点、一条定直线时) 三角形三边关系(已知两边长固定或其和、差固定时)线段和(周长)最小 转化构造三角形两点之间,线段最短 垂线段最短 线段差最大 线段最大(小)值三角形三边关系定理 三点共线时取得最值平移 对称 旋转使点在线异侧(如下图)使点在线同侧(如下图) 使目标线段与定长线段构成三角形平移 对称 旋转P A +PB 最小,需转化,使点在线异侧|P A -PB |最大,需转化,使点在线同侧lB'ABPl B'BA P构建“对称模型”实现转化一次对称1. 如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是____.2、如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上一动点,则EC +ED 的最小值为_______。
1题图 2题图 3题图 4题图 3.已知⊙O 的直径CD 为4,∠AOD 的度数为60°,点B 是AD ︵的中点,在直径CD 上找一点P ,使BP+AP 的值最小,并求BP+AP 的最小值.4.如图,圆柱形玻璃杯,高为12cm ,底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为______cm .蜂蜜蚂蚁AC正方形中的对称变换1、如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值为_________。
中考数学常见几何模型最值模型-将军饮马
专题09 最值模型---将军饮马最值问题在中考数学常以压轴题的形式考查,将军饮马问题是由轴对称衍生而来,同时还需掌握平移型将军饮马,主要考查转化与化归等的数学思想。
在各类考试中都以中高档题为主,中考说明中曾多处涉及。
本专题就最值模型中的将军饮马问题进行梳理及对应试题分析,方便掌握。
在解决几何最值问题主要依据是:①两点之间,线段最短;②垂线段最短,涉及的基本方法还有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等。
模型1.求两条线段和的最小值(将军饮马模型)【模型解读】在一条直线m 上,求一点P ,使PA +PB 最小;(1)点A 、B 在直线m 两侧: (2)点A 、B 在直线同侧:【最值原理】两点之间线段最短。
上图中A’是A 关于直线m 的对称点。
例1.(2022·湖南娄底·中考真题)菱形ABCD 的边长为2,45ABC ∠=︒,点P 、Q 分别是BC 、BD 上的动点,CQ PQ +的最小值为______.【分析】过点C 作CE ⊥AB 于E ,交BD 于G ,根据轴对称确定最短路线问题以及垂线段最短可知CE 为FG +CG 的最小值,当P 与点F 重合,Q 与G 重合时,PQ +QC 最小,在直角三角形BEC 中,勾股定理即可求解.m A Bm m A Bm【详解】解:如图,过点C 作CE ⊥AB 于E ,交BD 于G ,根据轴对称确定最短路线问题以及垂线段最短可知CE 为FG +CG 的最小值,当P 与点F 重合,Q 与G 重合时,PQ +QC 最小,菱形ABCD 的边长为2,45ABC ∠=︒,Rt BEC ∴中,EC ==∴PQ +QC 【点睛】本题考查了菱形的性质,勾股定理,轴对称的性质,掌握轴对称的性质求线段和的最小值是解题的关键.例2.(2022·四川眉山·中考真题)如图,点P 为矩形ABCD 的对角线AC 上一动点,点E 为BC的中点,连接PE ,PB ,若4AB =,BC =PE PB +的最小值为________.【答案】6【分析】作点B 关于AC 的对称点B ',交AC 于点F ,连接B E '交AC 于点P ,则PE PB +的最小值为B E '的长度;然后求出B B '和BE 的长度,再利用勾股定理即可求出答案.【详解】解:如图,作点B 关于AC 的对称点B ',交AC 于点F ,连接B E '交AC 于点P ,则PE PB +的最小值为B E '的长度;⊥AC 是矩形的对角线,⊥AB =CD =4,⊥ABC =90°,在直角⊥ABC 中,4AB =,BC =⊥tanAB ACB BC ∠==,⊥30ACB ∠=︒,由对称的性质,得2B B BF '=,B B AC '⊥,⊥12BF BC ==⊥2B B BF '==⊥BE EF ==60CBF ∠=︒,⊥⊥BEF 是等边三角形,⊥BE BF B F '==,⊥BEB '∆是直角三角形,⊥6B E ',⊥PE PB +的最小值为6;故答案为:6.【点睛】本题考查了矩形的性质,勾股定理,等边三角形的判定和性质,直角三角形的性质,特殊角的三角函数值,解题的关键是熟练掌握所学的知识,正确的找到点P 使得PE PB +有最小值.例3.(2022·贵州铜仁·中考真题)如图,在边长为2的正方形ABCD 中,点E 为AD 的中点,将△CDE 沿CE 翻折得△CME ,点M 落在四边形ABCE 内.点N 为线段CE 上的动点,过点N 作NP //EM 交MC 于点P ,则MN +NP 的最小值为________.【答案】85【分析】过点M 作MF ⊥CD 于F ,推出MN +NP 的最小值为MF 的长,证明四边形DEMG 为菱形,利用相似三角形的判定和性质求解即可.【详解】解:作点P 关于CE 的对称点P ′,由折叠的性质知CE 是⊥DCM 的平分线,⊥点P ′在CD 上,过点M 作MF ⊥CD 于F ,交CE 于点G ,⊥MN +NP =MN +NP ′≤MF ,⊥MN +NP 的最小值为MF 的长,连接DG ,DM ,由折叠的性质知CE 为线段 DM 的垂直平分线,⊥AD =CD =2,DE =1,⊥CE⊥12CE ×DO =12CD ×DE , ⊥DO ⊥EO ⊥MF ⊥CD ,⊥EDC =90°,⊥DE ⊥MF ,⊥⊥EDO =⊥GMO ,⊥CE 为线段DM 的垂直平分线,⊥DO =OM ,⊥DOE =⊥MOG =90°,⊥⊥DOE ⊥⊥MOG ,⊥DE =GM ,⊥四边形DEMG 为平行四边形,⊥⊥MOG =90°,⊥四边形DEMG 为菱形,⊥EG =2OE GM = DE =1,⊥CG , ⊥DE ⊥MF ,即DE ⊥GF ,⊥⊥CFG ⊥⊥CDE ,⊥FG CG DE CE =,即1FG = ⊥FG =35,⊥MF =1+35=85, ⊥MN +NP 的最小值为85.故答案为:85. 【点睛】此题主要考查轴对称在解决线段和最小的问题,熟悉对称点的运用和画法,知道何时线段和最小,会运用勾股定理和相似三角形的判定和性质求线段长度是解题的关键. 例4.(2022·江苏南京·模拟预测)【模型介绍】古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸同侧的两个军营,A B .他总是先去A 营,再到河边饮马,之后,再巡查B 营.如图①,他时常想,怎么走才能使每天走的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.如图②,作点B 关于直线l 的对称点B ',连结AB '与直线l 交于点P ,连接PB ,则AP BP +的和最小.请你在下列的阅读、理解、应用的过程中,完成解答.理由:如图③,在直线l 上另取任一点P ',连结'AP ,BP ',B P '',⊥直线l 是点B ,B '的对称轴,点P ,P '在l 上,(1)⊥PB =__________,P B '=_________,⊥AP PB AP PB '+=+=____________.在AP B ''∆中,⊥AB AP P B ''''<+,⊥AP PB AP P B '''+<+,即AP BP +最小.【归纳总结】在解决上述问题的过程中,我们利用轴对称变换,把点,A B 在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中点P 为AB '与l 的交点,即A ,P ,B '三点共线).由此,可拓展为“求定直线上一动点与直线同侧两定点的距离和的最小值”问题的数学模型.【模型应用】(2)如图④,正方形ABCD 的边长为4,E 为AB 的中点,F 是AC 上一动点.求EF FB +的最小值.解析:解决这个问题,可借助上面的模型,由正方形对称性可知,点B 与D 关于直线AC 对称,连结DE 交AC 于点F ,则EF FB +的最小值就是线段ED 的长度,则EF FB +的最小值是__________.(3)如图⑤,圆柱形玻璃杯,高为14cm ,底面周长为16cm ,在杯内离杯底3cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂的最短路程为_____cm .(4)如图⑥,在边长为2的菱形ABCD 中,60ABC ∠=︒,将ABD ∆沿射线BD 的方向平移,得到A B D '''∆,分别连接A C ',A D ',B C ',则A C B C ''+的最小值为____________.(4)⊥在边长为2的菱形ABCD 中,60ABC ∠=︒,将ABD ∆沿射线BD 的方向平移,得到模型2.平移型将军饮马(将军过桥模型)【模型解读】已知,如图1将军在图中点A 处,现要过河去往B 点的军营,桥必须垂直于河岸建造,问:桥建在何处能使路程最短?考虑MN 长度恒定,只要求AM +NB 最小值即可.问题在于AM 、NB 彼此分离,所以首先通过平移,使AM 与NB 连在一起,将AM 向下平移使得M 、N 重合,此时A 点落在A ’位置(图2 ).问题化为求A ’N +NB 最小值,显然,当共线时,值最小,并得出桥应建的位置(图3).图1 图2 图3【最值原理】两点之间线段最短。
人教版 2017年初三数学中考专题复习《几何最值问题解题策略》ppt课件
.
【答案】
题型1
题型2
题型3
题型2 四边形中最值问题 典例2 (2016· 江苏常州)如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正 △APE和正△BPC,则四边形PCDE面积的最大值是 .
题型1
题型2
题型3
【解析】本题考查等边三角形的性质、不等式、平行四边形的判定与性质、三角形全等 的判定与性质等知识,根据题意建立不等式、转化不等式是解答此题的关键.△APB中,因 为AB=2,∠APB=90°,所以AP2+PB2=AB2=4,因为(AP-PB)2≥0,所以AP2+PB2≥2AP· PB,所 以2AP· PB≤4,AP· PB≤2,因为△ABD,△APE和△BPC都是等边三角形,所以 AP=PE=AE,PB=PC=BC,AB=AD=BD,所以PE· PC≤2, 又∠EAP=∠DAB=60°,所以∠EAD=∠PAB,又AP=AE,AD=AB, 所以△EAD≌△PAB,所以ED=PB,又PB=PC,所以ED=PC, 同理EP=DC,所以四边形PCDE是平行四边形,所以EP∥DC,因为 ∠EPA=∠CPB=60°,∠APB=90°,所以∠EPC= 360°-∠EPA-∠CPB-∠APB=150°,因为EP∥DC,∠DCP+∠EPC=180°, 所以∠DCP=180°-∠EPC=30°,过点P作PQ⊥DC于点Q,因为∠PQC=90°,所以PQ= =1,所以四边形PCDE面积的最大值是1.
题型1
题型2
题型3
题型1 三角形中最值问题 典例1 (2016· 江苏淮安)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且 CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的 最小值是 .
中考考试数学几何最值专题
几何中的最值问题几何中最值问题包括:“面积最值”及“线段(和、差)最值”.求面积的最值,需要将面积表达成函数,借助函数性质结合取值范围求解;求线段及线段和、差的最值,需要借助“垂线段最短”、“两点之间线段最短”及“三角形三边关系”等相关定理转化处理. 一般处理方法:常用定理:1、两点之间,线段最短(已知两个定点时)2、垂线段最短(已知一个定点、一条定直线时)3、三角形三边关系(已知两边长固定或其和、差固定时)lB'BAPlB'ABP线段和(周长)最小 转化构造三角形两点之间,线段最短 垂线段最短 P A +PB 最小,需转化,使点在线异侧 |P A -PB |最大, 需转化,使点在线同侧线段差最大 线段最大(小)值三角形三边关系定理 三点共线时取得最值平移 对称 旋转使点在线异侧(如下图)使点在线同侧(如下图) 使目标线段与定长线段构成三角形平移对称 旋转4、圆外一点P 与圆心的连线所成的直线与圆的两个交点,离P 最近的点即为P 到圆的最近距离,离P 最远的点即为P 到圆的最远距离类型一 线段和最小值1. 如图,圆柱形玻璃杯,高为12cm ,底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为______cm .蜂蜜蚂蚁ACNMOPBA第1题图 第2题图2. 如图,点P 是∠AOB 内一定点,点M 、N 分别在边OA 、OB 上运动,若∠AOB =45°,OP =32,则△PMN 周长的最小值为 .3. 如图,正方形ABCD 的边长是4,∠DAC 的平分线交DC 于点E ,若点P ,Q 分别是AD 和AE 上的动点,则DQ +PQ 的最小值为 .QP ED CBA QPKDCBA第3题图 第4题图4. 如图,在菱形ABCD 中,AB =2,∠A =120°,点P 、Q 、K 分别为线段BC 、CD 、BD上的任意一点,则PK +QK 的最小值为 .5. 如图,当四边形PABN 的周长最小时,a = .6. 在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y轴的正半轴上,OA =3,OB =4,D 为边OB 的中点. 若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,则点F 的坐标为 .N (a +2,0)P (a ,0)B (4,-1)A (1,-3)OyxF D CBA xy O E第5题图 第6题图 变式加深:1、如图,正方形ABCD 边长为2,当点A 在x 轴上运动时,点D 随之在y 轴上运动,在运动过程中,点B 到原点O 的最大距离为() A.B.C.D.2、如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为3、如图,E 、F 是正方形ABCD 的边AD 上的两个动点,满足AE=DF ,连接CF 交BD 于点G,连接BE 交AG 与点H 。
2020春中考数学几何动点运动轨迹及最值专题讲义
2020春中考数学几何动点运动轨迹及最值专题讲义一、动点运动轨迹——直线型(动点轨迹为一条直线,利用“垂线段最短”)Ⅰ.当一个点的坐标以某个字母的代数式表示,若可化为一次函数,则点的轨迹是直线; 1.在平面直角坐标系中,点P 的坐标为(0,2),点M 的坐标为39(1,)44m m −−−(其中m 为实数),当PM 的长最小时,m 的值为__________.2.如图,在平面直角坐标系中,A (1,4),B (3,2),C (m ,-4m +20),若OC 恰好平分四边形...OACB ....的面积,求点C 的坐标.Ⅱ.当某一动点到某条直线的距离不变时,该动点的轨迹为直线;3.如图,矩形ABCD 中,AB =6,AD =8,点E 在边AD 上,且AE :ED =1:3.动点P 从点A 出发,沿AB 运动到点B 停止.过点E 作EF ⊥PE 交射线BC 于点F ,设M 是线段EF 的中点,则在点P 运动的整个过程中,点M 运动路线的长为_________.【变式1】如图,矩形ABCD 中,AB =6,AD =8,点E 在边AD 上,且AE :ED =1:3.动点P 从点A 出发,沿AB 运动到点B 停止.过点E 作EF ⊥PE 交边BC 或CD 于点F ,设M 是线段EF 的中点,则在点P 运动的整个过程中,点M 运动路线的长为___________.ABDCEFPM ABDCEFPM yxBAO【变式2】如图,在矩形ABCD 中,点P 在AD 上,AB =2,AP =1,E 是AB 上的一个动点,连接PE ,过点P 作PE 的垂线,交BC 于点F ,连接EF ,设EF 的中点为G ,当点E 从点B 运动到点A 时,点G 移动的路径的长是_________.【变式3】在矩形ABCD 中,AB =4,AD =6,P 是AD 边的中点,点E 在AB 边上,EP 的延长线交射线CD于F 点,过点P 作PQ ⊥EF ,与射线BC 相交于点Q .(1)如图1,当点Q 在点C 时,试求AE 的长; (2)如图2,点G 为FQ 的中点,连结PG . ①当AE =1时,求PG 的长;②当点E 从点A 运动到点B 时,试直接写出线段PG 扫过的面积. 变式3图14.如图,C 、D 是线段AB 上两点,且AC =BD =16AB =1,点P 是线段CD 上一个动点,在AB 同侧分别作等边△P AE 和等边△PBF ,M 为线段EF 的中点。
九年级中考 几何综合题型之最值问题:解题策略与常考题型(教师版)
教学过程一、复习预习最值问题是初中数学中的一种常见题型,而利用勾股定理、轴对称等知识求图形中的最值,是近年中考的热点问题第一。
对这类问题,我们应该学会分析、观察图形,从中找出解题途径。
二、知识讲解1.两条线段和的最小值。
(一)、已知两个定点:1、在一条直线m上,求一点P,使PA+PB最小;(1)点A、B在直线m两侧:P m AB m A BmA B PmAB A'n mA B QPnmABP'Q' n mA BQ PnmAB B'QPnm A BB'A'n mA B(2)点A 、B 在直线同侧:A 、A / 是关于直线m 的对称点。
2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。
(1)两个点都在直线外侧:(2)一个点在内侧,一个点在外侧:(3)两个点都在内侧:(4)、台球两次碰壁模型变式一:已知点A 、B 位于直线m,n 的内侧,在直线n 、m 分别上求点D 、E 点,使得围成的四边形ADEB 周长最短.A BED ABA'B'm n APmnAB mn A mn A PQ mnAA"A'mA B m A BB'P P'变式二:已知点A 位于直线m,n 的内侧, 在直线m 、n 分别上求点P 、Q 点PA+PQ+QA 周长最短.(二)、一个动点,一个定点:1、动点在直线上运动:点B 在直线n 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) (1)、两直线在定点的同侧:(2)、两直线在定点的两侧(定点在两直线的内部):2.求两线段差的最大值问题 (运用三角形两边之差小于第三边) 基本图形解析:在一条直线m 上,求一点P ,使PA 与PB 的差最大; 1、点A 、B 在直线m 同侧:解析:延长AB 交直线m 于点P ,根据三角形两边之差小于第三边,P ’A —P ’B <AB ,而PA —PB=AB 此时最大,因此点P 为所求的点。
专题三几何综合-最值及路径长.docx
教学内容:【课前回顾&错题重现】1.如图,A, B为定点、,P为直线/上一点,若点尸恰好使AP^BP最短,请画出点P的位置.提示:①分析定点(/, B),动点(尸在直线/上动),不变特征②以/为对称轴利用轴对称进行转化③由“两点之间,线段最短”确定位置2.如图,A, E为定点,为直线/上一可以移动的线段,且长度固定,若点M恰好使曲歼临初何最短,请画出点川的位置.提示:①分析定点(/, B),动点QM, N在/上动,且MV长度固定),不变特征②先平移EV,使平移后的点N与M重合,将其转化为问题1③以/为对称轴利用轴对称进行转化④由“两点之间,线段最短”确定位置3. 如图,ZAOB=60°f点P在的平分线上,(9P=10cm,卓、E, F分别是两边CU, 上的动点,当ZXPEF的周长最小时,点戸到*的距离是・提示:①分析定点(P),动点(E在Q4上动,F在OB上动),不变特征②分别以Q4,为对称轴,将P对称过去,得到Pi,Pi③连接P*2,由“两点之间,线段最短”确定位置,进而求解尸到EF的距离.【知识点&考点讲解】1.几何最值问题的处理思路①分析定点、动点,寻找不变特征;②若属于常见模型、结构,调用模型、结构解决问题;若不属于常见模型,要结合所求目标,根据不变特征转化为基本定理或表达为函数解决问题.转化原则:尽量减少变量,向定点、定线段、定图形靠拢,或使用同一变量表达所求目标.基本定理:两点之间,线段最短(己知两个定点)垂线段最短(己知一个定点、一条定直线)三角形三边关系(己知两边长固定或其和、差固定)过圆内一点,最长的弦为直径,最短的弦为垂直于直径的弦常用模型、结构示例:©轴对称最值模型求总+彩的最小值, 使点在线异侧求PA-PB的最大值, 使点在线同侧固定长度线段A4N在直线1上滑动,求AM+MN+BN的最小值, 需平移EN(或AM),转化为AM + MB'解决.②折叠求最值结构求的最小值,转化为求&(+4WVC的最小值(利用4WNC为定值).2.解决路径长问题的思路①分析定点、动点,寻找不变特征;②确定运动路径;A通过“起点、终点、特殊点”猜测运动路径,并结合不变特征进行验证.③设计方案,求出路径长.【乘胜追击(课堂巩固入1.如图,在平面直角坐标系中,RtZ^OAB的直角顶点/在X轴的正半轴上,顶点E的坐标为(3, J5),点C的坐标为(-,0),点P为斜边OE上一动点,则PA+PC的最小值为22.如图,在矩形ABCD中,^5=4, 50=8,三为CQ边的中点.若P, 0为BC边上的两动点,且PQ=2,则当______________________ 时,四边形4P0E的周长最小.3.如图,在中,ZACB=90°9 AB=5f BC=3・ P 是 SB 过上的动点(不与点召重合),将沿CP所在的直线翻折,得到△歹CP,连接则长度的最小值是____________________ ・4. 如图,在边长为2的菱形45CD 中,ZA=60°9 M 是且D 边的中点,N 是4B 边上一动点,将△&MV 沿MV 所在的直线翻折得到△ A fMN,连接4C,则4C 长度的最小值是 _______________ ・5. 如图,有一矩形纸片45CZ ), AB=S 9 AD=179将此矩形纸片折叠,使顶点/落在EC 边的理处,折痕所在直线同时经过边AB.AD (包括端点),设=丫,则X 的取值范围是 _____________.6. 如图,在'ABC 中,ZABC=90°f 48=6, 50=8, O 为 AC 的 中点,过O 作OE丄OF, OE, OF 分别交射线48, BC 于E, F,连接防,则盯长度的最小值为 ________________________________________ ・第4题图A D 第5题图9. 边EC,盯的中点,直线NG, FC相交于点当/XEFG绕点D旋转时,线段长的最小值是____________________如图,4&是OO的一条弦,ZACB=30°,点乙F分别是/C, BC的中点,直线EF与0O交于G, 7/两点.若OO的半径为7,则GE+FF的最大值为第9题图10.如图,直线/与半径为4的OO相切于点P是OO上的一个动点(不与点乂重合),过点P作朋丄/,垂足为连接R4 •设PA=x, PB=y,则(x-y)的最大值是_______________ •【课后作业】7.如图,E, F是正方形妞5CZ)的边凡D上的两个动点,且满足AE=DF・连接CF交砂于点G,连接肛交NG于点片,连接DH,若正方形的边长为2,则长度的最小值是___________________ ・如图,△4BC,G如图,边长为2的正方形4SCQ的两条对角线交于点O,把B4与CQ分别绕点占和点C逆时针旋转相同的角度,此时正方形438 随之变成四边形A BCD.设4C, BD交于点OS 若旋转了60。
最新整理中考数学之几何最值问题解法探讨
SAS 证明△ABD ≌△ECD ,得 CE=AB ,再根据三角形的
三边关系即可求解:
延长 AD 至 E,使 DE=AD ,连接 CE。
∵BD=CD ,∠ADB= ∠EDC,AD=DE ,∴△ABD ≌△ECD(SAS)。
∴CE=AB 。
在△ACE 中, CE- AC< AE< CE+ AC,即 2< 2AD < 8。
CE 取最小值。
∵BC= 4 2 ,∠ABC=45 °,∴CE 的最小值为 4 2 sin45 0=4 。
∴CM+MN 的最小值是 4。
例 3.( 2011 四川凉山 5 分) 如图,圆柱底面半径为 2cm ,高为 9 cm,
点 A 、 B 分别是圆柱两底面圆周上的点,且 A 、 B 在同一母线上,用
1,
n+1
∵AD = 1 ,∴BH = n + 1。∴CH = BH + BC= 3+ n +1= n +4。
过点 D 作 DM ⊥ BC 于 M ,则四边形 ABND 是矩形。 ∴BM = AD = 1,DM =AB = 2。∴CM = BC- BM =3- 1 =2= DM 。
10
∴∠DCM = 45 °。∴∠KCH = 45 °。 ∴CK =CH ?cos45 °= 2 (n +4) ,
的性质求最值; ( 3)应用轴对称的性质求最值; (4)应用二次函数求
最值;( 5)应用其它知识求最值。下面通过近年全国各地中考的实例
探讨其解法。
一、应用两点间线段最短的公理(含应用三角形的三边关系)求
最值:
典型例题:
例 1. ( 2012 山东济南 3 分) 如图,∠MON=90 °,矩形ABCD 的顶
∵AD ∥BC,∴∠ADC =∠DCH ,即∠ADP +
初中几何中的最值问题
初中几何中的最值问题初中几何中的最值问题是指在几何图形中寻找某个量的最大值或最小值的问题。
这些问题通常涉及到面积、周长、角度等几何量。
一般来说,解决初中几何中的最值问题需要掌握以下基本方法:1. 利用代数方法求解有时候,我们可以将几何图形转换为代数式,然后通过求导或者求平方等方法来求解。
例如,在矩形中,当周长一定时,面积最大;当面积一定时,周长最小。
我们可以设矩形的长为x,宽为y,则周长为2(x+y),面积为xy。
当周长一定时,即2(x+y)=k(k为常数)时,可以将y表示成x的函数:y=k/2-x,则面积S=x(k/2-x)=kx/2-x^2。
对S求导得到S'=k/2-2x=0,则x=k/4。
因此,在周长一定时,矩形的长和宽相等时面积最大。
2. 利用平均值不等式平均值不等式是一个重要的不等式,在初中几何中也经常被使用。
该不等式表明对于任意两个正实数a和b,有(a+b)/2>=sqrt(ab)。
例如,在三角形ABC中,如果要求最小的边长,则可以利用平均值不等式:设三角形边长分别为a、b、c,则有a+b>c,b+c>a,c+a>b。
将这三个不等式相加得到2(a+b+c)>a+b+c,则a+b+c>0。
因此,(a+b+c)/3>=sqrt(abc),即(a+b+c)>=3sqrt(abc)。
因此,当三角形的面积一定时,其边长之和最小。
3. 利用相似性质有时候,在几何图形中,我们可以利用相似性质来求解最值问题。
例如,在等腰三角形ABC中,如果要求最大的高,则可以利用相似三角形的性质:设高线AD与BC交于点E,则有AE/ED=BE/EC=AB/BC=2/1。
因此,AE=2ED,BE=2EC。
又因为AD是等腰三角形的高线,所以BD=DC。
则DE=BD-BE=(1/3)BC。
因此,在等腰三角形ABC中,高线对应底边的比值为2:1时,高线最大。
综上所述,在初中几何中解决最值问题需要掌握代数方法、平均值不等式和相似性质等基本方法,并且需要在实际问题中灵活应用这些方法来求解各种复杂的问题。
中考数学复习:专题9-9 探究动点背景下的线段最值问题
探究动点背景下的线段最值问题【专题综述】图形运动问题是中考数学命题的热点题型,其中有一类动点背景下线段长度的最值问题,常常使学生感到比较为难.本文谈谈破解这类问题的方法. 动点背景下线段长度的最值问题一般有两种解法:1、代数解法.通过设未知量,建立函数关系或列方程列不等式等,用函数最值、二次方程判别式、解不等式来求解.2、几何方法.常通取特殊点,如线段中点、端点;与动点的特殊位置相关的特殊线段,如三角形的高、中线、圆的直径等;特殊图形,如直角三角形、等边三角形、矩形等,用几何公理、定理来求解. 一般而言,用几何方法抓住特殊情形处理,比代数方法更有独特魅力. 【方法解读】一、从动点所在特殊位置入手图形中动点的运动有一定的范围,其较为特殊的位置有:线段上动点的两端点、线段中点等;若点在线段外运动,则与某线段共线就是特殊位置.这些特殊位置正是产生最值的关键点.例1 如图1,在四边形ABCD 中,90A ∠=︒,33AB =,3AD =,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为. 分析 DM ,MN 的长度随点M ,N 分别在线段BC ,AB 上运动而变化,点E ,F 分别为DM ,MN 的中点却保持不变.题设中EF 与不变量A ∠,AB ,AD 无直接数量关系,但连结DN ,则由三角形的中位线定理可知12EF DN =,如图1所示,从而可知DN 最大时,EF 最大.因为N 在线段AB 上,当点N 与其端点B 重合时DN 最大,如图2所示.此时,由勾股定理知6BD =,所以EF 长度的最大值为3.例2 如图3,在⊙O 中,直径6AB =,BC 是弦,30ABC ∠=︒,点P 是BC 上的一个动点,点Q 在⊙O 上,且OP PQ ⊥.求PQ 长的最大值.分析 点P 在BC 运动时,OP ,PQ 的位置和大小都变化,但OP PQ ⊥,圆的半径不变,连结OQ ,则OPQ ∆保持直角三角形不变.在Rt OPQ ∆中,22223PQ OQ OP OP =-=-,所以OP 最小时PQ 的长的最大.由垂径定理知,此时点P 正好是CB 的中点,如图4所示,Q 点与C 点重合.分析 连结OQ . ∵OP PQ ⊥,∴OPQ ∆为直角三角形. 又∵OP CB ⊥,132OB AB ==,30ABC ∠=︒, ∴32OP =由勾股定理,得223333()22PQ =-=即PQ 长的最大值332. 二、从动点产生的特殊线段入手在图形中,点的运动会引起相应线段位置和长度大小的变化,位置的变化会使线段成为具有某种特殊性质抓住这些线段变化的特殊性:如三角形的高、中线、圆的直径等,往往会找到最值的答案.例3 如图5,在直角ABC ∆中,90C ∠=︒,3AC =,4BC =,P 为AB 上(不与AB 重合)一动点,过点P 分别作PE AC ⊥于点E ,PF BC ⊥与F ,则EF 的最小值 .分析 因为点P 在AB 上运动时,PE AC ⊥于点E ,PF BC ⊥与F ,90C ∠=︒,所以四边形CFDE 是矩形,且这些关系不变.连结PC ,则EF CP =,要求EF 的最小值,就是求CP 的最小值.显然当CD AB ⊥,即CD 是斜边AB 的高时,CD 最小.又由勾股定理,得5AB =,根据三角形面积不变,得AC BC CD AB ⨯=⨯,解得125CP =,所以EF 的最小值为125. 例4 如图6,在圆O 上有定点C 和动点P 位于直径AB 的异侧,过点C 作CP 的垂线,与PB 的延长线交于点G .已知:圆O 半径为52,4tan 3ABC ∠=,则CG 的最大值是(). (A)5 (B)154(C)253(D)203分析 点P 在AB 上运动时,PC 的位置和大小会随之变化,但CAB CPG ∠=∠,90ACB PCG ∠=∠=︒保持不变,故有ABCPGC ∆∆,∴BC AC CG PC =,即BC CG PC AC=,由3tan 4AC ABC PC ∠==,知43CG PC =,当PC 最大时,CQ 取到最大值易知,当PC 经过圆心,即PC 为圆O 的直径时,PC 最大(此时CG 是圆O 的切线). ∵圆O 半径为52, ∴PC 的最大值为5,∴315544CG =⨯=. ∴CG 的最大值154,故选B.三、抓住动点问题的特性,从构造特殊图形入手某些动点问题中,难以找到图形变化时与相关线段最值的特殊情形若要用几何解法,应联系整个问题所含条件添加辅助线,构造特殊图形,然后借助特殊图形的性质将问题进行有效转化.例5 如图7,ABC ∆中,45B ∠=︒,60BAC ∠=︒,22AB =. D 是BC 上的一个动点以AD 为直径画圆与AB ,AC 相交于E ,F 两点,求EF 的最小值.分析 点D 在BC 上运动,AD 的位置改变引起圆O 的位置和大小变化,而所求EF 的 值与不变量B ∠,BAC ∠以及AB 的关系不明显.连结OE ,OF ,构造含120︒角的特殊等腰三角形,如图8所示,过O 点作OH EF ⊥垂足为H ,由圆周角定理可知1602EOH EOF BAC ∠=∠=∠=︒.在Rt EOH ∆中,由垂径定理可知23EF EH OE ==.所以当OE 最小时,EF 的值最小,而12OE AD =,由垂线段的性质可知,当AD 为ABC ∆的边BC 上的高时,直径AD 最短,此时线段EF 最小.在Rt ADB ∆中,45ABC ∠=︒,22AB =∴2AD BD ==,即此时圆的直径为2. 在Rt EOH ∆中,33sin 122EH OE EOH =∠=⨯= ∴23EF EH ==, 即EF 的最小值为3.四、从图形运动中相对保持不动的点入手若图形中的动点不止一个,这种情形相对单一动点问题要复杂一般会引起变化的量增加或整个图形发生运动,难以找到原图中保存不变的量,这时可着眼于图中的相对不变量.相对不变量是指在整个图形运动变化中,保持某种特性不变的量与动点下线段最值所对应的仍是图中特殊相对不变量透过图形运动的整体,抓住特殊相对不变量才是解题的关键.例6 如图9,在ABC ∆中,90ACB ∠=︒,3BC =,8AC =,点A ,C 分别在x 轴、y 轴的正半轴上.当点A 在x 轴上运动时,点C 随之在y 轴上运动,在运动中OB 的最大值是多少?分析 当点A 在x 轴上运动时,点C 随之在y 轴上运动,这样改变了ABC ∆的位置,点B 的位置也随之改变,OB 的长度随之发生变化.虽然BC 、AC 的长度不变,但些相对不变的量与OB 没有直接的关系. 仔细观察图9,AC 是Rt COA ∆的斜边,AC 长度不变,则点O 与其中点D 的连线段OD 的长度保持不变,这个隐含的相对不变的特殊量与OB 有关. 于是,连结DB ,则OB DB OD <+,所以,当O 、D 、B 三点共线时OB 值最大,即BO OD DB =+. 在Rt BCA ∆中,4CD =,3CB =,5DB =. 则OB 的最大值为549+=:.综上可知,解决动点背景下线段长度的最值问题时,一般可用几何方法从特殊情形出发考虑.1、在分析动点位置变化的同时,重点抓住图形中不变的量,不变的关系和性质,以不变应万变,动中求静.2、线段的最大值和最小值,常与下列知识相关:两点之间线段最短,垂线段最短,直径是圆中最大的弦,三角形中任意两边之和大于第三边,任意两边之差小于第三边等等.所以要抓住特殊情形,联系与问题相关的结论进行有效转化.【强化训练】1.(2017四川省内江市)如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=430,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且P A+AB+BQ 最小,此时P A+BQ= .2.(2017山东省东营市)如图,已知菱形ABCD的周长为16,面积为83,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为.3.(2017山东省威海市)如图,△ABC为等边三角形,AB=2.若P为△ABC内一动点,且满足∠P AB=∠ACP,则线段PB长度的最小值为.4. (2017甘肃省天水市)如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是.5.(2017贵州省贵阳市)如图,在矩形纸片ABCD 中,AB =2,AD =3,点E 是AB 的中点,点F 是AD 边上的一个动点,将△AEF 沿EF 所在直线翻折,得到△A ′EF ,则A ′C 的长的最小值是 .6.(2016山东省枣庄市)如图,把△EFP 放置在菱形ABCD 中,使得顶点E ,F ,P 分别在线段AB ,AD ,AC 上,已知EP =FP =6,EF =63,∠BAD =60°,且AB >63. (1)求∠EPF 的大小;(2)若AP =10,求AE +AF 的值;(3)若△E FP 的三个顶点E 、F 、P 分别在线段AB 、AD 、AC 上运动,请直接写出AP 长的最大值和最小值.7.(2016山东省枣庄市)如图,已知抛物线2y ax bx c =++(a ≠0)的对称轴为直线x =﹣1,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B .(1)若直线y =mx +n 经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴x =﹣1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴x =﹣1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.8.(2017山东省烟台市)如图1,抛物线22y ax bx =++与x 轴交于A ,B 两点,与y 轴交于点C ,AB =4,矩形OBDC 的边CD =1,延长DC 交抛物线于点E . (1)求抛物线的解析式;(2)如图2,点P 是直线EO 上方抛物线上的一个动点,过点P 作y 轴的平行线交直线EO 于点G ,作PH ⊥EO ,垂足为H .设PH 的长为l ,点P 的横坐标为m ,求l 与m 的函数关系式(不必写出m 的取值范围),并求出l 的最大值;(3)如果点N 是抛物线对称轴上的一点,抛物线上是否存在点M ,使得以M ,A ,C ,N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.9.(2016四川省眉山市)已知如图,在平面直角坐标系xOy 中,点A 、B 、C 分别为坐标轴上上的三个点,且OA =1,OB =3,OC =4.(1)求经过A 、B 、C 三点的抛物线的解析式;(2)在平面直角坐标系xOy 中是否存在一点P ,使得以以点A 、B 、C 、P 为顶点的四边形为菱形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)若点M 为该抛物线上一动点,在(2)的条件下,请求出当|PM ﹣AM |的最大值时点M 的坐标,并直接写出|PM ﹣AM |的最大值.10. (2016广西梧州市)如图,抛物线24y ax bx =+-(a ≠0)与x 轴交于A (4,0)、B (﹣1,0)两点,过点A 的直线y =﹣x +4交抛物线于点C . (1)求此抛物线的解析式;(2)在直线AC 上有一动点E ,当点E 在某个位置时,使△BDE 的周长最小,求此时E 点坐标; (3)当动点E 在直线AC 与抛物线围成的封闭线A →C →B →D →A 上运动时,是否存在使△BDE 为直角三角形的情况,若存在,请直接写出符合要求的E 点的坐标;若不存在,请说明理由.。
最新中考数学专题复习-几何最值问题解析
连接A′C,
∵△ABC为等腰直角三角形,AC=BC=4,
∴∠CAB=∠ABC=45°,∠ACB=90°,
∵∠BCD=15°,
∴∠ACD=75°,
∴∠CAA′=15°,
∵AC=A′C,
一
∴A′C=BC,∠CA′A=∠CAA′=15°,
∴∠ACA′=150°,
∵∠ACB=90°,
∴∠A′CB=60°,
∴△A′BC是等边三角形,
∴EC=8,FC=4=AE,
∵点M与点F关于BC对称
∴CF=CM=4,∠ACB=∠BCM=45°
∴∠ACM=90°
∴EM=
=4
则在线段存在点H到点E和点F的距离之和最小为4 <9
在点H右侧,当点P与点C重合时,则PE+PF=12
∴点P在CH上时,4 <PE+PF≤12
在点H左侧,当点P与点B重合时,BF=
.
几何最值问题解题策略
第二部分
考情分析
专题归纳
秘籍2:
真题回顾
小试牛刀
1 、【翻折变换类】 2 、【平移变换类】 3、【旋转变换类】OA与OB共用顶点O,固定OA将OB绕点旋 转过程中的,会出现的最大值与最小值,如图:
B 最大值位置
A
O
最小值位置
几何最值问题解题策略
第二部分
考情分析
专题归纳
秘籍3:
即AG=3,AH=4,
∵M,N分别是CD,BC边上的动点,
一
∴当点G、N、M、H在同一直线上时,GN+MN+MH=GH最短,
即EN+MN+MF最短,
此时Rt△AGH中,GH=
=
=5,
∴EN+MN+MF=5,
2020春中考数学几何动点运动轨迹及最值专题讲义
2020春中考数学几何动点运动轨迹及最值专题讲义一、动点运动轨迹——直线型(动点轨迹为一条直线,利用“垂线段最短”)Ⅰ.当一个点的坐标以某个字母的代数式表示,若可化为一次函数,则点的轨迹是直线; 1.在平面直角坐标系中,点P 的坐标为(0,2),点M 的坐标为39(1,)44m m −−−(其中m 为实数),当PM 的长最小时,m 的值为__________.2.如图,在平面直角坐标系中,A (1,4),B (3,2),C (m ,-4m +20),若OC 恰好平分四边形...OACB ....的面积,求点C 的坐标.Ⅱ.当某一动点到某条直线的距离不变时,该动点的轨迹为直线;3.如图,矩形ABCD 中,AB =6,AD =8,点E 在边AD 上,且AE :ED =1:3.动点P 从点A 出发,沿AB 运动到点B 停止.过点E 作EF ⊥PE 交射线BC 于点F ,设M 是线段EF 的中点,则在点P 运动的整个过程中,点M 运动路线的长为_________.【变式1】如图,矩形ABCD 中,AB =6,AD =8,点E 在边AD 上,且AE :ED =1:3.动点P 从点A 出发,沿AB 运动到点B 停止.过点E 作EF ⊥PE 交边BC 或CD 于点F ,设M 是线段EF 的中点,则在点P 运动的整个过程中,点M 运动路线的长为___________.ABDCEFPM ABDCEFPM yxBAO【变式2】如图,在矩形ABCD 中,点P 在AD 上,AB =2,AP =1,E 是AB 上的一个动点,连接PE ,过点P 作PE 的垂线,交BC 于点F ,连接EF ,设EF 的中点为G ,当点E 从点B 运动到点A 时,点G 移动的路径的长是_________.【变式3】在矩形ABCD 中,AB =4,AD =6,P 是AD 边的中点,点E 在AB 边上,EP 的延长线交射线CD于F 点,过点P 作PQ ⊥EF ,与射线BC 相交于点Q .(1)如图1,当点Q 在点C 时,试求AE 的长; (2)如图2,点G 为FQ 的中点,连结PG . ①当AE =1时,求PG 的长;②当点E 从点A 运动到点B 时,试直接写出线段PG 扫过的面积. 变式3图14.如图,C 、D 是线段AB 上两点,且AC =BD =16AB =1,点P 是线段CD 上一个动点,在AB 同侧分别作等边△P AE 和等边△PBF ,M 为线段EF 的中点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九讲几何最值及路径长预习如图,A , B 为定点,P 为直线I 上一点,若点提示:① 分析定点(A ,B ),动点(P 在直线I 上动),不变特征② 以I 为对称轴利用轴对称进行转化③ 由“两点之间,线段最短”确定位置 2.如图,A,B 为定点,MN 为直线I 上一可以移动的线段,且MN 长度固定,若点M 恰好使AM+MN+BN最短,请画出点M 的位置.提示:① 分析定点(A ,B ),动点(M ,N 在I 上动,且MN 长度固定),不变特征② 先平移BN ,使平移后的点N 与M 重合,将其转化为问题1③ 以I 为对称轴利用轴对称进行转化④由“两点之间,线段最短”确定位置 3.如图,/ AOB=60°点P 在/ AOB 的平分线上,OP=10cm ,点E ,F 分别是/ AOB 两边OA , OB上的动点,当△ PEF 的周长最小时,点P 到EF 的距离是 _____________________ .提示:①分析定点(P ),动点(E 在OA 上动,F 在OB 上动),不变特征② 分别以OA , OB 为对称轴,将P 对称过去,得到P i ,P 2③ 连接P 1P 2,由“两点之间,线段最短”确定位置,进而求解 1. P P 的位置. IM N知识点1.几何最值问题的处理思路① 分析定点、动点,寻找不变特征;② 若属于常见模型、结构,调用模型、结构解决问题; 若不属于常见模型,要结合所求目标,根据不变特征转化为基本定理或表达为函数解决问题.转化原则: 尽量减少变量,向定点、定线段、定图形靠拢,或使用同一变量表达所求目标.基本定理: 两点之间,线段最短(已知两个定点)垂线段最短(已知一个定点、一条定直线)三角形三边关系(已知两边长固定或其和、差固定)过圆内一点,最长的弦为直径, 常用模型、结构示例:①轴对称最值模型固定长度线段MN 在直线I 上滑动,求AM+MN+BN 的最小值,需平移BN(或AM ),转化为 AM MB 解决.②折叠求最值结构最短的弦为垂直于直径的弦求FA+PB 的最小值, 使点在线异侧 求|PA-PB|的最大值,使点在线同侧求BA的最小值,转化为求BA'+A'N+NC的最小值(利用A'N+NC为定值).2.解决路径长问题的思路①分析定点、动点,寻找不变特征;②确定运动路径;通过“起点、终点、特殊点”猜测运动路径,并结合不变特征进行验证.③设计方案,求出路径长.典型题型1. 如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴的正半轴上,顶点B的坐标为(3,如图,在矩形ABCD中,AB=4,P为斜边0B上一动点,贝U PA+PC的最小值为2. BC=8,E为CD边的中点.若P,Q为BC边上的两动点,且PQ=2,则当BP= __________________ 寸,四边形APQE的周长最小.3.如图,在厶ABC中,/ ACB=90°AB=5, BC=3. P是AB边上的动点(不与点B重合),将厶BCP沿CP所在的直线翻折,得到△B'CP,连接B'A则B'A长度的最小值是____________________ .B'第5题图A D第4题图4.如图,在边长为2的菱形ABCD中,/A=60°M是AD边的中点,N是AB边上一动点,将厶AMN沿MN所在的直线翻折得到△A MN连接AC,则A'C长度的最小值是____________________ •5.如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片折叠,使顶点A落在BC边的A处,折痕所在直线同时经过边AB,AD (包括端点),设BA' x,则x的取值范围是 ______________________ .6.如图,在△ABC 中,/ ABC=90°AB=6,BC=8,O 为AC 的中点,过O 作OE丄OF,OE, OF分别交射线AB,BC于E,F,连接EF,则EF长度的最小值为__________________ .AB F C7.如图,E,F是正方形ABCD的边AD上的两个动点,且满足AE=DF •连接CF交BD于点G,连接BE交AG于点H,连接DH •若正方形的边长为2,则DH长度的最小值是 ___________________________________________ .8.如图,△ABC,^ EFG均是边长为2的等边三角形,点D是边BC,EF的中点,直线AG,FC相交于点皿.当厶EFG绕点D旋转时,线段BM长的最小值是 _______________________ :9.如图,AB是。
O的一条弦,点C是。
O上一动点,且/ ACB=30°点E,F分别是AC,BC的中点,直线EF与。
O交于G,H两点•若。
O的半径为7,则GE+FH的最大值为 _____________________________ :H10.如图,直线I 与半径为4的。
O相切于点A, P是。
O上的一个动点(不与点A重合),过点P作PB丄l,垂足为B,连接PA.设PA=x, PB=y,则(x-y)的最大值是 ______________________ :11.如图,边长为2的正方形ABCD的两条对角线交于点O,把BA与CD分别绕点B和点C逆时针旋转相同的角度,此时正方形ABCD随之变成四边形A'BCD 设A'C, BD交于点O',若旋转了60°则点O运动到点O'所经过的路径长为 _________________ .A12.如图,木棒AB的长为2a,斜靠在与地面0M垂直的墙壁ON上,且与地面的倾斜角(/ ABO)为60°当木棒A端沿NO向下滑动到A' , B端也随之沿直线0M向右滑动到B',若AAA =(巧-72)a,则木棒的中点P随之运动的路径长为 _____________________________ :13.已知等边三角形ABC的边长为4,点D是边BC的中点,点E在线段BA上由点B向点A运动,连接DE,以DE为边在DE右侧作等边三角形DEF :设△DEF的中心为0,则点E由点B向点A运动的过程中,点0运动的路径长为 ________________ :14.如图,点A是第一象限内横坐标为2、、3的一个定点,AC丄x轴于点M,交直线y=-x于点N.若点P是线段ON上的一个动点,/ APB=30°, BA丄PA,则点P在线段ON上运动时,A点不变, B点随之运动:当点P从点O运动到点N时,点B运动的路径长是________________________________________________ :几何最值及路径长(随堂测试)1.如图,已知直线a // b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距 离为3,AB=2,30 .在直线a 上找一点 M ,在直线b 上找一点N ,满足MN 丄a 且AM+MN+NB 的值最小,则此时AM+NB=()2.如图,菱形ABCD 的边长为2,Z C=60°当点A 在x 轴上运动时,点 运动过程中,点B 到原点O 的最大距离为( )3— A . B . .3 C . 2 2 3.如图,在平面直角坐标系中,菱形 OABC 的顶点A 的坐标为(2,0),/COA=60°点D 是线段AB 上一动点,过点B 作BN 丄CD 于点N ,当点D 从点A 运动到点B 的过程中,点N 运动的路径长 为( )A . nB . 2nC .巧D . 23 3 几何最值及路径长(习题)例题示范例1:如图,在矩形ABCD 中,AB=12, AD=3, E , F 分别为AB , CD 上的两个动点,则AF FE EC的最小值为 _____________ .例2:如图,已知 AB=10,点C , D 在线段AB 上,且AC=BD=2 .P 是线段CD 上的一动点,分别以AP , PB 为边在线段AB 的同侧作等边三角形AEP 和等边三角形PFB ,连接EF ,设EF 的中点为G .当点P 从点C 运动到点D 时,点G 移动的路径长为 ____________________ .B . 8C . 10D . 12D 随之在y 轴上运动,在A . 6 Bab巩固练习1.如图,正方形ABCD 的面积为12,厶ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD+PE 最小,则这个最小值为( )2.如图,已知正方形 ABCD 的边长为3,点E 在AB 边上且BE=1,点P ,Q 分别是边BC ,CD 的动点(均不与顶点重合),当四边形AEPQ 的周长取最小值时,四边形 AEPQ 的面积是 ______________________ . 3.如图,在菱形ABCD 中,/ A=60° AB=3,O A ,O B 的半径分别为2和1,P ,E ,F 分别是边4.如图,在Rt △ AOB 中,OA=OB=3.2,O O 的半径为1,点P 是AB 边上的动点,过点 P 作O O 的一条切线PQ(点Q 为切点),则PQ 长度的最小值为 ______________________________________ • 5.将一张宽为4cm 的长方形纸片(足够长)折叠成如图所示的图形,重叠部分是一个三角形,则这 个三角形面积的最小值是 _____________________________ •6.动手操作:在矩形纸片ABCD 中,AB=5, AD=13.如图所示,折叠纸片,使点 A 落在BC 边上的C . 2 3D . 2込CD ,O A 和。
B 上的动点,则 PE+PF 的最小值是第2题图BCFP EA D 第3题图A 处,折痕为PQ ,当点A 在BC 边上移动时,折痕的端点P , Q 也随之移动•若限定点P , Q 分 别在AB, AD 边上移动,则点A 在BC 边上可移动的最大距离为 ________________________________________________ :7.如图,在△ ABC 中,/ ACB=90° AC=6, BC=2,点A , C 分别在x 轴、y 轴上:当点A 在x 轴上运动时,点C 随之在y 轴上运动,则在运动过程中,点B 到原点的最大距离3 8. 如图,已知直线y=—x-3与x 轴、y 轴分别交于A , B 两点,P 是以C(0, 1)为圆心,1为半径的4圆上一动点,连接PA , PB.则厶PAB 面积的最大值是 _____________________ :9. 如图,正方形ABCD 的边长是2, M 是AD 的中点,点E 从点A 出发,沿AB 运动到点B 停止:连接EM ,过M 作EM 的垂线交射线BC 于点F ,连接EF :若P 是MF 的中点,则在点E 运动的过 程中,点P 运动的路径长为 ________________ :10. 如图,正方形ABCD 的边长为2,将长为2的线段EF的两端放在正方形的相邻两边上同时滑动:如BAy*果点E从点A出发,按A-B-C-D-A的方向滑动到点A为止,同时点F从点B出发,按B-C-D-A-B的方向滑动到点B为止,则在这个过程中,线段EF的中点M经过的路径所围成的图形面积为_______________ •11.如图,以G(0, 1)为圆心,2为半径的圆与x轴交于A,B两点,与y轴交于C,D两点,点E为OG上一动点,CF丄AE于点F •当点E从点B出发顺时针运动到点D时,点F所经过的路径长为______________ •。