wireshark抓取TCP连接及其断开实验补充

合集下载

电子科大网络安全实验2Wireshark抓包分析实验完整分析

电子科大网络安全实验2Wireshark抓包分析实验完整分析

电⼦科⼤⽹络安全实验2Wireshark抓包分析实验完整分析实验2 Wireshark抓包分析实验⼀、实验原理TCP三次握⼿准则介绍TCP是因特⽹中的传输层协议,使⽤三次握⼿协议建⽴连接。

当主动⽅发出SYN连接请求后,等待对⽅回答SYN,ACK。

这种建⽴连接的⽅法可以防⽌产⽣错误的连接,TCP使⽤的流量控制协议是可变⼤⼩的滑动窗⼝协议。

第⼀次握⼿:建⽴连接时,客户端发送SYN包(SEQ=x)到服务器,并进⼊SYN_SEND状态,等待服务器确认。

第⼆次握⼿:服务器收到SYN包,必须确认客户的SYN(ACK=x+1),同时⾃⼰也送⼀个SYN包(SEQ=y),即SYN+ACK包,此时服务器进⼊SYN_RECV状态。

第三次握⼿:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ACK=y+1),此包发送完毕,客户端和服务器进⼊Established状态,完成三次握⼿。

HTTP协议介绍HTTP协议⽤于在Internet上发送和接收消息。

HTTP协议是⼀种请求-应答式的协议 ——客户端发送⼀个请求,服务器返回该请求的应答,所有的请求与应答都是HTTP包。

HTTP协议使⽤可靠的TCP 连接,默认端⼝是80。

HTTP的第⼀个版本是HTTP/0.9,后来发展到了HTTP/1.0,现在最新的版本是HTTP/1.1。

HTTP/1.1由RFC 2616 定义。

⼆、实验⽬的1、了解并会初步使⽤Wireshark,能在所⽤电脑上进⾏抓包。

2、了解IP数据包格式,能应⽤该软件分析数据包格式。

3、了解HTTP请求中的三次握⼿准则,并能利⽤该软件对该过程进⾏简要分析。

三、实验内容(1)安装wireshark软件,并使⽤该软件捕获HTTP请求中的报⽂,分析该过程中TCP建⽴连接的握⼿过程以及报头各字段的含义,记录实验结果和数据。

(2)尝试利⽤wireshark软件捕获Ping请求中的报⽂,并分析报⽂中各字段的含义,记录实验结果和数据。

Wireshark抓包实验

Wireshark抓包实验

Wireshark抓包实验报告一、实验名称TCP报文分析二、实验目的利用wireshark抓包工具抓取网络数据包,分析传输层TCP协议,加强对教材知识的理解,特别是TCP连接的特征,三次握手建立连接,累计确认方式,以及报文段的数据结构。

三、实验要求1、分析TCP建立连接和关闭连接的握手阶段及标识符的值;2、分析数据传输过程中的变化;3、分析报头各字段;四、实验内容(一)建立连接三次握手1)源主机向目的主机发送连接请求报头:源端口号:4612目的端口号:http(80)序列号:0(源主机选择0作为起始序号)报头长度:28字节标志位:仅SYN设为1,请求建立连接,ACK:not set 窗口大小:16384字节选项字段:8字节2)目的主机返回确认信号报头:源端口号:http(80)目的端口号:4612序列号:0(目的主机选择0作为起始序号)报头长度:28字节标志位:SYN设为1,ACK设为1,确认允许建立连接窗口大小:5720字节选项字段:8字节3)源主机再次返回确认信息,并可以携带数据报头:源端口号:4612目的端口号:http(80)序列号:1(发送的报文段编号)报头长度:22字节标志位:SYN=1,ACK=1窗口大小:16560字节(二)关闭连接四次握手1)源主机向目的主机发送关闭连接请求,FIN=12)目的主机返回确认信号,ACK=13)目的主机允许关闭连接,FIN=14)源主机返回确认信号,ACK=1五、总结及心得体会TCP协议是传输层的最重要的内容,面向连接,可靠传输,提供流量控制和拥塞控制,对TCP协议的理解和掌握有助于对网络层的学习。

通过抓包实验,对wireshark软件的操作更为熟练了,对教材所讲的内容也有了巩固。

(注:可编辑下载,若有不当之处,请指正,谢谢!)。

wireshark抓包实验报告总结

wireshark抓包实验报告总结

wireshark抓包实验报告总结一、实验目的本次实验的主要目的是学习Wireshark抓包工具的使用方法,掌握网络通信过程中数据包的组成和解析方式,以及了解常见网络协议的运行机制。

二、实验环境本次实验使用的操作系统为Windows 10,使用Wireshark版本为3.4.6。

三、实验步骤1. 安装Wireshark软件并打开。

2. 选择需要抓包的网络接口,并开始抓包。

3. 进行相应的网络操作,例如访问网站、发送邮件等。

4. 停止抓包,并对捕获到的数据包进行分析和解析。

四、实验结果1. 抓取HTTP请求和响应数据包通过Wireshark抓取HTTP请求和响应数据包,可以轻松地了解HTTP协议在通信过程中所传输的信息。

例如,在访问一个网站时,可以看到浏览器向服务器发送GET请求,并获取到服务器返回的HTML 页面等信息。

同时还可以看到HTTP头部中所携带的信息,例如User-Agent、Cookie等。

2. 抓取TCP连接数据包通过Wireshark抓取TCP连接数据包,可以了解TCP协议在建立连接、传输数据和关闭连接时所涉及到的所有步骤。

例如,在进行FTP 文件传输时,可以看到TCP三次握手建立连接,以及文件传输过程中TCP的流量控制和拥塞控制等。

3. 抓取UDP数据包通过Wireshark抓取UDP数据包,可以了解UDP协议在通信过程中所涉及到的所有信息。

例如,在进行DNS域名解析时,可以看到DNS服务器返回的IP地址等信息。

五、实验总结通过本次实验,我学会了使用Wireshark抓包工具进行网络数据包分析的方法,并了解了常见网络协议的运行机制。

同时也发现,在网络通信过程中,数据包所携带的信息非常丰富,能够提供很多有用的参考和指导。

因此,在实际工作中,我们应该灵活运用Wireshark等工具进行网络数据包分析,并结合具体业务场景进行深入研究和分析。

wireshark实验报告

wireshark实验报告

wireshark实验报告Wireshark实验报告Wireshark是一个非常强大的网络协议分析工具,它可以帮助我们监控和分析网络上的数据包,从而深入了解网络通信的细节。

在本次实验中,我们使用Wireshark来分析一个简单的网络通信场景,并进行一些实验来了解它的功能和用途。

实验一:捕获数据包首先,我们打开Wireshark并选择要监控的网络接口,然后开始捕获数据包。

在捕获过程中,我们可以看到不断出现的数据包,它们包含了网络通信中的各种信息,如源地址、目标地址、协议类型等。

通过Wireshark的过滤功能,我们可以只显示特定协议的数据包,从而更方便地进行分析。

实验二:分析HTTP通信接下来,我们模拟了一个简单的HTTP通信场景,比如在浏览器中访问一个网页。

通过Wireshark捕获到的数据包,我们可以看到HTTP请求和响应的细节,包括请求头、响应头、数据内容等。

通过分析这些数据包,我们可以了解HTTP 通信的工作原理,以及了解网页加载过程中的各种细节。

实验三:检测网络异常最后,我们模拟了一个网络异常的场景,比如断开网络连接或者遭遇网络攻击。

通过Wireshark捕获到的数据包,我们可以看到异常情况下的网络通信情况,从而及时发现问题并进行处理。

Wireshark的强大过滤功能可以帮助我们快速定位异常数据包,以便更快地解决网络问题。

通过以上实验,我们对Wireshark的功能和用途有了更深入的了解。

它不仅可以帮助我们监控网络通信,还可以帮助我们分析网络问题、学习网络协议等。

在今后的网络工作中,Wireshark将成为我们不可或缺的利器,帮助我们更好地理解和管理网络通信。

wireshark实验报告

wireshark实验报告

wireshark实验报告Wireshark实验报告引言:Wireshark是一款网络封包分析软件,被广泛应用于网络安全、网络管理和网络故障排除等领域。

本篇实验报告将介绍Wireshark的基本原理、实验环境和实验过程,并通过实验结果分析其应用价值。

一、Wireshark的基本原理Wireshark基于网络抓包技术,能够捕获网络通信过程中的数据包,并对其进行解析和分析。

它支持多种网络协议,包括以太网、无线局域网、传输控制协议(TCP)、用户数据报协议(UDP)等。

Wireshark通过监听网络接口,将捕获到的数据包以图形化界面的形式呈现给用户,方便用户进行深入分析。

二、实验环境本次实验使用的环境是一台运行Windows操作系统的个人电脑,安装了最新版本的Wireshark软件。

实验中使用了一个虚拟网络环境,包括两台虚拟机,分别运行着Windows和Linux操作系统。

三、实验过程1. 安装Wireshark:首先,将Wireshark软件下载到本地,并按照安装向导进行安装。

安装完成后,打开Wireshark程序。

2. 设置捕获接口:在Wireshark界面上方的工具栏中,选择“捕获选项”按钮。

在捕获选项对话框中,选择需要捕获的网络接口,点击“开始”按钮开始抓包。

3. 进行通信测试:在虚拟机中进行网络通信测试,例如在Windows虚拟机中打开浏览器,访问一个网站。

同时,在Linux虚拟机中执行ping命令,向外部主机发送数据包。

4. 分析捕获的数据包:在Wireshark界面中,可以看到捕获到的数据包以列表的形式展示出来。

通过点击某个数据包,可以查看其详细信息,包括源IP地址、目标IP地址、协议类型等。

5. 过滤和统计功能:Wireshark还提供了强大的过滤和统计功能,可以根据需要筛选和分析数据包。

例如,可以根据源IP地址过滤出特定的数据包,或者统计某个协议的使用情况。

四、实验结果分析通过对捕获的数据包进行分析,我们可以得到一些有价值的结果。

wireshark抓包实验之TCP(陕师大)

wireshark抓包实验之TCP(陕师大)

实验六 Wireshark Lab: TCP一、实验目的1.通过wireshark 抓包理解应用层TCP 协议。

二、实验器材1.PC 机电脑一台。

2.Wireshark 软件。

三、实验内容1.依照Wireshark Lab 提供的实验步骤完成实验。

2.回答实验中的问题。

四、实验操作实践与步骤2. A first look at the captured trace1. What is the IP address and TCP port number used by the client computer (source) that is transferring the file to ? To answer this question, it’s probably easiest to select an HTTP message and explore the details of the TCP packet used to carry this HTTP message, using the “details of the selected packet header window”2. What is the IP address of ? On what port number is itsending and receiving TCP segments for this connection? Source IP address :129.168.1.102Source TCP portnumber :1161Destination IP address :128.119.245.12Destination TCPport number:80If you have been able to create your own trace, answer the following question:3. What is the IP address and TCP port number used by your client computer (source) to transfer the file to ?3. TCP Basics4. (1)What is the sequence number of the TCP SYN segment that is used to initiate the TCP connection between the client computer and ? (2)What is it in the segment that identifies the segment as a SYN segment?(1) SYN sequence number =0(2) What is in the red region of the figure above identifies the segment as a SYN segment.5. (1)What is the sequence number of the SYNACK segment sent by to the client computer in reply to the SYN?(2) What is the value of the ACKnowledgement field in the SYNACK segment? How did determine that value? What is it in the segment that identifies the segment as a SYNACK segment?(1)SYNACK sequence number =0, ACKnowledgement=1(2)ACKnowledgement value= initiate sequence number of the TCP SYN segment+1(3)What is in the red region of the figure above identifies the segment as a SYN segment.6. What is the sequence number of the TCP segment containing the HTTP POST command? Note that in order to find the POST command, you’ll need to dig into the packet content field at the bottom of the Wireshark window, looking for a segment with a “POST” wi thin itsDATA field.The sequence number of the TCP segment containing the HTTP POST command is 1.7. Consider the TCP segment containing the HTTP POST as the first segment in the TCP connection. (1)What are the sequence numbers of the first six segments in the TCP connection (including the segment containing the HTTP POST)? (2)At what time was each segment sent? When was the ACK for each segment received?(3) Given the difference between when each TCP segment was sent, and when its acknowledgement was received, what is the RTT value for each of the six segments?(4) What is the EstimatedRTT value (see page 249 in text) after the receipt of each ACK? (5)Assume that the value of the EstimatedRTT is equal to the measured RTT for the first segment, and then is computed using the EstimatedRTT equation on page 249 for allsubsequent segments.Note: Wireshark has a nice feature that allows you to plot the RTT for each of the TCP segments sent. Select a TCP segment in the “listing of captured packets” window that is being sent from the client to the server. Then select: Statistics->TCP Stream Graph- >Round Trip Time Graph(1) The first sixsegments are the No.4, 5, 7, 8, 10, and 11 segments.(circled in red)The sequence numbers of them respectively are1, 566, 2026, 3486, 4946, 6406, 7866.(2)They were respectively sent at the time circled int the figure bellow.(3)ACK received time are given in the figure bellow:(4)RTT value for each of the six segmentsSent time ACK received time RTT value Segment1 0.026477 0.053937 0.02746 Segment2 0.041737 0.077294 0.035557 Segment3 0.054026 0.124085 0.070059 Segment4 0.054690 0.169118 0.11443(5)EstimatedRTT = 0.875 * EstimatedRTT + 0.125 * SampleRTT EstimatedRTT after the receipt of the ACK of segment 1: EstimatedRTT = RTT for Segment 1 = 0.02746 secondsegment 2:EstimatedRTT = 0.875 * 0.02746 + 0.125 * 0.035557 = 0.0285 segment 3:EstimatedRTT = 0.875 * 0.0285 + 0.125 * 0.070059 = 0.0337 segment 4:EstimatedRTT = 0.875 * 0.0337+ 0.125 * 0.11443 = 0.0438 segment 5:EstimatedRTT = 0.875 * 0.0438 + 0.125 * 0.13989 = 0.0558 segment 6:EstimatedRTT = 0.875 * 0.0558+ 0.125 * 0.18964 = 0.0725Figure: Round Trip Time Graph8. What is the length of each of the first six TCP segments?The length of the first TCP segments (containing the HTTP POST) is 566 bytes. The length of each of the other five TCP segments is 1460 bytes.9. What is the minimum amount of available buffer space advertised at the received for the entire trace? Does the lack of receiver buffer space ever throttle the sender?The minimum amount of available buffer space at advertised at for the entire trace is 5840 bytes, which shows in the first acknowledgement (No.2 segment )from the server. This receiver window grows steadily until a maximum receiver buffer size of 62780bytes. The sender is never throttled due to lacking of receiver buffer space by inspecting this trace.Figure : Minimum receive window (packet No.2)10. Are there any retransmitted segments in the trace file? What did you check for (in the trace)in order to answer the question?There is no retransmitted segments in the trace file.In order to answer the question , I checked for the sequence numbers of the TCP segments in the trace file. In the Time-Sequence-Graph (Stevens) of this trace, all sequence numbers from 192.168.1.102 to 128.119.245.12 are increasing linear and monotonically. If there is a retransmitted segment, the Time-Sequence-Graph (Stevens) should be different from what we see.11.(1) How much data does the receiver typically acknowledge in an ACK?(2) Can you identify cases where the receiver is ACKing every other received segment (see Table 3.2 on page 257 in the text).The receiver typically acknowledged sequence numbers of the ACKs are listed in the following table.Acknowledged sequence number Acknowledged data SegmentnumberACK16 566 566ACK29 2026 1460ACK312 3486 1460ACK414 4946 1460ACK515 6406 146012. What is the throughput (bytes transferred per unit time) for the TCP connection? Explain how you calculated this value.The TCP connection started to transmit data at segment 4,and end in segment 202. We can see from the figure bellow:data1=1 byte t1=0.026477data2=164091 bytes t2=5.455830total data=164091-1=164090 bytesit takes time: total time=5.455830-0.026477=5.429353 secondsSo the throughput for the TCP connection is calculated as164090/5.4294353= 30.222 KByte/sec13. Use the Time-Sequence-Graph(Stevens) plotting tool to view the sequence number versus time plot of segments being sent from the client to the server. Can you identify where TCP’s slow start phase begins and ends, and where congestion avoidance takes over?Comment on ways in which the measured data differs from the idealized behavior of TCP that we’ve studied in the text.We can see from the figure above(Time-Sequence-Graph(Stevens)) that the TCP Slow Start begins at the start of the connection.The identification of the TCP slow start phase and congestion avoidance phase depends on the value of the congestion window size of this TCP sender. So once we know the congestion window size of this TCP sender, we can tell easily where TCP’s slow ends and where congestion avoidance takes over.When answering the previous question, we can know that the TCP window size is larger than 8192 Bytes.But there is no data sent more than 8192 Bytes. It indicates before the end of the start phase,the application already stops transmitting . That is to say, the TCP’s slow ends and congestion avoidance haven’t taken place.五、实验结论总的来说,这一次实验做的很痛苦,因为一开始问题回答不出来。

Wireshark抓包实验报告.

Wireshark抓包实验报告.

第一次实验:利用Wireshark软件进行数据包抓取1.3.2 抓取一次完整的网络通信过程的数据包实验一,实验目的:通过本次实验,学生能掌握使用Wireshark抓取ping命令的完整通信过程的数据包的技能,熟悉Wireshark软件的包过滤设置和数据显示功能的使用。

二,实验环境:操作系统为Windows 7,抓包工具为Wireshark.三,实验原理:ping是用来测试网络连通性的命令,一旦发出ping命令,主机会发出连续的测试数据包到网络中,在通常的情况下,主机会收到回应数据包,ping采用的是ICMP协议。

四,验步骤:1.确定目标地址:选择作为目标地址。

2.配置过滤器:针对协议进行过滤设置,ping使用的是ICMP协议,抓包前使用捕捉过滤器,过滤设置为icmp,如图 1- 1图 1-13.启动抓包:点击【start】开始抓包,在命令提示符下键入ping , 如图 1-2图 1-2停止抓包后,截取的数据如图 1-3图 1-34,分析数据包:选取一个数据包进行分析,如图1- 4图1-4每一个包都是通过数据链路层DLC协议,IP协议和ICMP协议共三层协议的封装。

DLC协议的目的和源地址是MAC地址,IP协议的目的和源地址是IP地址,这层主要负责将上层收到的信息发送出去,而ICMP协议主要是Type和Code来识别,“Type:8,Code:0”表示报文类型为诊断报文的请求测试包,“Type:0,Code:0”表示报文类型为诊断报文类型请正常的包。

ICMP提供多种类型的消息为源端节点提供网络额故障信息反馈,报文类型可归纳如下:(1)诊断报文(类型:8,代码0;类型:0代码:0);(2)目的不可达报文(类型:3,代码0-15);(3)重定向报文(类型:5,代码:0--4);(4)超时报文(类型:11,代码:0--1);(5)信息报文(类型:12--18)。

1.4.1,TCP协议的分析实验一,实验目的:通过本次实验,掌握使用Wireshark抓取TCP协议的数据包的技能,能够在深入分析“TCP的三次握手”,TCP的四次挥手协议在网络数据流的基础上,进一步提高理论联系实践的能力。

利用wireshark进行网络数据捕获的实验报告总结

利用wireshark进行网络数据捕获的实验报告总结

利用wireshark进行网络数据捕获的实验报告总结标题:利用Wireshark进行网络数据捕获的实验报告总结摘要:本文是对利用Wireshark进行网络数据捕获实验的总结与回顾。

通过使用Wireshark这一强大的网络分析工具,我们可以深入了解网络通信过程中的数据包交互,以及分析网络流量中的各种信息。

本文将从简到繁,由浅入深地介绍了Wireshark的使用方法,展示了对不同协议的数据包的截取和解析过程,并探讨了实验过程中遇到的一些常见问题和解决方案。

1. 引言在当今网络化的时代,了解网络数据的传输和交互过程对于网络管理和安全至关重要。

Wireshark作为一款免费的开源软件,提供了强大的网络数据分析能力,成为网络技术人员必备的工具之一。

本文将通过实验报告的形式,总结并回顾利用Wireshark进行网络数据捕获的经验,包括实验目的、实验过程和实验结果。

2. 实验目的在实验中,我们的主要目的是掌握Wireshark的基本使用方法,包括安装和配置、捕获网络数据包、过滤和解析数据包等。

通过实际操作了解网络通信过程中的数据包结构和各层协议的使用,从而提高对网络数据的理解和分析能力。

3. 实验步骤及过程3.1 安装与配置Wireshark我们首先介绍了Wireshark软件的下载、安装和基础配置,包括设置捕获接口、指定过滤器等。

通过正确配置Wireshark,我们能够准确地对特定网络接口进行数据包捕获。

3.2 捕获网络数据包接下来,我们详细介绍了如何在Wireshark中开始数据包捕获。

通过选择合适的网络接口和过滤器,我们可以针对特定的网络流量进行捕获,并将捕获的数据包保存为pcap文件以供后续分析。

3.3 过滤和解析数据包Wireshark支持强大的过滤功能,我们通过示例解释了过滤器的语法和使用方法,从而能够更加灵活地过滤和查找我们感兴趣的数据包。

我们还介绍了Wireshark的解析功能,用于解析各种网络协议的数据包,并展示了如何获取关键信息。

网络抓包 实验报告

网络抓包 实验报告

网络抓包实验报告网络抓包实验报告一、实验目的网络抓包是一种常见的网络分析技术,通过截获和分析网络通信数据包,可以深入了解网络通信过程中的细节和问题。

本实验旨在通过抓包实践,掌握网络抓包的基本原理和操作方法,并能够利用抓包工具进行网络数据分析。

二、实验环境本次实验使用了一台运行Windows 10操作系统的电脑,并安装了Wireshark作为网络抓包工具。

Wireshark是一款开源的网络协议分析软件,可以截获并分析网络数据包。

三、实验步骤1. 安装Wireshark:从官方网站下载Wireshark安装包,并按照提示完成安装过程。

2. 打开Wireshark:双击Wireshark桌面图标,启动软件。

3. 选择网络接口:在Wireshark界面的主菜单中,点击“捕获”选项,选择要进行抓包的网络接口。

4. 开始抓包:点击“开始”按钮,Wireshark开始截获网络数据包。

5. 进行网络通信:在另一台电脑上进行网络通信,例如访问一个网站或发送电子邮件。

6. 停止抓包:在Wireshark界面的主菜单中,点击“停止”按钮,停止截获网络数据包。

7. 分析数据包:在Wireshark界面的数据包列表中,可以看到截获的网络数据包,点击其中的一条数据包,可以查看其详细信息。

四、实验结果与分析通过实验,我们成功截获了多个网络数据包,并进行了分析。

在分析过程中,我们发现了一些有趣的现象。

首先,我们观察到了HTTP通信中的明文传输问题。

在抓包过程中,我们截获了一些HTTP请求和响应的数据包,其中包含了网页的内容。

通过查看数据包的详细信息,我们发现这些数据包中的内容并没有进行加密处理,因此存在信息泄漏的风险。

这提醒我们在进行网络通信时,应尽量使用HTTPS等加密协议来保护数据的安全性。

其次,我们还观察到了TCP连接的建立和断开过程。

在进行网络通信时,客户端和服务器之间需要建立TCP连接来传输数据。

通过分析数据包中的TCP协议头部信息,我们可以清晰地看到连接的建立过程,包括三次握手和连接的断开过程,包括四次挥手。

wireshark tcp 实验总结

wireshark tcp 实验总结

wireshark tcp 实验总结Wireshark是一款非常强大且开源的网络协议分析工具,可以捕获和分析网络数据包。

在进行Wireshark TCP实验时,我们主要研究了TCP协议的工作原理以及相关的网络性能指标。

实验目的:本次实验的主要目的是通过使用Wireshark工具来分析TCP协议的行为,了解TCP协议的工作原理以及网络性能指标,包括延迟、丢包等。

实验内容:实验内容包括使用Wireshark工具捕获TCP数据包、分析TCP连接的建立过程、计算网络延迟和丢包率等。

实验步骤:1.下载和安装Wireshark。

2.打开Wireshark工具,并选择要捕获数据包的网络接口。

3.开始捕获数据包,并进行相关设置,如过滤器设置。

4.运行需要分析的TCP应用程序,例如浏览器或FTP客户端。

5.停止捕获数据包,并保存捕获的数据包文件。

6.使用Wireshark分析捕获的数据包文件,查看TCP连接建立过程、延迟、丢包等信息。

实验结果:通过对Wireshark捕获的数据包进行分析,我们得到了一些有关TCP协议的有用信息:1. TCP连接的建立过程:通过分析捕获的数据包,我们可以看到TCP连接建立的三次握手过程,即客户端发送SYN,服务器回复SYN ACK,客户端再回复ACK,最终建立起TCP连接。

2.延迟与RTT:通过分析数据包的时间戳,我们可以计算出每个数据包的往返时间(RTT),从而得到网络的延迟情况。

可以观察到RTT 的变化情况,以及延迟对网络性能的影响。

3.丢包与重传:通过捕获的数据包,我们可以看到是否有丢包现象发生。

当发生丢包时,Wireshark会显示相应的重传数据包,以及丢包率等相关统计信息。

实验分析:通过进行Wireshark TCP实验,我们对TCP协议的工作原理以及网络性能有了更深入的了解:1. TCP连接建立过程是通过三次握手来实现的,确保了双方的同步和可靠性。

2.延迟是网络性能的一个重要指标,对于实时应用程序(如VoIP或视频流),低延迟是非常重要的。

【VIP专享】wireshark抓包连接与断开实例

【VIP专享】wireshark抓包连接与断开实例

三次握手后连接建立,客户端向服务器端发送 HTTP GET 请求
A. B. 10C0C. . AD.D.A..99B. B. A.98C.B. D9.7CC.A.“.” DD.A..96 BB..A9.5C“”.B. D9.4C. C. D.A.DA.9. 3B. B. C92.C). AD. .9AD1. “.B‘’?. ”B. A9.0C“”.B. D8.9CC. . AD.D. .C88. B“”. A. A.8D7B. . B. 86C. AA.D.D. .8BB5.<.< 8C4C.. AD..D8. 3BCA... DA8..2“” B.BA.8.1C“”. B. AD.8.0C.B. AD7.9.C(). B. AD.7.8C.B. D77.C“C”.. AD.D. .76B“”C. . A.D. 75BC.. A. DA..74 BB. . A7.3C“”.B. 7D2“./C”C“.”. AD.D. . 71BC.. A.D7.0“”B“C”.“.A” . DA6..9“” ABB... 68BC“”..A6.7C“D”..B. D6.6C. D.DC. . B. A6. 5C. A. D. 6B4. C. A. D. 63CB..A. DA6..2“?” BB.A. . 61C.B. AD.6.C0. B. D5.•9CC. . AD.D.A.5.8B“”. B. A.57C. B. D5.6CC. . AD.D. . 55BC.. A.D.54BC. . A.DA..53B. B. 52CC. . AD.D.A.5. 1B. B. A.50C.B. D49.C“C”. .A. DD.A.B.4.8 B. A.47C.B. 4D6.“C”C“.”. AD.D. . 4A5B. . B. A.44C.B. AD.4.3C.B. D4.2CC. . AD.D.A.4.1“B” .B. 40C. AD.D. .39BC. . A.DA.3.8B“”. B. A3.7C“”. B. DA36. C“”. B.AD3. 5.C(). AB..D.34BC.. 33CD.. AD.D.. 32BC.. A.D.31B“C”.. A.D.30BC. . A.D. 29BC. . A.D. 28B. C. A.D. 27BC. . AA.D.1.2961B(1). B.1921C59. CA.1D92.14B7C. . A.D. 23BC. . A.D.22B“C”. . A.D. 21CBA.. D2. 0C“”.QAB.. 1D9.“??CB?..” A.D. 18BC.. A.DA..17B. B. 16C. D.DC.. B. A1. 5 D. C. B. A1. 4C. A.D.C13.B1.9 A. D.2102 B.D. C. B. A1. 1 D. C. B. A1.0A. B. C. D. “”“” 9 D. C. B. A.8 D. C. B.C. A7.“” A. D6.CB.. A. D.5B. D. C. B. A.4 D. C. B. A.3 D.“C.“”B.“A” .“” 2C. A. D.1B[.03]

实验1:网络协议分析工具Wireshark的使用

实验1:网络协议分析工具Wireshark的使用

大连理工大学本科实验报告课程名称:网络综合实验学院(系):软件学院专业:金融信息化班级:学号:学生姓名:2010年6月29日大连理工大学实验报告学院(系):软件学院专业:金融信息化班级:OOXX班实验时间:2010.6.29 实验室:D图407 实验台:指导教师签字:成绩:实验一:网络协议分析工具Wireshark的使用一、实验目的学习使用网络协议分析工具Wireshark的方法,并用它来分析一些协议。

二、实验原理和内容1、tcp/ip协议族中网络层传输层应用层相关重要协议原理2、网络协议分析工具Wireshark的工作原理和基本使用规则三、实验环境以及设备Pc机、双绞线四、实验步骤(操作方法及思考题)1.用Wireshark观察ARP协议以及ping命令的工作过程:(1)用“ipconfig”命令获得本机的MAC地址和缺省路由器的IP地址;ipconfig/all 00-15-C5-7B-30-A6 192.168.1.1(2)用“arp”命令清空本机的缓存;arp -d(3)运行Wireshark,开始捕获所有属于ARP协议或ICMP协议的,并且源或目的MAC地址是本机的包(提示:在设置过滤规则时需要使用(1)中获得的本机的MAC地址);过滤规则:ether host 00:15:C5:7B:30:A6 and (arp or icmp) (4)执行命令:“ping 缺省路由器的IP地址”;ping 192.168.1.1写出(1),(2)中所执行的完整命令(包含命令行参数),(3)中需要设置的Wireshark的Capture Filter过滤规则,以及解释用Wireshark所观察到的执行(4)时网络上出现的现象。

Wireshark截图:首先,通过ARP协议来找到所ping机器的ip地址,本机器发送一个广播包,在子网中查询192.168.1.17的MAC地址,然后一个节点发送了响应该查询的ARP 分组,告知机器所查询的MAC地址。

Wireshark数据抓包分析之传输层协议(TCP协议)

Wireshark数据抓包分析之传输层协议(TCP协议)

Wireshark数据抓包分析之传输层协议(TCP协议)实验步骤⼀根据实验环境,本实验的步骤如下:1.在测试环境使⽤发包⼯具和Wireshark抓取TCP三次握⼿和四次断开的数据包。

2.详细分析TCP协议的三次握⼿以及四次断开。

任务描述:安装发包⼯具,并配置TCP客户端,服务端,与Wireshark配合使⽤此⼯具与分析UDP协议时相同,实验室环境中已经安装,在此再重复⼀遍,我们使⽤" TCP&UDP测试⼯具"来制作和发送TCP数据包。

双击测试者机器桌⾯的" TCP&UDP测试⼯具",会出现下图显⽰页⾯:下⾯我们需要配置TCP的服务端以及客户端。

1.配置服务器端选择10.1.1.33的机器,双击桌⾯的" TCP&UDP测试⼯具",右键点击服务器模式,在下拉列表中,选择创建服务器,如下图:选择"创建服务器"之后,会弹出服务器端⼝设置,本次使⽤默认⼯具给的6000端⼝即可,点击"确定"按钮。

点击"确定"按钮之后,在左侧的服务器模式列表中,会出现创建的列表,选择我们创建的服务器,右键点击,选择"启动服务器",即完成了服务器端的配置2.配置客户端选择10.1.1.142的机器,双击桌⾯的" TCP&UDP测试⼯具",右键点击客户端模式,在下拉列表中,选择"创建连接",如下图:在弹出的窗⼝中,选择TCP协议,服务器IP为10.1.1.33.端⼝6000,本机随意IP,如下图点击创建后,如下图,3.获取TCP数据包获取的TCP协议的数据包。

分为两部分,即TCP三次握⼿,四次断开的数据。

但在实际的操作中,可能遇到的情况较多,⽐如源IP和⽬的IP⽐较多,协议的帧号乱序等各种问题。

在此,我们教⼤家简单的过滤功能,着⾊功能⽅便过滤和查看。

5.利用Wireshark抓包分析TCP报文

5.利用Wireshark抓包分析TCP报文

利用Wireshark抓包分析TCP报文
一、实验目的
通过利用Wireshark抓包分析TCP报文,理解TCP报文的封装格式.
二、实验环境
与因特网连接的计算机网络系统;主机操作系统为windows;使用Wireshark、IE等软件。

三、实验原理
1、wireshark是非常流行的网络封包分析软件,功能十分强大。

可以截取各种网络封包,显示网络封包的详细信息。

2、TCP则提供面向连接的服务。

在传送数据之前必须先建立连接,数据传送结束后要释放连接。

TCP的首部格式为:
四、实验内容
1.安装Wireshark。

2.利用wireshark抓获TCP数据包。

3.分析TCP数据包首部各字段的具体内容。

四、实验步骤
在实验的基础上,自己完成实验各步骤:
1.
2.
3.
4.
……
四、遇到的问题和解决方法
五、实验总结。

(完整)实验五_使用Wireshark分析TCP协议

(完整)实验五_使用Wireshark分析TCP协议

实验五使用Wireshark分析TCP协议一、实验目的分析TCP协议二、实验环境与因特网连接的计算机,操作系统为Windows,安装有Wireshark、IE等软件。

三、实验步骤1、捕获一个从你电脑到远程服务器的TCP数据打开FTP客户端,连接ftp://202.120.222.71,用”TCP”为过滤条件,捕获建立连接和断开连接的数据。

图5.1 捕获的TCP数据(1)连接建立:TCP连接通过称为三次握手的三条报文来建立的。

观察以上数据,其中分组10到12显示的就是三次握手。

第一条报文没有数据的TCP报文段(分组10),并将首部SYN位设置为1。

因此,第一条报文常被称为SYN分组。

这个报文段里的序号可以设置成任何值,表示后续报文设定的起始编号。

连接不能自动从1开始计数,选择一个随机数开始计数可避免将以前连接的分组错误地解释为当前连接的分组。

观察分组10,Wireshark显示的序号是0。

选择分组首部的序号字段,原始框中显示“9b 8e d1 f5”。

Wireshark显示的是逻辑序号,真正的初始序号不是0。

如图5.2所示:图5.2 逻辑序号与实际初始序号(分组10)SYN分组通常是从客户端发送到服务器。

这个报文段请求建立连接。

一旦成功建立了连接,服务器进程必须已经在监听SYN分组所指示的IP地址和端口号。

如果没有建立连接,SYN分组将不会应答。

如果第一个分组丢失,客户端通常会发送若干SYN分组,否则客户端将会停止并报告一个错误给应用程序。

如果服务器进程正在监听并接收到来的连接请求,它将以一个报文段进行相应,这个报文段的SYN位和ACK位都置为1。

通常称这个报文段为SYNACK 分组。

SYNACK分组在确认收到SYN分组的同时发出一个初始的数据流序号给客户端。

图5.3 逻辑序号与实际初始序号(分组11)分组11的确认号字段在Wireshark的协议框中显示1,并且在原始框中的值是“9b 8e d1 f6”(比“9b 8e d1 f5”多1)。

计算机网络实验报告tcp

计算机网络实验报告tcp

计算机网络实验报告tcp计算机网络实验报告:TCP一、引言计算机网络是当今社会中不可或缺的一部分,而TCP(Transmission Control Protocol)作为互联网中最重要的传输协议之一,起到了关键的作用。

本实验旨在通过对TCP协议的实际操作和观察,深入了解TCP的工作原理和性能特点。

二、实验目的1. 了解TCP协议的基本原理和机制;2. 掌握TCP协议的连接建立和断开过程;3. 研究TCP协议在不同网络环境下的传输性能。

三、实验环境和工具1. 实验环境:使用两台计算机,分别作为服务器和客户端;2. 实验工具:使用Wireshark进行网络数据包的捕获和分析。

四、实验过程和结果1. 连接建立在服务器端启动TCP监听,并设置端口号为8080。

在客户端使用telnet命令连接服务器,并指定服务器的IP地址和端口号。

通过Wireshark捕获到的数据包可以观察到三次握手的过程,即SYN、SYN-ACK和ACK的交互。

2. 数据传输在客户端输入一段文本,并通过telnet发送给服务器。

在Wireshark中可以看到TCP协议中的数据包以及相应的确认包,验证了TCP的可靠传输机制。

同时,还可以观察到拥塞控制机制的运作,根据网络的情况动态调整拥塞窗口大小。

3. 连接断开在客户端输入断开连接的命令,通过Wireshark可以观察到四次挥手的过程,即FIN、ACK、FIN和ACK的交互。

这个过程中,双方都需要发送FIN和ACK来确认连接的断开。

五、实验结果分析通过实验可以得出以下结论:1. TCP协议通过三次握手建立连接,保证了连接的可靠性和稳定性;2. TCP协议具有拥塞控制机制,能够根据网络情况动态调整传输速率,避免网络拥塞;3. TCP协议的断开过程需要四次挥手,确保连接的安全关闭。

六、实验总结通过本次实验,我们深入了解了TCP协议的工作原理和性能特点。

TCP作为一种可靠的传输协议,在互联网中扮演着重要的角色。

wireshark抓包分析实验报告

wireshark抓包分析实验报告

wireshark抓包分析实验报告Wireshark抓包分析实验报告引言:网络是现代社会不可或缺的一部分,它连接了世界各地的计算机和设备。

为了确保网络的正常运行和安全,网络分析工具是必不可少的。

Wireshark作为一款开源的网络抓包分析工具,具有强大的功能和广泛的应用范围。

本实验旨在通过使用Wireshark来抓包并分析网络数据,以深入了解网络通信的细节和原理。

实验目的:1. 了解Wireshark的基本原理和使用方法;2. 掌握抓包和分析网络数据的技巧;3. 分析网络数据包的结构和内容。

实验步骤:1. 下载和安装Wireshark软件;2. 打开Wireshark,选择要进行抓包的网络接口;3. 开始抓包,并进行需要的过滤设置;4. 分析抓到的数据包,包括查看源地址、目标地址、协议类型等信息;5. 进一步分析数据包的内容,如查看HTTP请求和响应的头部信息、查看传输层协议的数据等;6. 结束抓包并保存数据。

实验结果与分析:通过使用Wireshark进行抓包和分析,我们可以获得大量有关网络通信的信息。

以下是一些实验结果和分析:1. 数据包的源地址和目标地址:通过查看数据包的源地址和目标地址,我们可以确定通信的两端设备和它们之间的关系。

这对于网络故障排除和安全分析非常重要。

2. 协议类型:Wireshark可以自动识别和解析各种协议,包括TCP、UDP、HTTP、FTP等。

通过查看数据包的协议类型,我们可以了解网络通信所使用的协议,并进一步分析其特点和性能。

3. HTTP请求和响应:Wireshark可以解析HTTP协议,并显示请求和响应的详细信息。

通过查看HTTP请求和响应的头部信息,我们可以了解到客户端和服务器之间的通信内容,如请求的URL、请求方法、响应状态码等。

4. 传输层协议的数据:Wireshark可以显示传输层协议的数据,如TCP和UDP的数据。

通过查看传输层协议的数据,我们可以了解到数据包的具体内容,如传输的文本、文件等。

wireshark抓包连接与断开实例

wireshark抓包连接与断开实例

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试中、件资且卷包管中料拒试含路调试绝验线敷试卷动方槽设技作案、技术,以管术来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机网络实验报告
年级:信科102 姓名:钱丽美学号: 10111219 实验日期:2012.10.23
实验名称:利用wireshark抓取TCP连接及断开实验
一、实验目的:
1)掌握TCP连接建立的三次握手过程
2)理解TCP连接释放的四次握手过程
二、实验原理:
TCP协议工作原理参考TCP协议
Tcp显示过滤规则:
tcp.flags 显示包含TCP标志的封包。

tcp.flags.syn == 1显示包含TCP SYN标志的封包。

tcp.flags.syn == 1and tcp.flags.ack == 0 显示包含TCP SYN并且不包含ACK标志
的封包。

tcp.flags.fin == 1and tcp.flags.ack == 1 显示包含TCP FIN和ACK标志的封包。

tcp.window_size == 0 && tcp.flags.reset != 1
三、主要设备、器材
1)已联网且运行Windows操作系统的计算机
2)协议分析软件Wireshark
四、要求
1、结果分析与保存的数据一致,否则没有实验成绩
2、数据保存名称:
tcp数据:
w09101-tcp.pcap(网络091班01号arp协议)
实验结果分析报告名称:实验六利用Wireshark分析tcp协议_w09101.doc
五、实验步骤:
1)启动WireShark抓包
2)访问学校主页服务器,通过Wireshark捕获通信内容
3)分析TCP连接建立的三次握手和连接释放的四次握手过程
浏览网页,抓取三次握手的包,根据TCP包头格式将各字段取值填下来。

源IP:10.30.28.57
目的IP:220.181.127.63
源端口:sdt-lmd(3319)
目的端口:http(80)
第一次握手:
找出第一次握手的数据包并截取对该数据包的展开图,根据截图填写横线内容。

替换上图
序号:0
确认号:0
数据偏移:32
URG:0
ACK:0
PSH:0
RST:0
SYN: 1
FIN:0
窗口:32767
若只抓取第一次握手的数据包,则显示过滤器的规则为tcp.flags.syn ==
1and tcp.flags.ack == 0 显示包含TCP SYN并且不包含ACK标志的封包。

并截图替换下图:
第二次握手:
找出第二次握手的数据包并截取对该数据包的展开图,根据截图填写横线内容。

替换上图
序号:0
确认号:0
数据偏移:32
URG:0
ACK: 1
PSH:0
RST:0
SYN:0
FIN:0
窗口:65535
若只抓取第二次握手的数据包,则显示过滤器的规则为:tcp.flags.fin == 1and tcp.flags.ack == 1 显示包含TCP FIN和ACK标志的封包。

并截图替换下图:(提示需要syn字段为1而ack字段为1)
第三次握手:
找出第三次握手的数据包并截取对该数据包的展开图,根据截图填写横线内容。

替换上图
序号: 1
确认号: 1
数据偏移:20
URG:0
ACK: 1
PSH:0
RST:0
SYN:0
FIN:0
窗口:32767
是否可以只抓取第三次握手的数据包,为什么? 若不能,如何确定是第三次握手的数据包。

不能只抓取第三次握手的数据包。

三次握手之后,客户端要请求服务器传送数据
第一次请求数据:
找出第一次请求的数据包并截取对该数据包的展开图,根据截图填写横线内容。

替换上图
序号:0
确认号: 1
数据偏移:20
URG:0
ACK:0
PSH: 1
RST:0
SYN:0
FIN:0
窗口:32767
你是如何确定是第一次的请求的数据包:
若通过过滤规则如何找出第一次的请求数据包:
(选做题)
服务器要传送数据给客户端
第一次回复数据:
找出第一次回复的数据包并截取对该数据包的展开图,根据截图填写横线内容。

替换上图
序号:0
确认号:256
数据偏移:20
URG: 0
ACK: 1
PSH: 1
RST: 0
SYN: 0
FIN:0
窗口:32767
你是如何确定是第一次的回复的数据包:
若通过过滤规则如何找出第一次的回复数据包:
(选做题)
捕捉断开连接的数据包,显示过滤器的规则为tcp.window_size == 0 && tcp.flags.reset != 1
1、
并截图替换下图:
根据截图内容填写:
第一次断开:
URG: 0
ACK:1
PSH: 0
RST: 0
SYN:0
FIN: 0
第二次断开:
URG: 0
ACK:1
PSH: 0
RST: 0
SYN:0
FIN: 0
3、捕捉RST置位的包,显示过滤器的规则为
截图(RST置位)并填写横线
替换上图
序号: 4
确认号:1879
数据偏移:20
URG:0
ACK: 1
PSH:0
RST: 1
SYN: 0
FIN:0
窗口:0
传输层TCP数据报结构详解
选取一条TCP数据包并截图,
填写各项的信息及作用
TCP数据报中依次包括以下信息:
1、Source Port:3324 ,表示源端口。

该部分占 2 个BIT。

2、Destination Port:http(80),表示目标端口。

该部分占 2 个BIT。

3、Initial Sequence Number:1879 ,表示初始序列号
,即SEQ值。

该部分占 4 个BIT,值从1到2的32次方减1。

到2的32次方减1。

个BIT。

A PUSH标志位,
B 复位标志位。

C 结束连接请求标志位。

D 确认标志位,
E 紧急数据标志
F 连接请求标志位。

a收到不属于本机的数据包,需要复位
b 发起连接的请求数据包
c 此数据包为应答数据包
d 有紧急数据,应立即进行传递
e 结束连接的请求数据包
f 此数据包应立即进行传递
BIT,用十六进制表示。

BIT。

【思考问题】
1.试用具体例子说明为什么传输连接建立时要使用三次握手。

如不这样做可能会出现
什么情况。

答:我们知道,3次握手完成两个重要的功能,既要双方做好发送数据的准备工作(双方都知道彼此已准备好),也要允许双方就初始序列号进行协商,这个序列号在握手过程中被发送和确认。

现在把三次握手改成仅需要两次握手,死锁是可能发生的。

作为例子,考虑计算机A 和B之间的通信,假定B给A发送一个连接请求分组,A收到了这个分组,并发送了确认应答分组。

按照两次握手的协定,A认为连接已经成功地建立了,可以开始发送数据分组。

可是,B在A的应答分组在传输中被丢失的情况下,将不知道A是否已准备好,不知道A建议什么样的序列号,B甚至怀疑A是否收到自己的连接请求分组。

在这种情况下,B认为连接还未建立成功,将忽略A发来的任何数据分组,只等待连接确认应答分组。

而A在发出的分组超时后,重复发送同样的分组。

这样就形成了死锁。

2.使用TCP对实时话音数据的传输有什么问题?使用UDP在传送数据文件时会有什么
问题?
答:1.如果语音数据不是实时播放(边接受边播放)就可以使用TCP,因为TCP传输可靠。

接收端用TCP讲话音数据接受完毕后,可以在以后的任何时间进行播放。

但假定是实时传输,则必须使用UDP。

3.UDP不保证可靠交付,但UCP比TCP的开销要小很多。

因此只要应用程序接受
这样的服务质量就可以使用UDP。

4.TCP在进行流量控制时是以分组的丢失作为产生拥塞的标志。

有没有不是因拥塞而
引起的分组丢失的情况?如有,请举出三种情况。

答:当IP数据报在传输过程中需要分片,但其中的一个数据报未能及时到达终点,而终点组装IP数据报已超时,因而只能丢失该数据报;IP数据报已经到达终点,但终点的缓存没有足够的空间存放此数据报;数据报在转发过程中经过一个局域网的网桥,但网桥在转发该数据报的帧没有足够的差错空间而只好丢弃。

相关文档
最新文档