贝雷架便桥设计计算2
贝雷梁便桥计算书
贝雷梁施工便桥设计计算书中铁十一局集团第四工程有限公司二〇一六年三月贝雷梁便桥计算书1、便桥设计依据1.1、设计依据和设计规范《公路桥涵设计通用规范》(JTG D60-2004) 《钢结构设计规范》(GB 50017-2003) 《港口工程荷载规范》(JTJ215-98) 1.2、技术标准1)荷载:按80t 履带吊吊重20t 荷载验算,其中80t 履带吊吊重20t 为栈桥设计的主要荷载。
2)宽度:考虑施工车辆通行需求和经济性因素,按行车道8m 宽布置,每孔跨度12m ,5跨一联。
3)水流力:按流速1.75m/s 考虑。
4)标高:按照设计高潮位+4.75m 设计,栈桥顶面标高设计为+7.0m 。
5)栈桥设计车速:15km/h 。
6)风荷载:工作状态:13.8m/s ;非工作状态:40m/s 。
7)型钢、钢管桩允许应力 抗拉、压 []188.5MPa σ= 抗弯 []188.5w MPa σ= 抗剪 []110MPa τ=单排单层贝雷梁容许弯矩[]788.2M kN m =⋅ 单排单层贝雷梁容许剪力[]245.2Q kN = 2、便桥结构设计 2.1、技术标准(1)设计恒载:栈桥结构自重(2)验算活载:80t履带吊(自重80t+吊重20t)。
10方混凝土罐车栈桥上通行,载重时重量40t 。
总重:400 kN ,轮距:1.8 m,轴距:3.45 m +1.35m前轴重力标准值:60kN,后轴重力标准值:2×170kN前轮着地面积:0.30m×0.20m,后轮着地面积:0.60m×0.20m(3)设计行车速度:15km/h(4)设计使用寿命:5年2.2、便桥结构形式便桥桥面行车道宽度8.0m。
桥面系由上往下依次为10mm组合型花纹钢板,工12.6小纵梁,工22b横向分配梁。
便桥纵梁采用8排单层321型贝雷梁,间距为0.9+1.3m+0.9m+1.3m+0.9m+1.3m+0.9m,贝雷梁跨度12m,采用5跨一联布置,中间设置刚性墩。
跨径12米贝雷钢便桥计算书
跨径12米贝雷钢便桥计算书一、便桥概况纵向施工便道途经铁场排洪渠及沙河时,采用贝雷钢便桥跨越,车俩单向通行。
单孔设计最大跨径12m,桥面宽度为6m。
钢便桥结构型式见下图:便桥桥墩处自下而上依次采用的主要材料为:壁厚10㎜、直径800㎜钢管桩基础2根→1000*1000*10mm钢垫板→2根20a型工字钢(双拼)下横梁→双排单层321贝雷片(2榀4片)纵梁→25a型工字钢横向分配梁→22a型槽钢桥面(卧放满铺)。
钢管桩中心间距为350㎝,桩间采用2根壁厚6㎜、直径630㎜钢管作为支撑联结;20a型工字钢(双拼)下横梁每根长度为530㎝;2榀贝雷梁横向中心间距为350㎝,每榀贝雷片横向顶面采用支撑架(45㎝)联结,底面两侧用2段槽钢固定在工字钢下横梁上;25a型工字钢横向分配梁间距为75㎝,每根长度为600㎝;桥面系22a型槽钢间净距4㎝,横向断面布置23根。
二、计算依据及参考资料1、《公路桥涵设计通用规范》(JTG D60-2004);2、《公路桥涵地基与基础设计规范》(JTG D63-2007);3、《公路桥涵钢结构及木结构设计规范》(JTJ 025-86);4、《公路桥涵施工技术规范》(JTJ 041-2000);5、《公路桥涵施工手册》(交通部第一公路工程总公司主编);6、从莞高速公路惠州段第二合同段两阶段施工图设计;7、本合同段相关地质勘探资料;三、主要计算荷载1、汽车-20 重车;2、自重50吨履带式起重机+吊重15吨(便桥施工期作业机械荷载);3、结构自重;四、结构受力验算(一)、22a型槽钢桥面板(按简支计算,跨径L=0.75m)1、材料相关参数:Iy =157.8㎝4,Wy=28.2㎝3,iy=2.23㎝;容许抗弯应力f=215 MPa,容许抗剪应力fy=125 MPa,E=206×103MPa;自重24.99㎏/m,截面积31.84㎝2。
2、荷载情况:“汽-20”重载,轴距1.4m,单轴重14吨,半边轮组重7吨;汽车冲击系数取1.3;单个轮胎宽度为20㎝,单侧一组轮胎宽度为60㎝,单侧轮组面与3片槽钢接触;轮组作用在跨中弯矩最大,轮组作用在临近支点处剪力最大。
贝雷架栈桥设计与计算书
栈桥设计与计算书1栈桥设计依据(1)《公路桥涵设计通用规范》(JTJ021-89)(2)《公路桥涵地基与基础设计规范》(JTJ024-85)(3) 《海港水文规范》(JTJ213-98)(4) 《装配式公路钢桥多用途使用手册》(5) 《温州大、小门岛石化产业基地围垦工程波浪数学模型研究》(6) 《某大桥工程工程地质勘察中间报告》2栈桥结构设计2.1技术标准(1)设计荷载:汽-超20,挂-120(2)施工控制活载:100t履带吊(3)设计行车速度:15km/h(4)设计使用寿命:5年2.2栈桥结构形式栈桥全长5.765km,乐清侧2.4Km, 小门岛侧3.365km,桥面宽8.0m,按双车道设计。
顶面设计标高为7.0m,纵向平坡。
在栈桥外侧每隔400m左右设会让点一座,全线共计12座。
会让点长36m,宽4m,设计标准同栈桥。
栈桥采用多跨连续梁方案,梁部结构为四组双排单层321贝雷桁架,梁高1.5m;栈桥采用7×15m跨一联。
下部结构采用打入式钢管桩基础,按摩擦桩设计。
根据受力,钢管桩单排采用4φ800mm、3φ800mm两种布置形式,制动墩设双排桩。
最小桩间距3d,壁厚考虑5年腐蚀2mm。
钢管桩顶设两HN450×150 mm型钢分配梁,桩间焊接型钢剪刀撑及钢管横撑。
桥面采用正交异形板,每块3.78×8m。
其中横肋采用I10,间距75cm,纵肋采用[10,间距35cm,桥面板为8mm厚16Mn花纹钢板,并作防滑处理。
栈桥结构简图如图2.2所示。
15m 乐清15m桥面标准化模块贝雷桁架纵梁H型钢分配梁钢管桩15m15m图2.2 栈桥结构示意表2.2 栈桥桥式布置序号起止里程区段长度跨度桩形式桩长m m mm m浅水一区K1+432~K3+097 1665 15 3φ800×10 34浅水二区K3+097~K3+517 420 15 3φ800×10 36深水一区K3+517~K3+832 315 15 4φ800×10 42深水二区K4+488~K5+013 525 15 4φ800×10 42浅水三区K5+013~K6+168 1155 15 3φ800×10 38深水三区K6+168~K7+323 1155 15 4φ800×10 42浅水四区K7+323~K7+953 630 15 3φ800×10 363栈桥结构设计计算书3.1 荷载及荷载组合(1)荷载永久荷载:栈桥自重;基本可变荷载:①汽-超20;②挂-120;③施工用100t履带吊;④人群荷载其他可变荷载:①风力;②波浪力;③潮流水冲力。
01钢管柱贝雷梁支架计算(第二方案)
**大桥钢管柱贝雷梁支架计算单2011。
1.13目录1、编制依据: 02、工程概况 03设计说明 (1)4荷载 (2)4。
1 贝雷梁桥几何特性及桁架容许内力 (2)4。
1。
1、贝雷梁几何特性 (2)4.1。
2、贝雷梁容许内表 (2)4。
2、荷载分析 (3)5第二联第一跨支架计算 (5)5。
1、模板计算 (7)5。
1.1、面板截面特性 (7)5。
1。
2、荷载组合 (7)5。
1。
3、底模板内力计算 (8)5。
2、方木(小肋)计算 (9)5.2。
1小肋力学特性 (9)5。
2。
2截面特性 (9)5。
2.3荷载组合 (10)5。
2。
4内力计算 (10)5。
3贝雷梁顶分配梁(大肋)计算 (11)5。
4贝雷梁验算 (13)5。
4。
1荷载组合 (13)5。
4。
2整体验算 (13)5.4.3局部贝雷梁验算 (15)5。
5柱顶分配梁计算 (17)5.6、钢管柱计算 (20)5。
6.1边侧Φ1020x12钢管柱稳定性验算......................................错误!未定义书签。
5。
6.2中间Φ1020x12钢管柱稳定性验算......................................错误!未定义书签。
5。
6.3跨中处钢管柱格构式结构稳定性验算................................错误!未定义书签。
5。
6.4钢管柱群桩稳定验算............................................................错误!未定义书签。
5.6.5整体屈曲验算复核 (20)5.7、钢管柱底预埋件计算 (28)5。
8、基础计算 (29)5.8。
1 地基地质情况 (29)5。
8。
2 基础类型 (30)5.8。
3 桩基础计算 (31)5。
8。
4扩大基础承载力验算 (31)5。
9 承台局部承压验算 (32)6第二联第二跨支架计算 (33)6。
钢便桥的设计与计算(贝雷架).docx
邓金河便桥的设计与计算主题词:邓金河便桥设计计算内容摘要:运用材料力学和结构力学方面的知识,对便桥各部受力进行了力学分析和计算,通过这些计算,选定桥面系各部构造的材料、型号和尺寸,选定主桁架的型式和跨度。
为钢桥的设计与受力分析提供了一些参考性的思路。
青银高速公路齐河至夏津段一合同段起点里程K0+000〜K15+000,全长15Km,为方便施工,在施工前先要修通主线施工便道, 在K4+570处跨越邓金河时需要修便桥一座,邓金河常水位17. 80m, 河岸地面高程19.30m,常水位时水面宽度10m。
地基土为亚粘土,通过轻型动力触探试验,测得桥位处地基容许承载力llOKPa。
因为施工中常有重车通过,拟以30t汽车作为其设计荷载,主梁型式采用贝雷钢梁,计算跨径12m。
钢梁组合形式为双排单层,共需16片标准贝雷,下承式结构,两组贝雷钢梁间净距4m,同一组的两片贝雷之间在竖直方向和水平方向以L8的角钢相连接形成整体,增加结构的稳定性。
横梁采用I28a的工字钢,每片标准贝雷的下弦杆上横放四根I28a 工字钢,工字钢长度6m,工字钢在水平方向伸出贝雷50cm, 伸出部分以L8角钢与上弦杆连接,增加全桥的结构的稳定。
共需16 根I28a工字钢,工字钢间距为100cm和40cm交替布置。
工字钢上面放置16根纵梁,纵梁为10x15的方札方木材质为东北红松,厚度为15cm,宽度为10cm,纵梁间距25cm,纵梁上面满铺15x10的方木做为桥面板,桥面板厚为10cm,材质为东北红松,桥面板单根长4m, 共需80根桥面板。
便桥各部分构造设计与计算叙述如下:一.桥面板的设计与计算公路钢桥标准设计桥面宽度3. 70m,公路施工车辆及施工机械宽度一般不超过2. 5m,施工车辆与机械可以安全通过,故确定桥面宽度为3.70。
桥面板初步选定用木桥面板,拟选用15x10的方木满铺,方木厚度为10cm,方木之间以耙钉连接,方木材质为优质红松,长度4. 0m, 共需80根方木,汽车后轴重240KN,双桥8轮,单轮压力30KN,小于木桥面板容许承载力60KN的要求,故可用方木做为桥面板。
跨径12米贝雷钢便桥计算书
跨径12米贝雷钢便桥计算书一、便桥概况纵向施工便道途经铁场排洪渠及沙河时,采用贝雷钢便桥跨越,车俩单向通行。
单孔设计最大跨径12m,桥面宽度为6m。
钢便桥结构型式见下图:便桥桥墩处自下而上依次采用的主要材料为:壁厚10㎜、直径800㎜钢管桩基础2根→1000*1000*10mm钢垫板→2根20a型工字钢(双拼)下横梁→双排单层321贝雷片(2榀4片)纵梁→25a型工字钢横向分配梁→22a型槽钢桥面(卧放满铺)。
钢管桩中心间距为350㎝,桩间采用2根壁厚6㎜、直径630㎜钢管作为支撑联结;20a型工字钢(双拼)下横梁每根长度为530㎝;2榀贝雷梁横向中心间距为350㎝,每榀贝雷片横向顶面采用支撑架(45㎝)联结,底面两侧用2段槽钢固定在工字钢下横梁上;25a型工字钢横向分配梁间距为75㎝,每根长度为600㎝;桥面系22a型槽钢间净距4㎝,横向断面布置23根。
二、计算依据及参考资料1、《公路桥涵设计通用规范》(JTG D60-2004);2、《公路桥涵地基与基础设计规范》(JTG D63-2007);3、《公路桥涵钢结构及木结构设计规范》(JTJ 025-86);4、《公路桥涵施工技术规范》(JTJ 041-2000);5、《公路桥涵施工手册》(交通部第一公路工程总公司主编);6、从莞高速公路惠州段第二合同段两阶段施工图设计;7、本合同段相关地质勘探资料;三、主要计算荷载1、汽车-20 重车;2、自重50吨履带式起重机+吊重15吨(便桥施工期作业机械荷载);3、结构自重;四、结构受力验算(一)、22a型槽钢桥面板(按简支计算,跨径L=0.75m)1、材料相关参数:Iy =157.8㎝4,Wy=28.2㎝3,iy=2.23㎝;容许抗弯应力f=215 MPa,容许抗剪应力fy=125 MPa,E=206×103MPa;自重24.99㎏/m,截面积31.84㎝2。
2、荷载情况:“汽-20”重载,轴距1.4m,单轴重14吨,半边轮组重7吨;汽车冲击系数取1.3;单个轮胎宽度为20㎝,单侧一组轮胎宽度为60㎝,单侧轮组面与3片槽钢接触;轮组作用在跨中弯矩最大,轮组作用在临近支点处剪力最大。
贝雷架便桥设计及计算
施工 便桥 使用 中最 重 车辆 9 m 的混凝 土 运输 车
图 1 荷 载 平 面 图
1 9
设计 及计 算
P1
P2
P3
l
—
\ /
f
\
\ / \ l
38 0 0 I l 35 0
吉林 交通科技
S C I E N C E AN D T E C H N O L O G Y O F J I L I N C O MMU N I C A T I O N S
2 0 1 7年 第 2期
贝雷架便桥 设计及计算
张 学 军
金 一 %
1 3 3 0 0 1 )
3 贝雷 架梁计 算 贝雷架 按 1 2 + 1 2 + 9 m为 一联 计 算 ,采用 平 面杆
该结 构标 准跨 径 为 9 m、 1 2 m等 , 因此本 桥共 设 3跨 , 跨径 组 合为 1 2 + 1 2 + 9 m 的连续 梁 结 构 ,便桥 贝雷 架 桥墩 采 用 1 2 0 c m钢 管桩 内灌 C 2 0混凝 土 , 每墩 位
要。
【 关键词 】 贝雷架
桥
设计
计算
作 为计 算 荷 载 , P I = 6 T、 P 2 = P 3 = 1 7 T 合计 : 4 0 T 计 算
图示 如 图 1 、 图 2所示 。
1 工 程 概 况
某 高速公 路特 大桥跨 越 河流 ,需设 置 施 工便 桥
一
座, 便 桥 总 长度 拟 定 3 3 m, 上 部采 用 “ 3 2 1钢 桥 ” 。
图 2 荷 载 立 面 图
3 8 00
1 3 50
1 8 0
贝雷架钢便桥计算书30米跨
30m贝雷架钢便桥计算书1.工程概况本桥适用于30m下承式贝雷架钢便桥。
桥梁主体结构为321型三排单层加强贝雷架。
便桥净宽4.2m,行车道净宽4m,人行道宽净宽1m。
桥面铺设8mm 厚Q235钢板,面板上沿桥向横向焊接φ12的圆钢,间距15cm,面板下设加强肋10#工字钢,间距25cm,工字钢底部铺设横向分配梁28b#工字钢,横穿贝雷架,纵向间距为1.5m。
2.设计参数2.1设计荷载设计荷载按照公路I级,考虑到贝雷架钢便桥长30m,采用车道荷载进行桥梁结构设计计算。
贝雷架钢便桥结构图见图1,立面图见图2。
图1 贝雷架钢便桥结构图(单位:mm)图2 贝雷架钢便桥立面图(单位:mm)2.2受力模型建立受力模型,如图3。
图3 桥梁受力模型(单位:mm)对桥梁受力模型进行简化,简化为简支梁受力模型(偏于安全),见图4。
图4 简化后的受力模型(单位:mm)3.加强肋10#工字钢受力验算3.1工字钢及面板参数构件参数:理论重量11.261kg/m(0.11261kN/m),d= 4.5mm,Ix:Sx= 8.59,Wx=49cm3,[σ]=145Mpa/1.2=120.8 Mpa,[τ]=85Mpa/1.2=70.8Mpa,安全系数取1.2,E=206GPa,Ix=245cm4,8mm厚钢板0.628kN/m2。
3.2荷载组成根据公路I级车道荷载的均布荷载标准值qk=10.5kN/m,桥涵计算跨径小于或等于5m时,Pk=180kN;桥涵计算跨径等于或大于50m时,Pk=360kN,桥涵计算跨径大于5m,小于50m时,Pk值采用内插法求得。
因计算跨径为1.5m,故集中力Pk=180kN。
荷载组合采用1.2恒载+1.4活载。
3.3受力计算以简支梁模型计算,以跨中1.5m最不利位置进行受力分析,以单根工字钢进行受力计算。
截取单元见图5。
图5 截取单元的断面图3.3.1恒载计算(1)面板重力0.628×4×1.5=3.768kN(2)10#工字钢重力(0.11261kN/m)0.11261×1.5×(4/0.25+1)=2.87kN则单根工字钢每延米重力q1=(3.768+2.87)/((4/0.25)+1)=0.26kN/m(3)恒载弯矩M1(组合系数1.2)M1=1.2×0.125×0.26×1.5×1.5=0.09kN·m图6 恒载作用下均布力、剪力及弯矩图3.3.2活载计算根据公路I级车道荷载的均布荷载标准值qk=10.5kN/m,桥涵计算跨径小于或等于5m时,Pk=180kN;桥涵计算跨径等于或大于50m时,Pk=360kN,桥涵计算跨径大于5m,小于50m时,Pk值采用直线内插求得,计算跨径为1.5m,故Pk=180kN。
贝雷钢便桥施工工艺及计算分析
贝雷钢便桥施工工艺及计算分析贝雷钢便桥是一种用于临时跨越河流或者其他障碍物的桥梁,它的特点是结构简单、安装方便、承载能力强。
贝雷钢便桥的施工工艺及计算分析是保证桥梁安全、稳固的重要环节。
本文将介绍贝雷钢便桥的施工工艺和计算分析方法。
一、贝雷钢便桥施工工艺1. 基础准备在开始施工之前,需要对桥梁的两端进行基础准备工作。
首先是清理桥梁两端的场地,确保没有尖锐或者杂物。
然后根据施工图纸确定桥梁两端的基础尺寸和深度,进行挖土和浇筑基础。
基础的深度和承载能力是确保整个桥梁稳固性的关键。
2. 主梁搭设主梁是贝雷钢便桥的主要承载构件,需要在两个基础上进行搭设。
首先将主梁按照设计要求进行排列,然后用起重设备将主梁依次吊装至基础上。
在吊装的过程中,需要确保主梁的水平度和垂直度,以及各个部位的连接牢固度。
3. 支座安装4. 铺设桥面桥面是贝雷钢便桥的行车面,需要选择合适的材料进行铺设。
一般情况下,可以选择钢板、木板或者混凝土板进行铺设。
在铺设的过程中需要注意材料的平整度和连接牢固度,以及桥面与支座之间的连接。
5. 桥梁调整在所有构件安装完成后,需要进行整体的桥梁调整工作。
主要是通过调整支座和主梁的位置,使整个桥梁达到设计要求的水平度和垂直度。
调整工作需要根据实际情况进行,确保桥梁的稳固性和安全性。
6. 桥梁验收最后是对贝雷钢便桥进行验收工作,主要是通过静载试验和动载试验来检查桥梁的承载能力和使用性能。
根据试验结果对桥梁进行合格或者不合格的评定,确保桥梁的安全使用。
二、贝雷钢便桥计算分析1. 承载能力计算贝雷钢便桥的承载能力是根据桥梁的结构和材料计算得出,一般采用有限元分析方法进行计算。
在计算过程中需要考虑到桥梁的荷载情况、支座的位置和数量、主梁的材料和截面等因素,得出桥梁承载能力的理论值。
2. 抗风稳定性分析由于贝雷钢便桥是临时性的桥梁,通常需要在户外使用,因此抗风稳定性是一个重要的考虑因素。
通过风载计算和有限元分析,可以得出桥梁在不同风速下的稳定性情况,确保桥梁不会因为风力导致倾覆或者变形。
钢便桥贝雷梁工程量计算
钢便桥贝雷梁工程量计算
贝雷纵梁验算
栈桥总宽4m,计算跨径为20m。
栈桥结构自下而上分别为:φ219×8mm 钢管桩、28a型工字钢下横梁、“321”军用贝雷梁、25b型工字钢分配横梁(间距0.75m)、22a型槽钢桥面。
单片贝雷:I=250497.2cm4,E=2×105Mpa,W=3578.5cm3
[M]=788.2 kn·m, [Q]=245.2 kn
则4EI=2004×106 kn·m2
(一)荷载布置
1、上部结构恒载(按4m宽计)
(1)22a型槽钢:18×24.99×10/1000=4.50kn/m
(2)25b型工字钢分配横梁:42.0×6×10/1000/0.75=3.36kn/m
(3)“321”军用贝雷梁:每片贝雷重287kg(含支撑架、销子等):
287×4×10/3/1000=3.83kn/m
(4)28a型工字钢下横梁:6×43.4×10/1000=2.60 kn/根
2、活载
(1)汽-20级
(2)8m3混凝土搅拌运输车(满载):车重20t,8m3混凝土19.2t (3)人群:不计
考虑栈桥实际情况,同方向车辆间距大于15m,即一跨内同方向半幅桥内**多只布置一辆重车。
跨径42米贝雷钢便桥计算书
跨径42米贝雷钢便桥计算书贝雷桁架钢便桥应力计算一、钢便桥总体设计驷马河贝雷桁架钢便桥跨径组合为15+18+18+36+18+18+15,共计七跨,总长度为138米,为上承式钢便桥。
便桥宽度为6米。
上部结构:主跨纵梁为5组双排单层加强型贝雷片组装而成,贝雷片上横铺25号工字钢,间距每50厘米设置一道,桥面铺装材料为25号槽钢,数量为20根等间距铺设。
下部结构:钢管桩基础、墩柱;每处墩柱由4根529 mm钢管(壁厚8mm)组成。
设计荷载集中荷载按60T 计,以每小时10KM的慢速(10千米/小时)通行。
通航净空按下游幸福桥和乌江船闸的通行净空设计二、贝雷钢架组合计算根据设计荷载分布,按简支梁控制计算。
(一)、36米主跨1、每米恒载⑴、贝雷片重量:g1=(2700+1600)×10×1.15/3=16483N/m式中1.15为连接件扩大系数,下同;⑵、横梁重量(25#工字钢)g2=381×6×2×1.15=5258N/m ;⑶、桥面铺装重量(槽钢25号)g3=275×20×1.15=6325N/m合计g=28066N/m 为安全计,按L=36m简支梁计算:M跨中弯矩恒=1/8×g×(L)2=1/8×28066×362=4546.7KN.m。
2、活载考虑到恒载与可变荷载布置的最不利,60T可变荷载布置在跨中,活荷载系数采用1.4。
M跨中=1/4×p×L=1/4×600×36×1.4=7560KN.m3、最不利组合荷载M总=4546.7+7560=12106.7 KN.m4、强度验算在安全系数=1.30条件下,5组双排单层加强型贝雷桁片容许弯矩:M=16875/1.30=12981﹥12106.7KN.m。
结构是安全的。
(二)、18米跨1、每米恒载⑴、贝雷片重量2700×8×1.15/3=8280N/m式中1.15为连接件扩大系数,下同;⑵、横梁重量(25#工字钢)381×6×2×1.15=5258N/m ;⑶、桥面铺装重量(槽钢25号)g2=274.1×20×1.15=6304.3N/m ;合计q恒=19842.3N/m 为安全计,按L=15m简支梁计算:M跨中、恒=1/8×q恒×(L)2=1/8×19842.3×182=803.6KN.m。
施工临时贝雷梁钢便桥计算书
目录1. 工程概况 (1)2.参考规及计算参数 (3)2.1.主要规标准. (3)2.2.计算荷载取值 (3)2.3.主要材料及力学参数 (4)2.4.贝雷梁性能指标 (5)3.上部结构计算 (6)3.1.桥面板计算 (6)3.2.16b槽钢分布梁计算 (6)3.3.贝雷梁力计算 (7)4.杆系模型应力计算结果 (11)4.1.计算模型 (11)4.2.计算荷载取值 (12)4.3.贝雷梁计算结果 (13)4.4.墩顶工字横梁计算结果 (21)4.5.钢立柱墩计算结果 (24)5.下部结构验算 (26)6.稳定性验算 (28)7.结论 (28)1.工程概况根据现状道路控制条件,家花园隧道拓宽改造工程钢便桥跨径布置为6m+9m+24m(27m)+12m。
桥面宽度每跨等宽,第一跨为12.629m,第二跨15.4m,第三跨20.4m(23.4m),第四跨28.673m。
第三跨20.4m宽度跨径为24m,另外3m围跨径27m。
钢便桥上部结构选用贝雷梁,27m跨径选用单排单层加强型贝雷梁,布置间距为0.25m+2×0.45m,24m跨径选用单排单层加强型贝雷梁,布置间距为0.25m+0.9m,其余跨径均选用双排单层标准贝雷梁,梁高均为1.5m;贝雷梁上等间距布置横向连接工字钢,型号I25b;工字钢以上等间距布置桥面板支撑槽钢;桥面板采用8mm厚花纹钢板,上铺9cm沥青混凝土。
钢便桥下部结构为横梁立柱接桩(板)基础。
横梁根据受力情况由3片或2片梁高1.0m的工字钢拼接而成。
立柱为直径1.0m的钢管柱,与横梁、基础栓接,便安装与拆卸。
钢管柱之间采用横向钢管连接,加强横向稳定。
基础分为承台桩基和板式扩大基础两种形式,平面位置受限位置用承台桩基础,桩基直径Ф1.2m;其他位置采用板式扩大基础。
钢便桥桥型平面布置图、立面布置图及横断面图如图1-1至图1-4所示。
图1-1 钢便桥平面布置图(单位:mm)图1-2 钢便桥桥型立面布置图(单位:mm)图1-3 钢便桥横断面布置图一(单位:mm)图1-4 钢便桥横断面布置图二(单位:mm)2.参考规及计算参数2.1.主要规标准(1)《城市桥梁设计规》(CJJ 11-2011)(2)《公路桥涵设计通用规》(JTG D60-2004)(3)《公路桥涵施工技术规》(JTG/T F50-2011)(4)《城市桥梁工程施工与质量验收规》(CJJ 2—2008)(5)《公路桥涵钢结构及木结构设计规》(JTJ025—86)(6)《钢结构工程施工质量及验收规》(GB50205-2001)(7)《铁路桥梁钢结构设计规》(TB 10002.2-2005)(8)《钢结构设计规》(GB50017-2003)2.2.计算荷载取值(1)恒载桥面铺装:25×0.09=2.25kN/m2;8mm钢板:78.5×0.008=0.628kN/m2;16b槽钢:78.5×2.515×10-3=0.197kN/m;25b工字钢:78.5×5.351×10-3=0.42kN/m;单排单层加强型贝雷梁,每片350 Kg,即为0.35×10÷3=1.17kN/m;(2)可变作用汽车荷载效应按城-A车辆荷载计算,沿横桥向按4个车道考虑。
贝雷架桥梁、支架设计过程中所设计的参数及公式
贝雷架桥梁所需的计算公式及参数值:
汽车对桥梁的冲击荷载
1,简支梁桥
l ——结构的计算跨径(m)
E ——结构材料的弹性模量(N/m2)
I c——结构跨中截面的截面惯性矩(m4)
m c——结构跨中处的单位长度质量(kg/m)
G ——结构跨中处延米结构重力(N/m)
g ——重力加速度,g=9.81(m/s2)
冲击系数U计算
基本计算公式:
当f<1.5Hz时,u= 0.05
当1.5Hz≤f≤14Hz
u= 0.1767ln(f)-0.0157
时,
当f>14Hz时,u= 0.45
f ——结构基频(桥梁自振频
率)
2,连续梁桥
计算连续梁的冲击力引起的正弯矩效应和剪力效应时,采用f1;计算连续梁的冲击力引起的负弯矩效应时,采用f2。
贝雷片受力表
钢弹性模量E s =2.1×105MPa ; 材料容许应力:
[][][][][][]120Mpa τ200MPa σ210Mpa,
σ345钢Q 85MPa τ140MPa σ145MPa,σ钢Q235w w ======
桩基部分:
[P]=0.5U ∑l i τ=
P-单桩轴向受压容许承载力(KN),以此验证设计桩基荷载
时容许
U=U1+U2=外周长+内周长
l i*τ----桩入土层长度 *所在层桩侧土极限摩阻力。
贝雷便桥施工方案及计算书2
贝雷便桥施工方案及计算书2一、项目概况1.1 项目背景贝雷便桥项目位于XX省XX市,是连接两座城市的重要交通枢纽,为了改善当地交通状况,特制订此次便桥施工方案及计算书。
1.2 项目目标本项目的主要目标是在保障道路通行的情况下,实现便桥的施工并保证施工质量,同时尽量减少对周边环境的影响。
二、施工方案2.1 施工准备在施工开始之前,需要进行充分的施工准备工作。
首先是搭建施工工地,包括施工办公区、设备摆放区等;其次是准备施工所需的人员和设备,确保施工进度。
2.2 施工流程便桥的施工主要包括地基处理、桥墩浇筑、桥面铺设等阶段。
在施工过程中,需严格遵守相关技术标准和安全规范,确保施工质量。
2.3 施工周期整个便桥施工的周期预计为X个月,具体时间会根据实际情况进行调整。
在施工过程中,会定期进行施工进度的检查和评估,确保按时完成施工任务。
三、计算书3.1 材料清单根据便桥的设计要求,列出了施工所需的各种材料清单,包括水泥、钢筋、砂石等。
在采购材料的过程中,需严格按照设计要求进行选择。
3.2 费用估算对便桥施工的各个阶段进行了费用估算,包括人工费、材料费、设备费等。
在施工之前,需要对预算进行认真审核,确保施工经费的充足。
四、总结与展望通过本次便桥施工方案及计算书的编制,详细介绍了本项目的施工方案和费用计算,为后续的施工工作提供了重要的参考依据。
希望本项目能够按照预定计划顺利进行,为当地交通发展做出贡献。
附录附录1:施工图纸附录2:施工技术方案附录3:施工进度计划以上内容为贝雷便桥施工方案及计算书2的相关内容,如有问题请及时与责任人联系。
贝雷片钢便桥计算书
贝雷片钢便桥设计计算书1、设计依据1.1《××××××合同段钢便桥设计图》1.2《公路桥涵钢结构及木结构设计规范》1.3《钢结构设计手册》(第三版)1.4《钢结构设计规范》1.5《装配式公路桥梁钢桥使用手册》。
1.6《公路桥涵设计通用规范》1.7《公路钢筋混凝土及预应力混凝土桥涵设计规范》1.8《公路桥涵地基与基础设计规范》2、技术指标设计荷载:公路-Ⅰ级;设计速度:10公里/小时桥面净空:净3.7米。
地震动峰值加速度系数小于0.05g。
设计洪水频率:1/100。
3、结构布置形式××××××合同段需要架设一座便桥跨越都柳江,桥长183米,通过车辆为70t 的汽车,汽车全宽2.7米。
根据以上资料及地面线资料,确定本桥结构布置如下:上部构造:采用公路钢桥标准桥面3.7米,跨径为36+4×33m,全桥共长183m,主梁断面为单层三排加强型弦杆,全桥横向共6片贝雷架。
其中横梁架设在贝雷架的下弦杆上,每隔1.5m一根,连通六片贝雷架,长5.85m。
横梁之上再设纵梁,纵梁长3m,宽0.75m。
纵梁之上再铺设桥板,采用木板则要求按轴压力120KN设计。
护轮木安装在行车道的两侧,用以压住桥板,固定桥面的外缘。
人行道的设计可根据施工中的具体情况而设,可悬臂架设在贝雷架的外侧。
下部构造:钢筋砼桩基础和墩柱为2根φ150cm的圆桩,盖梁为厚度为120cm的C25砼。
墩顶支座采用木跺。
桥型布置见附图1,横断面见下图。
图1、桥梁横断面4、材料参数主梁采用贝雷架拼装而成,根据《装配式公路桥梁钢桥使用手册》,加强型弦杆三排单层的容许弯距为4809.4KN·m,剪力为698.9KN。
桥面板采用木板,承载能力为60KN。
C25砼强度按规范取值。
5、构件计算5.1、荷载分析图2、车辆荷载车辆荷载按《公路桥涵设计通用规范》中车辆荷载的取值。
贝雷架施工便桥计算书
工字钢施工便桥计算书一、工程简介为便于混凝土等施工物资的运输在距南盘江特大桥3号墩上游40米处设一座两跨共57米(27米+30米)钢便桥。
便桥2号墩位于河中岛焦基岩上。
上部均采用63C工字钢拼装,全桥采用七排单层工字钢桁架。
二、桥位选址及布置根据两岸接线位置、地形、高差和地质等情况,测定最适宜的桥梁中线;测量河流宽度,测定推出桥梁跨径。
三、工字钢桁架结构验算本工程以8m3砼运输车为最重,便桥设计以能通过8m3砼运输车即可,运输车自重17t 到20t,8m3砼约21t。
计算时便桥所受荷载按集中荷载考虑——取50t,七片工字钢自重取0.14114x7KN/m。
当活载作用在跨中时,便桥承受的荷载为最不利荷载。
便桥受力图示如下:便桥荷载示意图(一)30 米跨径(七排单层工字钢桁架)1、实际弯矩计算M=ql2/ 8+kpl/4=0.14114×302/8+500/7×30×1.1×1.2×1.05/4=758.378KN.m最大允许弯矩:[M]=M/W=758.378×106/32.489×105=277.411MPa<145 MPa 2、实际剪力计算Q=k(p+ql)/2=1.1×1.2×1.05( 500/7+0.14114×30) /2=52.434KN.m最大允许剪力:[Q]=Q×S X/(I X&)=52.434×1945.9/(1023.39×17)=5.865MPa 3、挠度[f]=L/400=30000/600=50mm> f= 5ql4/384EI+pl3/48EI= 5×0.14114×9.8×300004/(384×2.1×105×1732303.2×104) +50/7×9.8×1000×300003/(48×2.1×105×1732303.2×104)=14.833mm三、施工安全1、施工期间保证通航净空,满足通航的要求;洪水季节,安排汛期值班人员检查水位对便桥基础的影响。
贝雷架施工便桥计算书(付超)
贝雷架施工便桥计算书一、结构布置1、采用混凝土扩大基础,基础上设背墙,与正规桥梁一样,基础内布置钢筋,顶面浇筑混凝土后铺设钢板当支座;桥台截面图2、26 m跨便桥采用11排单层加强组合贝雷桁架;贝雷架每节3米,实际桥梁长度为3*9=27米;贝雷架横断面图3、每两片一组用花片架联结,共11片,如上图示意;4、桥面铺16-20mm钢板,钢板与贝雷架上弦杆要有可靠联结,可采用焊连或钻眼反扣U型螺栓与弦杆联结;5、贝雷架每节(3米)联结处都要布置联结片,螺栓连在第二排与第一排桁架的端竖杆上,每节桁架前端竖杆上各设一块;6、桥头引道与便桥一定要直接出去,以免荷载引起桥梁扭转受力,非常不利。
二、贝雷架结构验算以8m3砼运输车为最重,便桥设计以能通过8m3砼运输车即可,运输车自重17t 到20t,8m3砼约20t。
计算时便桥所受荷载按集中荷载考虑——取50t,贝雷架自重取1.5T/m。
当活载作用在跨中时,便桥承受的荷载为最不利荷载。
便桥受力图示如下:便桥荷载示意图1、查贝雷架片相关资料,其由贝雷片销接连成整体,截面力学参数如下表2、26 米跨径(11排单层组合贝雷桁架),计算时按10排计算.①、实际弯矩计算M=ql2/ 8+kpl/4=1.5×9.8×262/8+50×26×9.8×1.1×1.2×1.05/4=5656KN.m②、实际剪力计算Q=k(p+ql)/2=1.1×1.2×1.05( 50×9.8+1.5×26×9.8) /2=604KN.m③、最大允许弯矩、剪力、挠度[M]=788.2×10= 7882KN> M= 5656KN.m[Q]=245.2×10= 2452KN>Q= 604KN.m[f]=L/400=26000/400=65mm> f= 5ql4/384EI+pl3/48EI= 5×1.5×9.8×260004/(384×2.1×105×2505000×104) +50×9.8×1000×260003/(48×2.1×105×2505000×104)=51mm验算全部满足要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贝雷架便桥计算书20010-4目录第1章设计计算说明 (1)1.1 设计依据 (1)1.2 工程概况 (1)1.3.1 主要技术参数 (1)1.3.2 便桥结构 (3)第2章便桥桥面系计算 (4)2.1混凝土运输车作用下纵向分布梁计算 (4)2.1.1计算简图 (4)2.1.2.计算荷载 (4)2.1.3. 结算结果 (5)2.1.4 支点反力 (5)2.2履带吊作用下纵向分布梁计算 (5)2.2.1. 计算简图 (5)2.2.2 计算荷载 (6)2.2.3 计算结果 (6)2.2.4. 支点反力 (6)2.3分配横梁的计算 (7)2.3.1.计算简图 (7)2.3.2. 计算荷载 (7)2.3.3. 计算结果 (7)第3章贝雷架计算 (9)3.1 混凝土运输车作用下贝雷架计算 (9)3.1.1最不利荷载位置确定 (9)3.1.2 最不利位置贝雷架计算模型 (11)3.1.3 最不利荷载位置贝雷架计算结果 (11)3.2 履带吊作用下贝雷架计算 (14)3.1.1 最不利位置贝雷架计算模型 (14)3.1.2 最不利荷载位置贝雷架计算结果 (15)3.1.3 腹杆加强后最不利荷载位置贝雷架计算结果 (17)第4章横梁及钢管桩计算 (21)3.1.横梁计算 (21)3.1.1 履带吊工作状态偏心15cm (21)3.1.2 履带吊工作状态(无偏心) (22)3.1.3 履带吊偏心60cm走行状态 (23)3.1.4 履带吊走行状态(无偏心) (24)3.1.5 混凝土运输车偏心130cm通过状态 (26)3.1.6 混凝土运输车无偏心通过状态 (27)3.2最不利荷载位置钢管桩计算结果 (28)3.2.1 计算荷载 (28)3.2.2 计算结果 (29)第1章设计计算说明1.1 设计依据①;大洋河大桥全桥总布置图(修改初步设计);②《铁路桥涵施工规范》(TB10203-2002);③《钢结构设计规范》GB50017-2003;④《路桥施工计算手册》;⑤《桥梁工程》、《结构力学》、《材料力学》;⑥其他相关规范手册。
1.2 工程概况北大河特大桥:位于甘肃省嘉峪关市境内,桥梁起点DK711+296.48,桥梁终点DK712+523.05,全长1076.1m。
包括7片12m空间刚构、30片32m 简支箱梁、35座桥墩、2座桥台。
北大河特大桥跨越跨越一条河流。
河流水文情况:北大河兰新铁路便桥河段采用冰沟水文站历年实测最大洪峰流量910立方米/秒。
便桥河段最大洪峰相对应最大流速为3.55米/秒。
共统计2005年——2009年水文资料。
1.3 便桥设计1.3.1 主要技术参数(1)便桥标高的确定:便桥总长度拟定153米,共设17跨,每跨长度为9米。
墩身高度为7米。
钢管打入河床下8米。
保证在河流冲刷线以下0.5米。
验算栈桥过水能力和流速的校核,已知断面形式b=153m h=7m、底坡i =0.5%。
粗糙n=0.03校核流量Q.过水面积A=BH=153*7=1071M2湿周x=B+2H=167m水力半径R=A/x=6.41m谢才系数 C=R1/6/n=42.04m1/2/s流量Q=AC Ri=3604.8m3/s>910 m3/s(该河流五年内最大洪峰流量)满足要求。
(2)荷载确定桥面荷载考虑以下三种情况:公路一级车辆荷载;便桥使用中最重车辆9m³的混凝土运输车;便桥架设时履带吊的荷载。
与公路一级车辆荷载比较混凝土运输车的轴重和轴距都非常不利,所以将其作为计算荷载,将履带吊架梁工况作为检算荷载。
1台9m³的混凝土运输车车辆荷载的立面及平明面如下(参考车型:海诺集团生产HNJ5253GJB(9m³)):荷载平面图P1P2P3荷载立面图P1=6T P2=P3=17T 合计:40T履带吊架梁时荷载立面及平面如下: 履带吊重50t ,吊重按15t 考虑。
(3)钢弹性模量E s =2.1×105MPa ; (4)材料容许应力:[][][][][][]120Mpaτ200MPa σ210Mpa,σ345钢Q 85MPaτ140MPa σ145MPa,σ钢Q235w w ======1.3.2 便桥结构便桥采用(12+12+9)*3连续梁结构,便桥基础采用φ529*10钢管桩基础,每墩位设置六根钢管,桩顶安装2I32b 作为横梁,梁部采用4榀贝雷架,间距450+2700+450mm ,贝雷梁上横向安装I20b 横梁,横梁位于贝雷架节点位置,间距705+705+705+885mm,横梁上铺设16b槽钢,槽向向下,间距190mm,在桥面槽钢上焊制φ12mm短钢筋作为防滑设施。
第2章便桥桥面系计算桥面系计算主要包括桥面纵向分布梁[16b及横向分配梁I20b的计算。
根据上表描述的工况,分别对其计算,以下为计算过程。
2.1混凝土运输车作用下纵向分布梁计算2.1.1计算简图纵向分布梁支撑在横向分配梁上,按5跨连续梁考虑,计算简图如下:弯矩最不利位置剪力、支点反力最不利位置2.1.2.计算荷载计算荷载按三种荷载组合分别计算。
⑴计算荷载:计算荷载为9m3混凝土运输车,前轴重由8根槽钢承担,每根槽钢承担P1=60000/8=7500N,后轴重同样也由8根槽钢承担,每根槽钢承担P2=170000/8=21250N2.1.3. 结算结果按上述图示与荷载,计算纵向分布梁结果如下:Mmax=3.1049KN*mQmax=20.797KN[16b的截面几何特性为:I=85.3cm4 W=17.5cm3A=25.1cm2 A0=10*(65-8.5*2)*2=960mm2σmax= M max /W=3.1049·106/17.5·103=179.5N/ mm2<145*1.3=188.5 N/ mm2τmax= Q max /A0=20.797·103/960=21.2N/ mm2<85 N/ mm22.1.4 支点反力R1=68.3N;R2=76.3N;R3=20930N;R4=2988N;R5=5945N;R6=-527.5N 结论:在9m3混凝土运输车作用下,纵向分布梁采用[16b,间距19cm 可满足施工要求!2.2履带吊作用下纵向分布梁计算2.2.1. 计算简图履带吊荷载半跨布置时,为最不利荷载,其计算简图如下:2.2.2 计算荷载单个履带板宽度为700mm,按由4根槽钢承担考虑,履带吊按吊重25t,并考虑1.3的冲击系数与不均载系数,荷载q=(55+15)*1.3*10000/2/4500/4=25.3N/mm2.2.3 计算结果按上述荷载与图示,计算结果为:Mmax=1.539KN*mQmax=11.61KN[16b的截面几何特性为:I=85.3cm4 W=17.5cm3A=25.1cm2 A0=10*(65-8.5*2)*2=960mm2σmax= M max /W=1.539·106/17.5·103=87.9N/ mm2<145*1.3=188.5 N/ mm2τmax= Q max /A0=11.61·103/960=12.1N/ mm2<85 N/ mm22.2.4. 支点反力R1=406.3N;R2=-2012N;R3=12782N;R4=21328N;R5=19169N;R6=7281N结论:在55t履带吊吊重25t作用下,纵向分布梁采用[16b,间距19cm可满足施工要求!2.3分配横梁的计算2.3.1.计算简图分配横梁按支撑于贝雷架的连续梁计算,荷载由纵向分布梁传递,其计算简图如下:2.3.2. 计算荷载分配横梁的荷载由纵向分布梁传递,由计算结果可知,最不利荷载为履带吊作用时的荷载,P=24363N。
2.3.3. 计算结果按上述荷载与计算简图计算,计算结果为:Mmax=25.941KN*mQmax=97.669KNI20b的截面几何特性为:I=2500cm4 W=250cm3A=39.5cm2 A0=9*(200-11.4*2)=1595mm2σmax= M max /W=25.941·106/250·103=103.8N/ mm2<145*1.3=188.5 N/ mm2τmax= Q max /A0=97.669·103/1595=61.2N/ mm2<85 N/ mm2⑷支点反力R1=-74.688KN R2=142.47KN R3=-3.76KN R4=132.44KN结论:在最不利荷载作用下,分配横梁采用I20b,间距705*3+885mm 可满足施工要求!第3章贝雷架计算贝雷架按12+12+9m为一联计算,采用平面杆系结构建模,上下弦杆及竖杆使用梁单元BEAM3模拟,斜腹杆使用杆单元LINK1模拟,两片桁架片之间铰接,贝雷架的荷载由分配横梁传递,为模拟移动荷载从而找出不利位置,建模时考虑与分配横梁与纵向分布梁整体建立。
3.1 混凝土运输车作用下贝雷架计算3.1.1最不利荷载位置确定(1)计算模型模型按12+12+9m连续梁建模,简图如下:移动荷载计算建模简图(2)计算荷载由分配横梁计算结果得到,P1=43231N,P2=P3=20930N。
(3)结算结果由计算结果得到,车头距梁端7.95米时,距梁端6.65米位置为上下弦杆最不利截面,车头距梁端12.95米时为端腹杆最不利位置,下图为截面的位移影响线图。
距梁端6.65米截面位移影响线图距梁端11.91米截面位移影响线图3.1.2 最不利位置贝雷架计算模型(1)计算模型模型仍然按12+12+9m连续梁建模,荷载按上述最不利荷载位置施加,简图如下:上下弦杆最不利荷载位置计算简图腹杆最不利荷载位置计算简图(2)荷载为分配横梁反力,其值与移动荷载时相同P1=43231N,P2=P3=20930N。
3.1.3 最不利荷载位置贝雷架计算结果1、上弦杆计算Mmax=5.35KN*m 对应轴力N=343.9KNQmax=49.642KNNmax=-343.9KN2[10的截面几何特性为:Ix=2*198=396cm4 Wx=2*39.7=79.4cm3 ix=3.95cm A=2*12.7=25.4cm2 A0=2*5.3*(100-8.5*2)=879.8mm2 (1)强度计算:σmax= N/A+M max /W=343.9*1000/2540+5.35·106/79.4·103 =202.8N/ mm2<210*1.3=273Mpaτmax= Q max /A0=49.642·103/879.8=56.5N/ mm2<85 N/ mm2(2)稳定计算:L=705mm,ix=39.5mm,λ=705/39.5=18,查φx=0.976βx=1.0 γx=1.05Ncr=16252507σmax=N/(φx*A)+βxM max /(γx*Wx)/(1-0.8*(N/Ncr)) =204.2N/ mm2<210*1.3=273Mpa2、下弦杆计算Mmax=7.29KN*m 对应轴力N=-191.76KNQmax=67.525KNNmax=344.12KN2[10的截面几何特性为:Ix=2*198=396cm4 Wx=2*39.7=79.4cm3 ix=3.95cm A=2*12.7=25.4cm2 A0=2*5.3*(100-8.5*2)=879.8mm2(1)强度计算:σmax= N/A+M max /W=191.76*1000/2540+7.29·106/79.4·103 =167.3N/ mm2<210*1.3=273Mpaτmax= Q max /A0=67.525·103/879.8=76.8N/ mm2<85 N/ mm2(2)稳定计算:L=705mm,ix=39.5mm,λ=705/39.5=18,查φx=0.976βx=1.0 γx=1.05Ncr=16252507σmax=N/(φx*A)+βxM max /(γx*Wx)/(1-0.8*(N/Ncr)) =168.9N/ mm2<210*1.3=273Mpa3、腹杆计算Nmax=-213.82KNI8的截面几何特性为:Ix=99cm4 Wx=25.8cm3 ix=3.21cmA=9.58cm2(1)强度计算:σmax= N/A =213.82*1000/958=223.2N/ mm2<200*1.3=260Mpa(2)稳定计算(平面外稳定因有支撑架,可以不计算稳定):L=1400mm,ix=32.1mm,λx=1400/32.1=43.6,查φy=0.885σmax= N/(φx*A )=213.82*1000/(0.885*958)=252.2N/ mm2<200*1.3=260Mpa结论:在混凝土运输车荷载作用下,贝雷架各杆件强度满足要求。