卷积神经网络和应用课件

合集下载

深度学习与卷积神经网络基础理论与实例分析ppt课件

深度学习与卷积神经网络基础理论与实例分析ppt课件
1.概述与背景
1.1 人工智能、机器学习、深度学习、数据挖掘之间的关系
数据挖掘
深度学习 机器学习
人工智能
1.2 神经网络兴衰史
1.概述与背景
第一次兴起(1958年):感知机,由于 没有引入非线性,不能求解异或问题。
第二次兴起(1986年):将BP(Back Propagation)神经网络的提出。
深度(Depth) 深度就是卷积操作中用到的滤波 器个数。这里对图片用了两个不 同的滤波器,从而产生了两个特 征映射。你可以认为这两个特征 映射也是堆叠的2d矩阵,所以这 里特征映射的“深度”就是2。
3.2 基本单元-----非线性(激励层)
3.卷积神经网络-CNN
激活函数一般用于卷积层和全连接层之后 激活函数是深度网络非线性的主要来源
Top Layer: the neurons respond to highly complex, abstract concepts that we would identify as different animals
输出: The network predicts what the object most likely is, based on its training
Sigmoid 梯度消失问题
ReLU
解决梯度消失问题 收敛速度非常快 神经元死亡问题
3.2 基本单元-----池化层
3.卷积神经网络-CNN
空间池化,也叫亚采样或下采样降低了每个特征映射的维度,但是保留了最重要的信息。
空间池化可以有很多种形式:最大(Max),平均(Average),求和(Sum)等等。最大池化成效最好。
目录
人脑视觉机理
01
与特征表示

CNN(卷积神经网络) ppt课件

CNN(卷积神经网络)  ppt课件
为了处理一维序列数据,便有了循环神经网络,以及基于循环神经网络 优化而来的lstm,attention机制等.
目录
Contents
2. 卷积神经网络
2.1. 卷积神经网络和深度学习的历史 2.2. 卷积神经网络的设计和原理 2.3. 卷积神经网络的神经科学基础
CNN处理图像
卷积神经网络的计算效率提升,参数量:10^12 -> 10^6
卷积神经网络池化有最大池化(max_pool)和平均池化(avg_pool),顾名 思义,最大池化取区域内最大值,平均池化取区域内平均值.其它池化包 括L 2 范数以及依靠据中心像素距离的加权平均池化.
CNN池化过程
CNN 特性-池化
为什么要池化?
1.减少参数的量,提高计算效率. 2.最大池化能显著增强局部特征,平均池化可减少噪声.
深度学习以及卷积神经网络的适用需要大量的有效训练数据,过去的互联网时代为 深度学习提供了大量的训练数据,同时随着几十年来硬件技术的发展,为利用和计算 大量数据提供了条件.所以,近年来,每一次模型算法的更新,都取得了良好的效果, 为深度学习这把火炬增添了燃料.
卷积神经网络和深度学习的历史
卷积神经网络提供了一种方法来专业化神经网络,以处理具有清楚的网 络结构的数据,以及将这样的模型放大到非常大的尺寸(加深层数).这种方法 在二维图像拓扑上的应用是最成功的.同时,卷积神经网络比全连接网络计 算效率更高,使用他们运行多个实验并调整它们的实现和超参数更容易,更 大的网络也更容易训练.
CNN特性-权值共享和多卷积核
卷积神经网络之所以计算效率高,对特征提取的效果好,主要是由于卷 积神经网络具有以下三个特性:权值共享,多卷积核,池化.
权值共享
请在这里输入论文答辩

卷积神经网络ppt课件

卷积神经网络ppt课件
6. F6层有84个单元(之所以选这个数字的原因来自于输出层的设计),与C5层 全相连。有10164个可训练参数。如同经典神经网络,F6层计算输入向量 和权重向量之间的点积,再加上一个偏置。然后将其传递给sigmoid函数 产生节点的输出。
16
LetNet-5

比特面编码:将一个灰度图像为8 bit/像素中每个像素的第j个比特抽取出来,就得到一个称为比特平面的二值 图像,于是图像完全可以用一组共8个比特平面来表示,对灰度图像的编码转为对比特平面的二值化方块编码。 为此,将每个比特面分为不重叠的m×n个元素的子块。
23
池化层的误差传递
大部分池化层没有需要训练的参数,只需要将误差传递。以Max Pooling为 例
Layer l-1
Layer l
24
池化层的误差传递
5. C5层是一个卷积层,有120个特征图。每个单元与S4层的全部16个单元的5*5邻 域相连,故C5特征图的大小为1*1:这构成了S4和C5之间的全连接。之所以仍 将C5标示为卷积层而非全连接层,是因为如果LeNet-5的输入变大,而其他的 保持不变,那么此时特征图的维数就会比1*1大。C5层有48120个可训练连接。
17
卷积层的训练
layer l-1
L-1





L-1
层 的
输 出
layer l
L
层 的 误 差
L
层 的 输 入
18
卷积层的误差传播

19
卷积层的误差传播

20
卷积层的误差传播

卷积操作 21
卷积层filter权重梯度的计算

22
卷积层filter权重梯度的计算

卷积神经网络在图像识别中的应用ppt课件

卷积神经网络在图像识别中的应用ppt课件

3. 对S2层的特征图进行卷积得到C3层;
4. 对C3层的特征图进行下采样得到S4层;
5. S4层的特征图光栅化后变成的向量输入到传统的全连接神经网络进行进一步分类,得到输
出;
ppt课件.
5
➢卷积和下采样(降采样)过程
input
*∑
∑ X∑
ppt课件.
6
➢ 卷积过程
11100
01110
101
00111
ppt课件.
12
➢ 程序中可设置的参数
learning_rate = 0.05 batch_size = 40 n_epochs = 100 nkerns = [20, 50]
poolsize = (2, 2)
//学习速率 //一次输入CNN的样本数 //最大训练步数 //第一层卷积核个数为20,
结构组织的用于转化图像的网络Neocognition.
3. 根据Fukushima的观点,LeCun提出了以LeNet为代表的卷积神
经网络。
ppt课件.
3
➢ 卷积神经网络的特点
1. 卷积神经网络是一类特别设计用来处理二维数据的多层神经 网络。
2. 卷积神经网络被认为是第一个真正成功的采用多层层次结构 网络的具有鲁棒性的深度学习方法。

是否符
合期望

输出结果
ppt课件.
9
Olivetti Faces是纽约大学的一个比较小的人脸库 包含40个人的人脸图片,每个人10张人脸样本,共400份样本
ppt课件.
10
➢ 程序所参考的卷积神经网络结构:LeNet-5
两个“卷积+子采样层”LeNetConvPoolLayer 全连接层相当于MLP(多层感知机)中的隐含层HiddenLayer 输出层采用逻辑回归LogisticRegression

深度学习-CNN卷积神经网络PPT课件

深度学习-CNN卷积神经网络PPT课件
右图就是一个2维卷积的示意图,这里因为是 离散的卷积,所以可以直接把卷积理解为矩阵 相乘,即两个矩阵相乘,一个是输入矩阵,一 个是卷积核矩阵。输入矩阵一般都表示二维的 输入图像,而卷积核其实可以理解为图像处理 里面的算子,比如这些算子可以实现一些边缘 检测或者高斯模糊的效果,那么其实卷积操作 可以理解为对图像进行一些特征处理。
卷积层--convolution 池化层--pooling 全连接层—fully connected
江南大学-数媒学院-许鹏
2
CNN-Overview
卷积神经网络是一种受到视觉感知机制启发的深度学习结构。1959年Hubel和Wiesel发现动物 的视觉皮质细胞负责在感知域内探测光照,受其启发,1980年Kunihiko Fukushima提出了一种 新型认知机并被认为是CNN的先驱。
Pooling Layer
有了pooling操作,我们就可以产生CNN的另外一种隐藏层了,就是pooling layer,这一层的产 生思想明确清晰,操作也简单。 如下图所示,由原始图像应用6个卷积核提取了6个feature map,然后针对这6个feature map做 pooling,还有一种叫法就是subsampling,即子采样,其实就和前面提到的稀疏连接和权值共 享一样,池化操作也会大大减少模型的参数。
这里的Roberts算子只是一个一阶算子,提取的 边缘信息还很有限,还有其他的二阶算子,比
如拉普拉斯算子。而且这里Roberts算子只提取 了某个像素对角线的梯度,而没有提取垂直方
向和水平方向的梯度,所以还有其他的算子用
于提取多个方向梯度,比如Sobel算子,Prewitt 算子等。
-1
0
0
1
0
-1

卷积神经网络ppt课件

卷积神经网络ppt课件
23
池化层的误差传递
大部分池化层没有需要训练的参数,只需要将误差传递。以Max Pooling为 例
Layer l-1
Layer l
24
池化层的误差传递

25
Thank you
26
2. S2层是一个下采样层,即池化层。在斯坦福关于深度学习的 教程中,这个过程叫做Pool 。但在LeNet-5系统,下采样层比 较复杂,由4个点下采样的加权平均为1个点,,因为这4个加 权系数也需要学习得到,这显然增加了模型的复杂度。
14
LeNet-5
3. 根据对前面C1层同样的理解,我们很容易得到C3层的大小为10x10. 只不过,C3层的变成了16个 10x10网络,有16个卷积核。 如果S2层只有1个平面,那么由S2层得到C3就和由输入层得到C1层是 完全一样的。但是,S2层由多层,那么,只需要按照一定的顺利组合这些层就可以了。具体的组合 规则,在 LeNet-5 系统中给出了下面的表格:
C3层feature map
S2层feature map
简单的说,例如对于C3层第0张特征图,其每一个节点与S2层的第0张特征图,第1张特征图,第2张 特征图,总共3个5x5个节点相连接。后面依次类推,C3层每一张特征映射图的权值是相同的
15
LeNet-5
4. S4 层是在C3层基础上下采样,前面已述。 神Fra bibliotek元:,
每个连接都有一个权值
图1.一个全连接的神经网络
4
Convolutional Neural Networks
梯度下降算法
• 梯度下降算法是用来求函数最小值的算法 • 每次沿着梯度的反方向,即函数值下降最快的方向,去
修改值,就能走到函数的最小值附近(之所以是最小值 附近而不是最小值那个点,是因为我们每次移动的步长 不会那么恰到好处,有可能最后一次迭代走远了越过了 最小值那个点)

CNN(卷积神经网络) ppt课件

CNN(卷积神经网络)  ppt课件
Notes: 式1:
神经网络的结点计算
前向计算:
反向传播:
神经网络梯度传播(链式法则)
Notes:
目录
Contents
2. 卷积神经网络
2.1. 卷积神经网络和深度学习的历史 2.2. 卷积神经网络的设计和原理 2.3. 卷积神经网络的神经科学基础
卷积神经网络和深度学习的历史
卷积神经网络在深度学习的历史中发挥了重要作用.它们是将研究大脑获得的深 刻理解成功应用于机器学习应用的关键例子,也是第一个表现良好的深度模型之 一.是第一个解决重要商业应用的神经网络,并且仍然是当今深度学习应用的前沿.
目录
Contents
3. CNN实现(tensorflow)
3.1.主流CNN模型介绍 3.2.使用tensorflow实现CNN 3.3.使用tensorflow实现其它模型
使用tensorflow搭建CNN
TensorFlow™ 是一个采用数据流图,用于数值计算的开源软件库。节点 在图中表示数学操作,图中的线则表示在节点间相互联系的多维数据数组, 即张量(tensor)。
深度学习以及卷积神经网络的适用需要大量的有效训练数据,过去的互联网时代为 深度学习提供了大量的训练数据,同时随着几十年来硬件技术的发展,为利用和计算 大量数据提供了条件.所以,近年来,每一次模型算法的更新,都取得了良好的效果, 为深度学习这把火炬增添了燃料.
卷积神经网络和深度学习的历史
卷积神经网络提供了一种方法来专业化神经网络,以处理具有清楚的网 络结构的数据,以及将这样的模型放大到非常大的尺寸(加深层数).这种方法 在二维图像拓扑上的应用是最成功的.同时,卷积神经网络比全连接网络计 算效率更高,使用他们运行多个实验并调整它们的实现和超参数更容易,更 大的网络也更容易训练.

卷积神经网络PPT演示课件

卷积神经网络PPT演示课件
隐含层的每一个神经元都连接10x10个图像区域,也就是说每 一个神经元存在10x10=100个连接权值参数。那如果我们每个神经 元这100个参数是相同,每个神经元用的是同一个卷积核去卷积图 像,这就是权值共享。
权值共享的优点:
一方面,重复单元能够对特征进行 识别,而不考虑它在可视域中的位置。 另一方面,权值 共享使得我们能更有 效的进行特征抽取,因为它极大的减少 了需要学习的自由变量的个数。通过控 制模型的规模,卷积网络对视觉问题可 以具有很好的泛化能力。
• CNNs它利用空间关系减少需要学习的参数数目以提高一般前 向BP算法的训练性能。CNNs作为一个深度学习架构提出是为 了最小化数据的预处理要求。在CNN中,图像的一小部分(局 部感受区域)作为层级结构的最低层的输入,信息再依次传输 到不同的层,每层通过一个数字滤波器去获得观测数据的最显 著的特征。这个方法能够获取对平移、缩放和旋转不变的观测 数据的显著特征,因为图像的局部感受区域允许神经元或者处 理单元可以访问到最基础的特征,例如定向边缘。
卷积神经网络应用
• LeNet-5手写数字识别
C1层: 输入图片大小: 卷积窗大小: 卷积窗种类: 输出特征图数量: 输出特征图大小: 神经元数量: 连接数: 可训练参数:
32*32 5*5 6 6 28*28 4707 122304 156
C1层是一个卷积层,卷积运算一个重
要的特点就是,通过卷积运算,可以使原 信号特征增强,并且降低干扰,由6个特征 图Feature Map构成。特征图中每个神经元 与输入中5*5的邻域相连。特征图的大小为 28*28,这样能防止输入的连接掉到边界之 外。C1有ቤተ መጻሕፍቲ ባይዱ56个可训练参数(每个滤波器 5*5=25个unit参数和一个bias参数,一共6 个滤波器,共(5*5+1)*6=156个参数),共 (5*5+1)*6*(28*28)=122,304个连接。

卷积神经网络PPT课件

卷积神经网络PPT课件
15
多层感知器预测
将光栅化后的向量连接到多层感知器
16
CNN参数更新
17
多层感知器层
• 残差定义 • 使用多层感知器的参数估计方法,得到其最低的一个隐层 s 的残差向量 • δs 。 • 现在需要将这个残差传播到光栅化层 r ,光栅化的时候并没有对向量的
值做修改,因此其激活函数为恒等函数,其导数为单位向量。
6
隐层­输出层
可以视为级联在隐层上的一个感知器。若为二分类,则常用 LogisticRegression;若为多分类,则常用Softmax Regression。
7
核心!权值、偏置估计(结论如下,推导见“卷积神经网络全面 解析”)
• 残差定义:
假设有层 p, q, r ,分别有 l, m, n 个节点,
对网络权值的训练,可以使感知器对一组输人矢量的响应达到元素为0或1 的目标输出,从而实现对输人矢量分类的目的。
3
单层感知器作用范围
• 感知器是一个简单的二类分类的线性分类模型,要求我们的样本是线性可 分的。
4
多层感知器
多层感知器的思路是,尽管原始数据是非线性可分的,但是可以通过某种方 法将其映射到一个线性可分的高维空间中,从而使用线性分类器完成分类。 图1中,从X到O这几层,正展示了多层感知器的一个典型结构,即输入层­隐 层­输出层。
20
• 对权值和偏置的更新:
卷积层
• 其中,rot180 是将一个矩阵旋转180度; Oq'是连接到该卷积层前的池化 层的输出。

21
卷积层的残差反传?
22
整体思路
• 以层为单位,分别实现卷积层、池化层、光栅化层、MLP隐层、分类层这 五个层的类。其中每个类都有output和backpropagate这两个方法。

卷积神经网络ppt课件

卷积神经网络ppt课件
Convolutional Neural Networks 卷积神经网络
ppt课件.
1
Contents
机器学习,神经网络,深度学习之间的关系 什么是神经网络 梯度下降算法 反向传播算法 神经网络的训练 什么是卷积 什么是池化 LeNet-5 其它的工作
ppt课件.
2
Convolutional Neural Networks
ppt课件.
6
Convolutional Neural Networks
梯度下降算法+反向传播算法
ppt课件.
7
Convolutional Neural Networks
ppt课件.
8
Convolutional Neural Networks
ppt课件.
9
Convolutional Neural Networks
ppt课件.
10
Convolutional Neural Networks
什么是卷积?
右图展示了卷积的过程,和信号处理的卷积有所区别
卷积降低了网络模型的复杂度(对于很难学习的深层 结构来说,这是非常重要的),减少了权值的数量
黄色部分是卷积核
ppt课件.
11
Convolutional Neural Networks
图1.一个全连接的神经网络
ppt课件.
4
Convolutional Neural Networks
梯度下降算法
• 梯度下降算法是用来求函数最小值的算法
• 每次沿着梯度的反方向,即函数值下降最快的方向,去 修改值,就能走到函数的最小值附近(之所以是最小值 附近而不是最小值那个点,是因为我们每次移动的步长 不会那么恰到好处,有可能最后一次迭代走远了越过了 最小值那个点)

卷积神经网络在图像识别中的应用ppt课件

卷积神经网络在图像识别中的应用ppt课件

前向反馈前向ຫໍສະໝຸດ 传全连接层播
变换、计算
输出层
增强、逻辑回归

是否符
合期望

输出结果
9
Olivetti Faces是纽约大学的一个比较小的人脸库 包含40个人的人脸图片,每个人10张人脸样本,共400份样本
10
➢ 程序所参考的卷积神经网络结构:LeNet-5
两个“卷积+子采样层”LeNetConvPoolLayer 全连接层相当于MLP(多层感知机)中的隐含层HiddenLayer 输出层采用逻辑回归LogisticRegression
1
• 卷积神经网络的发展及其特点 • 卷积神经网络模型 • 卷积神经网络的训练 • 卷积神经网络应用于人脸识别
2
➢ 卷积神经网络的发展
1. Hubel和Wiesel在研究猫脑皮层中用于局部敏感方向选择的神
经元时,发现其独特的网络结构可以有效降低反馈神经网络 的复杂性。
2. Fukushima提出了第一个基于神经元之间的局部连接型和层次
出;
5
➢卷积和下采样(降采样)过程
input
*∑
∑ X∑
6
➢ 卷积过程
11100
01110
101
00111
×
010
00110
101
01100
图像
4 卷积特征
➢ 池化过程:取某个特定区域的最大值或平均值
5249
取平均值
3861
9
6183
9138
7
➢卷积神经网络的训练过程
第一阶段:前向传播过程 1. 从样本集中取一个样本输入到网络中; 2. 计算相应的实际输出;
在这个阶段,输入的信息经过逐层变换,传输到输出层。主要是前向的 特征提取。

卷积神经网络报告ppt课件

卷积神经网络报告ppt课件
需要注意的是S1到C2的的连接,C2层的 每个神经元只是部分与S1层的神经元连接, 而传统的BP网络中每个神经元会与上一层 的所有神经元进行连接。
单击此处辑内容
单击添加标题,建议您在展示时采 用微软雅黑体
单击此处编辑内容
单击添加标题,建议您在展示时采 用微软雅黑字体
3
卷积的过程
左边是被卷积图片的像素显示,其中的数 字代表每个像素点的像素值。中间的小图 片就是卷积核,卷积核会从图片的左上角 开始从左到右从上到下的进行卷积操作, 每一次的卷积操作如右图所示:卷积核里 的每个值与其对应位置的图片像素值相乘, 再将所有相乘的结果求和就得到了结果。
7
CNN网络的执行过程
右图展示了Input图片经过卷基层的过程,该卷 基层有六个神经元,每个神经元有一个卷积核。
单击此处辑内容
单击添加标题,建议您在展示时采 用微软雅黑体
单击此处编辑内容
单击添加标题,建议您在展示时采 用微软雅黑字体
8
CNN网络的执行过程
单击此处辑内容
单击添加标题,建议您在展示时采 用微软雅黑体
单击此处辑内容
单击添加标题,建议您在展示时采 用微软雅黑体
单击此处编辑内容
单击添加标题,建议您在展示时采 用微软雅黑字体
5
池化的过程
一般经过卷积操作后生成的图像尺寸还是 太大,为了减少网络计算的复杂度,需要 把卷及操作后的图片进行缩小,也就是进 行池化(Pooling)。池化字面理解就是把 图片分成一个个池子,常用的池化有最大 池化和平均池化,右图展示的是最大池化, 把图片分为了四个2*2的池子,选取每个 池子中的最大值作为结果。平均池化就是 取每个池子的平均值作为结果。右图中经 过池化图片尺寸就缩减为原图的一半。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

卷积神经网络和应用
5
二、神经网络与卷积神经网络
神经网络-训练理念(梯度下降)
x1
-----w11
Y1 y1 ------v11
Z1 z1
各变量满足如下公式:
-------v12 -----w12
-------v21
-------W21
x2
-------w22
Y2 y2 -----v22
Z2 z2
2/19/2021
卷积神经网络和应用
11
二、神经网络与卷积神经网络
子采样(pooling)
子采样通常有两种形式。均值子采样和最大值 子采样,子采样可以看做一种特殊的卷积过程。
2/19/2021
卷积神经网络和应用
12
二、神经网络与卷积神经网络
前向卷积过程
2/19/2021
卷积神经网络和应用
13
二、神经网络与卷积神经网络
2/19/2021
卷积神经网络和应用
8
二、神经网络与卷积神经网络
局部感受野
2/19/2021
卷积神经网络和应用
9
二、神经网络与卷积神经网络
卷积神经网络的一般结构
2/19/2021
卷积神经网络和应用
10
二、神经网络与卷积神经网络
卷积
卷积核kernal在inputX图中从左向右,从上至 下每次移动一个位置,对应位置相乘求和并赋值 到OutputY中的一个位置。
Err(zk ) = Tk -zk
nk
Err(yj) = vjk * Err(Zk ) k 1
Err(Yj) = yj*(1-yj) * Err(yj)
由每条连接前层神经元的输出 和后层神经元的误差得到权重
的修改量 并更新连接权重
deleta(wij) xi * Err(Yj )
2/19/2021
-------------v--32v31
---------------w--32w31
1
1
求vjk的梯度:
求wij的梯度:
y lossFun z z v jk
2/19/2021
*
j
* (1
k
k) * (Tk zk )
lossFun
x y y = -
w ij
*ห้องสมุดไป่ตู้
i
*(1-
j
2
)*
j
22
Thank You !
2/19/2021
卷积神经网络和应用
23
21
四、总结与展望
展望
由于采用使用的训练数据较少,CNN 尝试的网络结构及参数也少,我们还有很 大的模型的调优空间。
未来CNN还可以尝试使用更深层的网 络结构,使用更好的语音特征。由于深度 网络对数据描述的能力更强,我们预测增加 训练数据并经合理的训练可以达到更好的 结果。
2/19/2021
卷积神经网络和应用
2/19/2021
卷积神经网络和应用
14
三、卷积神经网络应用
编码实现CNN
我们采用了6w张手 写数字图片作为训 练集,用1w手写数 字图片作为测试集。
经过100次迭代, 在训练集上得到 99.51%的准确率, 在测试集上得到 98.8%的准确率。
2/19/2021
卷积神经网络和应用
15
CNN特征选取
v jk * (Tk zk ) * zk * (1 zk )
k 1
卷积神经网络和应用
6
二、神经网络与卷积神经网络
BP算法的规律
前向过程 兴奋在网络中从前
往后传播
nx
Yj wij * xi ; i0
yj = sigmoid(Yj);
计算末层神经元输出与期望输出的差值 作为错误信号
错误信号在神经网络中由后往前传播
2/19/2021
卷积神经网络和应用
2
一、研究现状
CNN的发展及研究现状
深度学习在语音识别、图像识别等领域摧枯拉朽。
国际会议、期刊等涌现大量深度学习的文章,CNN 被引入很多领域。
知名高科技公司都在深度学习领域加大投入。
2/19/2021
卷积神经网络和应用
3
二、神经网络与卷积神经网络
神经网络起源
2/19/2021
卷积神经网络和应用
4
二、神经网络与卷积神经网络
神经网络-训练过程
dEEedrlreEYEZzy((tlrkYeaZjrkrt((jayk)vrs(s)ij(=j)giwkinjgz=nm)x0iyyjm0)okwjzkv*onik)idy(k1ijkd1v*x(j=Y*-i(j*(kyx*Z)1*yEijkE)-TEjr)*zrr1Erkkr((r)Z(-Y1rZ*ez(kjykE)Y)kjr)r(zk )
x1
-----w11
Y1 y1 ------v11
Z1 z1
-------v12 -----w12
-------v21
-------W21
x2
-------w22
Y2 y2 -----v22
Z2 z2
-------------v--32v31
---------------w--32w31
1
1
2/19/2021
卷积神经网络和应用
7
二、神经网络与卷积神经网络
卷积神经网络
卷积神经网络是神经网络的一种变形 卷积神经网络与神经网络的主要区别就
是CNN采用了卷积和子采样过程。 神经生物学中局部感受野的提出(1962)
催生了卷积的思想。 卷积减少了CNN网络参数,子采样减少了
网络参数,权值共享大大减少的CNN网络 参数。但是CNN具备深层结构。
本文的CNN模型的输入是语音的 频谱特征
2/19/2021
卷积神经网络和应用
16
本文CNN网络结构描述
2/19/2021
卷积神经网络和应用
17
2/19/2021
卷积神经网络和应用
18
2/19/2021
卷积神经网络和应用
19
2/19/2021
卷积神经网络和应用
20
2/19/2021
卷积神经网络和应用
目录
一、研究现状 二、神经网络与卷积神经网络 三、卷积神经网络应用 四、总结与展望
2/19/2021
卷积神经网络和应用
2
一、研究现状
CNN的发展及研究现状
神经网络是神经科学与计算机科学结合的产物。
神经网络的研究几经起落,直到2006年,深度学习 提出,深度神经网研究兴起。
Hubel和wiesel通过对猫的视觉系统的实验,提出了 感受野的概念。基于视觉神经感受野的理论,有学 者提出CNN。
相关文档
最新文档