1.绝对值培优训练1
七年级数学上册数轴、绝对值培优训练
七年级数学上册数轴、绝对值培优训练一、阅读与思考数学是研究数和形的学科,在数学里数和形是有密切联系的。
我们常用代数的方法来处理几何问题;反过来,也借助于几何图形来处理代数问题,寻找解题思路,这种数与形之间的相互作用叫数形结合,是一种重要的数学思想。
运用数形结合思想解题的关键是建立数与形之间的联系,现阶段数轴是数形结合的有力工具,主要体现在以下几个方面:1、利用数轴能形象地表示有理数;2、利用数轴能直观地解释相反数;3、利用数轴比较有理数的大小;4、利用数轴解决与绝对值相关的问题。
二、知识点反馈1、利用数轴能形象地表示有理数;例1:已知有理数a 在数轴上原点的右方,有理数b 在原点的左方,那么( ) A .b ab < B .b ab > C .0>+b a D .0>-b a 拓广训练:1、如图b a ,为数轴上的两点表示的有理数,在a b b a a b b a ---+,,2,中,负数的个数有( )A .1B .2C .3D .42、把满足52≤<a 中的整数a 表示在数轴上,并用不等号连接。
2、利用数轴能直观地解释相反数;例2:如果数轴上点A 到原点的距离为3,点B 到原点的距离为5,那么A 、B 两点的距离为 。
拓广训练:1、在数轴上表示数a 的点到原点的距离为3,则._________3=-a2、已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么所有满足条件的点B 与原点O 的距离之和等于 。
3、利用数轴比较有理数的大小;例3:已知0,0<>b a 且0<+b a ,那么有理数b a b a ,,,-的大小关系是 。
(用“<”号连接) 拓广训练:1、 若0,0><n m 且n m >,比较m n n m n m n m --+--,,,,的大小,并用“>”号连接。
例4:已知5<a 比较a 与4的大小拓广训练:1、已知3->a ,试讨论a 与3的大小2、已知两数b a ,,如果a 比b 大,试判断a 与b 的大小4、利用数轴解决与绝对值相关的问题。
绝对值培优类型题
绝对值培优类型题一、绝对值的代数意义绝对值表示一个数在数轴上所对应点到原点的距离。
用“|a|”来表示,读作“绝对值”。
二、绝对值的几何意义一个数的绝对值就是表示该数的点离开原点的距离。
三、绝对值的基本性质1. 当a为非负数时,|a|=a;当a为负数时,|a|=-a;当a=0时,|a|=0。
2. 绝对值总是非负的,即|a|≥0。
3. 若|a|=|b|,则a=b或a=-b。
4. 若几个非负数的和为0,则每个非负数都等于0。
四、绝对值的运算性质1. |a|=-|a|当且仅当a=0;|a|=|b|当且仅当a=b或a=-b。
2. 两个负数,绝对值大的反而小。
3. 正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
4. |ab|=|a||b||ab|=|a||b|。
5. 互为相反数的两个数的绝对值相等。
6. 符号法则:正数的绝对值是其本身,负数的绝对值是其相反数,0的绝对值是0。
五、绝对值的取值范围一个数的绝对值越小,则该数越接近于0;反之,一个数的绝对值越大,则该数越远离于0。
六、绝对值在函数中的应用1. 一次函数:y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
其中b是y轴上的截距,可以表示该函数在y轴上的取值范围。
函数的图象是一条直线。
当直线在x轴上方时,y为正值;在x轴下方时,y为负值。
因此,一次函数的绝对值表示该函数在x轴上方的部分所对应的面积。
2. 二次函数:y=ax²+bx+c,函数的图象是一条抛物线。
当抛物线开口向上时,最低点为该函数的极小值点;当抛物线开口向下时,最高点为该函数的极大值点。
抛物线与x轴的交点表示该函数在x轴上的取值情况。
因此,二次函数的绝对值表示该函数在x轴上方的部分所对应的面积。
3. 分式函数:y=f(x)=x/m(x≠±√m),函数的图象是一条折线段。
由于分母不为零,因此该函数在x轴上方的部分所对应的面积即为该函数的正值范围。
绝对值与有理数加减培优练习(含解析)
绝对值与有理数加减培优练习1.设x 为有理数,若||x x =,则( )A .x 为正数B .x 为负数C .x 为非正数D .x 为非负数2.若|| 3.5a -=-,则(a = )A .3.5B . 3.5-C . 3.5±D .以上都不对 3.已知|1|32x -=,则x = . 4.如图,化简代数式|||1||2|a b a b +--+-的结果是 .5.若||m n n m -=-,且||4m =,||3n =,则m n += .6.|2||1|0a b a -+++=,求31ab -的值.7.已知|22||31||4|0a b c -+-++=,求262a b c -++的值.8.式子|3|6m -+的值随着m 的变化而变化,当m = 时,|3|6m -+有最小值,最小值是 .9.已知(|1||2|)(|2||1|)(|3||1|)36x x y y z z ++--++-++=,求201620172018x y z ++的最大值和最小值10.当式子|1||3||4||6|x x x x ++-+-++取最小值时,求相应x 的取值范围,并求出最小值.11.根据||0x 这条性质,解答下列各题:(1)当x 取何值时,|2|x -有最小值?这个最小值是多少?(2)当x 取何值时,3|2|x --有最大值?这个最大值是多少?12.如图,半径为1个单位的圆片上有一点A 与数轴上的原点重合,AB 是圆片的直径.(结果保留)π(1)把圆片沿数轴向左滚动1周,点A 到达数轴上点C 的位置,点C 表示的数是 数(填“无理”或“有理” ),这个数是 ;(2)把圆片沿数轴滚动2周,点A 到达数轴上点D 的位置,点D 表示的数是 ;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:2+,1-,3+,4-,3-.第几次滚动后,A 点距离原点最近?第几次滚动后,A 点距离原点最远?13.计算.(1)已知||3a =,||2b =,且||()a b a b +=-+,则a b +的值;(2)计算24681012201620182020-+-+-+⋯-+-.14.小明在电脑中设置了一个有理数的运算程序:输入数a,加*键,在输入数b,就可以得到运算:*()||a b a b b a=---.(1)求(3)*2-的值;(2)求(3*4)*(5)-的值.15.已知:11|1|122-=-,1111||3223-=-,1111||4334-=-,⋯照此规律①11||1110-=;②计算:11111|1||||| 23243-+-+-;③计算:1111111|1||||||| 2324320162015-+-+-+⋯+-.16.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动.规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)(A C → , ),(B D → , );(2)若这只甲虫按最短路径行走的路线为A B C D →→→,请计算该甲虫走过的路程;(3)若这只甲虫从A 处去甲虫P 处的行走路线依次为(2,2)++,(1,1)+-,(2,3)-+,(1,2)--,请在图中标出P 的位置.17.在有理数的范围内,我们定义三个数之间的新运算“#”法则:||##2a b c a b c a b c --+++=. 如:|123|(1)23(1)#2#352---+-++-== (1)计算:4#(2)#(5)--=(2)计算:113#(7)#()3-= (3)在67-,57-,⋯,17-,0,19,29,⋯,89这15个数中: ①任取三个数作为a 、b 、c 的值,进行“##a b c ”运算,求所有计算结果的最小值是 ; ②若将这十五个数任意分成五组,每组三个数,进行“##a b c ”运算,得到五个不同的结果,由于分组不同,所以五个运算的结果也不同,那么五个结果之和的最大值是 .。
七年级培优——绝对值
七年级培优——绝对值绝对值是七年级数学中的一个非常重要的基本概念,但涉及到的数学思想非常重要,所涉及的方法也会对整个初中数学的学习有很大的帮助,本节课我们将从几种方法对绝对值的综合题进行讲解。
一、利用绝对值的定义求绝对值的值。
绝对值的定义如下:⎪⎩⎪⎨⎧<-=>=.0,0,00,||时当时,当时,当a a a a a a例题1:已知1||≤x ,1||≤y ,求|52||1|--++x y y 的最小值。
方法点拨:要化简|52||1|--++x y y ,必须要搞清楚1+y 和52--x y 的正负情况,当不能判断的时候就需要通过分类来进行化简.解:因为1||≤x ,1||≤y 可得11≤≤-x ,11≤≤-y ,所以210≤+≤y ,从而得1|1|+=+y y因为11≤≤-y ,所以222≤≤-y ,因为11≤≤-x ,所以11≤-≤-x所以323≤-≤-x y所以2528-≤--≤-x y ,即052<--x y ,从而有52)52|52|++-=---=--x y x y x y ( 所以6521|52||1|+-=++-+=--++y x x y y x y y所以当x 取最小值,y 取最大值时,6+-y x 的值最小即当1-=x ,1=y 时,|52||1|--++x y y 的最小值为4611=+--.练习1:若3||=x ,2||=y ,且x y y x -=-||,求y x +的值.练习2:已知0<a ,0>b ,求|5||1|---+-b a a b 的值.练习3:已知a 、b 、c 是非零有理数,且0=++c b a ,求abcabc c c b b a a ||||||||+++的值.练习4:已知1||≤x ,1||≤y ,求|42||1|||--++++x y y y x 的最大值和最小值.练习5:已知152||=++y x x ,3| |=-+y y x ,求x ,y 的值.二、利用数轴解绝对值的值由绝对值的几何意义可知,||a 表示的几何意义为实数a 到原点的距离,||b a -表示的几何意思为实数a 到实数b 在数轴上的距离。
2022-2023学年初中数学学科素养能力培优竞赛试题《绝对值》原卷
专题2 绝对值一、绝对值的化简【学霸笔记】1. 一个正数的绝对值是它的本身,一个负数的绝对值是它的相反数,0的绝对值是0,关系如下:;2. 绝对值可以与数轴结合起来,可用于表示距离,表示数a表示数a与数b间的距离;3. 绝对值的性质;②;③;⑤【典例】若a+b+c=0,则|a|a +|b|b+|c|c+|ab|ab+|ac|ac+|bc|bc+|abc|abc的值为()A.﹣7B.﹣1C.1D.7【解答】解:∵a+b+c=0,∴a,b,c中两正一负或一正两负,假设a>0,b>0,c<0,原式=1+1﹣1+1﹣1﹣1﹣1=﹣1,其他情况同理值为﹣1;假设a>0,b<0,c<0,原式=1﹣1﹣1﹣1﹣1+1+1=﹣1,其他情况同理值为﹣1,故选:B.【巩固】数形结合是一种重要的数学方法,如在化简|a|时,当a在数轴上位于原点的右侧时,|a|=a;当a在数轴上位于原点时,|a|=0;当a在数轴上位于原点的左侧时,|a|=﹣a.当a,b,c三个数在数轴上的位置如图所示,试用这种方法解决下列问题.(1)当a=1时,求|a|a =,当b=﹣2时,求|b|b=.(2)请根据a,b,c三个数在数轴上的位置,求|a|a +|b|b+|c|c的值.(3)请根据a,b,c三个数在数轴上的位置,化简:|a+c|+|c|+|a+b|﹣|b﹣c|.二、绝对值的非负性【学霸笔记】不小于0的数(或大于等于0的数)称为非负数,具有以下性质:(1)非负数具有最小值0;(2)若几个非负数的和为0,那么每个非负数均为0;(3)任何数的绝对值都大于等于0,即任何数的绝对值都是非负数.【典例】有理数a,b,c在数轴上对应的点的位置如图所示,给出下面四个命题:(1)abc<0(2)|a﹣b|+|b﹣c|=|a﹣c|(3)(a﹣b)(b﹣c)(c﹣a)>0(4)|a|<1﹣bc其中正确的命题有()A.4个B.3个C.2个D.1个【解答】解:由图可知c<﹣1<0,0<a<b<1,(1)命题abc<0正确;(2)在命题中a﹣b<0,b﹣c>0,所以|a﹣b|+|b﹣c|=﹣(a﹣b)+(b﹣c)=2b﹣a﹣c.又因为a﹣c>0,所以|a﹣c|=a﹣c.左边≠右边,故错误;(3)在该命题中,因为a﹣b<0,b﹣c>0,c﹣a<0,所以(a﹣b)(b﹣c)(c﹣a)>0,故正确;(4)在命题中,|a|<1,bc<0,∴1﹣bc>1,所以|a|<1﹣bc,故该命题正确.所以正确的有命题①③④这三个.故选:B.【巩固】如果有理数a,b满足|ab﹣2|+(1﹣b)2=0,试求:1ab +1(a+1)(b+1)+1(a+2)(b+2)+⋯+1(a+2022)(b+2022)的值为.三、绝对值的最值【学霸笔记】1. a与数b两点间的距离;2. n为奇数,当n.【典例】阅读:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|=|a﹣b|.理解:(1)数轴上表示2和﹣3的两点之间的距离是;(2)数轴上表示x和﹣5的两点A和B之间的距离是;(3)当代数式|x﹣1|+|x+3|取最小值时,相应的x的取值范围是,最小值是;(4)当x在何范围,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并写出它的最大值.【解答】解:(1)数轴上表示2和﹣3的两点之间的距离是2﹣(﹣3)=5.故答案为:5;(2)数轴上表示x和﹣5的两点A和B之间的距离是|x+5|.故答案为:|x+5|;(3)在数轴上,|x﹣1|+|x+3|表示数轴上x和1的两点之间与x和﹣3的两点之间距离和,当代数式|x﹣1|+|x+3|取最小值时,相应的x的取值范围是﹣3≤x≤1,最小值是4.故答案为:﹣3≤x≤1,4;(4)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2.【巩固】已知数轴上表示数a的A与表示数b的点B之间的距离|AB|=|a﹣b|.(1)当x=时,|x﹣3|有最小值,这个最小值是.(2)当x=时,5﹣|x﹣2|有最大值,这个最大值是.(3)当整数x=时,|x﹣3|+|x﹣6|有最小值,这个值是.(4)当整数x=时,|x﹣1|+|x﹣2|+|x﹣5|有最小值,这个值是.(5)|x﹣1|﹣|x﹣5|有最大值,这个值是;|x﹣1|﹣|x﹣5|有最小值,这个最小值是;(6)已知|x﹣2|+|x﹣4|+|y﹣1|﹣|y﹣2|=1,则(x+y)有最值(填“大”,“小”),这个值是.巩固练习1.设x是有理数,y=|x﹣1|+|x+1|,则下面四个结论中正确的是()A.y没有最小值B.只有一个x的值使y取最小值C.有有限个(不止一个)x的值使y取最小值D.有无数多个x的值使y取最小值2.已知整数a1、a2、a3、a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|…,以此类推,则a2022的值为()A.﹣2021B.﹣1010C.﹣1011D.﹣10093.如果对于某一特定范围内的任意允许值,p=|1﹣2x|+|1﹣3x|+…+|1﹣9x|+|1﹣10x|的值恒为一常数,则此值为()A.2B.3C.4D.54.设有理数a、b、c满足a>b>c(ac<0),且|c|<|b|<|a|,则|x−a+b2|+|x−b+c2|+|x+a+c2|的最小值是()A.a−c2B.a+b+2c2C.2a+b+c2D.2a+b−c25.若有理数m,n,p满足|m|m +|n|n+|p|p=1,则2mnp|3mnp|=.6.已知|x+2|+|1﹣x|=9﹣|y﹣5|﹣|1+y|,则x+y的最小值为,最大值为.7.有理数a、b、c均不为0,且a+b+c=0,设x=|a|b+c +|b|c+a+|c|a+b,则代数式x2021+2021x﹣2021的值为.8.设abcd是一个四位数,a、b、c、d是阿拉伯数字,且a≤b≤c≤d,则式子|a﹣b|+|b ﹣c|+|c﹣d|+|d﹣a|的最大值是.9.如果a,b,c是非零有理数,求a|a|+b|b|+c|c|的值.10.设x1,x2,x3,x4,x5,x6是六个不同的正整数,取值于1,2,3,4,5,6,记S=|x1﹣x2|+|x2﹣x3|+|x3﹣x4|+|x4﹣x5|+|x5﹣x6|+|x6﹣x1|,求S的最小值.11.已知有理数a、b、c在数轴上的位置如图所示,化简:2|a+b|﹣3|a﹣c|+2|c﹣b|12.有一正整数列1,2,3,…,2n﹣1、2n,现从中挑出n个数,从大到小排列依次为a1,a2,…,a n,另n个数从小到大排列依次为b1,b2,…,b n.求|a1﹣b1|+|a2﹣b2|+…+|a n﹣b n|之所有可能的值.。
绝对值专项培优训
绝对值培优训练一、选择题1.(2分)(2022秋•南通期末)已知a,b为有理数,ab≠0,且.当a,b取不同的值时,M的值等于()A.±5 B.0或±1 C.0或±5 D.±1或±52.(2分)(2022秋•南通期末)有理数a,b在数轴上的位置如图所示,则数a,b,﹣a,﹣b的大小关系为()A.﹣a<﹣b<b<a B.﹣a<b<a<﹣b C.﹣a<b<﹣b<a D.﹣a<﹣b<a<b3.(2分)(2022秋•黔江区期末)下列式子化简不正确的是()A.+(﹣6)=﹣6 B.﹣(﹣0.8)=0.8C.﹣|+0.3|=﹣0.3 D.4.(2分)(2022秋•江都区期末)已知a、b、c的大致位置如图所示:化简|a+c|﹣|a+b|的结果是()A.2a+b+c B.b﹣c C.c﹣b D.2a﹣b﹣c5.(2分)(2022秋•鲤城区校级月考)适合|3a+7|+|3a﹣5|=12的整数a的值有()A.4个B.5个C.7个D.9个6.(2分)(2022秋•城西区期中)若|a﹣2|+|b+3|=0,则(a+b)2016的值是()A.0 B.1 C.﹣1 D.20167.(2分)(2022秋•朝阳区校级期中)式子|x﹣1|+3取最小值时,x等于()A.1 B.2 C.3 D.08.(2分)(2022秋•黄埔区校级期中)设实数a、b、c满足a<b<c(ac<0),且|c|<|b|<|a|,则|x﹣a|+|x﹣b|+|x+c|的最小值是()A.B.|b| C.c﹣a D.﹣c﹣a9.(2分)(2022秋•宛城区校级月考)若m、n互为相反数,则在①m+n=0;②|m|=|n|;③m2=n2;④m3=n3;⑤mn=﹣n2中,必定成立的有()A.2个B.3个C.4个D.5个10.(2分)(2021秋•锡山区期末)两数a、b在数轴上对应点的位置如图所示,下列判断正确的是()A.a+b>0 B.a+b<0 C.a﹣b<0 D.|a|﹣|b|>0评卷人得分二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请将正确答案填写在横线上)11.(2分)(2022秋•晋江市期末)若abcd≠0,则=.12.(2分)(2021秋•绵竹市期末)代数式|x+1009|+|x+506|+|x﹣1012|的最小值是.13.(2分)(2022秋•黔西南州期中)已知|2x﹣4|+|3y﹣9|=0,则(x﹣y)2022=.14.(2分)(2021秋•呈贡区校级期末)已知实数a,b,c,则化简+++3×结果是.15.(2分)(2022秋•辉县市期中)若|a﹣|+|b+1|=0,则a+b=.16.(2分)(2020秋•饶平县校级期中)当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是,最小值是.17.(2分)(2016秋•龙泉驿区期末)如果x、y都是不为0的有理数,则代数式的最大值是.18.(2分)(2014秋•巴南区期末)已知a、b、c的位置如图:则化简|﹣a|﹣|c﹣b|﹣|a﹣c|=.19.(2分)(2022•南京模拟)若不等式|x﹣2|+|x+3|+|x﹣1|+|x+1|≥a对一切数x都成立,则a的取值范围是.20.(2分)(2019秋•秦安县期中)式子|m﹣3|+6的值随着m的变化而变化,当m=时,|m﹣3|+6有最小值,最小值是.评卷人得分三、解答题(本大题共8小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(6分)(2023秋•南安市月考)把下列各数:2,0,﹣3,,在数轴上表示出来,并按从小到大的顺序用“<”连接起来.22.(6分)(2022秋•西安期末)【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看作|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.【探索】(1)若|x﹣2|=5,则x=;(2)利用数轴,找出所有符合条件的整数x,使x所表示的点到2和﹣1所对应的点的距离之和为3.(3)由以上探索猜想,对于任意有理数x,|x﹣2|+|x+3|是否有最小值?如果有,写出最小值;如果没有,说明理由.23.(8分)(2022秋•泗阳县校级月考)有理数a,b,c在数轴上的位置如图所示.(1)用“<”连接:a,﹣a,b,﹣b,c,﹣c;(2)化简:|a﹣b|+|a+b|+|b﹣c|.24.(8分)(2022秋•郫都区校级期末)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.25.(8分)(2022秋•渠县校级期末)a、b、c三个数在数轴上位置如图所示,且|a|=|b| (1)求出a、b、c各数的绝对值;(2)比较a,﹣a、﹣c的大小;(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.26.(8分)(2022秋•永兴县期末)对于有理数x,y,a,t,若|x﹣a|+|y﹣a|=t,则称x和y关于a的“美好关联数”为t,例如,|2﹣1|+|3﹣1|=3,则2和3关于1的“美好关联数”为3.(1)﹣3和5关于2的“美好关联数”为;(2)若x和2关于3的“美好关联数”为4,求x的值;(3)若x0和x1关于1的“美好关联数”为1,x1和x2关于2的“美好关联数”为1,x2和x3关于3的“美好关联数”为1,…,x40和x41关于41的“美好关联数”为1,….①x0+x1的最小值为;②x1+x2+x3+……+x40的最小值为.27.(8分)(2022秋•江阴市期中)结合数轴与绝对值的知识回答下列问题:(1)数轴上表示3和2的两点之间的距离是;表示﹣2和1两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=2,那么x=;(3)若|a﹣3|=4,|b+2|=3,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是,最小距离是.(4)若数轴上表示数a的点位于﹣3与5之间,则|a+3|+|a﹣5|=.(5)当a=时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是.28.(8分)(2022秋•铁东区校级月考)结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣1的两点之间的距离是3,那么a=.(2)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|的值为;(3)利用数轴找出所有符合条件的整数点x,使得|x+2|+|x﹣5|=7,这些点表示的数的和是.(4)当a=时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是.。
绝对值练习题及答案
绝对值练习题及答案一、选择题1. 绝对值的定义是:对于任意实数x,其绝对值表示为|x|,满足以下哪个条件?A. x ≥ 0B. x ≤ 0C. x > 0D. x < 0答案:A2. 计算绝对值 |-5| 的结果是多少?A. 5B. -5C. 0D. 1答案:A3. 如果 |x - 3| = 4,那么 x 的可能值是:A. -1B. 7C. 1D. 3答案:B, C二、填空题4. 绝对值 |-8| 等于 _______。
答案:85. 如果 |x + 2| = 3,那么 x 的值可以是 _______ 或 _______。
答案:1,-56. 绝对值不等式 |x - 4| < 2 的解集是 _______。
答案:2 < x < 6三、解答题7. 解绝对值方程 |x - 5| = 6。
解:由绝对值的定义,我们有 x - 5 = 6 或 x - 5 = -6。
解得 x = 11 或 x = -1。
8. 已知 |3x + 1| = 8,求 x 的值。
解:由绝对值的定义,我们有 3x + 1 = 8 或 3x + 1 = -8。
解得 x = 7/3 或 x = -3。
9. 证明:对于任意实数 a 和 b,有|a + b| ≤ |a| + |b|。
证明:考虑 a 和 b 的正负情况,我们可以将问题分为四种情况:- 当a ≥ 0 且 b ≥ 0 时,|a + b| = a + b = |a| + |b|。
- 当a ≥ 0 且 b < 0 时,|a + b| = a - |b| ≤ |a| + |b|。
- 当 a < 0 且b ≥ 0 时,|a + b| = |b| - a ≤ |a| + |b|。
- 当 a < 0 且 b < 0 时,|a + b| = -(a + b) = |a| + |b|。
综上,对于任意实数 a 和 b,都有|a + b| ≤ |a| + |b| 成立。
绝对值专题复习
姓名:1、设有理数a ,b ,c 在数轴上的对应点如图所示,化简|b-a |+|a+c |+|c-b |.1.1有理数,,a b c 在数轴上对应的点分别为A ,B ,C ,其位置如图所示,试化简a b c a b c a ++-++-.1.2数a 、b 在数轴上对应的点如图所示试化简:a b a b a b a a ++-++--2、a +b <0,化简b a b a ----+31. 已知a<0,b>0,求51---+-b a a b 的值。
3、100211003120021200312003120041-++-+- |3||4|ππ-+-4、如果2-<x ,那么=+-x 11总结:这类题目的解答依据是:BCA姓名:1、 若0≠abc ,则ccb b a a ++的所有可能值是什么?2、有理数a 、b 、c 均不为0,且a+b+c=0,设x=||||||a b c b c a c a b+++++,试求代数式2011x+2012的值 3、已知||||||a b c a b c ++=1,求1993||()()||||||abc bc ac ab abc ab bc ca +⨯⨯的值.4、已知a 、b 、c 是非零有理数,且a +b +c=0,求abcabc c c b b a a +++的值。
5、有理数a 、b 、c 均不为0,且a +b +c=0,试求ac a c cb c b ba b a ++的值6、设c b a ,,是非零有理数,求acaccb cb ab ab c c b b a a +++++的值7、设0=++c b a ,0>abc ,求cba b a c a c b +++++的值8、如果02=+b a ,求21-+-bab a9、有理数c b a 、、均不为零,且0=++c b a ,设ba c ac b cb a x +++++=,求20029919+-x x总结:这类题目的公式是:绝对值专题训练(三)姓名:1、x =3,y 2 =4,且x>y ,求x+y 的值。
绝对值培优
和绝对值有关的问题例1.(数形结合思想)已知a、b、c在数轴上位置如图:则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( A )A.-3a B. 2c-a C.2a-2b D. b解:| a | + | a+b | + | c-a | - | b-c |=-a-(a+b)+(c-a)+b-c=-3a分析:解绝对值的问题时,往往需要脱去绝对值符号,化成一般的有理数计算。
脱去绝对值的符号时,必须先确定绝对值符号内各个数的正负性,再根据绝对值的代数意义脱去绝对值符号。
这道例题运用了数形结合的数学思想,由a、b、c 在数轴上的对应位置判断绝对值符号内数的符号,从而去掉绝对值符号,完成化简。
例2.已知:,,且,那么的值( C )A.是正数 B.是负数C.是零D.不能确定符号解:由题意,x、y、z在数轴上的位置如图所示:所以分析:数与代数这一领域中数形结合的重要载体是数轴。
这道例题中三个看似复杂的不等关系借助数轴直观、轻松的找到了x、y、z三个数的大小关系,为我们顺利化简铺平了道路。
虽然例题中没有给出数轴,但我们应该有数形结合解决问题的意识。
例3.(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?分析:从题目中寻找关键的解题信息,“数轴上表示这两数的点位于原点的两侧”意味着甲乙两数符号相反,即一正一负。
那么究竟谁是正数谁是负数,我们应该用分类讨论的数学思想解决这一问题。
解:设甲数为x,乙数为y由题意得:,(1)数轴上表示这两数的点位于原点两侧:若x在原点左侧,y在原点右侧,即 x<0,y>0,则 4y=8 ,所以y=2 ,x= -6若x在原点右侧,y在原点左侧,即 x>0,y<0,则 -4y=8 ,所以y=-2,x=6(2)数轴上表示这两数的点位于原点同侧:若x、y在原点左侧,即 x<0,y<0,则 -2y=8 ,所以y=-4,x=-12若x、y在原点右侧,即 x>0,y>0,则 2y=8 ,所以y=4,x=12例4.(整体的思想)方程的解的个数是( D )A.1个 B.2个 C.3个 D.无穷多个分析:这道题我们用整体的思想解决。
中考数学绝对值培优试题
专题二 绝对值姓名: 班别:典例导析类型一:绝对值的化简例1:假如a ,b ,c 是非零的有理数,且0=++c b a ,那么||||||||abc abc c c b b a a +++的可能值为 。
[点拨] 绝对值的化简关键是脱去绝对值符号,常见形式有①由条件脱号;②由数轴读取信息脱号;③运用零点分段法脱号。
[解答][变式] 化简:|3||1|-+-x x类型二:绝对值的非负性例2:|2|-ab 与|1|-b 互为相反数。
试求代数式)2017)(2017(1)2)(2(1)1)(1(11++++++++++b a b a b a ab 的值。
[点拨] 运用绝对值的非负性先求a ,b 的值。
[解答][变式] 有理数a ,b 满足0|2017||1|=-++b a ,那么______=ab 。
类型三:运用绝对值几何意义求最值。
例3:代数式|13||12||11|++-++x x x 的最小值为 。
[点拨] 利用绝对值的几何意义得出奇数个绝对值之和与偶数个绝对值之和取最小值的条件。
[解答][变式] 当|3||2|-+-x x 的值最小时,|1||3||2|---+-x x x 的最大值为 ,最小值为 。
类型四:绝对值不等式与方程例4:求不等式3|2||1|≤-+-x x 的所有整数解的和。
[点拨] 解含绝对值符号的方程和不等式关键是脱号转化为一般方程和不等式,一般采用“零点分段法〞。
[解答][变式] 方程4|2||3|=-+x x 的解是 。
培优训练1、有理数a ,b ,c 在数轴上的位置如图,那么_____||||||||=---++b c c a b a2、设a ,b ,c ,d 都是有理数,假设4||=+b a ,2||=+d c ,且b d a c d b c a -+-=-+-||,求d c b a +++的最大值。
3、非零整数m ,n 满足05||||=-+n m ,所有这样的整数组〔m ,n 〕一共有 组。
人教版七年级数学上册 绝对值 专题培优卷(含答案)
七年级数学上册绝对值专题培优卷一、选择题:1.如图,M,N两点在数轴上表示的数分别是m,n,则下列式子中成立的是()A.m+n<0 B.﹣m<﹣n C.|m|﹣|n|>0 D.2+m<2+n2.﹣2的绝对值是()A.2 B.﹣2 C.0.5 D.-0.53.若│x│=2,│y│=3,则│x+y│的值为( )A.5 B.-5 C.5或1 D.以上都不对4.若|x|=7,|y|=5,且x+y>0,那么x-y的值是()A.2或12 B.-2或12 C.2或-12 D.-2或-125.若数轴上的点A.B分别于有理数a、b对应,则下列关系正确的是( )A.a<b B.﹣a<b C.|a|<|b| D.﹣a>﹣b6.已知a,b是有理数,|ab|=-ab(ab≠0),|a+b|=|a|-b,用数轴上的点来表示a,b,可能成立的是( )A.B.C.D.7.给出下列判断:①若|m|,则m>0;②若m>n,则|m|>|n|;③若|m|>|n|,则m>n;④任意数m,则|m|是正数;⑤在数轴上,离原点越远,该点对应的数的绝对值越大,其中正确的结论的个数为()A.0 B.1 C.2 D.38.如图数轴的A.B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A.B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边B.介于A.B之间C.介于B、C之间D.在C的右边9.已知ab≠0,则+的值不可能的是()A.0 B.1 C.2 D.﹣210.非零有理数a、b、c满足a+b+c=0,则所有可能的值为()A.0 B.1或-1 C.2或-2 D.0或-211.不相等的有理数a.b.c在数轴上,对应点分别为A、B、C.若∣a-b∣+∣b-c∣=∣a-c∣,那么点B在()A.A、C点右边B.A、C点左边C.A、C点之间D.以上均有可能12.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣3二、填空题:13.若|2x﹣1|=3,则x= .14.绝对值小于2的整数是.15.–3的绝对值是,倒数是,相反数是.16.已知|x|=5,|y|=2,且x+y<0,则x,y的值是.17.若(a﹣2)2+|b﹣3|=0,则a b= .18.若|x+y﹣7|+(3x+y﹣17)2=0,则x﹣2y= .19.实数a、b在数轴上的位置如图,则化简|a+2b|-|a-b|的结果为____________.三、解答题:20.在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积是a,最小的积是b,(1)求a,b的值;(2)若|x+a|+|y﹣b|=0,求(x﹣y)÷y的值21.已知|a﹣1|=9,|b+2|=6,且a+b<0,求a﹣b的值.22.已知A.B在数轴上分别表示a、b.①对照数轴填写下表:②若A.B两点间的距离记为d,试问d和a、b(a<b)有何数量关系?③写出数轴上到7和—7的距离之和为14的所有整数,并求这些整数的和。
绝对值练习题(精)100道(DOC)
绝对值综合练习题一1、有理数的绝对值一定是()2、绝对值等于它本身的数有()个3、下列说法正确的是()A、一lai—定是负数B只有两个数相等时它们的绝对值才相等C、若lal=lbl,贝a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数4.若有理数在数轴上的对应点如下图所示,则下列结论中正确的是()A、a>lblB、a<bC、lal>lblD、lal<lbl5、相反数等于-5的数是,绝对值等于5的数是。
6、-4的倒数的相反数是。
7、绝对值小于2的整数有。
8、若l—x|=2,贝x=;若l x-3l=0,贝x=;若lx-3l=1,则x=。
9、实数a、b在数轴上位置如图所示,贝恫、lbl的大小关系是。
丨丨丨丨丨I丨丨.a0b10、已知|a|+|b|=9,且|a|=2,求b的值。
11、已知|a|=3,|b|=2,|c|=1,且a〈b〈c,求a、b、c的值。
12、如果m>0,n〈0,m〈|n|,那么m,n,-m,-n的大小关系()13、如果卜加卜-加,贝仏的取值范围是()A.〉OB.^$OC.^WOD.^VO14、绝对值不大于11.1的整数有A.11个B.12个C.22个D.23个15、|a|二一a,a一定是()A、正数B、负数C、非正数D、非负数16、有理数m,n在数轴上的位置如图,比较大小:-m-n,mn17、若|x—l|=0,贝寸x二,若|]_x|=1,贝寸x二.18、如果八3,贝沖一沪,卩一冬=.19、已知|x+y+3|=0,求|x+y|的值。
20、|a-2|+|b—3|+|c—4|=0,则a+2b+3c=21、如果a,b互为相反数,c,d互为倒数,x的绝对值是1,求代数式ab+x2+cd的值。
x22、已知|a|=3,|b|=5,a与b异号,求|a—b|的值。
23.如果a,b互为相反数,那么a+b=,2a+2b=24.a+5的相反数是3,那么,a=.25.如果a和b表示有理数,在什么条件下,a+b和a—b互为相反数?26、若X的相反数是一5,则X=;若一X的相反数是一3.7,则X=27、若一个数的倒数是1.2,贝这个数的相反数是,绝对值是28、若一a=l,则a二;若一a二一2,则a二;如果一a二a,那么a二29、已知|X—4|+|Y+2|=0,求2X—|Y|的值。
七年级绝对值培优练习经典题26道,含答案
七年级绝对值培优练习经典题26道,含答案
七年级绝对值培优练习经典题
下年是七年级的绝对值培优教材内容,前8道是例题,后面18道是练习,同学们可以下载打印作一下
例1考察绝对值的非负性,求出a,b的值代入计算即可
例2不懂可以关注亘晨数学的视频,有一个视频专门讲这类题的
例3根据a,b,c为整数,可以推出有两个数相等且有两个数是相邻自然数
例4考察绝对值的几何意义
例5去掉绝对值大部分项可以抵消
例6按照绝对值的定义去绝对值化简即可
例7可以用字母来代替动点
下面是18道培优练习
【培优例题】答案
1题:2917/2018;2题:-1,1;2,0,-1;3,-1;3题:2;4题:(1)3,5,-2,5;(2)7,(3)6,(4)9;5题:0;6题:1-2c+b;7题:(1)5,(2)2.5;8题:1990.
【培优练习答案】
1题:5,-5;3,-3;2题:10,-10;3题:1;4题:2;5题:-2,-8;6题:-1008;
7题:-1;8题:大于等于;9题:C;10题:0,2; 11题:4;12题:2;13题:(1)2,(2)25;14题:0;15题:4,0,-4;16题:(1)1,(2)3.5,-1.5,(3)4/15,2/23;17题:(1)3,3,4(2)|-1-x|, -3,1, -1小于等于x小于等于2; 18题:b+c。
绝对值提高训练题
绝对值提高训练题一.选择题(共14小题)1.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是12.当|a|=5,|b|=7,且|a+b|=a+b,则a﹣b的值为()A.﹣12B.﹣2或﹣12C.2D.﹣23.已知|2x﹣1|=7,则x的值为()A.x=4或x=﹣3B.x=4C.x=3或x=﹣4D.x=﹣34.已知点M、N、P、Q在数轴上的位置如图,则其中对应的数的绝对值最大的点是()A.M B.N C.P D.Q5.若m是有理数,则|m|﹣m一定是()A.零B.非负数C.正数D.负数6.已知a,b,c为非零的实数,则的可能值的个数为()A.4B.5C.6D.77.﹣3的绝对值是()A.3B.﹣3C.D.﹣8.如果a+b+c=0,且|a|>|b|>|c|.则下列说法中可能成立的是()A.b为正数,c为负数B.c为正数,b为负数C.c为正数,a为负数D.c为负数,a为负数9.把有理数a代入|a+4|﹣10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=23,经过第2020次操作后得到的是()A.﹣7B.﹣1C.5D.1110.下列说法中,正确的是()A.一个有理数的绝对值不小于它自身B.若两个有理数的绝对值相等,则这两个数相等C.若两个有理数的绝对值相等,则这两个数互为相反数D.﹣a的绝对值等于a11.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8B.2C.8或﹣2D.﹣8或212.若|x|=5,|y|=2且x<0,y>0,则x+y=()A.7B.﹣7C.3D.﹣313.﹣2的绝对值是()A.2B.﹣2C.D.﹣14.对于任何有理数a,下列各式中一定为负数的是()A.﹣(﹣3+a)B.﹣a C.﹣|a+1|D.﹣|a|﹣1二.填空题(共19小题)15.有理数a、b、c在数轴的位置如图所示,且a与b互为相反数,则|a﹣c|﹣|b+c|=.16.已知a,b,c都是有理数,且满足=1,那么6﹣=.17.已知数a,b,c的大小关系如图所示:则下列各式:①b+a+(﹣c)>0;②(﹣a)﹣b+c>0;③;④bc﹣a>0;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b.其中正确的有(请填写编号).18.如图,化简代数式|a+b|﹣|a﹣1|+|b﹣2|的结果是.19.已知有理数a在数轴上的位置如图,则a+|a﹣1|=.20.已知a、b、c的位置如图:则化简|﹣a|﹣|c﹣b|﹣|a﹣c|=.21.如果|x|=6,则x=.22.﹣2的绝对值是,的相反数是.23.计算:|﹣5|=.24.计算:|﹣3|=.25.已知a与b的和为2,b与c互为相反数,若|c|=1,则a=.26.如果|a|=4,|b|=2,且|a+b|=a+b,则a﹣b的值是.27.已知有理数a、b表示的点在数轴上的位置如图所示,化简:|b﹣a|﹣|a+1|=.28.绝对值大于1而小于4的整数有个.29.绝对值小于2的整数有个.30.如果|a﹣2|的值与|b+3|的值互为相反数,那么2b﹣a=.31.已知a,b,c的位置如图,化简:|2a﹣b|+|b+c|﹣|a﹣c|=.32.已知|a|=5,|b|=3,且|a﹣b|=b﹣a,那么a+b=.33.已知:|x|=3,|y|=5,且xy<0,则x+y=.三.解答题(共9小题)34.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.35.有理数a、b、c的位置如图所示,化简式子:|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.36.计算:已知|x|=3,|y|=2,(1)当xy<0时,求x+y的值;(2)求x﹣y的最大值.37.先阅读,后探究相关的问题【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看作|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.(1)如图,先在数轴上画出表示点2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,则点B和点C表示的数分别为和,B,C两点间的距离是;(2)数轴上表示x和﹣1的两点A和B之间的距离表示为;如果|AB|=3,那么x为;(3)若点A表示的整数为x,则当x为时,|x+4|与|x﹣2|的值相等;(4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是.38.计算:已知|x|=,|y|=,且x<y<0,求6÷(x﹣y)的值.39.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|=;(2)若|x﹣2|=5,则x=;(3)请你找出所有符合条件的整数x,使得|1﹣x|+|x+2|=3.40.数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:①数轴上表示2和5两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是.②数轴上表示x和﹣2的两点之间的距离表示为.数轴上表示x和5的两点之间的距离表示为.③若x表示一个有理数,则|x﹣1|+|x+3|的最小值=.④若x表示一个有理数,且|x+3|+|x﹣2|=5,则满足条件的所有整数x的是.⑤若x表示一个有理数,当x为,式子|x+2|+|x﹣3|+|x﹣5|有最小值为.41.已知数轴上三点A,O,B对应的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=;(2)当x=时,点P到点A、点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O向左运动时,点E以每秒1个单位长度的速度从点A向左运动、点F以每秒4个单位长度的速度从点B也向左运动,且三个点同时出发,那么运动秒时,点P到点E,点F的距离相等.42.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14,﹣9,+8,﹣7,13,﹣6,+12,﹣5.(1)请你帮忙确定B地位于A地的什么方向,距离A地多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?(3)救灾过程中,冲锋舟离出发点A最远处有多远。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对值的化简、最值问题全归纳
【知识点1】 绝对值的定义、表示、代数意义和几何意义
1.绝对值的定义及表示
(1) 一般地,数轴上表示数ɑ的点与原点的距离叫做数ɑ的绝对值。
记作:a ,读作“a 的绝对值。
如-2的绝对值记2-,
4
7的绝对值记作47。
2.绝对值的代数意义
(1)正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
即a =⎪⎩⎪⎨⎧<-=>)0()0(0)0(a a a a a
3.绝对值的几何意义:
一个数的绝对值就是在数轴上表示这个数的点到原点的距离。
【典型例题】
考点一:绝对值的双值性
【例 1】(1)①若 a = 3 ,则 a = ;①若 1-x = 2 ,则 x = ;
(2) 若 x = 4, y = 3 且 x < y ,则 x - y 的值为 .
【课堂总结】1.
2.
3.
4.
【课上练习】
一、选择题:
1、2--的倒数是( )
A 、2
B 、21
C 、-2
1 D 、-
2 2、若a 与2互为相反数,则|a +2|等于( )
A 、0
B 、-2
C 、2
D 、4
3、一个数在数轴上所对应的点向左移6个单位后,得到它的相反数的点,则这个数是
( )
A 、3
B 、-3
C 、6
D 、-6
4、若|a | + |b |=0 ,则a 与b 的关系是( )
A 、a=b= 0
B 、a 与b 不相等
C 、a ,b 互为相反数
D 、a ,b 异号
5、若有理数 a ,b 在数轴上对应的点的位置如图,则下列结论正确的是( )
A 、b >|-a |
B 、|a |>b
C 、b >a
D 、|a |> |b |
二、选择题:
【课后练习】。